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This proposal is intended to extend the field of application of an extremely efficient power flow algorithm
used in radial and weakly meshed grids, the so-called Direct Approach (DA) method. In this work the
method is broadened with the possibility of handling shunt admittances, transformers with taps, and
phase shifting transformers. While the integration of the two former elements in the DA solver is quite
straightforward, the use of phase shifting transformers is far from obvious due to their inherent non-
symmetrical admittance matrix. Thus, a model for phase shifting transformers is proposed in this contri-
bution, which allows the use of the DA method in grids that include such devices. A set of case studies is
conducted in the contexts of a balanced industrial grid and a standard testbed to demonstrate the validity
of the proposal.
� 2017 The Authors. Published by Elsevier Ltd. This is anopenaccess article under the CCBY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Power flow solvers are an essential tool in the operation and
planning of power systems. They allow the assessment of voltage
profiles, power flows and losses in the grid, and thus, they are cru-
cial to detect unacceptable voltage deviations and identify over-
loaded components. Furthermore, power flow algorithms are
used to conduct reliability studies and foresee the impact of future
demand [1,2].

The most traditional power flow methods such as Newton-
Raphson and Gauss-Seidel, used widely in transmission systems,
do not offer the best performance and robustness when applied
to the distribution level [3]. This is due to the especial nature of
the distribution network, characterized by a radial or weakly
meshed topology and a high R=X ratio. Several approaches have
been proposed in order to deal with these particular features, such
as the implicit Z-bus Gauss method [4] and backward-forward
sweep methods [5,6]. In the latter group, a very efficient formula-
tion called the direct approach (DA) was proposed in [7]. The DA
method avoids the time-consuming tasks of LU factorization and
forward and backward substitution of the Jacobian or admittance
matrices, which are a commonplace in traditional formulations.
The characteristics of DA method make it ideal for real-time appli-
cations in the smart grid context. In [8], the DA solver is used in the
core of an optimal power flow (OPF) algorithm to provide refer-
ences to a distribution FACTS in an industrial grid. High update
rates are needed in this type of applications and the DA solver
accommodates perfectly to this requirement.

The three-phase approach used in [7] takes series self-
impedances and mutual couplings into consideration; however,
shunt admittances are neglected. Even if that assumption can be
enough to run a power flow analysis at the lowest voltage levels
of the distribution grid, characterized by short-length lines and
untapped transformers, ignoring shunt admittances strongly limits
the application of the method to higher voltage levels. The exten-
sion of the method to accommodate medium-length lines and
transformers with tap changers in a balanced environment is pre-
sented in this paper. Though no previous references to this use
have been found, its application is fairly straightforward.

In a pure radial grid, a post-processing of the voltage phase
angles after the application of the power flow solver is enough to
account for the transformer phase shift. However, if a weakly
meshed grid is to be considered, this method is no longer valid.
Thus, a model of the phase shifting transformer, both to consider
specific devices used to control the active power flow in the loop
and to include the phase shift of common power transformers, is
mandatory. Modeling of phase shifting transformers in power flow
studies is a non-trivial problem, as they cannot be represented by a
pi-equivalent component due to their inherent asymmetric admit-
tance matrix [1]. A set of different phase shifting transformer mod-
els is available for application in various fields of study, to both
steady state [9–13] and transient simulation [14]. In [15], a survey
on phase shifting transformer models for steady state analysis is
presented; however, none of them are expressed in a suitable form
to be embedded in the DA solver. In this work, a new model is pro-
posed to overcome this limitation.
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The DA method, as described in [7], is presented in Section 2 for
the benefit of the reader. Section 3 presents a straightforward
method to include shunt admittances in the DA solver. Thus, those
components capable of being represented by pi-equivalent models,
such as medium-length lines and transformers with tap changers,
can be easily included in the problem. In Section 4, the new phase
shifting transformer model is presented together with minor mod-
ifications to be performed in the DA algorithm. Three case studies
are presented in Section 5 in order to illustrate the implementation
procedure and demonstrate the validity of the proposal. Finally,
Section 6 summarizes the most important results of this study.
2. Direct approach power flow

The method to be proposed in this contribution is based on the
DA formulation of the power flow problem [7]. This is a technique,
especially designed for radial networks, inspired by well-known
backward-forward sweep methods such as Ladder Iterative Tech-
nique [6]. DA provides a very compact vectorized formulation with
excellent computational and convergence characteristics.

In the application of DA to balanced grids, lines and transform-
ers are modeled as series impedances, zik, as it is shown in Fig. 1.
The equivalent bus current injection vector, Ig , is calculated from
the power injection at each bus, i, given the estimation of the
bus voltage vector V at iteration ðnÞ as

IðnÞgi ¼ Pi � jQ i

conjðV ðnÞ
i Þ

: ð1Þ

Assuming a radial grid, the branch current vector can be calcu-
lated as

BðnÞ ¼ BIBC � IðnÞg ; ð2Þ

where BIBC is the so-called bus-injection to branch-current matrix.
The entry BIBCbi equals 1 if the current injection of node i con-
tributes to the branch current Bb, and equals 0 otherwise. Finally,
a better approximation to the voltage profile can be obtained from

DV ðnþ1Þ ¼ BCBV � BðnÞ; ð3Þ
where BCBV is the branch-current to bus-voltage matrix. The entry
BCBVib equals the series impedance of branch b if that branch is in
the path from node i to the slack bus, and equals 0 otherwise. DV
is a vector with the voltage of the slack bus referred to the different
bus voltages. An improved approximation to the state variables is
subsequently obtained by

V ðnþ1Þ ¼ Vs � DV ðnþ1Þ; ð4Þ
where Vs is a column vector with the slack bus voltage at each
entry.

Starting from a flat voltage profile, the solution of the distribu-
tion power flow is reached by solving (1)–(4) iteratively up to a
specified convergence threshold.

In order to include the treatment of meshes in the network,
Teng [7] proposes minor modifications to be conducted in the
Fig. 1. Scheme used in the DA method.
definition of BIBC and BCBV and in the solution technique. A brief
summary of these changes can be described as:

� Specific branches are selected to break the meshed grid into a
radial network. Then, new entries are included in the current
injection vector to account for the currents at the selected

branches, i.e. ½IgBnew�T .
� The BIBC matrix is built as in the base case, by considering the
currents of the branches used to break the network as addi-
tional current injections. However, entries with the value �1
appear now to account for the contribution of the receiving
node of the branches used to break the network due to the
inverted current reference. Notice that the double-sided contri-
bution of the sending and receiving nodes of a branch used to
break the network, Bc , to the current of those branches
upstream from the first common parent node, Bb, is null, as they
have the same value but opposite references.
Additionally, new rows are added to the BIBCmatrix with a sin-
gle non-null entry in order to identify the currents of the
branches used to break the network. Taking all this into account
the modified BIBC matrix can be obtained as
B
B new

� �ðnÞ
¼ BIBC � Ig

B new

� �ðnÞ
: ð5Þ

� The BCBVmatrix is built as in the base case, but a new row is
added for each loop in the grid to account for KVL. The impe-
dances included in the entries of the new rows of the matrix
are signed positive or negative according to the reference of
the current at the different branches. Then, (3) is reformu-
lated as

DV
0

� �ðnþ1Þ
¼ BCBV � B

B new

� �ðnÞ
: ð6Þ

� By using (5) and (6) and rewriting the resulting matrix,
it follows that

DV
0

� �ðnþ1Þ
¼ BCBV � BIBC � I

B new

� �ðnÞ
¼ A P

M N

� �
I

B new

� �ðnÞ
:

The application of Kron reduction to (7) leads to

DV ðnþ1Þ ¼ ðA�MTN�1MÞIðnÞg : ð7Þ

The iterative use of (1), (7) and (4), in this order, allows the
application of the DA method to weakly meshed grids.
3. Including pi-equivalent models

The DA method in [7] models the lines and transformers in bal-
anced systems by simple series impedances. While this is accept-
able for short-length lines and untapped transformers, minor
Fig. 2. Pi-equivalent line model.



Fig. 4. Equivalent circuit for the tap changing transformer.

Fig. 5. Pi-equivalent model of the tap changing transformer.
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modifications must be included in the method in order to deal with
other common device models.

By considering a pi-equivalent model as the one shown in Fig. 2,
medium-length lines with series impedance zik and total lumped
shunt admittance Yik can be included in the DA method. In this
case, an intermediate variable arises, Bb, which is to be included
in the branch current matrix B. The current injection vector, Ig , is
now replaced in (2) by an augmented vector I that includes the
currents drawn by the shunt admittances as

IðnÞ ¼ IðnÞg þ YB � V ðnÞ; ð8Þ
where � is the Hadamard product and YB is the bus admittance vec-
tor. The sending and receiving end currents, Bin and Bout , do not
appear explicitly in the formulation, but can be subsequently
obtained from the state variables by

Bin ¼ Bb þ Yik

2
Vi; ð9Þ

Bout ¼ Bb � Yik

2
Vk: ð10Þ

Once the structure in Fig. 3 is adopted, no further modifications are
required in the DA method if zik is used within the BCBV matrix.

Even more important than medium-length lines in radial grids
is the inclusion of tap changing transformers in the DA solver.
The latter devices are massively used along the power system
and are of particular importance in the regulation of voltages in
radial grids, to which the DA method is specifically devoted. Con-
sidering a tap changing transformer as in Fig. 4, where Ysc stands
for its short circuit admittance and a represents the regulation
between the primary and secondary voltages, the following equa-
tions apply

Vi ¼ aVp ¼ a
Bout

Ysc
þ Vk

� �
; ð11Þ

Bout ¼ aBin: ð12Þ
As it is well established in [16], from (11) and (12) the tap

changing transformer can be represented through a pi-equivalent
model as in Fig. 5, which accounts for the nodal equations of the
machine

Bin ¼ 1
a2

YscVi � 1
a
YscVk; ð13Þ

� Bout ¼ �1
a
YscVi þ YscVk: ð14Þ

Using the same methodology described for pi-equivalent lines,
the inclusion of tap changing transformers in the DA method is
thus achieved. Notice that, in this case, the input and output cur-
rents of the transformer can be derived from the state variables as

Bin ¼ Bb þ 1� a
a2

YscVi; ð15Þ

Bout ¼ Bb � a� 1
a

YscVk: ð16Þ
i
zik Bb k

Ii

YBi

Igi

Pi + jQi

Ik

YBk

Igk

Pk + jQk

Fig. 3. Modified scheme for the DA method.
4. Phase shifting transformer model

Phase shifting transformers cannot be represented through a pi-
equivalent model due to the asymmetry of its admittance matrix.
As a consequence, the methodology described in Section 3 is not
valid for the integration of these devices within the DA method.
However, an alternative equivalent model, which is suitable to be
used with the DA method provided that slight modifications are
included, is described in this section.

4.1. Pseudo pi-equivalent model

The equivalent circuit shown in Fig. 4 is still valid to represent a
phase shifting transformer, provided that a is now a complex num-
ber, i.e. a ¼ jajejh; jaj being the regulation between the primary and
secondary voltage magnitudes and h being the phase shift. The fun-
damental equations of such a machine can be written as

Vi ¼ aVp ¼ a
Bout

Ysc
þ Vk

� �
; ð17Þ

Bout ¼ a�Bin; ð18Þ
where a� is the complex conjugate of a.

The nodal equations of a phase shifting transformer can be
derived from (17) and (18) as

Bin ¼ 1
aa�

YscVi � 1
a� YscVk; ð19Þ

� Bout ¼ �1
a
YscVi þ YscVk: ð20Þ

where the asymmetry of the admittance matrix becomes clear.
In order to comply with the principles of the DA method, a suit-

able equivalent of the phase shifting transformer should maintain
the structure of (3). From (17) and (18), it can be derived that

Vi � Vk ¼ a
Ysc

Bout þ a� 1
a

YscVk

� �
¼ a

Ysc
Bb; ð21Þ

where Bb, defined as

Bb ¼ Bout þ a� 1
a

YscVk; ð22Þ

is an intermediate variable used to calculate the voltage between
nodes i and k. Finally, using (17), (18) and (21), the input current
to the transformer can be formulated as
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Bin ¼ ej2hBb þ 1� a

j aj2
YscVi: ð23Þ

The equivalent circuit shown in Fig. 6 meets the set of
Eqs. (21)–(23) and constitutes the transformer phase shifting model
proposed in this contribution. Though it is obviously not a pure
pi-equivalent circuit, it is especially suited to be embedded in the
DA power flow method, as is demonstrated in the following.

4.2. Integration of the model in the DA method

Slight modifications in the application of the DAmethod have to
be conducted in order to integrate the pseudo pi-equivalent circuit
of the phase shifting transformer into the DA power flow calcula-
tion method. The first two considerations are in fact extensions
from the conclusions drawn in Section 3 for the inclusion of pi-
equivalent models:

� The series impedance zik shown in Fig. 6 is used to represent the
impedance between nodes i and k within the BCBV matrix.

� In the calculation of the current injection augmented vector I
according to (8), YB has to include new shunt admittance terms
at the sending bus, i, and receiving bus, k, according to Fig. 6.

The third consideration requires the modification of the BIBC
matrix. As is depicted in Fig. 7(a), let i0; k0 and b0 be the sending
node, receiving node and branch index of a phase shifting trans-
former. In the same way, let b be the index of a branch located
upstream from that transformer. According to (23) and Fig. 6, the
effect of all the augmented current injections of the nodes down-
stream from i0 on the branch current, Bb, can be evaluated as
ej2hBb0 . This fact can be easily considered by modifying the entries
BIBCbi of the matrix. If node i is now downstream from the receiv-
ing node of branch b, the following term,

BIBCbi ¼
Y
t

ej2ht ¼ e
j2
X
t

ht

; ð24Þ

applies instead of 1, with t being the different phase shifting trans-
formers between the receiving node of branch b and node i, and ht
being their corresponding phase angle shifts. Fig. 7 illustrates the
process for the cases of one phase shifting transformer, example
(a), and two series connected phase shifting transformers, example
(b).

4.3. Dealing with weakly meshed grids

Additional changes, apart from those described in Section 2,
must be conducted to include the proposed phase shifting trans-
former model in the DA method in the context of weakly meshed
topologies. Those modifications can be summarized in the follow-
ing aspects:
Fig. 6. Pseudo pi-equivalent model of the tap changing transformer.
� The double-sided contribution of the current of a branch used to
break the network, Bc , to a branch current upstream from the
first common parent node, Bb, is no longer canceled in this case,
as it is shown in Fig. 8. Notice that even if Bc arises with differ-
ent current references in each path, both sides can be affected
by different phase angle jumps. As a consequence, a minor mod-
ification of the BIBC matrix is required. For those branches, b,
upstream from the first common parent node, the contribution
of a branch used to break the network, c, whose current branch

is at position i in the augmented injection vector IgB new
� �T , is

evaluated by the term
BIBCbi ¼
Y
ts

ej2hts �
Y
tr

ej2htr ¼ e
j2
X
ts

hts

� e
j2
X
tr

htr

: ð25Þ

In (25) ts stands for the different phase shifting transformers
found in the path between the receiving node of branch b and
the receiving node of branch c that includes the sending node
of branch c. In the same way, tr stands for the different phase
shifting transformers found in the path between the receiving
node of branch b and the receiving node of branch c that does
not include the sending node of branch c. Finally, hts and htr
account for their corresponding phase angle shifts. The example
shown in Fig. 8 illustrates this situation using a simple network.
Notice that, in this example, one phase shifting transformer
exists between node n and the receiving node k0 of branch c
along the path that includes the sending node of branch c. How-
ever, no phase shifting transformers exist along the alternative
path connecting the same pair of nodes, which obviously leads
to �1 in the second addend of (25).

� From the application of (5) and (6) to this case, it follows that
DV
0

� �ðnþ1Þ
¼ BCBV � BIBC � I

B new

� �ðnÞ
¼ A P

M N

� �
I

B new

� �ðnÞ
:

Notice that the symmetry found in (7) does not appear in (26). In
any case, the application of Kron reduction leads to

DV ðnþ1Þ ¼ ðA� PN�1MÞIðnÞ: ð26Þ

The iterative use of (1), (8), (26) and (4), in this order, allows the
application of the DA method to weakly meshed grids including
phase shifting transformers.

5. Case studies

To demonstrate the validity of the proposed methodology, three
case studies are carried out in this section. In the first one, the DA
method is applied to a radial network in which the phase shifts
associated to the embedded power transformers are considered.
In the second case study, the same radial grid is turned into a
weakly meshed grid by using a phase shifting transformer. While
the first two case studies take advantage of the low number of
nodes of an industrial grid to give insight into the matrices building
process, the third case study is used to demonstrate the good con-
vergence characteristics of the method in a standard medium-size
testbed.

5.1. Case 1: Radial network

A simplified version of the customer owned grid of a steelworks
in the north of Spain, already tested in previous works [8], is con-
sidered in this case study. The grid is shown in Fig. 9 and the
parameters and configuration of the embedded transformers are
listed in Table 1. Table 2 shows the lengths and per km impedances
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Fig. 9. Industrial installation with a distribution-FACTS-based mesh.
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of the lines, together with the series impedances, zik, of each branch
for lines and transformers, according to Figs. 2 and 6 respectively.

In [8], a proposal aimed to improve the efficiency of the grid and
provide dynamic voltage support to the facility was presented. This
objective is conducted through the application of a distribution
FACTS usually known as Loop Power Flow Controller (LPFC). The
real-time optimization of the device is based on a heuristic algo-
rithm out of the scope of this paper. However, the proper operation
of that heuristic algorithm relies upon the availability of a fast
power flow algorithm, compatible with such a real-time applica-
tion. Even if other algorithms were considered, the DA method
shows very good performance in this environment, characterized
by a small number of nodes and radial nature. The controller uses
the DA power flow algorithm to analyze the effect of different
power injections at the power converter terminals (i.e. the real
power, P, flowing from terminal A to B in Fig. 9, and the decoupled
reactive power injections at both terminals, QA and QB). The addi-
tion of these values to the rest of the power injections at buses 7
and 9 turns the power flow problem into a pure radial case, despite
of the mesh created by the distribution FACTS. Table 3 shows the
specific power injection values considered in this case study. Note
that the negative value of the reactive power injection in bus 9 is
due to the reactive power supply of the LPFC at terminal B for
the current operation point. The voltage at the slack bus is taken
as 1:0 pu and as the origin of phase angles.
The use of the phase shifting model proposed in this contribu-
tion for the tapped transformers in such a radial network is not
really mandatory, as it would be in Case 2. This is due to the fact
that, in a radial network, the phase shift of the transformers can
be initially disregarded and later taken into account on a subse-
quent post-processing of the results that would correct the phase
angle jump in each voltage area. Nevertheless, the use of the pro-
posed phase shifting transformer model is applied in this case
study in order to avoid any post-processing of the results.

The BIBC and BCBV matrices are calculated according to the
considerations disclosed in sub-Section 4.2. Their structure is
shown in (27) and (28) for the sake of clarity.



1 ej2h23 ej2h23 ej2 h23þh45ð Þ ej2 h23þh45ð Þ ej2 h23þh45þh67ð Þ ej2 h23þh38ð Þ ej2 h23þh38ð Þ

0 1 1 ej2h45 ej2h45 ej2 h45þh67ð Þ ej2h38 ej2h38

0 0 1 ej2h45 ej2h45 ej2 h45þh67ð Þ 0 0
0 0 0 1 1 ej2h67 0 0
0 0 0 0 1 ej2h67 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 1

2
66666666666664

3
77777777777775

ð27Þ

Table 4
Case 1 – Results: state variables.

Bus # j Vi j [pu] hi [deg.] Bus # j Vi j [pu] hi [deg.]

2 0:9972 �0:226 6 0:9419 25:588
3 0:9579 27:278 7 0:9496 �5:097
4 0:9570 27:270 8 0:9574 �4:478
5 0:9436 25:436 9 0:9569 �4:980
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z12 0 0 0 0 0 0 0
z12 z23 0 0 0 0 0 0
z12 z23 z34 0 0 0 0 0
z12 z23 z34 z45 0 0 0 0
z12 z23 z34 z45 z56 0 0 0
z12 z23 z34 z45 z56 z67 0 0
z12 z23 0 0 0 0 z38 0
z12 z23 0 0 0 0 z38 z89

2
66666666666664

3
77777777777775

ð28Þ

A flat voltage profile is considered for the initial iteration step.
The set (1)–(4) is applied iteratively together with (8) to account
for the augmented current injection vector, until a threshold of
1e� 6 is reached in the maximum absolute deviation of two con-
secutive entries in V . The voltages at the different buses, as state
variables of the grid, are presented in Table 4. The system has also
been implemented in the PowerWorldTM Simulator software to
Table 1
Transformer parameters.

Transf. # Sn [MVA] Rsc [%] Xsc [%] a [pu] h [deg.]

t23 2 � 270 0:90 12:90 1:0125 �30
t45 3 � 37.5 0:90 9:00 0:9875 0
t67 10 0:95 4:80 0:9250 30
t38 3 � 50 0:92 8:50 0:9750 30

Table 3
Power injections.

Bus # Real power, Pi [MW] Reactive power, Qi [Mvar]

2 0:0 0:0
3 84:0 26:0
4 0:0 0:0
5 34:0 12:0
6 0:0 0:0
7 4:9 12:6
8 52:0 39:0
9 2:7 �3:4

Table 2
Branch parameters.

Branch # Length [km] zline [X/km] zik [pu]

1 4:7 0:025þ j0:240 2:428e� 5þ j2:331e� 4
2 – – 1:356e� 3þ j2:010e� 3
3 1:5 0:161þ j0:151 1:386e� 4þ j1:300e� 4
4 – – 7:900e� 4þ j7:900e� 3
5 0:3 0:568þ j0:133 1:893e� 3þ j4:433e� 4
6 – – �1:459e� 2þ j4:285e� 2
7 – – �2:245e� 3þ j5:084e� 3
8 1:8 0:161þ j0:112 1:522e� 2þ j1:059e� 2
crosscheck and demonstrate the validity of the results. Even if this
tool uses a Newton-Raphson approach to solve the system, the
results are identical up to the threshold level, hence their represen-
tation is avoided in this paper.
5.2. Case 2: Weakly meshed grid

In this case study, the industrial network considered in the pre-
vious subsection is used to verify the correct performance of the
DA method with embedded phase shifting transformers in the con-
text of a weakly meshed grid. With this aim, a similar role as the
one played by the LPFC in Case 1 is played by a tapped phase shift-
ing transformer. This device regulates the power flow between
nodes 7 and 9. The new setup is depicted in Fig. 10. The parameters
and selected tap of the phase shifting transformer used to mesh the
grid is shown in Tables 5 and 6 displays the series impedance, z79,
of the new branch according to the model shown in Fig. 6.

Only the proposal presented in this paper allows the application
of the efficient DAmethod to this type of system. Notice that in this
case a post-processing of the phase-angle jumps of the transform-
ers is not possible, due to the coupling between both sides of the
grid downstream from the first common parent node. The new
branch, c ¼ 9, is selected to break the mesh, though any other
branch within the loop (i.e. 3 to 8) could be used with this aim.
According to Section 2 and Sub-Section 4.3, once the selection is
made, this branch is treated as an additional source of current
injection at nodes 7 and 9. However, the use of Kron reduction
allows a straightforward consideration of the mesh, i.e. no addi-
tional iterative processes are involved. For clarity purposes, the
same power injections considered in Case 1 are adopted here and
once again the voltage at the slack bus is taken as 1:0 pu and as
the origin of phase angles.

The BIBC and BCBV matrices are calculated according to the
specific considerations described in sub-Section 4.3. Their structure
is shown in (29) and (30). The entries BIBC19 and BIBC29 account for
the double contribution of B9 to the branch currents B1 and B2,
respectively. Notice, as an example, that for BIBC19 the phase shifts
to be considered fit tr ¼ t23; t45; t67; t79½ �T and ts ¼ t23; t38½ �T . It should
be highlighted that both BIBC19 and BIBC29 would be zero in a
meshed network not including phase shifting transformers, as the
contribution of both sides would be canceled upstream from the
first common parent node in such a case.



1 ej2h23 ej2h23 ej2 h23þh45ð Þ ej2 h23þh45ð Þ ej2 h23þh45þh67ð Þ ej2 h23þh38ð Þ ej2 h23þh38ð Þ ej2 h23þh45þh67þh79ð Þ � ej2 h23þh38ð Þ

0 1 1 ej2h45 ej2h45 ej2 h45þh67ð Þ ej2h38 ej2h38 ej2 h45þh67þh79ð Þ � ej2h38

0 0 1 ej2h45 ej2h45 ej2 h45þh67ð Þ 0 0 ej2 h45þh67þh79ð Þ

0 0 0 1 1 ej2h67 0 0 ej2 h67þh79ð Þ

0 0 0 0 1 ej2h67 0 0 ej2 h67þh79ð Þ

0 0 0 0 0 1 0 0 ej2h79

0 0 0 0 0 0 1 1 �1
0 0 0 0 0 0 0 1 �1
0 0 0 0 0 0 0 0 1

2
66666666666666664

3
77777777777777775

ð29Þ

Table 5
Phase shifting transformer parameters.

Transf. # Sn [MVA] Rsc [%] Xsc [%] a [pu] h [deg.]

t79 10 0:95 4:80 1:0000 5

Table 6
New branch parameters.

Branch # Length [km] zline [X/km] zik [pu]

9 – – 5:280e� 3þ j4:865e� 2

Table 7
Case 2 – Results: state variables.

Bus # j Vi j [pu] hi [deg.] Bus # j Vi j [pu] hi [deg.]

2 0:9972 �0:223 6 0:9423 25:955
3 0:9578 27:275 7 0:9485 �2:824
4 0:9569 27:273 8 0:9574 �4:714
5 0:9428 25:766 9 0:9478 �5:775
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z12 0 0 0 0 0 0 0 0
z12 z23 0 0 0 0 0 0 0
z12 z23 z34 0 0 0 0 0 0
z12 z23 z34 z45 0 0 0 0 0
z12 z23 z34 z45 z56 0 0 0 0
z12 z23 z34 z45 z56 z67 0 0 0
z12 z23 0 0 0 0 z38 0 0
z12 z23 0 0 0 0 z38 z89 0
0 0 z34 z45 z56 z67 �z38 �z89 z79

2
66666666666666664

3
77777777777777775

ð30Þ

As in the previous case study, a flat voltage profile is considered
for the initial iteration step. The set (1), (8), (26) and (4) is applied
iteratively in this order until convergence. With this aim, a thresh-
old of 1e� 6 in the maximum absolute deviation of two consecu-
tive values in V is considered. The solution of the power flow
problem, in the form of the bus voltages taken as state variables
of the system, is presented in Table 7. The new setup was also
implemented in the PowerWorldTM Simulator software package
to demonstrate the validity of the results. As in the previous case
study, those results are not showed here, due to a perfect match
with the proposed methodology.
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Fig. 10. Industrial installation meshed through a phase shifting transformer.
5.3. Case 3: Standard test grid

The IEEE 33-bus test distribution system [17] is used in this case
study to assess the impact of the inclusion of the proposed phase
shifting transformer model on the convergence characteristics of
the DA method. This standard testbed describes a radial grid with
33 buses and 5 tie lines. A modified version of this testbed is pre-
sented in this contribution in order to test the proposed model. The
modified version, shown in Fig. 11, uses two of the existing tie lines
to mesh the network through phase shifting transformers. With
this aim, two additional buses, 34 and 35, are added to the stan-
dard system. The power injections and line parameters of the IEEE
33-bus test distribution system can be found in [17]. The parame-
ters of the phase shifting transformers, which are the only data of
the modified topology not presented in the original testbed, are
shown in Table 8.

While the original version is solved using the traditional DA for-
mulation [7], only the proposal included in this paper allows the
DAmethod to solve the modified testbed. The results for both cases
are shown in Tables 9 and 10. The validity of these results was
checked by using PowerWorldTM Simulator software. System
losses are reduced from 211.00 kW to 183.14 kW thanks to the
control of the power flows offered by the use of phase shifting
transformers. Furthermore, the minimum bus voltage in the grid
increases from 0.9038 pu to 0.9203 pu, which illustrates the volt-
age support capability of the modified topology. A threshold of
1e� 6 in the maximum absolute deviation of two consecutive val-
ues in V was considered and, starting from a flat voltage profile,
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Fig. 11. Modified IEEE 33-bus test distribution system.

Table 8
Phase shifting transformer parameters.

Transf. # Sn [kVA] Rsc [%] Xsc [%] a [pu] h [deg.]

t12� 34 250 0:95 4:80 1:0000 5
t18� 35 400 0:95 4:80 1:0000 �3

Table 9
Case 3 – IEEE 33-bus system: state variables.

Bus # j Vi j [pu] hi [deg.] Bus # j Vi j [pu] hi [deg.]

2 0:9970 0:015 19 0:9965 0:004
3 0:9829 0:097 20 0:9929 �0:063
4 0:9754 0:163 21 0:9922 �0:083
5 0:9680 0:230 22 0:9916 �0:103
6 0:9495 0:136 23 0:9793 0:066
7 0:9460 �0:096 24 0:9726 �0:023
8 0:9323 �0:249 25 0:9693 �0:067
9 0:9260 �0:324 26 0:9475 0:175

10 0:9201 �0:388 27 0:9450 0:232
11 0:9192 �0:380 28 0:9335 0:315
12 0:9177 �0:368 29 0:9253 0:393
13 0:9115 �0:462 30 0:9218 0:498
14 0:9092 �0:542 31 0:9176 0:413
15 0:9078 �0:580 32 0:9167 0:390
16 0:9064 �0:604 33 0:9164 0:383
17 0:9044 �0:683 34 – –
18 0:9038 �0:693 35 – –

Table 10
Case 3 – Modified IEEE 33-bus system: state variables.

Bus # j Vi j [pu] hi [deg.] Bus # j Vi j [pu] hi [deg.]

2 0:9970 0:016 19 0:9959 �0:010
3 0:9845 0:116 20 0:9873 �0:204
4 0:9781 0:196 21 0:9851 �0:275
5 0:9719 0:277 22 0:9819 �0:401
6 0:9562 0:263 23 0:9809 0:085
7 0:9537 0:088 24 0:9742 �0:003
8 0:9445 �0:043 25 0:9709 �0:047
9 0:9409 �0:104 26 0:9544 0:313

10 0:9377 �0:155 27 0:9520 0:384
11 0:9372 �0:154 28 0:9412 0:545
12 0:9365 �0:154 29 0:9334 0:683
13 0:9296 �0:347 30 0:9302 0:815
14 0:9272 �0:480 31 0:9266 0:814
15 0:9255 �0:563 32 0:9258 0:821
16 0:9237 �0:637 33 0:9255 0:853
17 0:9213 �0:847 34 0:9750 �0:605
18 0:9203 �0:909 35 0:9257 0:896

Table 11
Convergence characteristics: set of 10; 000 simulations.

Topology Av. iter. # Max. iter. # Av. sim. time [ms]

Base case 6:0244 7 1:4019
Modified version 5:9528 7 3:5503
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only 6 iterations were needed to reach convergence in both topolo-
gies. This fact proves that the excellent convergence characteristics
of the DA method persist with the inclusion of the proposed phase
shifting transformer model.

In order to generalize this result, a set of 10;000 cases was
solved with the aim of putting additional stress on the convergence
test. With this purpose, the power injections of the 33-bus testbed
were randomly varied using independent normal distribution
functions for each real power and reactive power. The mean of
these distribution functions was set to their corresponding values
in the original testbed, Pi and Qi, and the standard deviation to

40% of these values, i.e. NðPi; 0:4Pið Þ2Þ and NðQi; 0:4Qið Þ2Þ. The set
was solved by applying the traditional DA formulation to the orig-
inal testbed topology, and by applying the formulation proposed in
this paper to the modified topology. Table 11 shows the key results
of this demanding test. The average and maximum number of iter-
ations were not increased by the use of the phase shifting trans-
former model even when the meshed configuration used in the
modified version results in a more complex topology. In fact, the
average number of iterations is slightly reduced, as the voltage
support capability of the phase shifting transformers leads to solu-
tions closer to the flat voltage profile used as an initial iteration
point. The time required for these calculations was estimated by
averaging the results over the full set of simulation runs, which
were carried out in an Intel Core i5 - 2467M - CPU 1.60 GHz. This
time increases from 1.4 ms to 3.6 ms, which is due to the higher
number of buses used in the modified topology, 35 vs. 33, and par-
ticularly, to the additional matrix manipulations involved in the
treatment of meshed grids, according to Subsection 4.3. This test
clearly demonstrates that the convergence characteristics of the
DA method are not negatively affected by the inclusion of the
phase shifting model proposed in this contribution.
6. Concluding remarks

This paper proposes an extension of the well-known DA power
flowmethod applied to balanced networks in order to allow its use
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with common grid components not previously considered in the
existing formulation. The inclusion of pi-equivalent line models
and transformer tap changers is quite straightforward, and only a
formal formulation of the considerations needed to use these com-
ponents is stated in this work. However, the inclusion of phase
shifting transformer models in the DA method is far from obvious,
due to the inherent asymmetry of their admittance matrix. Only a
custom model of these devices can allow the application of the DA
method in weakly meshed networks, where the phase angle of
transformers cannot be corrected by post-processing. Thus, this
proposal introduces a new phase shifting transformer model,
together with a set of slight modifications to be included in the
standard DA power flow formulation. Two case studies in the con-
text of the application of fast power flow algorithms to industrial
networks are presented. Those cases allow to demonstrate the
validity of the proposal both with radial and weakly-meshed
topologies. A third case study is carried out in a medium-size test
system in order to prove that the excellent convergence character-
istics of the DA method are not deteriorated by the inclusion of the
new phase shifting transformer model. In each case, the results are
compared with those obtained from a popular software package
that uses a different approach, leading to a perfect match.
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