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Abstract. For a linear relation in a linear space some spectra defined by means of ascent, essential ascent,
descent and essential descent are introduced and studied. We prove that the algebraic ascent, essential
ascent, descent and essential descent spectrum of a linear relation in a linear space satisfy the polynomial
spectral mapping theorem. As an application of the obtained results we show that the topological ascent,
essential ascent, descent and essential descent spectrum verify the polynomial spectral mapping theorem.

1. Introduction

Let T be an operator in a linear space. The ascent and the essential ascent of T are defined by

a(T) := min{N ∪ {0} : dim
N(Tn+1)
N(Tn)

= 0},

ae(T) := min{n ∈N ∪ {0} : dim
N(Tn+1)
N(Tn)

< ∞},

respectively, whenever these minima exist. If no such numbers exist the ascent and the essential ascent of
T are defined to be∞.
The descent and the essential descent of T are defined by

d(T) := min{n ∈N ∪ {0} : dim
R(Tn)

R(Tn+1)
= 0},

de(T) := min{n ∈N ∪ {0} : dim
R(Tn)

R(Tn+1)
< ∞},

respectively, whenever these minima exist. If no such numbers exist the descent and the essential descent
of T are defined to be∞.
These notions permit to define the following algebraic spectra

σa(T) := {λ ∈ K : a(T − λ) = ∞}, σe
a(T) := {λ ∈ K : ae(T − λ) = ∞},
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σd(T) := {λ ∈ K : d(T − λ) = ∞}, σe
d(T) := {λ ∈ K : de(T − λ) = ∞}.

Mbekhta and Müller [11] have shown that if T is a bounded operator in a Banach space, then the above
algebraic spectra verify the polynomial version of the spectral mapping theorem, that is, for a complex
polynomial P, σ∗(P(T)) = P(σ∗(T)) where ∗ ∈ {a, ae, d, de

}. In a recent paper [6], Chafai and Mnif prove
that if T is a closed linear relation in a Banach space having a finite dimensional multivalued part, then
σd(P(T)) = P(σd(T)) and σe

d(P(T)) = P(σe
d(T)) for a complex polynomial P. In the present paper we continue

the investigation initiated in [6] and thus we establish that the polynomial spectral mapping property is
true for the algebraic spectra of a linear relation in a linear space. Our proofs are purely algebraic and they
differ considerably from these in [11] which were based in the concept of regularity. We also remark that
the techniques employed by Chafai and Mnif [6, Theorem 4.3] are not applicable when the assumption that
the multivalued part of the linear relation be finite dimensional is not required.
Combining the algebraic conditions defining the spectra σ∗(T), ∗ ∈ {a, ae, d, de

} with a topological condition,
for a bounded operator T in a Banach space we can consider the following topological spectra

σta(T) := K\ρta(T) where ρta(T) := {λ ∈ K : a(T − λ) < ∞,R((T − λ)a(T−λ)+1) is closed },

σe
ta(T) := K\ρe

ta(T) where ρe
ta(T) := {λ ∈ K : ae(T − λ) < ∞,R((T − λ)ae(T−λ)+1) is closed },

σtd(T) := K\ρtd(T) where ρtd(T) := {λ ∈ K : d(T − λ) < ∞,R((T − λ)d(T−λ)) is closed }

and
σe

td(T) := K\ρe
td(T) where ρe

td(T) := {λ ∈ K : de(T − λ) < ∞,R((T − λ)de(T−λ)) is closed }.

In [11], the authors proved that if P is a complex polynomial, then P(σ∗(T)) = σ∗(P(T)) where ∗ ∈ {ta, tae, td, tde
}.

In the second part of this paper, we extend these properties to the case of closed linear relations. The proofs
presented here are very different from those in [11]. Our analysis is essentially based on the algebraic
spectral mapping results developed in the first part of this paper.
On the other hand, we note that there are many reasons why linear relations are more convenient than
operators, one of them is that one can define the inverse of a linear relation. In the last years, several
authors have paid attention to the research of the theory of linear relations since it has applications in many
problems in Physics and other areas of Applied Mathematical. We cite some of them
• Theory of pseudo-resolvents. Note that any pseudo-resolvent is a resolvent set of a certain linear relation
(see for instance [2]).
• Theory of linear bundles. Let S and T be two bounded operators. The mapP(λ) := S +λT, λ ∈ C, is called
a linear bundle. It is known that many problems of Mathematical Physics are reduced to the study of the
reversibility conditions of operatorsP(λ), λ ∈ C and this study is reduced in many cases to the investigation
of spectral properties of the linear relations T−1S and ST−1 (see for instance [3] and the references therein).
•Applications of the theory of linear relations in: Game theory and Mathematical Economics, Discontinuous
differential equations which occur in the Biological Sciences (for example, population in dynamics and
epidemiology), Optimal control and Digital imaging. A systematic bibliography on these applications
including references to other and more recent contributions can be found in [10].
In view of the above remarks the attempt to generalize the existing results concerning the spectra of
operators to general context of linear relations appears as natural.
The structure of this paper is as follows. To make the paper easily accessible the exposition is more or
less self-contained. Some basic notations and results from the theory of linear relations in linear spaces are
recalled in Section 2. In this section, some relationships between descent and essential descent, and ascent
and essential ascent, respectively, are established. Section 3 is devoted to show that the descent, essential
descent, ascent and essential ascent spectrum of a linear relation in a linear space verify the polynomial
version of the spectral mapping theorem. These algebraic results are used in Section 4 to show that the
topological descent, essential descent, ascent and essential ascent spectrum of a closed linear relation in a
Banach space satisfy the polynomial spectral mapping property. We close this paper, by calculating σ∗(L)
and σ∗(L−1), ∗ ∈ {ta, tae, td, tde

} where L is the left shift operator on lp, 1 ≤ p < ∞ and L−1 denotes the inverse
of L (which is a linear relation but it is not an operator).
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2. Algebraic Results for Ascent, Essential Ascent, Descent and Essential Descent

This section contains some results concerning the ascent, essential ascent, descent and essential descent
of a linear relation in a linear space.
We first recall the notions of the objects which will be studied in this paper. Let E,F and G be linear spaces
over K = R or C. A linear relation A in E × F is a subspace of the space E × F, the Cartesian product of E
and F. The notations D(A) and R(A) denote the domain and the range of A, defined by

D(A) := {x : (x, y) ∈ A}, R(A) := {y : (x, y) ∈ A}.

Further, N(A) and A(0) denote the null space and the multivalued part of A, defined by

N(A) := {x : (x, 0) ∈ A}, A(0) := {y : (0, y) ∈ A}.

We say that A is injective if N(A) = {0}, surjective if R(A) = F and A is called bijective if it is injective and
surjective.
A linear relation A is (the graph of) an operator if and only if A(0) = {0}. The inverse A−1 of A is given by
{(y, x) : (x, y) ∈ A}, so that D(A−1) = R(A), R(A−1) = D(A), N(A−1) = A(0) and A−1(0) = N(A).
Let M be a subspace of E. The notation A/M will be used for the linear relation A/M := A ∩ (M × F).
For linear relations A and B in E × F and λ ∈ K, the linear relations A + B, and λA are defined by

A + B := {(x, y + z) : (x, y) ∈ A, (x, z) ∈ B},

λA := {(x, λy) : (x, y) ∈ A}.

If A is a linear relation in E × E, or a linear relation in E for short, then A − λ := A − λI where I is the
identity operator on E, the resolvent set of A is the subset ρ(A) := {λ ∈ K : A− λ is bijective} and the subset
σ(A) := K\ρ(A) is called the spectrum of A.
Let A and B be linear relations in E× F and F×G respectively. The product BA is the linear relation in E×G
defined by

BA := {(x, z) : (x, y) ∈ A, (y, z) ∈ B for some y ∈ F}.

Let A be a linear relation in E. Then An, n ∈ Z, is defined as usual with A0 = I and A1 = A. The singular
chain manifold Rc(A) of A is defined by

Rc(A) := (
+∞⋃
n=1

An(0)) ∩ (
+∞⋃
n=1

N(An)).

It is known (see [13, Lemmas 3.4 and 3.5]) that (N(An))n∈N is an increasing sequence and if N(Am) = N(Am+1)
for some nonnegative integer m, then N(Am) = N(An) for all n ≥ m. Similarly, (R(An))n∈N is a decreasing
sequence and if R(Am) = R(Am+1) for some m ∈N ∪ {0}, then R(Am) = R(An) for all n ≥ m. These statements
lead to the introduction of the ascent and the descent of a linear relation A in E by

a(A) := min{r ∈N ∪ {0} : N(Ar) = N(Ar+1)},

d(A) := min{s ∈N ∪ {0} : R(As) = R(As+1)},

respectively, whenever these minima exist. If no such numbers exist the ascent and descent of A are defined
to be∞.
In [13], the authors introduce and study these notions. They showed that many of the results of Taylor and
Kaashoek for operators remain valid in the context of linear relations only under the additional condition
that the linear relation A has a trivial singular chain manifold, that is, Rc(A) = {0}.
The following lemma helps to understand Definition 2.1 below

Lemma 2.1. [6, Lemmas 2.7 and 2.8]
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(i) dimR(An)/R(An+1) ≤ dimR(An−1)/R(An) for all n ∈N.

(ii) If there exists m ∈ N ∪ {0} such that dimR(Am)/R(Am+1) is finite, then dimR(An)/R(An+1) is finite for all
n ≥ m.

(iii) dimR(An)/R(An+1) < ∞ if and only if dimR(An)/R(An+k) < ∞ for all positive integer k.
Assume that Rc(A) = {0}. Then

(iv) dimN(An+1)/N(An) ≤ dimN(An)/N(An−1) for all n ∈N.

(v) If there exists m ∈N ∪ {0} such dimN(Am+1)/N(Am) < ∞, then dimN(An+1)/N(An) < ∞ for all n ≥ m.

(vi) dimN(An+1)/N(An) < ∞ if and only if dimN(An+k)/N(An) < ∞ for all positive integer k.

The statements in Lemma 2.1 lead to the introduction of the following concepts which are due to Chafai
and Mnif [6].

Definition 2.1. Let A be a linear relation in a linear space E. The essential descent of A is defined by

de(A) := min{s ∈N ∪ {0} : dimR(As)/R(As+1) < ∞},

where the minimum over the empty set is taken to be infinite. If Rc(A) = {0}, then the essential ascent of A is given by

ae(A) := min{r ∈N ∪ {0} : dimN(Ar+1)/N(Ar) < ∞},

where the minimum over the empty set is taken to be infinite.

It is proved in [13, Theorem 5.7] that if Rc(A) = {0}, a(A) < ∞ and d(A) < ∞, then a(A) ≤ d(A) with equality if
A is everywhere defined. The main purpose of this section is to prove the same properties for the essential
ascent and essential descent. For this end, we need some auxiliary results. Firstly, we recall the following
elementary lemma

Lemma 2.2. Let M, N and W be subspaces of E. Then

(i)
M

M ∩N
'

M + N
N

.

(ii) If M ⊂W, then (M + N) ∩W = M + (N ∩W).

Lemma 2.3. Let A be a linear relation in a linear space E such that de(A) := s < ∞. Then

N(A) ∩ R(As) = N(A) ∩ R(As+n) for all n ∈N.

Proof. Consider the linear relation Â in
R(As)

R(As+1)
×

R(As+1)
R(As+2)

defined by

Â := {(x, y) ∈
R(As)

R(As+1)
×

R(As+1)
R(As+2)

: (x, y) ∈ A}.

We shall show that

Â is a bijective operator and dim
R(As)

R(As+1)
= dim

R(An)
R(An+1)

for all n ≥ s. (2.1)
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Indeed, since A(0) ⊂ R(An) for all nonnegative integer n, one deduces trivially from the definition of Â

that Â is a surjective operator. So that dim
R(As)

R(As+1)
≤ dim

R(As+1)
R(As+2)

and thus we infer from Lemma 2.1(i) that

dim
R(As)

R(As+1)
= dim

R(As+1)
R(As+2)

. Now, a repeated reasoning proves that

dim
R(As)

R(As+1)
= dim

R(An)
R(An+1)

for all n ≥ s.

This equality combined with the fact that dim
R(As)

R(As+1)
< ∞ ensures that Â is injective. Hence (2.1) holds.

dimN(Â) = dim
N(A) ∩ R(As)

N(A) ∩ R(As+1)
. (2.2)

The use of [8, Proposition I.3.1] together with Lemma 2.2 gives

dimN(Â) = dim
A−1(R(As+2)) ∩ [R(As) ∩D(A)]

R(As+1) ∩D(A)

= dim
[N(A) + (R(As+1) ∩D(A))] ∩ [R(As) ∩D(A)]

R(As+1) ∩D(A)

= dim
[N(A) ∩ R(As) ∩D(A)] + [R(As+1) ∩D(A)]

R(As+1) ∩D(A)

= dim
[N(A) ∩ R(As)] + [R(As+1) ∩D(A)]

R(As+1) ∩D(A)
(since N(A) ⊂ D(A))

= dim
N(A) ∩ R(As)

[(N(A) ∩ R(As)] ∩ [R(As+1) ∩D(A))]
(by Lemma 2.2)

= dim
N(A) ∩ R(As)

N(A) ∩ R(As+1)
(since N(A) ⊂ D(A) and R(As+1) ⊂ R(As)).

Hence (2.2) holds.
A combination of (2.1) and (2.2) now implies that N(A) ∩ R(As) = N(A) ∩ R(As+1) and a repeated reasoning
then gives N(A) ∩ R(As) = N(A) ∩ R(As+n) for all n ∈N, as desired.

Lemma 2.4. [13, Lemmas 4.1 and 4.4] Let A be a linear relation in a linear space E and let n,m ∈N ∪ {0}. Then

(i)
D(An)

D(An) ∩ (N(An) + R(Am))
'

R(An)
R(An+m)

.

(ii) If Rc(T) = {0}, then
N(An+m)
N(Am)

' N(An) ∩ R(Am).

Theorem 2.1. Assume that Rc(A) = {0}. If ae(A) and de(A) are both finite, then ae(A) ≤ de(A) and there is equality
if D(A) = E.

Proof. Let ae(A) := r < ∞ and de(A) := s < ∞. Assume that r > s, then r = s + q for some q ∈ N and thus
it follows from Lemma 2.3 that N(A) ∩ R(As) = N(A) ∩ R(Ar). So that one has from Lemma 2.4 (ii) that

dim
N(As+1)
N(As)

= dim
N(Ar+1)
N(Ar)

< ∞. Therefore r ≤ s, that is ae(A) ≤ de(A). Suppose now that A is everywhere

defined and let us consider various cases for s.

Case 1: s = 0. Since r ≤ s, we have that r = 0.
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Case 2: s = 1. Assume first that r = 0. Then dimN(A) = dimN(A0+1)/N(A0) < ∞ and dimR(A1)/R(A2) <

∞. The use of these facts combined with Lemmas 2.2 and 2.4 shows that dim
N(A) + R(A)

R(A)
< ∞ and

dim

E
R(A)

N(A) + R(A)
R(A)

= dim
E

N(A) + R(A)
= dim

R(A)
R(A2)

< ∞

which implies that dim
R(A0)
R(A)

= dim
E

R(A)
< ∞ and this fact contradicts the assumption de(A) = 1.

Hence r = s = 1.

Case 3: s > 1. In this case, dim
R(As)

R(As+1)
< ∞ and dim

R(As−1)
R(As)

= ∞. Define the linear relation Â in

R(As−1)
R(As)

×
R(As)

R(As+1)
in the same way that in Lemma 2.3. Then we obtain that Â is a surjective operator

with

dimN(Â) = dim
N(A) ∩ R(As−1)
N(A) ∩ R(As)

.

Consequently, dimN(Â) = ∞; in particular dimN(A) ∩ R(As−1) = ∞, so that, dim N(As)
N(As−1) = ∞ by Lemma

2.4. A combination of this last equality and Lemma 2.1 ensures that ae(A) ≥ s and since ae(A) ≤ de(A),
we conclude that r = s as desired.

Remark 2.1. In [7, Theorem 2.2], Chandra and Kumar proved the above Theorem 2.1 when A is an operator. Our
proof is very different (and more short) that the proof of Theorem 2.2 in [7].

Remark 2.2. It is possible to find operators A such that

(i) ae(A) < ∞ and de(A) = ∞.

(ii) ae(A) = ∞ and de(A) < ∞.

(iii) ae(A) = de(A) = ∞.

See [7, Examples 3.2, 3.3, and 3.4].

3. Polynomial Spectral Mapping Theorem for the Algebraic Spectra σa(.), σe
a(.), σd(.) and σe

d
(.)

Definition 3.1. Let A be a linear relation in a linear space E. The descent resolvent set and the essential descent
resolvent set of A are respectively defined by

ρd(A) := {λ ∈ K : d(T − λ) < ∞},

ρe
d(A) := {λ ∈ K : de(T − λ) < ∞}.

The complementary sets σd(A) := K\ρd(A) and σe
d(A) := K\ρe

d(A) are called the algebraic descent spectrum and the
algebraic essential descent spectrum of A, respectively.

Assume that A has a trivial singular chain manifold. Then the ascent resolvent set and the essential ascent
resolvent set of A are respectively defined by

ρa(A) := {λ ∈ K : a(T − λ) < ∞},

ρe
a(A) := {λ ∈ K : ae(T − λ) < ∞}.

The sets σa(A) := K\ρa(A) and σe
a(A) := K\ρe

a(A) are called the algebraic ascent spectrum and the algebraic essential
ascent spectrum of A, respectively.
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In this section our interest concentrates to show that the above algebraic spectra satisfy the polynomial
spectral mapping property. For this end, we need some auxiliary results.

Lemma 3.1. [6, Lemmas 3.2 and 4.5] Let A be a linear relation in a linear space E. Then d(Am) is finite for some
m ∈ N if and only if d(An) is finite for all n ∈ N. The same property is true for the essential descent, ascent and
essential ascent.

Lemma 3.2. [8, Proposition VI.5.1],[13, Lemma 7.2] and [12, Lemma 6.1] Let A be a linear relation in a linear space
E, λ, µ ∈ K and let m,n ∈N ∪ {0}. We have

(i) (A − λ)n(A − µ)m = (A − µ)m(A − λ)n.

(ii) If λ , µ, then N(A − λ)n
⊂ R((A − µ)m).

(ii) If ρ(A) , ∅, then E = D(An) + R(Am) and {0} = Am(0) ∩N(An). Particularly, Rc(A) = {0} if ρ(A) , ∅.

We recall the notion of polynomial in a linear relation which is due to Sandovic [12].

Definition 3.2. Let A be a linear relation in a linear space E. Let p and mi, 1 ≤ i ≤ p be some positive integers and
λi ∈ K, 1 ≤ i ≤ p be some distinct constants. Then the polynomial P in A is the linear relation

P(A) :=
p∏

i=1

(A − λi)mi .

The following lemma will be very useful, it describes the behaviour of the domain, the range, the null space
and the multivalued part of P(A).

Lemma 3.3. [12, Theorems 3.2, 3.3, 3.4 and 3.6] Let A be a linear relation in a linear space E and let P(A) be as in
Definition 3.2. Then

(i) D(P(A)) = D(A
∑p

i=1 mi ).

(ii) R(P(A)) =

p⋂
i=1

R((A − λi)mi ).

(iii) N(P(A)) =

p∑
i=1

N((A − λi)mi ).

(iv) P(A)(0) = A
∑p

i=1 mi (0).

As an immediate consequence of Lemmas 2.2, 3.2 and 3.3 we get

Lemma 3.4. Let A be a linear relation in a linear space E and let P(A) be as in Definition 3.2. Then

(i) N(P(A)) ∩ R(P(A)n) =

p∑
i=1

(N((A − λi)mi )) ∩ R((A − λi)nmi ).

(ii) N(P(An)) + R(P)) ⊂
p⋂

i=1

[N((A − λi)nmi ) + R((A − λi)mi )].

Proposition 3.1. Let A be a linear relation in a linear space E such that ρ(A) , ∅ and let P(A) be as in Definition
3.2. Then

(i) d(P(A)) < ∞ if and only if d(A − λi) < ∞ for all i ∈ {1, 2, ..., p}.

(ii) de(P(A)) < ∞ if and only if de(A − λi) < ∞ for all i ∈ {1, 2, ..., p}.
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(iii) a(P(A)) < ∞ if and only if a(A − λi) < ∞ for all i ∈ {1, 2, ..., p}.

(iv) ae(P(A)) < ∞ if and only if ae(A − λi) < ∞ for all i ∈ {1, 2, ..., p}.

Proof. Arguing exactly as in the proof of Theorem VI.5.4 in [8] we obtain that ρ((A − λi)mi ) , ∅ for each
i ∈ {1, 2, ..., p} and that ρ(P(A)) , ∅.
Write U := (A − λi)mi and V := (A − λ j)m j .

(i) Assume that d(P(A)) := d < ∞. Then

{0} =
R(P(A)d)

R(P(A)d+1)

'
D(P(A)d)

D(P(A)d) ∩ [R(P(A)) + N(P(A)d)]
(Lemma 2.4(i))

'
D(P(A)d) + R(P(A))
N(P(A)d) + R(P(A))

(Lemma 2.2(i))

=
E

N(P(A)d) + R(P(A))
(Lemma 3.2(iii)).

Hence E = N(P(A)d) + R(P(A)). So that E = N((A − λi)mid) + R(A − λi)mi ) by Lemma 3.4(ii) and thus,
again Lemmas 2.2(i), 2.4(i) and 3.2(iii), show that d((A − λi)mi ) is finite. Now, the use of Lemma 3.1
makes us to conclude that d(A − λi) is finite.
Conversely, assume that d(A − λi) is finite for every i, 1 ≤ i ≤ p. Then d((A − λi)mi ) < ∞ by virtue of
Lemma 3.1. Let q := max{d((A − λi)mi ), d((A − λ j)m j )}. Then

R((UV)q) = Uq(R(Vq)) = Uq(R(Vq+1))

= Vq+1(R(Uq)) = Vq+1(R(Uq+1))

= R((UV)q+1).

Hence d(UV) := d((A − λi)mi )(A − λ j)m j ) < ∞ and repeating the same reasoning we obtain that
d(P(A)) < ∞.

(ii) Suppose that de(P(A)) < ∞. Proceeding exactly as for the proof of the assertion (i) we obtain that

dim
E

N(P(A)de(P(A))) + R(P(A))
< ∞

and applying Lemma 3.4(ii) we get that

dim
E

R((A − λi)mi ) + N((A − λi)mide(P(A)))
< ∞

which implies that de((A − λi)mi ) is finite. So that de(A − λi) < ∞ by virtue of Lemma 3.1. Conversely,
assume that for every i ∈ {1, 2, ..., p}, de(A−λi) < ∞. By Lemma 3.1, max{de((A−λi)mi ), de((A−λ j)m j )} :=
s < ∞. We first claim that

R((UV)s)
R(UsVs+1)

and
R(UsVs+1)
R((UV)s+1)

are both finite dimensional spaces (3.1)

As a direct consequence of Lemmas 3.2(iii) and 3.3(i) we obtain that E = D(Us) + R(Vs+1). Using this
equality combined with Lemmas 2.2 and 2.4(i), we deduce that
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dim
R(Vs)

R(Vs+1)
= dim

R(Vs) ∩ (D(Us) + R(Vs+1))
R(Vs+1)

= dim
R(Vs+1) + (D(Us) ∩ R(Vs))

R(Vs+1)

= dim
D(Us) ∩ R(Vs)

D(Us) ∩ R(Vs+1)
.

Hence dim
D(Us) ∩ R(Vs)

D(Us) ∩ R(Vs+1)
< ∞. On the other hand, we define W := (U/R(Vs))s and M := R(Vs+1). Then

dim
R((UV)s)
R(UsVs+1)

=dim
R(W)
W(M)

≤ dim
D(W)

D(W) ∩M
([8, Proposition I.6.1])

= dim
D(Us) ∩ R(Vs)

D(Us) ∩ R(Vs+1)
.

Consequently, dim
((UV)s)

R(UsVs+1)
< ∞. Similarly, if we consider (V/R(Us))s+1 and R(Us+1) instead of W and

M respectively we obtain that dim
R(UsVs+1)
R((UV)s+1)

< ∞. Hence (3.1) holds.

One finds, by (3.1), that

dim
R((UV)s)

R((UV)s+1)
= dim

R((UV)s)
R(UsVs+1)

+ dim
R(UsVs+1)
R((UV)s+1)

< ∞.

Hence de((A − λi)mi (A − λ j)m j ) < ∞ and a repeated reasoning then gives de(P(A)) < ∞.
(iii) and (iv) follow immediately from Lemmas 2.4(ii), 3.2(iii) and 3.4(i).

Now, we are in the position to give the main result of this section.

Theorem 3.1. Let A be a linear relation in a linear space E with ρ(A) , ∅ and let P be a complex polynomial. Then

(i) P(σd(A)) = σd(P(A)).

(ii) P(σe
d(A)) = σe

d(P(A)).

(iii) P(σa(A)) = σa(P(A)).

(iv) P(σe
a(A)) = σe

a(P(A)).

Proof. Fix µ ∈ C and let P(µ) =

p∏
i=1

(µ − λi)mi where p and mi, 1 ≤ i ≤ p are positive integers and λi ∈ K, 1 ≤

i ≤ p, are distinct constants. Then P(A) − λ =

p∏
i=1

(A − λi)mi .

(i) Let λ ∈ P(σd(A)), so that λ = P(β) for some β ∈ σd(A). Then β = λ j for some j. It follows from
Proposition 3.1(i) that d(P(A) − λ) = ∞ which implies that λ ∈ σd(P(A)). Conversely, assume that
λ ∈ σd(P(A)). Then d(A − λi) = ∞ for some i ∈ {1, 2, ..., p} by virtue of Proposition 3.1(i) and since
P(λi) = λ we have that λ ∈ P(σd(A)). Therefore (i) holds.
The proof of the statements (ii), (iii) and (iv) my be sketched in the same way as the proof of (i).
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For bounded operators in Banach spaces the above Theorem 3.1 was proved by Mbekhta and Müller
[11] by using the notion of regularity.
For an everywhere defined closed linear relation T in a Banach space with dimT(0) < ∞, the statements (i)
and (ii) have been proved in [6, Theorem 3.4]. Hence, Theorem 3.1 provides an improvement of Theorem
3.4 in [6] to the general case of a linear relation in a linear space.

4. Polynomial Spectral Mapping Theorem for the Topological Spectra σta(.), σe
ta

(.), σtd(.) and σe
td

(.)

It is more interesting from the point of view of the operator theory to combine the algebraic conditions
defining the resolvent sets ρd(.), ρe

d(.), ρa(.) and ρe
a(.) with a topological condition. The following observations

explain the exponents in Definition 4.1 below.
Let T be a closed linear relation in a complex Banach space X (that is, T is a closed subspace of X × X). It
is easy to see that if dim R(Td)

R(Td+1) < ∞. for some d ∈ N ∪ {0} and R(Tn) is closed for some n ≥ d, then R(Ti) is
closed for all i ≥ d. Further, in [6, Lemma 4.3], the authors prove that if D(T) = X, ρ(T) , ∅, ae(T) < ∞ and
R(Tn) is closed for some n > ae(T), then R(Tn) is closed for all n ≥ ae(T).
In the rest of this section X will be a complex Banach space and T will always denote an everywhere defined
closed linear relation in X with ρ(T) , ∅.

Definition 4.1. The topological resolvent sets, ρ∗(T) for ∗ ∈ {ta, tae, td, tde
} are defined as follows

ρta(T) := {λ ∈ C : a(T − λ) < ∞,R((T − λ)a(T−λ)+1) is closed},

ρe
ta(T) := {λ ∈ C : ae(T − λ) < ∞,R((T − λ)ae(T−λ)+1) is closed},

ρtd(T) := {λ ∈ C : d(T − λ) < ∞,R((T − λ)d(T−λ)) is closed},

ρe
td(T) := {λ ∈ C : de(T − λ) < ∞,R((T − λ)de(T−λ)) is closed}.

The subsets σta(T) := C\ρta(T); σe
ta(T) := C\ρe

ta(T); σtd(T) := C\ρtd(T) and σe
ta(T) := C\ρe

td(T) are called the
topological descent spectrum, the topological essential descent spectrum, the topological ascent spectrum and the
topological essential ascent spectrum of T, respectively.

Recently, Chafai and Mnif [6, Theorem 4.7] showed that if P is a complex polynomial then P(σta(T)) =
σta(P(T)) and P(σe

ta(T)) = σe
ta(P(T)). However, the notions of σtd(T) and σe

td(T) as well as the validity of the
polynomial spectral mapping property for both topological spectra seem still unknown. The objective of
this section is to show that if P is a complex polynomial then P(σe

td(T)) = σe
td(P(T)).

The analysis is essentially based on the algebraic results developed in the previous section combined with
some topological properties.

Lemma 4.1. [6, Lemma 4.2] Assume that M is a closed subspace of X such that T(0) ⊂M. Then T−1(M) is closed.

Lemma 4.2. Let P(T) =

p∏
i=1

(T − λi)mi with p,mi and λi, 1 ≤ i ≤ p as in Definition 3.2. Then

(i) P(T) is an everywhere defined closed linear relation in X having a nonempty resolvent set.

(ii) For any n ∈N, R(P(T)n) is closed if and only if, for each i ∈ {1, 2, ..., p}, R((T − λi)nmi ) is closed.

Proof. (i) See [9, Lemma 3.1] and [8, Theorem VI.5.4].

(ii) Write P(T) = US where U := (T − λi)mi and S =

p∏
j=1, j,i

(T − λi)mi . By Lemmas 3.2 and 3.3 we have

that UnSn = SnUn, Sn(0) ⊂ R(P(T)n) and N(Sn) ⊂ R(Un). Assume that R(P(T)n) is closed. Then
R(Un) = R(Un) + N(Sn) = S−nSn(R(Un)) [8, Proposition I.3.1] = S−n(R(P(T)n)) which is closed by virtue
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of (i) and Lemma 4.1. Hence R((T − λi)nmi ) is closed.
Conversely, suppose that R((T − λi)nmi ) is closed for every i, 1 ≤ i ≤ p. According to Lemma 3.3,
R(P(T)n) is closed.

Theorem 4.1. Let P be a complex polynomial. Then

(i) P(σtd(A)) = σtd(P(A)).

(ii) P(σe
td(A)) = σe

td(P(A)).

(iii) P(σta(A)) = σta(P(A)).

(iv) P(σe
ta(A)) = σe

ta(P(A)).

Proof. For λ ∈ C let P(T) − λ =

p∏
i=1

(T − λi)mi . where p and mi, 1 ≤ i ≤ p, are positive integers and λi ∈ K,

1 ≤ i ≤ p are distinct constants. We only prove (i), the proofs of the statements (ii), (iii) and (iv) are similar.

(i) Let λ ∈ P(σtd(T)). Then λ = P(β) for some β ∈ σtd(T), so that β = λ j for some λ j. Let us consider two
possibilities for λ j:

Case 1: d(T − λ j) = ∞. In such case we infer, from Proposition 3.1(i) that d(P(T) − λ) = ∞ and hence
λ ∈ σd(P(T)) ⊂ σtd(P(T)).

Case 2: d(T−λ j) = q j < ∞ and R(T−λ j)q j is not closed. If d(P(T)−λ) = ∞, then λ ∈ σd(P(T)) ⊂ σtd(P(T)),
so that we can suppose that d(P(T) − λ) = q < ∞. Then R((P(T) − λ)m j(q+q j)) is not closed and one has
from Lemma 4.2(ii) that R((P(T) − λ)(q+q j)) is not closed and since d(P(T) − λ) = q < ∞, we conclude
that R((P(T) − λ)q) is not closed. Hence λ ∈ σtd(P(T)). Consequently P(σtd(T)) ⊂ σtd(P(T)).

Conversely, assume that λ ∈ σtd(P(T)). Various cases for λ will be considered :

Case 1: d(P(T) − λ) = ∞. In such case, Proposition 3.1(i) ensures that d(T − λ j) = ∞ for some
j ∈ {1, 2, ..., p} and since P(λ j) = λ we get that λ ∈ P(σtd(T)).

Case 2: d(P(T)−λ) = q < ∞ and R(P(T)−λ)q is not closed. Again Proposition 3.1(i) says that d(T−λ j) is
finite. Let d := max{q, d(T−λ1), d(T−λ2), ..., d(T−λp)}. Then, it follows from Lemma 4.2(ii) that there is
j ∈ {1, 2, ..., p} for which R(T−λ j)dm j is not closed, so that R((T−λ j)d(T−λ j)) is not closed which shows that
λ j ∈ σtd(T) and since P(λ j) = λ we conclude that λ ∈ P(σtd(T)). Consequentely, σtd(P(A)) ⊂ P(σe

ta(A)).

For bounded operators the above Theorem 4.1 was proved by Mbekhta and Müller [11] by using the
notion of regularity.

5. Example

Let X = lp, 1 ≤ p < ∞ be the Banach space of all complex sequences x = (x1, x2, ...) such that
∞∑

n=1

|xn|
p < ∞.

We define the right shift operator R and the left shift operator L in X by

R : (x1, x2, x3, ...) ∈ X 7→ (0, x1, x2, x3, ...) ∈ X and L : (x1, x2, x3, ...) ∈ X 7→ (x2, x3, ...) ∈ X.

Clearly L is a bounded operator in X with N(L) = span{e1} where e1 := (1, 0, 0, ...), and R(L) = X. So that L−1

is a closed linear relation in X with D(L−1) = X,N(L−1) = {0} R(L−1) = X and L−1(0) = span{e1} , {0}. This
section is devoted to calculate σ∗(L) and σ∗(L−1) where ∗ ∈ {td, tde, ta, tae

}. For this end, the following entirely
algebraic results will play a crucial role.
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Lemma 5.1. [13, Theorem 5.6 and Corollary 6.8] Let A be a linear relation in a linear space E. Then

(i) If Rc(T) = {0} and a(A) < ∞, then dimN(A) ≤ dim
E

R(A)
.

(ii) If A is everywhere defined and d(A) < ∞, then dim
E

R(A)
≤ dimN(A).

Lemma 5.2. [1, Proposition 4.4] Let A be a linear relation in a linear space E such that D(A) = E. Then, for
λ ∈ K\{0}, we have

(i) N(A − λ)n = N(A−1
− λ−1)n, for all n ∈N ∪ {0}.

(ii) R(A − λ)n = R(A−1
− λ−1)n, for all n ∈N ∪ {0}.

As a direct consequence we get

Lemma 5.3. Let T be an everywhere defined closed linear relation in a complex Banach space X such that 0 ∈ ρ(T).
Then, for λ ∈ K\{0}, we have that

λ ∈ σ∗(T) if and only if
1
λ
∈ σ∗(T−1)

where ∗ ∈ {a, d, ea, ed}.

WriteD := {λ ∈ C : |λ| ≤ 1} and S := {λ ∈ C : |λ| = 1}.

Lemma 5.4. [4, Theorem 2.1] and [5, Corollary 2.6 and Theorem 2.7] Let T be a bounded operator in a Banach space
X.

(i) Assume that de(T) := q < ∞. Then there exists δ > 0 such that for 0 < |λ| < δ, we have the following assertions
:

(a) R(T − λ) is closed and N((T − λ)n) ⊂ R(T − λ) for all n ∈N.

(b) dimN((T − λ)n) = n dim
N(Tq+1)
N(Tq)

for all n ∈N.

(c) dim
X

R((T − λ)n)
= n dim

R(Tq)
R(Tq+1)

for all n ∈N.

(ii) σta(T) is a compact subset of σ(T).

(iii) σta(T) = ∅ if and only if the boundary of σ(T) is contained in ρe
ta(T).

Proposition 5.1. σtd(L) = σe
td(L) = σe

ta(L) = S and σta(L) = D.

It is known that σ(R) = σ(L) = D. We first note that

L − λ = λL(λ−1
− R), whenever λ ∈ K\{0}. (5.1)

Indeed, L − λ := L − λI = λλ−1L − λLR = λL(λ−1
− R) for every λ , 0. Hence (5.1) holds.

σtd(L) = σe
td(L) = S: Since R(L) = X we have that 0 ∈ ρtd(L) ⊂ ρe

td(L).
Let 0 < |λ| < 1. Then it follows from (5.1) and the fact that σ(R) = D that R(L − λ) = R(L) = X. Therefore
B(0, 1) := {λ ∈ K : |λ| < 1} ⊂ ρtd(L) ⊂ ρe

td(L) so that σtd(L) ∪ σe
td(L) ⊂ S.

Let |λ| = 1. Clearly L − λ is injective and thus we infer from Lemma 5.1(ii) that if d(L − λ) is finite then

dim
X

R(L − λ)
= 0 which implies that λ ∈ ρ(L) whenever |λ| = 1, a contradiction. Hence S ⊂ σd(L) ⊂ σtd(L).

Consequently, σtd(L) = S.
On the other hand, let λ be in S, the boundary of σ(L) and assume that de(L − λ) := q < ∞. It follows
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from Lemma 5.4 (i) that there exists a neighbourhood M of λ such that dimN(L − µ) = dim
N((L − λ)q+1)
N((L − λ)q)

and dim
X

R(L − λ)
= dim

R((L − λ)q)
R((L − λ)q+1)

for all µ ∈ M. Further, M\σ(L) is nonempty because λ belongs to the

boundary of σ(L). Therefore

dim
N((L − λ)q+1)
N((L − λ)q)

= dim
R((L − λ)q)

R((L − λ)q+1)
= 0.

Thus a(L−λ) < ∞ and d(L−λ) < ∞ and, since a(L−λ) = 0 with D(L) = X, we have that d(L−λ) = 0. So that
λ ∈ ρ(L) which contradicts the fact σ(L) = D. Hence S ⊂ σe

d(L) ⊂ σe
td(L). Therefore σtd(L) = σe

td(L) = S.

σta(L) = D: Note that N(L) = span{e1}, R(L) = X and we infer from (5.1) that N(L − λ) =
N(L − λ)

N(λ−1 − R)
'

R(λ−1
− R) ∩ N(λL) = N(L) if 0 < |λ| < 1. So that B(0, 1) ⊂ σta(L) by Lemma 5.1(i). According to Lemma

5.4(ii) we conclude that σta(L) = D, as desired.
σe

ta(L) = S: Since N(L) = span{e1} we have that 0 ∈ ρe
ta(L) = S and if 0 < |λ| < 1 then one has by (5.1) that

ae(L − λ) = 0 and R(L − λ) = X which implies that B(0, 1) ⊂ ρe
ta(L), so that σe

ta(L) ⊂ S. On the other hand,
since σta(L) = D , ∅ and S coincides with the boundary of σ(L) we infer from Lemma 5.4(iii) that S ⊆ σe

ta(L).
Therefore σe

ta(L) = S.

Proposition 5.2. (i) σtd(L−1) = σe
td(L−1) = σe

ta(L−1) = S.

(ii) σta(L−1) = {λ ∈ C : |λ| ≥ 1}.

Proof. Combine Lemma 5.3 with Proposition 5.1

References
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