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mento de Qúımica F́ısica y Anaĺıtica de la Universidad de Oviedo,

CERTIFICA:

Que el trabajo titulado La función ELI en el estudio del enlace qúımico
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Abstract

The Electron Localizability Indicator (ELI) is a scalar field able to resolve the
atomic shell structure of atoms, molecules and solids. One of its specific forms
ELI-D allows for partitioning of the space into extremely small space-filling non-
overlapping regions enclosing a fixed amount of electron pair density. Such local-
ization domains are of three types corresponding to the valence region —bonding
regions—, the atomic core —non-bonding regions— or the lone pairs. Localiza-
tion (LI) and Delocalization Indices (DI) result from the evaluation of the overlap
integrals within such regions and yield information about how the valence elec-
trons arrange forming covalent, ionic or metallic bonds. We have examined the
performance of the ELI-D as computed with the DGrid code [1] in representative
systems for metals (bcc K), ionic systems (NaF and LiCl) and semiconductors
(SnTe) and compared it with the standard results of the Quantum Theory of
Atoms In Molecules. As model systems of each type the crystals bcc K (metal),
NaF and LiCl (ionic) and SnTe (covalent) were chosen. From the results ob-
tained we can conclude that evaluation of LIs and DIs within ELI-D basins arises
as a tool to quantitatively determine the nature of the chemical bond in crystal
structures.
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1. Introduction

Most of our chemical and physical knowledge of nature is sustained upon the
invariant behaviour of interacting atoms or ions when forming part of different
compounds. These atoms retain their individuality when they are transferred
which confers the materials well-defined properties. When treating quantum-
mechanically molecules or condensed phases a new and very different interpreta-
tion than the classical, traditional chemical undestanding has arisen, giving rise
to the longly debated issue of how to recover the basic chemical concepts from
quantum descriptions.

Atomic charges, chemical bonds, covalency, ionicity, resonance, etc., as ex-
amples among these traditional concepts, are firmly rooted for the chemist or
physicist and exploited everyday in chemistry. Due to their relevance and impor-
tance much effort is being done to recover these concepts from multi-electron wave
functions or to univocally define them. Moreover, it commonly happens that the
quantities used to quantify these concepts tend to weaken or even disappear as
the accuracy of wave functions increases.

Within this context, a new paradigm has arisen in the chemical interpretation
of quantum mechanics since it became clear for the scientific community that
sophisticated analyses based on the electron density, ρ, might give sound physical
meaning to the aforementioned although fuzzy, yet chemically appealing concepts.

After Hohenberg and Kohn’s theorem that was the first step towards the nowa-
days known as Density Functional Theory (DFT) [2], and the developement of the
Quantum Theory of Atoms In Molecules (from now on referred to as QTAIM) by
R.F.W. Bader [3], it was made possible to give rigorous physical interpretation to
chemical bonding concepts through electron densities. The observable character
of ρ, amenable to be experimentally determined, also helped to introduce this
concept to a broad audience.

The need to partition physically every global system property into distinct, iso-
lated contributions is so deeply rooted for the chemist and physicist. Traditional
theories of bonding consist of partitioning the electron charge into the nuclear
centers under study, usually by means of Mulliken analyses. Many of the inter-
pretative models of chemical behaviour are based on very badly defined concepts,
mainly dependent on a whole hierarchy of approximations.

Daudel and co-workers have reasoned that there should be some “best” decom-
position of the physical space of a system into mutually exclusive regions called
loges [4] and [5]. With “best” loges it was meant the most probable division of
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4 | INTRODUCTION

the physical space of a system into localized groups of electons. The best loges
were defined in a different sense by Bader el al. in [6]. In real space, the 3D
partitioning of space induced by the topology of scalar fields like the electron
density have provided a means to deal with the above-mentioned chemical no-
tions. However, due to the sucess of the Electron Localization Function (ELF),
it is becoming clearer that the electron density alone is not powerful enough to
give solution to all of our most beloved chemical concepts. Most notions used in
the work described here depend on quantum mechanical objects that cannot be
derived from the electron density alone. Thus, density matrices from which not
only one-particle but also two-particle properties such as the electron pair density
D2, may be derived need to be considered.

We will use in this work two procedures to partition space. The QTAIM method
and the ω-restricted scheme of M. Kohout and coworkers. The former partition is
coarse-grained and associates every spatial region usually with atoms; the latters
fine-grained with extremely small and of variable size regions defined in such a
way that a quantum mechanical property is conserved within them.

Based on the one-particle electron density ρ(r), the partition of the space of
the QTAIM imposes the condition that a region must be bounded by a surface
whose flux of the gradient of the electron density ~∇ρ is zero. Regions subject
to such constraint are called atomic basins, which are arranged fully occupying
the whole volume under study and which are non-overlapping among each other.
Each basin, in general, contains only one nucleus: it is usually assigned to an
atom [3].

The use of the Fermi hole to measure the Fermi correlation has been pioneered
by the works of Lennard-Jones [7] and Bader and Stephens[6]. On the other hand,
I will also use a different partition of the space according to the quantity which
named Electron Localizability Indicator (ELI), first introduced by M. Kohout [8].
ELI is a common name to a whole family of functionals describing the effect of
local correlation of electronic motion in momentum [9] or coordinate space [8].
Here we will use one of its forms, ELI-D Υσ

D which is among the most common
(for more detailed information about other ELI functionals see [8] and references
therein). It is a so called ω-restricted space partitioning which consists on a space
decomposition into a huge number of extremely small cells constrained through
certain rules. A control function is chosen that determines the cell volumes by
imposing the condition that they must enclose the same (infinitesimally) small
fixed amount of the control quantity. Once the regions are defined a second
sampling function is integrated within each region, whose discrete distribution is
further examined [10]. In this work the ELI-D partition has been chosen, mean-
ing that the electron pair density γ(r1, r2) as a two-particle quantity is used as
the control function whereas the electron density ρ(r) is sampled over the regions.
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Bader’s own background has conditioned the diffusion of his theory, restricted
mainly to molecular quantum chemistry, and seldom never applied to condensed
matter (for some exceptions see the series [11], [12] and [13], and in [14]). Neither
ELI-D has been yet much applied in solid state since it has been recently intro-
duced and its implementation has just been achieved (an exception can be found
in [15].

In this exploratory work we have chosen four different crystals to which QTAIM
and ELI-D space partitioning has been applied: bcc K as a metal, NaF and LiCl
as ionic crystals (insulators) and SnTe as semiconductor. Single point calcula-
tions at the experimental geometries of the above crystals have been done using
the one-electron full-potential linearized augmented-plane wave (FP-LAPW) code
Elk [16]. In the next step the output of Elk was processed by the DGrid program,
developed by M. Kohout [1] to create a grid of the electron density and ELI-D
values. From these grids the corresponding basins have been searched for and
graphically represented. Over the resulting basins, according either to the elec-
tron density ρ(r) or to the ELI-D indicator Υσ

D, fluctuations, localization and
delocalization indices have been evaluated from overlap integrals and used to
characterize the bonding situation of the crystals.

The structure of the present work is as follows: in Chapter 1 the theoretical
methodology used at every step to finally calculate the indices is briefly presented,
from the Schrödinger equation to the bond descriptors of the chemical bond in
real space QTAIM and ELI-D. In Chapter 2, the computational methods and
resources used in the different calculations are described. Chapter 3 presents the
results for the 4 systems: the critical points (for 3 of the 4 systems), a pictorical
representation of the basins and the localization and delocalization indices as well
as electron population fluctuations. Finally in Chapter 4 a number of conclusions
are gathered.
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2. Theoretical methods

2.1. Many electrons wave functions and the
Schrödinger equation

In quantum mechanics, all the information we can possibly have about a system is
contained in the system’s wave function Ψ. The calculation of the wave function
not considering relativistic effects nor time dependency consists on solving the
Schödinger equation:

ĤΨ = EΨ. (2.1)

E is the energy of the system, which results from applying the Hamiltonian
operator Ĥ to the aforementioned wave function Ψ. When considering a many-
body problem, i.e., having more than one electron, equation 2.1 becomes:

ĤΨ(r1, r2 . . . , rN) = EΨ(r1, r2 . . . , rN), (2.2)

where electron 1 is located at position r1, electron 2 at r2 and so on. The
Hamiltonian operator Ĥ for a system consisting on M nuclei and N electrons
described by position vector RA and ri, respectively, addopts the form:

Ĥ = −
N∑
i=1

1

2
∇2
i −

M∑
A=1

1

2MA

∇2
A−

N∑
i=1

M∑
A=1

ZA
riA

+
N∑
i=1

N∑
j>i

1

rij
+

M∑
A=1

M∑
B>A

ZAZB
RAB

. (2.3)

The M nuclei and N electrons are designated by A,B and i, j, respectively.
Nucleus A has the nuclear charge ZA while MA is the ratio of its mass to the
mass of an electron, all in atomic units. The Laplacian operators ∇2

i and ∇2
A

involve second derivation with respect of the space coordinates of the ith electron
and the Ath nucleus.

The first two terms in the previous equation describe the kinetic energy of elec-
trons and nuclei, respectively. The remaining three terms are the potential of the
Hamiltonian and represent the attractive electrostatic interaction nucleus-electron
and the potential describing the repulsion nucleus-nucleus and electron-electron,
respectively.

In our case we will be concerned only with the electronic structure of matter,
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more precisely of solids. Hence the expression for the system’s Hamiltonian Eq.
2.3 can be further simplified by means of the well known Born-Oppenheimer ap-
proximation. The mass of an electron is very small compared to that of a nucleus
1. That big difference between both particle masses makes the electrons move
much faster than nuclei do, which allows us to approximate the speed of the nu-
clei as if they were static. Within the Born-Oppenheimer approximation electrons
are considered to move within a field of fixed nuclei and therefore the nuclear ki-
netic energy (second term in Eq. 2.3) vanishes. The last term, which accounts for
the nucleus-nucleus repulsion can be considered to be constant. Since, according
to the quantum mechanics rules, the addition of a constant to an operator only
adds to the operator eigenvalues but leaves the eigenfunctions unaffected, this
term can also be neglected:

Ĥelec = −
N∑
i=1

1

2
∇2
i −

N∑
i=1

M∑
A=1

ZA
riA

+
N∑
i=1

N∑
j>i

1

rij
= T̂ + V̂Ne + V̂ee, (2.4)

which is the electronic Hamiltonian describing the motion of N electrons in
the field of M nuclei now represented by point charges. The Schödinger equation
becomes now:

ĤelecΨelec = EelecΨelec, (2.5)

where the electronic energy Eelec results from the application of the electronic
Hamiltonian Ĥelec on the electronic wave function Ψelec. And of course the total
energy is found as:

Etot = Eelec + Enuc. (2.6)

A more detailed description of the nuclear part of the Schrödinger equation and
the total Hamiltonian can be found anywhere in the literature, as for example
[17, 18].

2.1.1. The antisymmetry or Pauli exclusion principle

To completely describe an electron we would need to consider not only its spatial
but also its spin coordinates. The wave function will then be Ψ(x1,x2 . . . ,xN),
where x1 = (r1, σ1) are the spatial and spin coordinates, respectively.

The wave function itself is not observable. The only physical interpretation that
can be obtained out of it is related to the square of it, that yields the probability
of finding electron 1 in dx1, 2 in dx2, . . . and N in dxN , simultaneously:

1 The nucleus-electron mass ratio for the lightest nucleus (proton 1H) is of 1,800. For very
common atoms as C, the ratio is increased to 20,000.
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|Ψ(x1,x2 . . .xN)|2dx1dx2 . . . dxN . (2.7)

For indistiguishable particles this probability does not change if the coordinates
of two of them are exchanged. The nature offers two possibilities regarding the
permutation of the coordinates of two particles: either the resulting wave function
is identical, in which case we are considering bosons or it is antysimmetric (has
opposite sign), and then we are facing fermions. Electrons are fermions with spin
= 1/2 and the wave function Ψ is antysimmetric:

Ψ(x1,x2 . . .xN) = −Ψ(x2,x1 . . .xN). (2.8)

The last expression is the quantum-mechanical generalization of the Pauli ex-
clusion principle. The system wave function will be of course normalized, being
the probability to find the N electrons in the whole space equal to the unity:∫

|Ψ(x1,x2 . . .xN)|2dx1dx2 . . . dxN = 1. (2.9)

2.1.2. The Hartree-Fock approximation

In the search for approximate solutions to the electronic Schrödinger equation as
described in Eq. 2.5 the Hartree-Fock procedure still represents not only the cor-
ner stone of all conventional, i.e., wave function based quantum chemical methods,
but also a conceptually very relevant theory as a first step towards more accurate
approximations.

The simplest antisymmetric, i.e., fulfilling the Pauli exclusion principle wave
function describing the ground state (indicated by the subindex) of an N -electron
system, is a single Slater determinant2:

|Ψ0〉 = |χ1χ2 · · ·χN〉, (2.10)

where χi are spin orbitals 3. The variational principle states that the best wave
function satisfying the above equation that can be found is the one which yields

2 For a system with just two electrons occupying spin orbitals χi and χj a normalized lin-
ear combination of both spin orbitals can be found, in such a way that the antisymmetry
principle is satisfied:

Ψ(x1,x2) = 2−1/2
(
χi(x1)χj(x2)− χj(x1)χi(x2)

)
.

This linear combination can be written as a determinant into what is known as a Slater
determinant. It can easily be generalized for a N -electron system.

Ψ(x1,x2) = 2−1/2

∣∣∣∣ χi(x1) χj(x2)
χi(x2) χj(x1)

∣∣∣∣ .
3 Spin orbitals are one-electron functions built from a spatial orbital φi(r) and one of the two
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the lowest energy:

E0 = 〈Ψ0|H|Ψ0〉. (2.11)

The variational flexibility that will allow us to find the wave function with the
lowest associated energy resides within the choice of spin orbitals. The energy E0

has to be variationally minimized with respect to the choice of spin orbitals. An
eigenvalue equation is derived, termed the Hartree-Fock equation, which deter-
mines the optimal eigenvalues:

f(i)χ(xi) = ε(i)χ(xi). (2.12)

f(i) is an effective one-electron operator known as Fock operator and ε(i) is
the corresponding energy for this state. The Hartree-Fock approximation con-
sists of a substitution of the complicated many-body problem into a more simple
one-electron situation, in which the electron-electron repulsion is averaged. The
electronic Hamiltonian in Eq. 2.4 is transformed approximating the last term,
which accounts for the electron-electron repulsion by a potential:

f(i) = −1

2
∇2
i −

M∑
A=1

ZA
riA

+ vHFi , (2.13)

where the sum over the N electrons has been removed since the Fock operator
f(i) is already defined for ith electron. vHFi is the average potential experienced
by the electron i due to the influence of the remaining electrons.

Explicitly, vHFi is composed by the two components:

vHF (x1) =
N∑
j

(
Ĵj(x1)− K̂j(x1)

)
. (2.14)

The first term has the form:

vcouli (x1) =
∑
j 6=i

∫ ∣∣χj(x2)
∣∣2 1

r12

dx2. (2.15)

It has a clear meaning. Electron i is described by the spin orbital χi and
experiences a one-electron coulomb potential. This potential is dependent on the
instantaneous position of electron 2 within χj, the region it occupies. It is hence a
two-electron potential. However if we average the interaction r−1

12 between electron

spin functions α(s) or β(s):
χ(x) = φi(r)σ(s)

σ = α, β
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1 and electron 2 integrating over all space and spin coordinates x2 of electron 2,
the two-electron potential is transformed into a one-electron potential by doing an
average. The interaction between electrons 1 and 2 are weighted by the probability

dx2

∣∣χj(x2)
∣∣2 of electron 2 to be found in the volume element dx2. Nevertheless

the electron located at χi suffers all interactions arising from the N − 1 electrons.
By summing over j 6= i spin orbitals, the total averaged potential acting on the
electron in χi is obtained. A coulomb operator can be defined neglecting the sum,
which adopts the form:

Ĵi(x1) =

∫ ∣∣χj(x2)
∣∣2 1

r12

dx2, (2.16)

which is the average local potential at x1 due to the electron located at χj.

The second term in Eq. 2.14 is called the exchange contribution to the HF
potential. It arises from the antisymmetry of the single determinant and has no
classical meaning. It can only be understood through its effect when operating
on a spin orbital:

K̂j(x1)χi(x1) =
[ ∫

χ∗j(x2)r−1
12 χi(x2)d(x2)

]
χj(x1). (2.17)

It can be seen comparing the previous equation with Eq. 2.16 that the action
of K̂ produces an exchange of the variables in the two spin orbitals. Now χi is
related to x2, and the result of the application of the exchange operator depends
on the value of χi in all points of space. It is hence said to be nonlocal unlike the
coulomb operator.

The potential vHFi seen by electron i depends on the spin orbitals of the re-
maining electrons. In other words, the Fock operator depends on its own eigen-
functions. Thus we need to know the solution to solve the equation. The problem
has to be solved by means of an iterative procedure named Self-Consistent-Field
method.

Every SCF loop starts with a initial guess of the spin orbitals that allows for
the calculation of the mean potential vHFi seen by each electron. Eq. 2.12 is then
solved and a new set of spin orbitals obtained, from which a new field vHFi is
found closing one SCF loop and starting the iteration again until convergence in
the χ’s and ε’s is attained (a schematic description of the SCF iterative process
can be seen in Fig. 2.1).

We have already mentioned that the second term in Eq. 2.4 is also a potential
that describes the interaction electron-nucleus. The spatial arrangement of the
nuclei is the unique part of the whole equation that changes with the system
under consideration. Hence whether our system is a solid, a molecule or an atom
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is determined by the spatial arrangement of the nuclei, which is specified in the
potential v(x) accounting for the electron-nucleus interaction.

Electron correlation

The Hartree-Fock approximation simplifies the problem by treating the many-
body problem as an effective single-body one. Thus, the HF approach neglects
most of the correlation that exists between electrons. Electron correlation arises
from the instantaneous repulsion of electrons which is not treated by the effective
HF potential. Since the electron-electron interaction is considered as an average
the electrons approach too much to each other leading to a higher repulsion than
in the real situation. Consequently the HF system is less stable than it really is
|EHF | < |E0|. The correlation energy will be the energy difference between the
exact, non-relativistic energy and the HF system

Ecorr = E0 − EHF . (2.18)

Correlated energies have usually two different contributions. The first one, re-
lated to the motion of electrons, is called dynamic correlation. In many instances,
however, a one Slater determinant description is not possible even in the simplest
approximation, i.e., when degenerate or quasi-degenerate states exist. This is
called static correlation.

In spite of its inherent errors the HF theory is still widely used due to its
not too demanding computational requirements. For further and more detailed
description of the fundamentals of Quantum Mechanics as well as HF and methods
beyond HF, the reader is referred to the writings used to compose this Chapter
[19], [20], [17] and [21].
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2.2. Pos-Hartree-Fock methods: Density Functional
Theory

The wave function of a system depends on 4N variables (3 spatial and 1 spin
coordinates) which makes it a complicated object only able to be fully analyzed
in very small systems, and hence automatically excluding most of the systems of
interest in biology, material sciences, etc. In addition, this complexity increases
the difficulty of having a clear description of the system and makes it hard to find
an intuitive interpretation. On the other hand, the Hamiltonian of the system
Ĥ is at most dependent on 2-particle operators, which suggests that the high
complexity of the wave function contains redundant information that does not
need to be considered

Ĥelec = T̂ + V̂Ne︸ ︷︷ ︸
1−particle

+ V̂ee︸︷︷︸
2−particle

.

Using the electron density ρ —a real space quantity depending on only 3
coordinates— as an alternative option to solve the Schrödinger equation makes
it possible, in principle, to overcome these problems.

2.2.1. First Hohenberg-Kohn theorem

Many attempts were performed in order to find a practical way of solving the
Schrödinger equation using ρ. The most successful one is established by the first
Hohenberg-Kohn theorem.

The electron density ρ is firstly proved to be a suitable quantity to solve the
Schrödinger equation (Eq. 2.1) in the paper published by Hohenberg and Kohn
in 1964 [2]. It —quoting literally [2]— states that “the external potential Vext(r))
is (to within a constant) a unique functional of ρ(r); since in turn Vext(r) fixes
Ĥ we see that the full many body particle ground state is a unique functional of
ρ(r)”. A proof for this statement is easily done by reductio ad absurdum. A
sketch runs as follows:

ρ0 −→
{

N,ZA,RA

}
−→ Ĥ −→ Ψ0 −→ E0 (2.19)

The electron density ρ0 uniquely determines the hamiltonian of the system Ĥ,
and consequently both the wave function Ψ0 and the energy E0 of the system in
its ground state are fully determined by the electron density, as well as all the
properties of the system. But since Ĥ is the same for any state, all states of the
system are as well determined by the ground state electron density ρ0.

E0[ρ0] =

∫
ρ0(r)VNedr︸ ︷︷ ︸

System dependent

+ T[ρ0] + Eee[ρ0]︸ ︷︷ ︸
Universal

. (2.20)
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From the above equation it can be seen that as the electron kinetic energy T
as the electron-electron repulsion Vee are independent of the considered system.
However the term accounting for the electrostatic interaction nucleus-electron
VNe is what determines which kind of system is being treated. Eq. 2.20 can be
rewritten, including the universal part into a new functional: the Hohenberg-Kohn
functional :

E0[ρ0] =

∫
ρ0(r)VNedr + FHK [ρ0]. (2.21)

FHK is the part which remains unchanged no matter the system. Apart from
the electron kinetic energy T it contains information about the electron-electron
interaction:

Eee[ρ] =
1

2

∫
dr1

∫
ρ(r1)ρ(r2)

r12

dr2 + Encl[ρ]. (2.22)

The first term is the classical part of the equation, called the Coulomb repulsion
J[ρ]. The second part Encl[ρ] is non-classical and accounts for the self-interaction
correction and the interparticle correlation.

2.2.2. Second Hohenberg-Kohn theorem

We already know by the first H-K theorem that the ground state electron density
suffices to determine any of the properties of the system. The next step, also
solved by Hohenberg and Kohn in [2], is to ensure that the electron density ρ we
are using is indeed the density of the ground state that we are looking for. In
that sense the second H-K theorem establishes that the energy E0 delivered by
the H-K functional will be the lowest only if the density ρ is the density of the
ground state ρ0. This theorem is a variational principle which can be expressed
as

E0 = min
Ψ→N
〈Ψ|T̂ + V̂Ne + V̂ee|Ψ〉. (2.23)

In other words, for any trial density the E obtained is an upper limit to the
true ground state energy E0:

E0 ≤ E[ρ] = T[ρ] + ENe[ρ] + Eee[ρ]. (2.24)

2.2.3. The Kohn-Sham Approach

Many attempts have been performed to attain a practical solution to the H-K
equation 2.21. The most successful one is formulated in the second most impor-
tant article within the developement of the density functional theory by W. Kohn
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and L. Sham in 1965 [22].

The success of this new approach starts by considering that most of the prob-
lems making DFT inaccurate were related to the way the kinetic energy is treated.
In their article, Kohn and Sham proposed a Hartree-Fock-like method —since the
kinetic energy is more exactly determined within this approach— to more accu-
rately calculate the kinetic energy. A part of it is then determined exactly by
introducing the concept of a non-interacting reference system built from a set of
orbitals (one-electron functionals), i.e., the electrons are treated as non-interacting
fermions. The remaining contribution to the kinetic energy, a small part of the
total, is treated by a non-classical approximate functional.

Kohn-Sham orbitals

The HK functional, expressed in equation 2.21 has the form

F[ρ(r)] = T[ρ(r)] + J[ρ(r)] + Encl[ρ(r)]. (2.25)

J[ρ] is a classical term and can be exactly determined but the other two terms
remain unkown. Regarding the kinetic energy T[ρ] it became clear that it was
not properly described by the simple expression used by other approaches such
as the Thomas-Fermi-Dirac model (see [18] for further information on alternative
methods to the Kohn-Sham one).

The Kinetic energy is now treated by a hamiltonian of a non-interacting system
in which the electrons do not interact with each other, f̂KS named Kohn-Sham
operator. A new effective local potential VS is added to account for the electron-
electron interaction with the Hamiltonian of the non-interacting system ĤS has
the form:

ĤS = −1

2

N∑
i

∇2
i +

N∑
i

VS(ri), (2.26)

where consequently no electron-electron term appears. A pseudo-wave function
ΘS is now constructed in a Hartree-Fock manner:

ΘS =
1√
N !

∣∣∣∣∣∣∣
ϕ1(x1) · · · ϕN(x1)

...
. . .

...
ϕ1(xN) · · · ϕN(xN)

∣∣∣∣∣∣∣ , (2.27)

such that the density is exactly recovered from the Kohn-Sham orbitals ϕi

ρS(r) =
N∑
i

∑
s

|ϕi(r, s)|2 = ρ0(r). (2.28)
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The Kohn-Sham orbitals

As mentioned above the main idea of the Kohn-Sham Ansatz consists of finding
a new way to more accurately determine the kinetic energy, calculating as most
as possible of it exactly. The kinetic energy of the non-interacting system is
described as in the true, interacting one with a expression equivalent to the one
used within the Hartree-Fock theory (using KS orbitals instead of the HF ones
2.27)

TS = −1

2

N∑
i

〈ϕi|∇2|ϕi〉. (2.29)

The non-interacting kinetic energy TS does not carry all the kinetic energy T 6=
TS. The difference with the interacting system is included into a new functional
named EXC that contains all the non-classical interactions

EXC[ρ] =
(
T[ρ]− TS[ρ]

)
+
(
Eee[ρ]− J[ρ]

)
= TC[ρ] + Encl[ρ]. (2.30)

The exchange-correlation functional EXC still remains unknown and the search
for the exact one is the main challenge of DFT. It includes:

◦ effects of the self-interaction correction

◦ exchange (antisymmetry)

◦ correlation

◦ a portion belonging to the kinetic energy

After this the expression for the energy of the true, interacting system is written
as follows:

E[ρ(r)] = TS[ρ] + J[ρ] + EXC[ρ] + ENe[ρ], (2.31)

where J is the Coulomb term, TS the part of the kinetic energy exactly deter-
mined by the non-interacting system, EXC the unknown non-classical exchange-
correlation functional and the external potential that accounts for the nuclei-
electron interaction ENe.

The next step will be to find the proper orbitals for the non-interacting system.
To that end we will expand Eq. 2.31 to:
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E[ρ(r)] = −1

2

N∑
i

〈ϕi|∇2|ϕi〉+

+
1

2

N∑
i

N∑
j

∫ ∫
|ϕi(r1)|2 1

r12

|ϕj(r2)|2dr1dr2+

+ EXC[ρ(r)]−
N∑
i

∫ N∑
A

ZA
r1A

|ϕi(r1)|2dr1.

Note that the unknown exchange-correlation term cannot be given any explicit
form.

LCAO Ansatz for the resolution of the Kohn-Sham Equations

By variationally minimizing the true energy expression 2.31 with respect to the
KS single-particle orbitals, we get the following 1-electron equation

εiϕi(r1) =

(
− 1

2
∇2

1 +

[
N∑
j

∫
|ϕj(r2)|2

r12

dr2 +VXC(r1)−
M∑
A

ZA
r1A

])
ϕi(r1), (2.32)

or

εiϕi = f̂KSϕi. (2.33)

The set of KS orbitals, as within the Hartree-Fock context are expanded in
terms of a finite basis set that does not provide the exact orbitals but approximates
them. The larger the basis set the better the approximation but also the more
expensive the calculation. For an infinite basis set every KS orbital will be exactly
described.

Eq. 2.33, with the orbitals expanded as a linear combination of the basis set
has to be solved. The Coulomb operator J and the exchange-correlation operator
EXC of Eq. 2.31 are dependent on the electron density ρ, which is function of the
orbitals ϕ. However these orbitals are being searched in order to determine the
electron density entering in that way in a Self-Consistency problem (Fig. 2.1).

A guessed initial density ρ0 is introduced since it is needed to calculate the
orbitals, that of course will not be the correct ones. The KS hamiltonian HKS is
found from the Coulomb (also called Hartree-Fock potential) and the exchange-
correlation potentials. There are many different approaches to approximate this
exchange-correlation potential as LDA, LSDA, GGA, meta-GGA. . . not discussed
here. For a more detailed description of these approximations to EXC functional
the reader is referred to [18], [24] and [25]. When the KS hamiltonian, named f̂KS
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guessed ρ0
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Figure 2.1.: Scheme of the iterative self-consistent procedure to solve the Kohn-
Sham equations [23].
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within the Kohn-Sham approach has been found, the secular equation (see Eq.
2.33) is solved yielding a set of orbitals ϕn. From these orbitals a new density
ρn is obtained which will be different from the previous one ρn−1. Once we have
arrived to a point where the difference between both densities is under a threshold
the self-consistent loop is thought to be converged and the calculation comes to
an end.
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2.2.4. Electron Distribution and Density Matrices

We will include in this section just a brief selection of the ideas explained in [26].
For a discussion more in detail the reader is referred to the cited work.

Due to the increasingly improved computational facilities wave functions for
chemical systems become so complicated that they provide no clear information
of the electron distribution. Many chemical and physical properties of the system
are inferred from this electron distribution and therefore information about it
must be somehow extracted from the wave function. This relevant information is
in fact contained in a few density functions normally easy to get a clear physical
picture from.

The wave function of a one-electron system ψA(x) is known as a spin orbital,
meaning that it consists of a function termed orbital that describes the region of
the space occupied by the electron φA(x), and by another function describing the
spin of the electron σA(s). s can be α —spin-up— for s = +1

2
or β —spin-down—

for s = −1
2
.

The wave function itself is not observable. Only from the square of this wave
function, the density function, can be obtained some physical information:

ρ(x) = |ψA(x)|2. (2.34)

It determines the probability of finding one electron in the volume element dr
with spin between s and s+ ds. Decomposing the spin orbital it adopts the form:

ρ(x)dx = |φA(r)|2|α(s)|2drds. (2.35)

Summing over all spin possibilities —integrating over spin— we obtain the
probability of finding the electron in the volume element dr regardless of the spin.

The above equations can be generalized to the N electron case. The many-body
wave function looks like Ψ(x1,x2 . . .xN) and the squared of it is the probability
of finding electron 1 in dx1, 2 in dx2, . . . and N in dxN , simultaneously:

Ψ(x1,x2 . . .xN)Ψ∗(x1,x2 . . .xN)dx1dx2 . . . dxN . (2.36)

Integrating over the space coordinates and spins of all electrons but one we
get, due to the indistiguishable character of electrons, N-times the probability of
finding one electron of any spin in dx1 whereas the rest of the electrons may be
anywhere in space. This quantity is known as the electron density4

4 Strictly speaking it is a probability density but it is usually given the name electron density,
since the electrons can be understood as “smeared out” within the volume element, with a
certain density P .
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ρ1(r1) = N

∫
Ψ(x1,x2 . . .xN)Ψ∗(x1,x2 . . .xN)ds1dx2 . . . dxN . (2.37)

The electron density is a non-negative quantity and also an observable —can
be obtained by acting on the wave function with the corresponding operator—
that integrates to the total number of electrons N and vanishes at infinity:∫

ρ(r)dr = N, (2.38)

ρ(r →∞) = 0. (2.39)

Up to now only one particle has been considered but similar concepts, mutatis
mutandis may be extended to higher number of particles. The pair function
corresponds to a probability density for two electrons: the electron pair density

ρ2(r1, r2) = N(N− 1)

∫
|Ψ(x1,x2 . . .xN)|2ds1ds2dx3 . . . dxN . (2.40)

The electron pair density is defined as the probability of finding one electron
within the volume element dr1 and simultaneously another one in dr2 whereas
the remaining N−2 electrons are anywhere in space, regardless of spin.

How the motions of two electrons are correlated is described by the pair func-
tion. It is normalized to the total number of electron pairs that can be formed
N(N− 1) and as the electron density is non-negative. For non-iteracting particles
the probability of finding one particle at one point of the space and simultane-
ously another one at any other point, would be just the product of the individual
probabilities:

ρ2(x1,x2) =
N− 1

N
ρ(x1)ρ(x2). (2.41)

The term (N− 1)/N arises due to the indistiguishability of the electrons.

Density Matrices

It can be useful to slightly generalize the density functions from Eq. 2.37 and
2.40. For a 1-electron system, the expectation value of any operator F when the
electron is located in the spin orbital ψ is given by

〈F 〉 =

∫
ψ∗(x)Fψ(x)dx. (2.42)

When F is a real operator that acts only on the right ψ(x), ψ∗(x) being unaf-
fected by it. Hence the factors order matters and it cannot be expressed as
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〈F 〉 =

∫
Fψ∗(x)ψ(x)dx.

This can be solved by changing the name of the variables in ψ∗ from x to
x′ making them immune to the action of F. The previous equation can now be
expressed as

〈F 〉 =

∫
x′=x

Fρ(x;x′)dx, (2.43)

where the electron density from Eq. 2.37 is now generalized to the non-diagonal
reduced 1-density matrix, which takes the form

ρ1(r1; r′1) = N

∫
Ψ(x1,x2 . . .xN)Ψ∗(x′1,x2 . . .xN)ds1dx2 . . . dxN . (2.44)

The prime keeps its special character during the action of the operator F and
loses it just before the integration. In that way F acts only on the unprimed wave
function while the subsequent integration affects all terms.

Of course the same applies to the two-electron case, where the non-diagonal
reduced 2-density matrix, has the following expression.

ρ2(r1, r2; r′1, r
′
2) = N(N−1)

∫
Ψ(x1,x2 . . .xN)Ψ(x′1,x

′
2 . . .xN)ds1ds2dx3 . . . dxN .

(2.45)
Both the electron density and the electron pair density are recovered as the

diagonal part of the corresponding density matrices

ρ1(r) = ρ1(r1; r1), ρ2(r1, r2) = ρ2(r1, r2; r1, r2).

The information about the correlation of electronic motion is understood to be
contained in the electron pair density function. This electron correlation can be
of two distinct types:

- Fermi or exchange correlation: In Eq. 2.45 is defined the generalized
reduced density matrix for two electrons, where the primed coordinates are
not integrated. The antisymmetry of the wave function established by the
Pauli principle states that interchanging the positions of two electrons (x1

and x2) for example, will cause ρ2(r1, r2; r′1, r
′
2) to have its sign changed

ρ2(r1, r2; r′1, r
′
2) = −ρ2(r2, r1; r′1, r

′
2)

In the specific case where we take the diagonal part of this matrix (x1 = x′1
and x2 = x′2, cf. section 2.2.4) we recover the pair density ρ2(r1, r2) as
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defined in Eq. 2.40. For the special case in which both electrons are sharing
not only the same position but also the same spin x1 = x2,

ρ2(r1, r1) = −ρ2(r1, r1). (2.46)

which is the probability that both electrons are identical and occupy ex-
actly the same location, relation that is satisfied solely by the condition
ρ2(r1, r1) = 0. This is the exchange correlation which is considered by the
HF approach as a consequence of the antisymmetry of a Slater determinant,
but has nothing to do with the correlation included in the correlation energy
EHF
C in the previous chapter (see Eq. 2.18).

- Coulomb correlation: However electrons of opposite spin do not suffer
the Fermi correlation but are subject to an electrostatic interaction coming
from the term 1/rij in Eq. 2.4. There is a repulsion force that applies
to all electrons —no matter the spin— due to their charge that prevents
them to approximate to each other. This correlation between the motions
of the electrons due to their charge is the Coulomb correlation or simply
the electron correlation and is not treated at all by the HF approach.

In that case, the expansion of the determinants, whereas for the parallel spin
situation the Pauli principle is fulfilled, as already mentioned ρHF,σ1=σ2

2 (r1, r2) =
0. But if the electrons have opposite spin the pair probability equals the
product of the individual probabilities and does not take into account the
electron correlation ρHF,σ1 6=σ22 (r1, r2) = ρ1(r1)ρ1(r2).

The Fermi and Coulomb correlation can now be included into a correlation
factor f(x1;x2), a term that allows the correlation of electronic motion to be
separed from the non-interacting situation, yielding an alternative definition of
the pair density expression, which is as follows:

ρ2(x1,x2) = ρ(x1)ρ(x2)
[
1 + f(x1;x2)

]
. (2.47)

This correlation factor will vanish in case the electrons do not see each other.
A new function can now be defined: the conditional probability Ω(x1;x2). As

its name indicates, it describes the probability of finding one electron at position
x2 subject to the condition that another one is already at x1

Ω(x1;x2) =
ρ2(x1,x2)

ρ1(x1)
. (2.48)

This conditional density integrates to N-1, the total number of electrons except
the reference electron at x1. If we make the difference between the conditional
density and the uncorrelated probability of finding an electron at x2, we get the
exchange-correlation hole
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hXC(x1;x2) =
ρ2(x1,x2)

ρ1(x1)
− ρ(x2). (2.49)

The function known as exchange-correlation hole describes the change in the
conditional probability provoqued by the correction for self interaction, Fermi and
Coulomb correlation in comparison to the totally uncorrelated situation. This
quantity is called a hole since it normally caused depletion of electron density
at x2 compared to the independent particle situation. It can be understood as
a hole the electron creates around itself where no other electron is likely to be
found. Since the pair density integrates to N-1 and the density at x2 to N, the
exchange-correlation hole integrates to -1. In other words, it contains exactly the
charge of one electron ∫

hXC(x1;x2)dx2 = −1.

There are no many-body interactions among electrons in the Coulomb approx-
imation. As a consequence there is no need to consider distribution functions of
higher number of electrons than the pair function ρ2.
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2.3. Chemical bond descriptors in real space

2.3.1. Quantum Theory of Atoms In Molecules QTAIM

Many chemical concepts introduced on an empirical basis can be assigned a phys-
ical explanation through the QTAIM theory. Taking the electron density ρ as
the central property QTAIM is able to confer physical meaning, via the topology
of the electron density, to basic chemical concepts as bonds or atoms. A full,
authoritative account of the theory may be found in [3] and [27].

ρ = 0.0026 ρ = 0.002499

ρ = 0.00249 ρ = 0.00235

Figure 2.2.: Progression of the electron density isosurface for K bcc at four different
[ρ] = electronsbohr−3 values.

The electron density ρ forms a uniform distribution around the atoms of the
system. In Fig. 2.2 can be visualize a density isosurface where all points have
the same electron density value. Four different figures can be observed for four
different density values of bcc K, specified in the figure.

If the isosurface attains higher values than ≈ 0.0025 each atom is surrounded
by a spherical shell that corresponds to the atomic basins. Each one of these
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domains is irreducible and includes only one critical point (see below). But as
the isovalues are reduced and approximate to 0.0025 the sphericity around the
atoms is lost and the spheres come together establishing contact in one point,
termed critical point (in 2.2 see figure with ρ = 0.002499). When isovalues are
further reduced the single spheres form a single one as can be seen in the last fig-
ure ρ = 0.00235 which forms a single domain including more than one attractor.
It can not be assigned to only one atom and consequently loses its topological
meaning.

Critical Points

The critical points (CP) of ρ are points in real space where the electron density

gradient vanishes ~∇ρ(r) = (0, 0, 0) and mark special positions in space. CPs can
be local minima, maxima or saddle points of the electron density. The differen-
tiation among the different sorts of critical points can be achieved by means of
the associated hessian matrix H(ρ(r)), which is a real, symmetric 3 × 3 matrix
formed by the pure and mixed second derivatives of the electron density:

H(~r) =


∂2

∂x2
∂2

∂x∂y
∂2

∂x∂z
∂2

∂y∂x
∂2

∂y2
∂2

∂y∂z
∂2

∂z∂x
∂2

∂z∂y
∂2

∂z2


Diagonalization of the hessian matrix Hρ(r) yields the eigenvalues hxx, hyy, hzz.

That allows us to classify a critical point by its ’rank’ and ’signature’. The rank
is defined as the number of non-zero eigenvalues of the hessian matrix; in other
words, the maximum number of rows (or columns) that are linearly independent
vectors. The signature is defined as s =

∑
hii
|hii| . In case one or more hessian

eigenvalues are equal to zero, i.e., one or more rows (columns) can be expressed
as a linear combination of the others, the point is a degenerate critical point.
However we will only disscuss here the “nondegenerate critical points”, which can
be of four types:

Minimum also known as repelor or (3,+3) critical point, if all principal curva-
tures of the electron density are positive. They can also be given the name
Cage Critical Points (CCP).

Maximum attractor or (3,−3) critical point, for cases with all curvatures being
negative.

Saddle point two situations can occur:

Bond critical point (BCP) or (3,−1) critical point, for hessian matrices
with one principal curvature positive and two negative.
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Ring critical point (RCP) or (3,+1) critical point, in case one principal
curvature negative and two positive.

In order to obtain a well-behaved quantum-mechanical description of an open
region of a quantum system, it must be bounded in any way and enclose a finite
volume [11]. Eq. 2.50 will be the condition neccessary to limit the extension of
the non-overlapping regions defining a basin:

∇ρ(rs) · n = 0, (2.50)

where n is the vector normal to the boundary surface, namely the exterior nor-
mal and rs indicates that the electron density is evaluated at each point of the
surface.

A basin is then a region of space where all gradient paths (trajectories) of a
chosen scalar field such as electron density terminate at the same ω-limit that is
a maximum. In general, each of these basins contains only one nucleus which cor-
responds to the aforementioned maxima or attractors: a basin usually represents
an atom. Otherwise the basin is associated with so called non-nuclear attractor
[28]. Every of the basins of a system is bounded by zero-flux surfaces defined
by the condition described in Eq. 2.50, which are trajectories terminating at a
ω-limit that now is a saddle-point.

The partition of the space can however be done according to scalar fields other
than the electron density. The Electron Localizability Indicator ELI Υσ

D(r) will
be explained in the next section 2.3.2. It can as well be used to partition the
space into basins (localization domains) that have dissimilar interpretations to
the basins defined according to the QTAIM.
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2.3.2. Restricted Space Partitioning

A ω-restricted partitioning (ωRSP) of the space consists of a subdivision of
the system volume into non-overlapping space-filling regions of maximum
compactness in such a way that the integral of the control property over
any region yields ω.

One strategy to extract information about a system is the examination of a
certain property over samples characterized by the same (chosen) quantity, thus
allowing the sampled results to be compared. The restricted space partitioning
into extremely small regions, namely the samples over the system under study
for us, is done according to a chosen quality ω known as control property. This
results in a ω-restricted division of the space into regions named µi of volume
Vi centered at a chosen position ai. The control property regulates the space
partitioning and hence determines the regions volume by satisfying the condition
that a fixed ω value will be enclosed within them. Each region will attain such
volume that this condition, the ω restriction, is fulfilled. The sampling property
is then evaluated at each of the region’s center ai.

Figure 2.3.: Schematic representations of the re-
sult of a ω-restricted partition of the
space. Every region µi is centered
at ai and has a volume Vi imposed
by the ω-restriction and arbitrary
shape.

Although the shape of the
sample regions can in prin-
ciple freely adopt any shape,
the partitioning of the space
is not arbitrarily done (Fig.
2.3). The system is divided
into non-overlaping, space-
filling regions complying the
restriction ω and being as com-
pact as possible.

In spite of being the most
compact isolated region a
sphere, the shape of the re-
gions cannot be spherical when
constricted to the conditions
we just mentioned. They will
rather adapt the most compact
form given that neighbouring
regions present maximal compactness as well. Nevertheless, the shape the ω-
partitioned regions can adopt is still infinite. A simplified scheme of the way
from the base, the restricted population approach, to the top of the ω-restricted
partitioning can be found below.



2.3. CHEMICAL BOND DESCRIPTORS IN REAL SPACE | 29

The control function fc: the ω-Restricted Space Partitioning

The number of sampling regions is determined by the ω values and the integral
of the control function fc over the whole system Fc =

∫
fc(r)dr. Among the

different possibilites we could have depending on the value of the integral Fc, we
will only be interested in the situation in which the integral of the control funcion
over the whole system yields a non-zero real value Fc 6= 0 5. In that case, there
will be a uniquely given finite κ = Fc/ω number of regions for any real restriction
ω 6= 0.

In that case, when choosing infinitesimally small restrictions (infinitesimally
small meaning small enough) the density of the regions (number of regions per
volume unit) does not vary significantly for all the possible ways of dividing the
space. It is possible to use small enough ω restriction values in such a way that
choosing any of the possible manners of partitioning the system (slightly shifting
the center ai ) will not increase the number of regions κ (density of sample re-
gions). From now on we will refer to the very small regions as micro-cells.

Restricted population approach:
Space division into mutually-exclusive space-filling regions

- Compact regions:
Locality of the examined effects

- Integral of ω property over µi =
constant:

ω-restricted partitioning of the space

��

Partition of the space into compact, mutually exclusive and space-filling
micro-cells with ω-dependent variable volumes

Due to the choice of extremely small sampling regions the system presents
certain properties. Additionally, the micro-cells being so small makes it possible
to approximate the integrals of chosen functions over such regions by polynomials
based on the first non-vanishing term of the corresponding Taylor expansion (the
approximation of the sampling function integrals over the micro-cells by a Taylor

5 For a deeper disscussion see [29].
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expansion will be discussed later on).
Let us consider as control function a one-particle property: the electron density,

ρ1(r) derived from generalized density matrices as explained in chapter 2.2.4.
Integration of the electron density ρ1(r) over the whole space yields the total
number of electrons N in the system. On the other hand, the integral of this
control function over any of the non-overlapping space filling regions µi into which
the system is partitioned will yield the fixed electronic charge q = ω within this
region µi:

q =

∫
µi

ρ1(r)dr = ω . (2.51)

The system is hence partitioned into κ = N/q regions. Given that those re-
gions are micro-cells in the sense explained before, the charge within it can be
approximated by q ≈ ρ1(ai)Vi. The volume of the micro-cell Vi is hence inversely
proportional to the electron density, which is valid for any control function nor-
malised to Fc =

∫
fc(r)dr:

Vi ≈ ω/fc(ai) Fc = κω . (2.52)

For n coordinates it is not so easy and the number of micro-cells κ cannot
be found in the same way. Let us consider now a partition of the space using a
two-particle quantity, the electron pair density ρ2(r1, r2) (Eq. 2.40), as control
function. Each region µi encloses now a fixed number of electron pairs Di. The
general expression for a control function fc of n coordinates:

ω =

∫
µi

dr1 . . .

∫
µi

fc(r1, . . . , rn)drn , (2.53)

becomes now:

D =

∫
µi

dr1

∫
µi

ρ2(r1, r2)dr2 . (2.54)

Here the number κ of micro-cells µi for a given restriction ω follows κω ≤
N(N−1)/2, satisfying that the total number of electron pairs in the system must
be equal or higher than the number of electron pairs in all the micro-cells.

The sampling function fs: Restricted Populations

The first part for the restricted space partitioning is already achieved: the control
function determines the decomposition of the space into sample regions over which
the property of interest will be evaluated.

As already mentioned, the m-th order spinless reduced density matrix is ob-
tained integrating the N -th order density matrix over the coordinates of (N −m)
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electrons over the whole space and summing over both α and β spins.

For operators fulfilling a few conditions (they must be spin-free and one- or
two-electron operators), the reduced 2-matrix γ(2)(r′1r

′
2, r1r2) carries enough in-

formation to find the expectation value of such operators.

Let us consider a sampling property whose expectation value is given by the
operator Â, satisfying the above conditions, acting on the wave function of the
system ψ integrated over all space:

〈
Â
〉

=

∫
Ψ∗ÂΨdV . (2.55)

Â being a single-particle operator the previous expression can be reduced to a
sum over all the κ micro-cells (having the spin integrated out):

〈
Â
〉

=

∫
Âγ(1)(r′; r)dr =

κ∑
i=1

∫
µi

Âγ(1)(r′; r)dr . (2.56)

The operator Â acting on the 1-matrix yields a function that we call here the
sampling function fs. For a single-particle operator the sampling function will
take the form:

fs(r) = Âγ(1)(r′; r)|r′→r
while for two-particle operator

fs(r1, r2) = Âγ(2)(r′1, r
′
2; r1, r2)|r′→r

Evaluation of the expectation value A =
〈
Â
〉

involves the equating of the
primed and unprimed coordinates, resulting in a function which has to be further
integrated over the whole space. The resulting expectation value is the electron
density ρ1(r), which corresponds to the diagonal part of the 1-matrix γ(1)(r′; r), is
a particular case of a sampling property for single-particle operator. The integral
of ρ1(r) over the whole space yields the total number of electrons in the system,
i.e., is normalised to the number of electrons N . Integration over a micro-cell µi
yields the charge of that region qi fulfilling that

∑
qi = N .

Electron pair density ρ2(r1, r2) is the expectation value for the operator
〈
Â
〉

being a two-particle operator and corresponds to the diagonal part of the 2-matrix
γ(2)(r′1, r

′
2; r1, r2), can be chosen as sampling property as well. Equivalently, it is

normalised to the total number of electron pairs N(N − 1)/2. However now the
sum of the electron pair population in every micro-cell µi does not yield the total
number of electron pairs in the system, since in order to get that also the electron
pairs Dij shared by two regions (region pairs) µi and µj must be considered.

In both cases, using first- or second-order electron densities as sample function
fs (and the same would apply for n-th order electron densities) we obtain a distri-
bution of the electron populations {qi} and of the electron pair populations {Di},
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respectively, for each region µi. The applied restriction will give the name to the
distribution of values resulting from integrating fs. In that way, integration of fs
over regions restricted according to an ωRSP are named ω-restricted populations.

Electron Localizability Indicator

A N -electron system is described by the wavefunction Ψ(x1x2 · · ·xN) with xi =
(ri, σi) being the position ri and spin σi coordinates, respectively, of electron i.
The information about the chemical bonding within such a system is carried by the
N-matrix Γ(n). Since the energy can be found from 1 and 2-particle operators, we
can assume that in the 2-matrix Γ(2) is contained a relevant part of this chemical
information.

From this wavefunction 1 and 2-spinless density matrices can be found:

ρ1(r′1|r1) = N

∫
dσ1

∫
dx2 · · ·

∫
dxNΨ∗(x′1x2 · · ·xN)Ψ(x1x2 · · ·xN) , (2.57)

ρ2(r′1r
′
2|r1r2) =

(
N

2

)∫
dσ1

∫
dσ2

∫
dx3 · · ·

∫
dxNΨ∗(x′1x

′
2 · · ·xN)Ψ(x1x2 · · ·xN) .

(2.58)

The elements in the main diagonal of these density matrices are the electron
density and electron pair density, respectively, as previously described in section
2.3.2:

ρ1(r1) = ρ1(r1|r1) , (2.59)

ρ2(r1r2) = ρ2(r1r2|r1r2) . (2.60)

Since the 1-matrix was spinless the electron density is written as a sum of the
two spin components, that are probability densities of finding one electron with
the corresponding spin in real space:

ρ(r1) = ρα(r1) + ρβ(r1) , (2.61)

which integrated becomes N = Nα + Nβ. α and β refer to up and down spin
respectively. Similarly, the electron pair density is expressed as a sum of four
components, each one being now the probability density of finding two electrons
with the corresponding spin in position space:

ρ2(r1, r2) = ραα2 (r1, r2) + ρββ2 (r1, r2) + ραβ2 (r1, r2) + ρβα2 (r1, r2) . (2.62)
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According to Eq. 2.51 the integration of the σ-spin electron density ρ(r1) over
the region µi yields the σ-spin electron population qσ, i.e., the charge within this
region. In a similar way the integration of the same-spin electron pair density
ρσσ2 (r1, r2) over the region µi yields the same-spin pair population Dσσ

2 (µi) (Eq.
2.54), i.e., the average number of same-spin electron pairs within the region.

The volumes of the regions enclose now a fixed number of same-spin electron
pairs:

Dσσ
2 (µi) =

∫
µi

dr1

∫
µi

ρ2(r1, r2)dr2 = const. (2.63)

The sampling function is now the average number of σ-spin electrons (charge)
which is evaluated integrating the electron density over the region µi. This func-
tional is named the Dσσ

2 -restricted electron population Qσσ
i (µi)

6:

Qσ
i (µi) =

∫
µi

ρσ(r)dr . (2.64)

The evaluation of these integrals over pair density can be approximated and
hence simplified by the Taylor expansion of the σ-spin pair density around an
arbitrary point a1 inside the region µi

7. Due to the Pauli exclusion principle
and the cusp condition, the first nonvanishing term of the Taylor expansion is
the Fermi hole curvature at the position r1. The same-spin pair density is hereby
approximated as:

Dσσ
2 (µi) ≈

1

2

∫ ∫
µi

(s · ∇r2)
2ρσσ2 (r1, r2)

∣∣
r→a

dr1dr2 , (2.65)

where s = r2 − r1 but the operator ∇2
r2

acts only on the coordinate r2:

1

2
(s · ∇r2)

2 =
1

2

x,y,z∑
i,j

sisj
∂2

∂i2∂j2

. (2.66)

si = (r2 − r1)i = (x2 − x1, y2 − r1, z2 − z1)i and similarly for sj. As this
expansion around the point r1 results in an new r1-dependent function which
must be integrated, again a Taylor expansion can be applied, now around the
point ai. After the second expansion the number of same-spin electron pairs can
be approximated by:

Dσσ
i ≈

1

12
V

8/3
i g(ai) . (2.67)

6 Note that the capital letter Qσσ designates the charge as a sampling function in a Dσσ
2 -

restricted population, whereas qσ refers to the charge as the control function in a qσ-restricted
analysis.

7 Giving each region a center serves as a way to differentiate the regions, that can be distin-
guished by the index a.
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Vi is the volume of the micro-cell µi and g(ai) the Fermi-hole curvature at the
micro-cell center ai [30].

g(ai) =
σ∑
i<j

σ∑
k<l

Pij,kl
[
φi(ai)∇φj(ai)− φj(ai)∇φi(ai)

]
×
[
φk(ai)∇φl(ai)− φl(ai)∇φk(ai)

]
. (2.68)

Given that we have selected sufficiently small regions the volume occupied by
the fixed number of same-spin pairs can be obtained from the expression:

Vi ≈

[
12Dσσ

g(ai)

]3/8

(2.69)

Since the volumes of the regions µi are very small, the Dσσ-restricted population
Qσ
i , the σ-spin charge enclosed by the region can be approximated by the product

between the σ-spin electron density and the region volume:

Qσ
i ≈ ρσ(ai)Vi = ρσ(ai)

[
12Dσσ

g(ai)

]3/8

. (2.70)

If the dependence on Dσσ is removed the ELI-D expression is obtained:

Υσ
D(ai) =

Qσ
i

(Dσσ)3/8
≈ ρσ(ai)

Vi
(Dσσ)3/8

= ρσ(ai)ṼD(ai) . (2.71)

ELI-D is then proportional to the average number of electrons (charge) given
by Qσ

i that is needed to form the fixed fraction of a σ-spin electron pair Dσσ.
The rescaled volume ṼD(ai) is the pair-volume function. Sampling the chosen
property (charge for D-restricted population) over the micro-cells yields a discrete
distribution of values. If the restriction Dσσ is taken infinitesimally small the
discrete distribution is so dense that can be regarded as continuous

Υσ
D(ai)

∣∣
Dσσ→0

→ Υσ
D(r) , (2.72)

and Υσ
D(ai) can be expressed as:

Υσ
D(r) = ρ(r)ṼD(r) =

(
12

g(r)

)3/8

. (2.73)

Space partitioning using ELI-D

As was already mentioned the relevant information to understand the chemical
bonding is contained in the Pauli principle, as stated by the valence-shell electron-
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pair repulsion (VSEPR) theory [31]. The analysis of the quantum-mechanical
functions related to the Pauli exclusion principle such as the electron density or
the ELI-D are consequently a main objective. The differential topological analysis
of these local scalar functions is a well-established mathematical approach that
allows inspection of the former functions [32]. This topological anaylisis can be
interpreted by means of the critical points that were already described in section
2.3.

When these singularities are searched using gradient inspection techniques for
ELI-D a bunch of critical points appear. The local maxima define “localization
domains” that can be bonding, non-bonding and core which are the three types of
basins that can be defined using two-particle quantities such as ELF [33] or ELI-D.

The localization domains can be of two types depending on whether they are
encapsulating one or more critical points (CP) (see section 2.3 for explanation of
CP). If they encapsulate one critical point they are called irreducible and vary-
ing the isovalue that surrounds the region induces deformation in the localization
domains but does not alter its topological type though. A partition of the space
into irreducible domains can be seen in Fig. 2.4c where the localization domains
around the central Cl atom cannot be further partitioned, they keep their topo-
logical type. If the isovalue is increase they just disappear 2.4d. Nevertheless,
if they embrace more than one CP, now named reducible localization domains,
tuning of the ELI-D isovalues will cause bifurcation to occur for critical values
of the quantity (ELI-D in our case). A bifurcation causes the break of the lo-
calization domain into several smaller localization domains containing fewer CPs
until a irreducible one is found [32]. That is what we can observe in Fig. 3.3
where when increasing the isovalue the big reducible localization domain in 2.4a
breaks into also reducible domains but containing less CPs (Fig. 2.4b). Finally
fifurcation into irreducible domains causes a split into the 6 different irreducible
localization domains of Fig. 2.4c.

Core critical points (attractors are normally assigned to nuclei) are located
around the atomic nuclei, whereas bonding CPs (saddle points correspond to
bonding critical point BCP) lie inbetween characterizing the shared-electron in-
teractions. The number of bond attractors is related to the bond multiplicity.
Non-bonding CPs are assigned to lone pairs. The regions surrounded by an iso-
surface are called a basin.

All the basins corresponding to critical points closer to the nucleus more than
a tabulated distance are assigned to the same basin, since all of them are firmly
linked to the nucleus and are not chemically active. These basins are merged
together into a superbasin that represents the atomic core. Irreducible localization
domains, i.e., each of them enclosing only one CP, corresponding to bonding
CPs (saddle points) are bonding basins that represent the valence shell of the
considered species. Evaluation of LI will give information of how likely is it to find
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(a) ΥD = 0.625 (b) ΥD = 1.500

(c) ΥD = 1.590 (d) ΥD = 1.600

Figure 2.4.: ELI-D isosurfaces LiCl for four different ΥD values. The reducible
domain in (a) includes a few attractors; this number is reduced when
increasin the isovalue (b) and becomes irreducible in (c). If the iso-
value is further increased the topological type is not alter but ruther
disappears.
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an electron within this basin; and DI between two basins will yield information
of the sharing of electrons between core-core, core-bonding or bonding-bonding
basins.
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2.4. Localization and Delocalization indices

In the fundamental book of QTAIM theory written by professor R.F.W. Bader in
the early 1960s [3] it is given the description of certain indices, namely LI and DI,
that allow us to determine the extent to which some average number of electrons
are linked to a portion of the total space available to them. For a more detailed
description of LI and DI the reader is referred to the references [6], [34], [35], [36]
and [37]. The information about the localization of electronic charge is carried by
the quantum mechanical distribution function Ψ∗Ψdx1dx2 . . . dxN (see Eq. 2.36).
For a system of N electrons divided into Ω regions

Pn(Ω) =
N !

n!(N − n)!

∫
Ω

dx1 · · ·
∫

Ω

dxn

∫
Ω′
dxn+1 · · ·

∫
Ω′
dxNΓ(N)(x1,x2, . . .xN),

(2.74)

Pn(Ω) is the event probability that n electrons occupy Ω while the other are in
Ω′. Γ(N) is the diagonal part of the spinless N -particle density matrix as described
in Eq. 2.36 —summing up spins—. xi keeps its usual meaning. Since the wave
function is normalized the summation over all possible events∑

n

Pn(Ω) = 1. (2.75)

Integration of Eq. 2.38 over the region Ω yields the average number of particles
within that region

N̄(Ω) =
∑
n

nPn(Ω) =

∫
Ω

ρ(r)dr. (2.76)

For the electrons of a system to be fully localized one of the events described in
Eq. 2.74 has to have a probability close to one whereas the remaining are zero. In
other words, it is very relevant to have a expression that carries the information
of to what extent the expression 2.75 is determined by just one probability whilst
the rest are negligible and can be dropped out, i.e., a single event dominates
the distribution. The fluctuation function closely describes this information and
does not require the evaluation of the full Nth-order density matrix Γ(N). It
is rather fully expressed in terms of the diagonal elements of the second-order
density matrix described in Eq. 2.40.

The fluctuation in the average number of electrons in a region Ω is evaluated
as

σ2(Ω) = N̄2(Ω)− (N̄(Ω))2 =
∑
n

n2Pn(Ω)−
(∑

n

nPn(Ω)
)2

, (2.77)

which could also be expressed in terms of the second-order density matrix. That
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possibility entails a “great conceptual advantage since the extent to which a set of
indistinguishable particles is spatially localized is determined by the system’s pair
density”, literally quoting R.F.W. Bader [3], the distribution that also determines
the fluctuation σ2. The relevant properties of the pair density function for a sys-
tem of electrons are a consequence of the Fermi correlation, which results from
the antisymmetrization of the wave function required by the Pauli principle. The
correlation causes the pair density function to deviate from a simple product of
independent densities. This correlation is carried by the function f(r1, r2) and
the pair density is expressed as in Eq. 2.47. This correlation term measures not
only the Fermi correlation —which exists among electrons with identical spins—
but also the Coulomb correlation —affecting opposite spin electrons— (for a more
detailed description of the Fermi and Coulomb correlation see section 2.62). Ac-
cording to the Pauli exclusion principle the exchange of the coordinates of two
electrons of identical spin —recall that Fermi correlation occurs between same-
spin electrons— causes the sign of the pair density to change (see Eq. 2.46).

The aim of the present section is to show the expression which describes “the
spatial extent of the effects of the self-pairing correlation on the motion of elec-
trons, as well as whether or not the net effect of this correlation for any one
particle, the correlation hole, may be localized to one particular region of space”
[3]. In that sense the Fermi correlation is of capital relevance since it solely de-
termines the extent to which sets of electrons may be localized in some region of
real space. The pair density includes a term describing the Fermi correlation and
hence the mentioned two-particle property will be of great importance.

The average number of pairs of σ-spin electrons in a region can be expressed
in terms of event probabilities

D2(Ω,Ω) =
1

2

N∑
n

Pn(Ω)(n− 1)n =
1

2
(N̄2(Ω)− N̄(Ω)). (2.78)

This average number of electron pairs can also be expressed by integrating both
coordinates of the pair density 2.47 over the region Ω yielding

D2(Ω,Ω) =

∫
Ω

dr1

∫
Ω

ρ(r1, r2)dr2 =
1

2

[
N̄2(Ω) + F (Ω,Ω)

]
, (2.79)

F (Ω,Ω) accounts for the correlation of the σ-spin electrons

F (Ω,Ω) =

∫
Ω

dr1

∫
Ω

ρ(r1)ρ(r2)f(r1, r2)dr2. (2.80)

A limiting situation will occur when the probability of one particular event
Pn(Ω) equals unity whilst the other probabilities of the remaining events vanish.
In such situation the summatory in Eq. 2.78 reduces to just one term and the pair
population within the region will be n(n − 1)/2 and it is referred to as a “pure
pair” population. Electrons are uncorrelated and hence perfectly localized within
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the region Ω. They behave as distinguishable particles that do not see each other
and the wave function for the total system could be written as a simple product
of separately antisymmetrized wave functions, with n electrons in Ω and the re-
maining N − n in Ω′. The magnitude F (Ω) is a measure of the total Fermi hole
of the N(Ω) particles that lies within the region Ω. In such limiting situation the
Fermi hole for any of the n electrons in Ω is entirely contained in this region.

The term F (Ω,Ω) is normally far from this ideal situation and normally the
Fermi hole of the electrons in Ω extends out of region Ω. The magnitude F (Ω,Ω)
is given the name atomic localization index λ(Ω) [38].

It can be also measured how much of the Fermi hole of the electrons occupying
a region A is localized not in the same but within a different region B. This
information is contained in F (A,B) which is defined in the expression for the
average number of pairs of electrons formed between the electrons located at A
and the electrons located at B. It is obtained by integrating the coordinates of
one electron over region A and the coordinates of the other over region B

D2(A,B) =

∫
A

dr1

∫
B

ρ(r1, r2)dr2 =
1

2

[
N̄(A)N̄(B) + F (A,B)

]
, (2.81)

where F (A,B) = F (B,A). The sum of both magnitudes F (A,B) + F (B,A)
defines the delocalization index δ(A,B) and quantitatively measures the sharing
of electrons between regions A and B [38].

The number of electrons N(A) —charge— in the region A can be expressed as

N(A) = λ(A) +
1

2

∑
X 6=A

δ(A,X), (2.82)

and the fluctuation σ2(A) may be written as

σ2(A) = D2(A) +N(A)−N2(A) (2.83)

= N(A)− λ(A) =
1

2

∑∑
X 6=A

δ(A,X), (2.84)

from where it can be seen that the variance is given by the electron and electron
pair populations. For situations where the electrons are perfectly localized, that
is λ(A) = N(A), the fluctuation σ2(A) will attain a value of zero.

The fluctuation defined in 2.83 measures the varianze between the number of
electrons occupying a region of the space and the localization of electrons within
this region. Unlike in an isolated molecule, electrons a region of the space within
a solid can be shared between close or distant regions. We name close regions
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those having common zero-flux surfaces, that is, having direct contact with the
region occupied by the electrons, whereas distant refers to regions located beyond
the first neighbourhood. As defined in [39] the number of close shared pairs ςc(A)
for basin A is the sum of the DI of the nearest basins

ςc(A) =
∑
B 6=A

δ(A,B). (2.85)

The difference between twice the fluctuation (total shared pairs) and the sharing
among the closest basins ςc(A) yields the distant shared pairs ςd(A) for basin A

ςd(A) = 2σ2(A)− ςc(A). (2.86)

Finally, it will be meaningful to express the fraction of the total shared electron
pairs that are shared with distant basins κ(A)

κ(A) =
ςd(A)

σ2(A)
. (2.87)

2.4.1. Delocalization indices from solid state APW DFT
calculations

The calculation of DI between region A and B, denoted by δ(A,B), the part of the
pair density carrying the exchange-correlation information has to be integrated as
becomes clear from Eq. 2.80. The exchange-correlation part of the pair density
is not explicitly available from DFT and a workaround has to be applied to build
it from the Kohn-Sham orbitals using a HF-like formula (see [39] and references
therein). This approach is known to yield good results in molecules and it may be
also used in solid-state DFT, although partially occupied KS orbitals may appear
(mostly in metals, where there are partially occupied bands).

In solid state calculations the integration to find the DI is done over the Brillouin
Zone (BZ) of volume VBZ which is transformed into a summation over a user-

chosen number of ~k-points within BZ (KBZ)

δ(A,B) =
2

K2
BZ

∑
n,n′

∑
~k,~k′

Sn~k,n′~k′(A)Sn′~k′,n~k(B)θ(n,~k)θ(n′~k′), (2.88)

which is the Ángyán form of the DI [40]. Also an alternative form of LI and
DI as defined by Ponec can be found in [41]. The index n runs over the bands

and the occupation number θ(n,~k) select only occupied states. S are the overlap
integrals between the KS orbitals of the crystal calculated over the region Ω

Sn~k,n′~k′(Ω) =

∫
Ω

ψ∗
n,~k

(r)ψn′,~k′(r)dr. (2.89)



42 | THEORETICAL METHODS

In a equivalent manner the LI over the region A are calculated as

λ(A) =
∑
n,n′

∑
~k,~k′

S2
n~k,n′~k′

(A). (2.90)

2.4.2. QTAIM Vs. ELI-D space partitioning

It was previously explained what QTAIM (section 2.3) and ELI-D basins (section
2.3.2) consist of. To summarize, QTAIM space partitioning consiststs of a coarse-
grained analysis of the chemical bonding situation with each basin corresponding
to one atom. On the contrary, ELI-D decomposes the space into regions corre-
sponding to core, bonding or non-bonding localization domains. The bonding
situation can be analyzed by inspection of LI and DI over QTAIM basins and
more in detail over ELI-D basins.



3. Computational methods

Elk [16] is an all-electron full-potential linearised augmented-plane wave (FP-
LAPW) code, one of the most accurate computational schemes for solid-state
DFT [42], originally written at Karl-Franzens-Universität Graz as a milestone of
the EXCITING EU Research and Training Network. In our calculations, the first
step consists of a single point calculation with this code and as so we believe
necessary a brief explanation of the basic theoretical concepts it is built upon.

3.1. The family of (L)APW methods

The Kohn-Sham equations are solved using a basis set that approximates the
wavefunction of the solid state hamiltonian. Ideally this basis set satisfies two
requirements: it should be unbiased : approximate wavefunctions carry too much
information from the basis functions and errors are introduced to the system
wavefunction; and efficient, only a few basis functions are necessary if they are
similar to the wavefunction which is to be expanded. In summary, we are seeking
a basis set efficient and simple; both requirements are satisfied by plane-waves in
real space:

f(~r) = ei~g·~r , (3.1)

where ~g is any vector in reciprocal space also known as momentum space, which
is the wave number with dimensions [1/length]. Any vector in the reciprocal space

can be expressed as ~g = ~k+ ~G: a sum of a vector in the first Brillouin zone ~k plus
a reciprocal lattice vector ~G.

Block’s theorem states that any eigenfunction ψn~k of a periodic hamiltonian can
be expanded using a basis set of the form:

ψn~k (~r) =
∑
~G

cn,
~k

~G
ei(

~k+ ~G)·~r . (3.2)

The part to be determined are the coefficients cn,
~k

~G
. It can be seen from the

previous expression that the wavefunction is both dependent on the Brillouin zone
designated by n (also called the band index ) and ~k. For a certain ~k value within
a determined Brillouin zone n, the wavefunction is hence expanded as a sum over
the discrete though infinite basis set determined by ~G. However, in practice the

43



44 | COMPUTATIONAL METHODS

infinite sum is truncated limiting the set of all ~G to G ≤ Gmax. This limits the
choice of ~G to only the vectors contained within a sphere with radius Gmax. This
“cut-off” value, also known as energy cut-off or plane-wave cut-off is of great
importance in solid state calculations since it controls the number of plane-waves
that are to be used by the code.

The usage of plane-waves to approximate the wavefunction of spatially periodic
hamiltonians, namely hamiltonians for crystal systems, was first introduced by
Slater in 1937[43]. It is certainly advantageous to use such a expansion due to the
aforementioned simplicity and moderate computational cost of the plane- wave
treatment. Nevertheless a serious problem arises when trying to properly describe
the region close to the nucleus.

The greater oscillation of the wavefunction affect the tails that stretch into
regions close to the nucleus. However this region of the solid is quite shielded
from the outer chemically relevant levels. The electrons occupying these low-lying
regions of a solid behave not different from free atom electrons. The potential
they suffer can therefore be replaced by a smoother pseudopotential that yields
very smooth tails of the wavefunctions close to the nucleus, requiring only a few
plane- waves to describe it.

3.1.1. The APW method

The pseudopotential method is very useful in many situations but:

- the choice of a pseudopotential is to a certain extent arbitrary

- information contained in regions close to the nucleus is lost

The first improvement of the quality of the basis set is achieved by the Aug-
mented Plane-Wave basis set. The APW method is motivated by the different
behaviour of electrons close and far from the nucleus, as was the pseudopotential
approximation. Space is partitioned into the “muffin tin” and the “interstitial”
regions. The muffin tin region is delimited by a sphere with radius Rα around each
atom where electrons behave similar to free atom electrons: the muffin tin sphere
comprises the region where a pseudopotential was used. The interstitial region is
the space between muffin tin regions where electrons, far from the nucleus, behave
as free electrons. Plane- waves are appropriate to treat free electrons (interstitial
region) while atomic-like functions are suitable to describe the low-lying electrons
(muffin tin region).

φAPW~G
(~r, E) =


1√
V
ei(

~k+ ~G)·~r r ∈ I

∑
l,m

a
α,(~k+ ~G)
l,m uαl (r′, E)Yl,m(r̂′) r′ < Rα

MT

(3.3)
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The APW basis functions consist of plane-waves in the interstitial region that
are augmented inside the MT spheres into radial solutions of the Schrödinger
equation.

The symbols ~k, ~G and ~r maintain their usual meaning and V is the volume of

the unit cell in the real space. The coefficient a
α,(~k+ ~G)
l,m and E are still undeter-

mined and uαl are radial functions that are numerical solutions to the Schrödinger
equation. Every radial function corresponds to a solution for the electron α with
energy E.

The determination of the parameter a
α,(~k+ ~G)
l,m is done by imposing the plane-

wave to match the function inside the MT over the whole sphere surface. Each
plane-wave is then expanded at r = rMT into spherical harmonics, which yields
an infinite number of coefficients that have to be truncated at some value lmax

1.

However APW method is not of practical use any more today due to its energy
dependence. In order to describe an eigenstate ψn~k (~r) properly the energy E for
that state has to be set equal to the eigenvalue (or band energy) εn~k of that state.
But this eigenvalue is exactly what we are looking for. The search must hence
start from an initial guess of εn~k for which the APW functions are evaluated, and
whose result feeds the E of the next iteration and so on. The method becomes
thus too slow to be applied to real systems and further improvements must be
achived.

3.1.2. Linearized Augmented Plane-Wave method

The LAPW method was firstly developed by [44, 45]. A two-term Taylor expan-
sion of the radial function uαl (r′, εn~k) introduces a new term to the APW radial
function that corrects it together with a new coefficient. The radial function is
then expanded into a linear combination of the radial function evaluated at some
fixed linearization energy E0 and the new term: its energy derivative computed
at the same energy.

uαl (r′, εn~k) = uαl (r′, E0) + (E0 − εn~k)
∂uαl (r′, E)

∂E

∣∣∣∣∣
E=E0︸ ︷︷ ︸

u̇αl (r′,E0)

. (3.4)

The energy difference is yet unknown and as a consequence the new coefficient

bα,
~k+ ~G

lm appears.

1 The boundary condition that both functions have to match at the sphere boundary requires
the number of nodes per unit length of the plane-waves (Gmax) to be similar to that of the
angular functions (lmax): RαGmax = lmax [23].
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φLAPW~G
(~r) =


1√
V
ei(

~k+ ~G)·~r r ∈ I

∑
l,m

(
a
α,(~k+ ~G)
l,m uαl (r′, Eα

1,l) + b
α,(~k+ ~G)
l,m u̇αl (r′, Eα

1,l)
)
Yl,m(r̂′) r′ < Rα

MT

(3.5)
The relative weight of u and u̇ does the matching between the radial function

and the plane-wave both in value and slope at the MT radius, i.e. the coefficients

bα,
~k+ ~G

lm and aα,
~k+ ~G

lm . The LAPWs provide the basis flexibility necessary to properly
describe eigenfunctions with eigenenergies close to the linearization energy, which
is kept fixed.

The energy E0 is not universally chosen. A different energy is rather used for
every angular momentum l, confering s-, p-, d- or f- character to the basis set
hence adequately describing the state. Consequently E0 is replaced by a set of
well-chosen Eα

1,l up to l = 3. For higher l a fixed energy value can be used.
The same procedure can now be used as for the APW method, but the secular
equation that must be solved becomes linear in energy and all eigenvalues can be
obtained with a single diagonalization of the secular matrix in contrast to APW.

3.1.3. LAPW with Local Orbitals: LAPW + LO

The LAPW method, though being among the most accurate applicable tech-
niques for density-functional-based electronic-structure and total-energy calcula-
tions, has some shortcomings, the most important one arising from the lineariza-
tion. The electrons lying close to the nucleus are called “core states” and behave
quite like free atom electrons. They do not have an important role in chemical
bonding and must lay completely inside the MT sphere. However states situated
far from the nucleus leak out of the muffin tin spheres sticking into the interstitial
region. Such states are named “valence states” and participate on the chemi-
cal bonding. As a third group, electrons with the same l but different principal
quantum number than valence electrons, low-lying valence states, located in be-
tween core and valence states may have an important role in the chemical bond.
For atoms with such states, called “semicore states”, the basis functions are only
approximately orthogonal to the semicore states. The energies may then have a
dependency on the linearization energy that has been chosen. LAPW basis is a
good basis set only for eigenvalues close to the linearization energy El. Valence
electrons sharing l with semicore states are poorly described since the El chosen
is close to the eigenvalue of the semicore bands. As El is arised towards the va-
lence bands semicore state will become poorer described and its eigenvalue will
increase. At some point it will overlap with valence eigenenergies and a ghost
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state will appear, preventing the total energy to be calculated.

Singh et al.[46] proposed a method to solve these dificulties by a change in
the linearization that incorporates sufficient variational freedom to properly treat
both semicore and valence states. All l except those for which there are semicore
states are treated exactly as by the LAPW method, with one ul(r) and one u̇l(r).
Those l for which there are semicore states are described by the usual ul(r) and
u̇l(r) at the linearization energy E1,l in the valence region, supplemented by a
second ul(r) for the l of the semicore states, at a second linearization energy E2,l.
A new type of basis function is added to the standard LAPW basis set, named
local orbital (LO).

φα,LOl,m (~r) =


0 r ∈ I[
aα,LOl,m uαl (r′, Eα

1,l) + bα,LOl,m u̇αl (r′, Eα
1,l) + cα,LOl,m uαl (r′, Eα

2,l)
]
Yl,m(r̂′) r′ < Rα

MT

(3.6)

This new type of basis function is only applied for certain l, for which there are
semicore states and is called local since it does not match the plane-waves in the
interstitial region. A new boundary condition is added: the basis function must
be continous in value and slope at the MT radius and additionally, goes to zero
at the sphere boundary r ≥ RMT . These boundary conditions allow to find the
coefficients aα,LOl,m , bα,LOl,m and cα,LOl,m .

3.1.4. The APW-lo method

The linearization of the pure APW basis functions made in the LAPW method
is energy-dependent. This was removed at the cost of a somewhat larger basis
set size in the LAPW + LO method. Sjöstedt et al. [47] proposed a new method
that expands the wave function by means of a energy-independent basis set that
still has the same size as the APW basis set.

The APW + lo method provides higher variational freedom using a comple-
mentary basis set consisting of local orbitals for physically important l-quantum
numbers, generally l ≤ 3.

The orbitals used in the APW + lo are local in the same sense as used by Singh
[46] to treat semicore states: they are totally confined inside the MF spheres.

Therefore the APW + lo method consists of two different kinds of basis func-
tions: APWs and los. The first kind are exactly the same as described in 3.1.1
eq. (3.3). The second are of the form:
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φα,lol,m (~r) =


0 r ∈ I∑
l,m

(
aα,lol,m uαl (r′, E1,l) + bα,lol,m u̇αl (r′, E1,l)

)
Yl,m(r̂′) r′ < Rα

MT

(3.7)

The energies Eα
1,l used is the same as for the corresponding APWs. The two

coefficients are found by requering the functions to be normalized aα,lolm and that

they vanish at the MT sphere boundary bα,lolm . Energies are found as in the LAPW
+ LO method by a single matrix diagonalization but requiring a lower plane-wave
cut-off and hence similar number as APW but less functions than LAPW + LO.

APW + lo basis set appears not only to be faster than LAPW but also to
provide a better description of eigenfunctions close to Eα

1,l. Both ul(r, E
α
1,l) as used

by APW for efficient description of eigenfunctions close to Eα
1,l, and a more relaxed

linear combination of ul(r, E
α
1,l) and u̇l(r, E

α
1,l) to make an accurate description of

states away from Eα
1,l, are included in the APW + lo method.

3.1.5. Mixed basis sets

A combination of some of these methods may be suitable to treat certain special
systems in which situations better treated by some of the described methods come
together.

LAPW with APW + lo basis sets can solve situations hardly handled by LAPW
as atoms with d- and f- valence states or systems whose atoms have very
different muffin tin spheres. APW + lo basis set is used only where it is
needed while the rest of the electrons are treated with LAPW.

APW + lo with LO. The same problem with semicore states that APW method
had, solved with LAPW + LO in section 3.1.3 is encoutered in the APW +
lo. LOs used for APW + lo look however differently:

φα,LOl,m (~r) =


0 r ∈ I[
aα,LOl,m uαl (r′, Eα

1,l) + cα,LOl,m uαl (r′, Eα
2,l)
]
Yl,m(r̂′) r′ < Rα

MT

(3.8)
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3.2. Computational details

Convergence tests for all systems evaluated in this work have been performed
against the number of k-points and the parameter rgkmax.

The number of k-points is controlled by the parameter ngridk. The integrations
necessary to perform a ground state (GS) calculation are done over the first
Brillouin Zone (BZ). However, this volume has to be discretized and the the
integrals become sums evaluated at certain points of a 3D grid on the BZ. The
size of this grid is determined by the number of k-points into which the grid is
divided in each direction. In that way a calculation using Elk with ngridk = 8
will have to evaluate 83 sums, 8 on each direction of real space. As it controls
the number of integral evaluations that must be performed directly determines
the computational cost of the calculation. But too coarse-grained grids lead to
very unaccurate results from which no useful information may be obtained. That
explains the importance of a convergence test to find a good comprimise between
accuracy and computational cost.

Convergence test of the parameter ngridk for the systems under study are in-
cluded in Figs. 3.2. The convergence was attained for a number of k-points = 6 as
can be seen from Fig. 3.2. The grid size not only determined the computational
cost of the GS calculation with Elk; the evaluation of the overlap integrals, task
performed by DGrid is also a very time-demanding calculation that can some-
times be prohibited. Due to the time-consuming evaluation of overlap integrals
—even using 8 processors in the calculation— and the large amount of memory
required a number of k-points equal to 2 has been used for all systems except for
bcc K, where 6 k-points were used (Table 3.1). More powerful computers should
have been used in order to get more accurate and hence reliable results.

Once the optimal number of k-points has been determined convergence was
checked against the parameter rgkmax. It represents the product of two quanti-
ties: RMT

min which is the smallest muffin-tin radius of all the atoms participating in
the calculation; and |G+ k|max, which limits the maximum length for the G+ k
vectors, defined as rgkmax divided by the smallest muffin-tin radius (see Table
3.1. Each of these vectors stands for one basis function which means that this
parameter determines the number of basis functions used to solve the Kohn-Sham
equations. It is one of the crucial parameters for a solid state calculation and as
so has been checked for convergence. All calculations has been done with a value
of rgkmax equal to 9.

Another relevant parameter is lradstp. In order to save computational time
some muffin-tin functions such as density are firstly evaluated on a coarse-grained
mesh and afterwards interpolated into a finer one. This parameter determines the
step size when going from the coarse to the fine mesh and hence it may be crucial
for runnings where the electron density is a property of interest and properties
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Figure 3.1.: Convergence of the total energy [hartree] with respect to the number
of k-points for the 4 crystals used.
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Figure 3.2.: Convergence of the total energy [hartree] with respect to rgkmax (see
Table 3.1 and text for details). The black point indicates the value
of rgkmax chosen for the calculations.
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Table 3.1.: Detailed values of Elk parameters used in the calculations.

System bcc K NaF LiCl SnTe Meaning

Cell (a.u.) 9.9154 8.7305 9.6934 11.9300

ngridk 6 2 2 2 k-point mesh size = ngridk3

rgkmax 9 9 9 9 RMT
min ×max{|G+ k|}

gmaxvr 14.0 13.0 12.0 12.0 maximum length of |G| for
the potential and density ex-
pansion in the interstitial re-
gion

derived from it such as ELF or ELI-D. To ensure continuity at the boundary
between the muffin-tin and the interstitial region a value of lradstp = 1 was
used in all the calculations.

Parameters whose default value has been used are not included in 3.1, such as
expansions of the angular momentum on both muffin-tin and interstitial region,
but their effect may be relevant for certain calculations.

The next step consists in constructing a grid with values of electron density
and ELI-D, grid that we will use to partition the space into basins and lately
evaluate the overlap integrals. This task is performed by the code DGrid [1], a
program capable of the generation of property values on an equidistant grid. The
separation between consecutive grid points needs to be ideally 0.05 in order to
get a fine enough mesh that allows a precise evaluation of the overlap integrals.
That is defined in the first DGrid input file included for the crystal bcc K in
the appendix (see Appendix A.1 for an example). The field resulting from this
calculation can be seen with the visualization software ParaView [48] using for
instance a isosurface (see Fig. 2.2).

The grid with the density and ELI-D value can be searched for basins. From
electron density regions surrounded by zero-flux surfaces of the gradient are deter-
mined [3]. From ELI-D field localization domains [32], that is, regions surrounded
by an isosurface, separate regions surrounded by two isosurfaces can be defined.
How the QTAIM and ELI-D basins are defined can be seen in the following chap-
ter 4. The search for basins is done with the keyword top (see Appendix A.3).
It establishes a cut-off value for the quantity that is been treated that DGrid
uses to asign all closed regions above it to the same basin. In order to chose the
adequate value for the top keyword it is useful the visualization of the isosurfaces
of the treated property. In Fig. 3.3a it can be seen a sphere surrounding the
central Sn. If we have a look at a section of this sphere we see that it is formed
by concentric spheres which represent the atomic shell structure of the atom.
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(a) SnTe (b) LiCl

Figure 3.3.: Isosurface of the ELI-D field for SnTe ΥD = 1.23 (left) and LiCl
ΥD = 1.585 (right). Note the dark grey lines that go through the
discs, drawn to show that each disc is centered at the connection
path between two atoms.

All these spheres are automatically asigned to the same basin (with the keyword
ELI core (see Appendix A.3); otherwise a bunch of meaningless localization do-
mains will be formed. For a ELI-D value of ΥD = 1.23 the isosurface forms some
discs dispossed around the atoms 2 that are centered at the interconnection paths
between the central atom and either a first (in the direction of one of the lattice
vectors) or a second neighbour. The search for basins with a value top = 1.23
will yield a different basin for each localization domain that can be seen in 3.3a.
Higher isosurface values would make the discs to fade away whilst lower values
will cause them to merge together into a somewhat sphere-like surface that will
yield a single basin (see 2.3.2 for a better understanding of this).

A similar situation can be seen for LiCl in Fig. 3.3b where the bonding basins
4.4 can be anticipated from the discs formed between the nearest atoms (for the
sake of clarity only chosen features are shown).

If the basin search was successful the next step will consist on the evaluation of
the overlap integrals over the QTAIM basins or ELI-D localization domains (see
Appendix A.4). Once this overlap integrals have been evaluated LI 2.90 and DI
2.88 are calculated. It is a very demanding task regarding both the timing: 106
hours of real job time for bcc K for QTAIM basins and 102 for ELI-D basins; and

2 In Fig. 3.3 the isosurface of ELI-D are shown for only certain atoms chosen on purpose to
highlight the relevant features but for every atom the corresponding isosurfaces equivalent
by symmetry are also present.
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the memory: except for bcc K calculations using a number of k-points > 4 was
prohibitive in nodes with 32Gb of memory.



4. Applications. Bonding
descriptors in model systems

4.1. Metallic solids: bcc K

QTAIM

Table 4.1 contains the Localization (LI) and Delocalization (DI) Indices computed
within the QTAIM theory for bcc K. Metals are believed to present high values of
electron DI. According to the free electron model for the behaviour of electrons
within a crystalline structure of a metallic solid, valence electrons are completely
detached from their ion (like an electron gas). From Bloch’s theorem and Pauli’s
principle unbound electrons within a periodic potential behave as free electrons
in vacuum. Accordingly enhanced delocalization is expected for alcaline metals
like K.

High fluctuation σ2 = 0.80 value (Table 4.1) is observed for the K atomic core
basin in comparison to that of ionic compunds (σ2(F ) = 0.40, σ2(Na) = 0.25 in
NaF). This fluctuation, defined for a basin as the difference between the popu-
lation of the basin and the localization of electrons LI within it (see Eq. 2.83),
is interpreted as a measure of the delocalization of the electrons over the whole
solid. Each K atomic core region shares δ(A,B) = 0.09 electron pairs with a
neighbouring basin. Since every K basin is surrounded by 8 K basins, a total
of 0.72 electron pairs are shared with the first neighbour basins. The electron
pairs shared with the more distant basins, given by ς(K) = 0.88 (see Eq. 2.86)
yield a 55 % (κ = 0.55) of the fluctuation shared with the more distant basins.
A electron can delocalize to basins beyond the most inmediate basins, unlike for
other non-metallic solids.

Further evaluation of the delocalization with the second neighbour basins lo-
cated at 5.25 Åwould more accurately yield how far an electron can move from
the K core. This has not been pursued in this work. For the also alkaline metal
bcc Na identical fluctuations (σ2 = 0.80) and similar DI (δ = 0.10) were found
for the closest basins, but a lower number of electron pairs (κ = 0.28) are shared
with the solid beyond the second neighbour basins [39].

55
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Figure 4.1.: bcc K basins. Left: QTAIM atomic basin of atom K (blue). Right:
ELI-D core CK (blue) and bonding B4K (yellow and green) basins.

ELI-D

The atomic shell structure in real space of a free atom can be figured out by
means of ELI-D. The atomic structure is seen as sphere-like basins centered at
the nucleus (see Fig. 3.3) that are grouped into basins sets and further merged into
superbasins in order to simply their interpretation. Such superbasins are separed
into two different kinds: atomic cores and bonding regions, whose appearance is
as shown Fig. 4.1 (right). Unlike the QTAIM basins which are found from the
density (one-particle quantity) ELI-D basins are based on a two-particle quantity
as it is the ELI-D indicator 2.73.

All LI as well as fluctuations and electron populations for ELI-D values are
included in Table 4.2 whereas DI are shown in Table 4.3. As mentioned before
high DI are expected for alkali metals as bcc K. Each bonding basin B4K —
where the subindex “4K” indicates that every bonding basin is surrounded by
4 K atomic cores— has a very small population 0.15 and very high fluctuation
σ2 = 0.14 (Table 4.2). Each bonding region B4K shares 0.015 electron pairs with
the K core CK (Table 4.3, Fig. 4.1) which makes a total of 0.06 electron pairs. It
is also surrounded by 4 bonding basins that it shares 0.011 electron pairs with,
making a total of 0.044 pairs. In total every bonding basin shares ς = 0.18 (see
Eq. 2.86) electron pairs with the rest of the solid beyond the first neighbours,
that is a 64 % of the shared pairs (Table 4.3).

Each core basin CK has a very low DI δ = 0.004 with each of the 8 surrounding
core basins (compared with the DI with a bonding basin Table 4.3). This value
(0.004×8 = 0.03) plus the DI with the 24 bonding basins B4K (0.015×24 = 0.36)
gives a total of 0.39 electron pairs shared with the nearest neighbours, i.e., ς = 0.17
electron pairs shares every core region CK with the rest of the solid.

As is expected for a metal the delocalization of electrons with distant basins is
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Figure 4.2.: NaF QTAIM and ELI-D basins. Left: QTAIM atomic basin for F
(blue) and Na (yellow). Right: ELI-D core basins for F CF (blue,
small) and Na CNa (blue, large). Bonding ELI-D basins BF(2) are
shown in yellow.

higher (κ(B4K) = 0.64) than for crystals such as NaF (κ(BNaF) = 0.14) or LiCl
(κ(BLiCl) = 0.20, Table 4.3) with ionic character.

4.2. Ionic solid: NaF and LiCl

4.2.1. NaF

QTAIM

The partition of space into atomic basins according to the QTAIM is shown in
Fig. 4.2 (left). NaF is a typical ionic solid and consequently high localization of
electrons λ(A) with values close to the QTAIM basins population is expected, as
long as low variances σ2.

In Table 4.1 can be seen that LI’s within Na and F basins λ(Na) = 10.12 and
λ(F) = 9.48, respectively, are close to the respective populations N(Na) = 10.12
and N(F) = 9.87. Correspondingly low fluctuations (defined in Eq. 2.83) σ2 are
found in both cases, which can be compared with the bcc K case, with larger values
as a metallic solid σ2(Na) = 0.25 and σ2(F) = 0.40 whereas σ2(K) = 0.80. Cor-
respondingly, the distant shared electron pairs value is much higher for the metal
bonding situation where the electrons are thought to be highly delocalized within
the solid ς(K) = 0.88, whereas in a ionic solid the probability to find an electron
far from its nucleus is very low ς(Na) = 0.02 and ς(F) = 0.03. In other words,
in the ionic picture practically all the electrons (κ(Na) = κ(K) = 0.04 = 96%,
Table 4.1) are shared with the closest neighbours which means that the probabil-
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Table 4.1.: Localization and delocalization indices for QTAIM basins.

Compound A N(A) σ2(A) λ(A) ς(A) κ(A) A−B δ(A,B)

bcc K K 19.00 0.80 18.20 0.88 0.55 K-K 0.09

NaF F 9.87 0.40 9.48 0.03 0.04 F-Na 0.08

Na 10.12 0.25 9.87 0.02 0.04 Na-Na 0.00

F-F 0.02

LiCl Cl 17.89 0.63 17.26 0.06 0.05 Cl-Li 0.04

Li 2.11 0.14 1.97 0.04 0.15 Cl-Cl 0.08

Li-Li 0.00

SnTe Sn 49.32 1.62 47.70 0.62 0.19 Sn-Te 0.40

Te 52.66 1.90 50.76 0.86 0.23 Te-Te 0.07

Sn-Sn 0.03

A: atom; N(A): atom A population within QTAIM basin; σ2(A): fluctuation; λ: local-
ization index; ς(A): distant shared pair electrons; κ(A): fraction of the shared electrons
delocalized whithin distant basins; δ(A,B): delocalization index between atomic basins
A and B.

ity of finding an electron far from its nucleus almost vanishes when going beyond
nearest basins.

It is also important to note the shape of the interatomic surfaces between the
F cores. As it can be seen in Fig. 4.2 (left) the F atomic basins instead of having
sharp edges and spikes as the Na basins have them cut and forming a flat plane. It
is the plane of direct contact between two atomic F basins, and since Na basins do
not have direct contact with each other, higher delocalization is expected to occur
between F basins in contact δ(F,F′) = 0.02, which is of the same order as the
delocalization between Na and F basins and much higher than δ(Na,Na′) ≈ zero,
Table 4.1.

In the classical ionic picture, anions are thought to be large, distortable and
susceptible to be polarized, unlike cations which are understood to be small, rigid
and not susceptible to be polarized. In that sense, when taking part in an ionic
bonding situation the cations adopt convex shape occupying the pace while the
anions are concave and adopt themselves to the holes the cations leave free [11].

If Fig. 4.4 (left) is observed, it can be inmediately recognized by looking at the
shape of each basin which one each atom corresponds to: the yellow basin has a
convex-like shape whilst the blue adapts itself to the yellow one. The yellow bsin
corresponds to the cation (Li+) and the blue one to the anion (Cl−). In Fig. 4.2
this situation can be seen as well for the system NaF although it is not as clear
as in case of the LiCl. The yellow basin (which corresponds to the cation Na+) is
convex-like whilst the blue one (corresponding to the anion F−) adapts its shape
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Table 4.2.: Localization indices in ELI-D basins.

Compound Basin N σ2 λ ς κ
bcc K CK 18.10 0.28 17.82 0.17 0.30

B4K 0.15 0.14 0.01 0.18 0.64

NaF CF 2.16 0.39 1.77 0.01 0.01

CNa 10.06 0.23 9.83 0.39 0.85

BF(2) 1.28 0.81 0.47 0.23 0.14

S[6BF(2)] 7.78 0.77 7.01 0.03 0.02

LiCl CCl 10.07 0.58 9.49 0.01 0.01

CLi 2.03 0.10 1.93 0.07 0.35

BCl(3) 1.31 0.85 0.46 0.34 0.20

S[6BCl(3)] 7.90 1.19 6.71 0.07 0.03

N: population within ELI-D basin; σ2: fluctuation; λ: localization index; ς: distant
shared electron pairs for Basin; κ: fraction of the Basin’s shared electrons delocalized
among distant basins.

to fill the space the surrounding cations leave free.

The contact between basins corresponding to the same atom must be identical
and consequently the contact surface has to be flat. That is clearly observed in
the case that has just been discussed, where the surface at the contact between
two blue Cl− basins is flat (Fig. 4.2), and in the LiCl for the Cl− interatomic
surfaces (Fig. 4.4). In the case of bcc K, since only one atom is present all the
contact surfaces must be planar. However in Fig. 4.1 a somewhat concave relief
can be appreciated. That is caused by the algorithm to draw the surfaces, which
also provoques the concentric rings that can be seen in all the drawings (cf. for
example Fig. 4.2).

ELI-D

As explained for the bcc K ELI-D, when applied to free atoms, reflects the atomic
shell structure in real space by means of basins that can be recursively merged
together to form atomic core and bonding superbasins. For ionic compounds such
as NaF, the ELI-D basins show both the atomic cores, which normally present
low fluctuation values σ2 (typically between 0.1 and 0.6) and the bonding basins
surrounding the anion core, that correspond to the valence electrons.

The core shell basins CF and CNa (blue basins in Fig. 4.2) are considered to be
chemically inert, not contributing to bonding. They exhibit high localization and
therefore low variances σ2(CF) = 0.39 and σ2(CNa) = 0.23, Table 4.2. DI values
are consistently very low δ(CNa, CF) = 0.002, Table 4.3, which is the same value
found for the also ionic compound NaCl δ(CNa, CCl) = 0.002 in [39].
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Table 4.3.: Delocalization indices between nearest ELI-D basins.

Compound b1 b2 δ(b1, b2)

bcc K CK CK 0.004

CK B4K 0.015

B4K B4K 0.011

NaF CNa CF 0.002

CF BNaF 0.126

CNa BNaF 0.009

intra BNaF BNaF 0.310

inter BNaF BNaF 0.004

LiCl CCl CLi 0.001

CCl BLiCl 0.191

CLi BLiCl 0.020

intra BLiCl BLiCl 0.276

inter BLiCl BLiCl 0.012

b1: first ELI-D basin; b2: second ELI-D basin; δ(b2, b2): delocalization
index between both basins.

Table 4.4.: Delocalization indices between nearest ELI-D core
basins and valence superbasins.

Compound b1 b2 δ(b1, b2)

NaF CF S[6BF(2)] 0.756

CNa S[6BF(2)] 0.072

S[6BF(2)] S[6BF(2)] 0.027

LiCl CCl S[6BCl(3)] 1.135

CLi S[6BCl(3)] 0.032

S[6BCl(3)] S[6BCl(3)] 0.082

b1: first ELI-D basin; b2: second ELI-D basin; δ(b2, b2): delocalization
index between both basins; ς(b1): distant shared electron pairs; κ(b1):
fraction of the shared electrons delocalized within distant basins.
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The bonding volume in NaF is formed by 6 bonding basins BF(2) (yellow volumes
in Fig. 4.2) where the subscript “F(2)” indicates that the basin is associated with
the 2nd shell of the F. Each separed bonding basin has high fluctuation values
σ2(F(2)) = 0.81, see Table 4.2. The sharing of electrons between basins belonging
to the same valence basin set, as the two yellow basins drawn in Fig. 4.2, (row
“intra” in Table 4.3) is higher than that between basins of different atoms (row
“inter”), close to zero: δ(intra) = 0.310 and δ(inter) = 0.004, respectively. Thus
the 6 basins completing the valence region of F form a basin set that can be
merged together into a superbasin (left, light red basin in Fig. 4.4). The shape
of the superbasin formed by merging together 6 basins surrounding a F atom re-
sembles very closely the shape of the QTAIM basin for the same atom (compare
right, blue basin in Fig. 4.2 and left, light red basin in Fig. 4.4).

The LI and DI for the valence basins merged together into the superbasin
S[6BF(2)] are shown in Tables 4.2 and 4.4, respectively. Each superbasin shares
δ(CF,S[6BF(2)]) = 0.756 electron pairs with the F atom it includes and 6×0.072 =
0.432 with the 6 CNa basins is surrounded by (cf. Table 4.3). Additionally every
superbasin shares 12× δ(S[6BF(2)],S[6BF(2)]) = 12× 0.027 = 0.324 electron pairs
with the direct neighbouring basins. That makes a total of 1.512 electron pairs
shared with the closest neighbourhood and thus, only ς(S[6BF(2)]) = 2 × 0.72 −
1.512 = 0.03 (Table 4.2) electron pairs are shared with basins beyond the closest
neighbourhood, i.e., a 2 % κ(S[6BF(2)]) = 0.02 of the total number of shared
electron pairs.

The value of the distant shared pairs for the ELI-D valence basin set S[6BF(2)]
is exactly the same as the one for the F atomic core found in the QTAIM analysis
ς(F) = 0.02 (Table 4.1), which further supports the fusion of the 6 valence basins
into one single superbasin.

Transferability assumes that a chemical property associated with an atom re-
mains similar —though not identical— under a variety of different circumstances
[49]. According to the free electron model for metallic crystals, the bcc K is un-
derstood to release an electron behaving as a cation K+. When forming an ionic
compound like for example KCl it behaves as a cation in the same sense as in
the metal, while the Cl is the anion. Thus transferability makes us to expect the
K atom to behave similarly in both situations. This has already been checked
taking the fluctuation σ2 of the Na atomic core within the ELI-D basins as the
property that should be conserved, in the metallic situation bcc Na σ2 = 0.20
almost identical as in the ionic compound NaCl σ2 = 0.19 [39]. Although we
have no ionic compound involving K, the Na atom in NaF is expected to closely
mimic the K atom in bcc K. It is confirmed by analyzing the same property in
both situations σ2(Na) = 0.23 in NaF and σ2(K) = 0.28 in bcc K where similar
though somewhat different values are encountered.
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Figure 4.3.: ELI-D core basins and valence superbasins. NaF (left): Na atomic
core basin CNa (blue) and F superbasin S[6BF(2)] (light red). LiCl
(right): Li atomic core basin CLi and Cl superbasin S[6BCl(3)] (light
red).

4.2.2. LiCl

QTAIM

Being also an ionic solid, the LIs and DIs in LiCl can be compared with the
results found for NaF. The localization of the electrons λ is again high with low
fluctuations σ2(Cl) = 0.63 and σ2(Li) = 0.14 (see Table 4.1). The electron pairs
shared with the basins beyond the first neighbourhood are very low as for NaF
ς(Cl) = 0.06 and ς(Li) = 0.04 and as expected for an ionic bonding situation.
The interatomic surface now between the Cl atoms where both atomic core basins
touch each other gives DI values δ(Cl− Cl) = 0.08 even higher than that between
Li and Cl atoms (see Table 4.3). Note also the flat hexagon-like surfaces formed
at the contact plane between two different Cl atomic core basins (Fig. 4.3).

ELI-D

The ELI-D scheme is also similar as for NaF. The localization within the ELI-D
core basins are high and correspondingly the fluctuation is low σ2(Cl) = 0.58 and
σ2(Li) = 0.10 (Table 4.2). The delocalization between atomic cores δ(CCl, CLi) =
0.001 is negligible as for the NaF case and NaCl in reference [39].

The bonding basin BCl(3), where the subscript “Cl(3)” means asbefore that it is
formed by the 3rd atomic shell of the Cl atom, shares electrons mainly with the
Cl atomic core δ(CCl,BCl(3)) = 0.191 electron pairs (cf. Table 4.3). The sharing
of electron between bonding basins is done mainly within the same valence basin
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Figure 4.4.: LiCl QTAIM and ELI-D basins. Left: QTAIM atomic basin for Cl
(blue) and Li (yellow). Right: ELI-D core basins for Cl CCl (blue,
small) and Li CLi (blue, large). Bonding ELI-D basins BCl(3) are
shown in yellow and green

set with DI δ(intra) = 0.276 one order of magnitude larger than that for basins
belonging to different valence basin sets δ(inter) = 0.012. The fusion of the 6
bonding basins BCl(3) around a Cl core is now justified.

As occurred in the NaF case the Cl core is surrounded by 6 bonding basins BCl(3)

(Fig. 4.4) that when merged together into a single superbasin closely resemble
the QTAIM basin for the same atom (compare left, blue basin in Fig. 4.4 and
right, light red basin in Fig. 4.3). The equivalence between both QTAIM and
ELI-D basins should be supported by similar fraction of shared distant pairs ς
(see Eq. 2.86).

Every superbasin shares electron pairs with the Cl atomic core it surrounds,
with the 6 Li atomic cores is surrounded by as well as with the symmetry equiv-
alent superbasins centered at each of the 12 Cl neighbouring atomic cores. In
one line ς(S[6BCl(3)]) = 2 × 1.19 − (1.135 + 6 × 0.032 + 12 × 0.082) = 0.07 (Ta-
ble 4.2 and 4.4) which is very close to ς(Cl) = 0.06, hence supporting the close
equivalence between the QTAIM Cl atomic basin and the ELI-D valence basin set.

The shape of the basins carries information abou to what extent this basin
is chemically active. ELI-D basins provide a deeper insight into the chemical
bonding situation of the crystal than the QTAIM basins do. The more simple
picture offered by QTAIM where only atomic basins are shown treats equally
the chemically inert electrons and the electrons participating in the bond. The
analysis of a two-particle quantity performed by ELI-D allows to differentiate
between distinct behaviours of the electrons.

The more spherical a basin is the lower its contribution to the formation of a
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Figure 4.5.: SnTe QTAIM basins atomic basin for Sn (blue) and Te (yellow).

chemical bond. Consequently, atomic core basins are expected to have to a high
extent an sphere-like shape; as can be seen in Fig. 4.1 (right), the blue core basin
CK is almost a perfect sphere that includes the 1st and 2nd atomic shells of the
K atom. The 3rd one is represented by the 24 bonding basins B4K of which only
two (green and yellow) are shown (see Fig. 4.1, right).

In the cases of NaF and LiCl, the atoms mostly participating in bonding are F
and Cl, respectively and their valence electrons are already forming part of the
bonding ELI-D basins. The atomic core basin is only including the inner electrons
that are not contributing to the bond and consequently the F and Cl atomic cores
are prectially spheres (see the right part of Figs. 4.2 and 4.4, respectively). The
atomic basins of the atoms acting as cations: Na and Li, are not so spherical
as the aforementioned since although no bonding basin correspond to them, a
certain contribution to the bond exists.

QTAIM atomic basins are even less spherical shaped than ELI-D ones for the
Na and Li atoms. QTAIM analysis is less precise than ELI-D and each basin
delimitates what is thought to be an atom, including both core and valence elec-
trons. The higher contribution of the donor atoms (F and Cl) is seen by the very
low sphericity of their corresponding basins (blue basins in the left part of Figs.
4.2 and 4.4, respectively). The basin for Na and Li (yellow ones in the same
figures) resemble more a sphere and are alike the equivalent ELI-D core basins
(blue, large in the right part).
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4.3. Semiconductors: SnTe

QTAIM

Characteristic of metals is a high delocalization of the valence electrons since
they are free to travel far away across the solid. In other words, the probability of
finding an electron far from the nucleus it belongs to is very high. On the contrary,
insulators are thought to have very localized electrons which are strongly linked
to their nucleus and are not free to separate far from it, i.e., it is not expected
to find a electron delocalized beyond the closest neighbourhood from its nucleus.
Accordingly the distant shared pairs indicator ς(A) (Eq. 2.86) and the fraction of
electrons shared with basins located beyond the nearest ones κ(A) (Eq. 2.87) are
expected to be high for bcc K as a metal and low for NaF and LiCl as insulators.
ς(K) = 0.88 of the total shared pairs which means that a 55 % κ(K) = 0.55
are shared with distant neighbours, that is over half of the shared electrons are
dispersed across the solid (see Table 4.1). For the insulators the distant shared
pairs values are one order of magnitude lower ς(Na) = 0.02 and ς(Li) = 0.04,
with only a 4 % and 15 %, respectively, of the shared electrons delocalized far
from their respective nucleus (Table 4.1).

As semiconductor SnTe is thought to occupy an intermediate position between
bcc K and the ionic NaF and LiCl with a somewhat large distant delocalization
but always below the metal value. As expected ς(K) = 0.88 > ς(Sn) = 0.62 >
ς(Na) = 0.02 ≈ ς(Li) = 0.04. A 19 % of the shared electrons can move away
from their nucleus and be found delocalized among the solid.

The shape of the basins for SnTe follows again the rule mentioned above: the
cations are rigid and as so occupy the space adquiring a convex shape (blue Sn
basin in 4.5). On the contrary, the anions are distortable and behave fully occu-
pying the free space left by the cations being concave (yellow Te basin in 4.5).

QTAIM LI and DI are shown in Table 4.1. The occupation number is now
much higher than for the other systems considered here, which causes a higher
fluctuation to occur σ2(Sn) = 1.62 and σ2(Te) = 1.90, which are around twice
the fluctuation of the metal and four times that of the insulators. Each Sn atomic
basin has a high DI value sharing 6 × 0.40 = 2.4 electrons with the nearest Te
basins. But it is also important the DI between identical basins somewhat more
distant δ(Sn− Sn) = 0.03 and δ(Te− Te) = 0.07.

Effect of the number of k-points in the ELI-D field

Due to the very demanding computational effort that entails the SnTe calculation
with respect to the number of k-points, this parameter was reduced in small
steps in order to get a fast enough though not very accurate performance. That
allowed us to draw a representation of how the ELI-D field loses features as the



66 | APPLICATIONS

Brillouin Zone is progresively more coarse-grained sampled. In Fig. 4.6 can be
seen that reducing the number of sampling points makes it impossible to solve
the particularities that are contained between the k-points. There are features as
the discs between second neighbour atoms in Fig. 4.6a that become smaller (Fig.
4.6b) until they fade away for k-points = 2 in Fig. 4.6c.
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(a) k-points = 6 (b) k-points = 3

(c) k-points = 3

Figure 4.6.: ELI-D isosurfaces for ΥD = 1.23 using 6, 3 and 2 k-points, respec-
tively. Note how the features lose complexity when lowering the ac-
curacy of the calculation.
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4.4. Topology of the electron density for bcc K,
LiCl and SnTe

According to what was explained in section 2.3 the critical points (CP) of the elec-
tron density ρ defined within the QTAIM [3] have been analysed for bcc K, LiCl
and SnTe. The CPs have been grouped according to the Wyckoff position they
occupy and the points not determined by symmetry have been specified. Also the
electron density ρ and the laplacian of the electron density ∇2ρ are given. CPs
of bcc K, whose symmetry is Im3̄m can be seen in Table 4.5 whilst those for LiCl
and SnTe, symmetry Fm3̄m are in Table 4.6.

The translational invariant crystals are topologically equivalent to S3, the 3-
torus, and consequently all topological schemes must satisfy Morse invariant re-
lationships [50], [51]:

n− b+ r − c = 0, (4.1)

and

n ≥ 1, b ≥ 3, r ≥ 3, c ≥ 1, (4.2)

where n is the total number of nuclei —or maxima or attractors— in the unit
cell, b the number of bonds, r the number of rings and c the number of cages or
minima. We consider also the number of symmetrically different nuclei in the unit
cell τn and similarly τb, τr and τc for bond, ring and cage CPs. This information
is given in the vector form τ = (τn, τb, τr, τc):

τ = τn + τb + τr + τc.

The traditional classification of the different types of chemical bond in solids
into Covalent, Ionic and Metallic can be quantitatively done by means of an
topological analysis of the electron density [52]. Ionic crystals are divided into
basins containing a substantial net charge close to the nominal oxidation state
and exhibiting small electron density ρb and positive laplacian ∇2ρb at the bond
CPs (BCP). Positive laplacian corresponds to regions of charge depletion which
occurs in the ionic picture where linkage is due to closed-shell charge-depletion
interactions. Negative laplacian indicates regions of local charge accumulation.
Accordingly covalent solids have large electron density values at the BCP and
negative density laplacian. The trird type of chemical bond, the metallic solids
show valence electrons scattered throughout the solid yielding very low values of
both ρb and ∇2ρb.
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Table 4.5.: Topological scheme of the CP’s of the electronic density for K bcc.
The space group is Im3̄m. The type of CP is listed as n: nuclei, c:
cage, b: bond and r: ring. Electron density ρ[=]electron bohr−3 and
∇2ρ values at each point are written in the last two columns.

Wyckoff Symmetry Position K bcc ρ ∇2ρ

2a m3̄m (0, 0, 0) n: K 6059.902 -

6b 4/mm.m (0, 1/2, 1/2) c 0.0025 0.0002

8c .3̄m (1/4, 1/4, 1/4) b 0.0025 0.0006

12d 4̄m.2 (1/4, 0, 1/2) r 0.0023 0.0001

(τn, τb, τr, τc) index (1,1,1,1)

Number of critical points (τ) 4

 0
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Figure 4.7.: Flatness Vs. charge-transfer diagram for bcc K, LiCl and SnTe as
metallic, ionic and covalent crystals, respectively.
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Ionic compounds such as LiCl present low electron density ρb(LiCl) = 0.012 at
the BCP and positive density laplacian ∇2ρb(LiCl) = 0.049 (Table 4.6. In the
polar case of SnTe the density is larger ρb(SnTe) = 0.031 as but although the
density laplacian is also positive (Table 4.6). On the contrary the metallic solid
bcc K has very low density values ρb(K) = 0.0025 and very low values of the
density laplacian ∇2ρb(K) = 0.006 (Table 4.5). The metallic character of bcc K
is also confirmed by the value of the density that has a constant value no matter
the CP where it has been evaluated.

An over 50 year-old chemical bond classification method was proposed by van
Arkel and Ketelaar [53], [54]. It is known as the van Arkel-Ketelaar diagram (VK)
and has been shown to be recovered from the electron density without explicitly
reference to any empirical scales [52]. It is a covalent-ionic-metallic triangular
diagram that allows a classification of the chemical bond into the traditional
types. The covalence-ionicity of the AB compound is given by the difference
in electronegativity |χA − χB|. On the other hand, the metallicity-covalency
character is given by the average (χA + χB)/2.

The ρ-based way of constructing this triangle is defined in [52] from the flatness
f and charge transfer c indices. Characteristic of metallic systems is a flat electron
density defined as

f =
ρminc

ρmaxb

, (4.3)

where ρminc is the absolute minimum of the electron density at a cage CP and
ρmaxb is the absolute maximum of the electron density at a bond CP. This index
allows the separation between metals (f ≈ 1) and nonmetals (f ≈ 0) by exploiting
the idea that the relevant part of the valence electron density starts at the highest
BCP and finishes at the lowest density cage critical point.

The other coordinate is defined according to a charge transfer scale calculated
as

c =
1

N

N∑
Ω

L(Ω)

OS(Ω)
=

〈
L(Ω)

OS(Ω)

〉
. (4.4)

That expression is an averaged of the ratios between the topological charge
L(Ω) and the nominal oxidation state OS(Ω) for every basin Ω which measures
how much this basin deviates from the ideal ionic model.

The VK triangle defined plotting the charge-transfer against the flatness is
shown for our systems in Fig. 4.7. The labels of the corners indicate where ideal
covalent (C) and ionic (I) crystals are situated, while (M) indicates that the upper
part of the figure is occupied by metals. The semiconductor SnTe is close to the
covalent corner while LiCl approximates the ionic one. The mentioned nature of
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the chemical bond in crystals is hence confirmed and the usefulness of the VK-like
triangle to determine it.



5. Conclusiones

El objetivo de este trabajo ha sido tomar contacto con algunas técnicas novedosas
para estudiar el enlace qúımico en el espacio real.

Las conclusiones más relevantes son:

1. La conclusión fundamental que podemos extraer de este trabajo tiene relación
con el Indicador de Localizabilidad Electrónica ELI-D. Esta función supone
una alternativa a la ya clásica ELF y como ésta permite la resolución de la
estructura de capas atómicas de las especies que se encuentran formando
un sistema qúımico. A partir de esta función, construida a partir de la
densidad de parejas electrónicas, se puede hacer una una partición más
fina del espacio de la hecha de acuerdo a la QTAIM, basada en la densi-
dad electrónica. Mientras que la división del espacio según QTAIM resulta
en cuencas que se hacen corresponder con átomos —exceptuando el caso
de máximos no nucleares—, la función ELI-D permite partir el volumen
ocupado por el sistema en regiones llamadas “dominios de localización” (lo-
calization domains), que se interpretan como correspondientes con regiones
de enlace, núcleos atómicos y pares solitarios. De esta manera, mientras
que QTAIM nos permite visualizar la únidad atómica, concepto que sirve
de sustento a la qúımica, creando cuencas que ocupan todo el espacio y se
hacen corresponder con los núcleos atómicos, ELI-D nos permite ir más allá
y partir el dominio atómico en una parte qúımicamente inerte —núcleos
atómicos—, una activa que interviene en el enlace —región de valencia— y
en caso de existir un volumen de pares solitarios. Es importante destacar
que a esta partición no se le ha encontrado aún significado f́ısico alguno, está
en cambio motivada por analoǵıa con la realizada de acuerdo con la QTAIM.

2. Los ı́ndices de localización y deslocalización son herramientas ya estableci-
das que permiten una caracterización cuantitativa del enlace qúımico. Su
evaluación dentro de las cuencas en que, de acuerdo con ELI-D, fue dividido
el espacio proporciona información sobre el tipo de enlace existente entre
los átomos. Aśı, de acuerdo con la medida que los ı́ndices proporcionan de
cómo de localizados están los electrones en cada cuenca, podremos clasificar
la región de enlace como correspondiente a un enlace covalente, un enlace
iónico o uno metálico. Los sistemas escogidos: bcc K, NaF, LiCl y SnTe
intentan ofrecer un ejemplo de cada uno de los mencionados tipos de enlace
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y sirven a su vez como otra demostración más de lo oportuno de aplicar ya
bien QTAIM como ELI-D a sistemas en fase condensada.

3. La disponibilidad de ı́ndices de localización o deslocalización en sólidos abre
v́ıas interesantes de análisis que hasta ahora han permanecido cerrados.
Como hemos mostrado en sistemas modelo, los valores obtenidos son con-
sistentes con la intuición. Pretendemos proseguir con este estudio en el
futuro.
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A. DGrid input files

We will shortly describe here how to use the software DGrid 4.6 to obtain a field
of a chosen property —as the electron density— from a single point solid state
calculation with the Elk code. Using the property file further analysis can be
done:

- space partitioning according to the chosen property

- evaluation of overlap integrals which Localization (LI) and Delocalization
Indices (DI) can be obtained from

- topological analysis of the property, i.e., search for critical points

Starting from the solid state calculation results, the process can be regarded
as be formed by a few steps that must be consecutevely executed. Each of the
following Sections stands for a calculation that is dependent of the preceeding
ones and will be needed for further evaluations. They must hence be executed
in the order given here. Within a Section some subsections can be found that
are at the same level and consequently can be independently calculated. LiCl
Fm3̄m will be used as an example. Note that only explanations in relation to
the transcribed inputs are given. For a further detailed description the reader is
referred to the user’s guide, which can be downloaded from [1].

A.1. PREVIOUS STEP: Elk output transformation

DGrid 4.6 [1] is a software that computes properties for solid state systems on
a 3-dimensional grid from the data from the full potentail solid state code Elk
[16]. Before we start any DGrid solid state calculation we must generate the
file containing the information needed from the Elk calculation for a property
evaluation. DGrid has to be run in the same folder where the Elk output files are
located and the Elk input file will be given as DGrid input:

dgrid elk.in licl.mte

A resulting .mte file is constructed.

i
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A.2. STEP 1: Property file

The first step will consist in the construction a 3-dimensional grid with a value of
the chosen property at every grid point. Not only one but many properties can
be evaluated at the same time. The DGrid input file is as follows:

:TITLE

:------------------------------------------------|

::LiCl elk default

:------------------------------------------------|

:KEYWORDS

:-------------------------------------------------

basis=licl.mte

output=.

:CHOOSE THE DESIRED PROPERTIES

:-------------------------------------------------

compute=rho

compute=ELI-D alpha-alpha

:-------------------------------------------------

GRID_DEFINITION: vectors

: X Y Z

:------------------------------

origin: 0.0 0.0 0.0

: INTERVALS

:----------------------------------------------

i-vector: 4.8467 0.0 0.0 97

j-vector: 0.0 4.8467 0.0 97

k-vector: 0.0 0.0 4.8467 97

END

The input consists of various parts:

TITLE consists of a comment of the calculation that will be done. With elk default

we make clear that we have used the basis set given in Elk by default.

KEYWORDS is the part where we give DGrid instructions of how do work.
basis will always be a name.mte file for solid state calculations. output

defines where do we want to save the output. A dot indicates it will use the
embedded pattern to create the name of the file (see below).
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PROPERTIES is where we give DGrid the properties we want. In our case only
the electron density and the ELI-D for same up-spin. Consult the manual
for more details.

GRID DEFINITION since we are facing a solid state calculation, the volume
where we want to perform the calculation has to be specified. First we define
a origin which is the reference point from where the i, j and k vectors are
defined. On the interest of time, only 1/8 of the LiCl unit cell is evaluated
(cell = 9.6934 a. u.), which afterwards will be mirrored to get the whole
cell. In the INTERVALS column we define how fine do we want the grid to
be. Here each grid point will be at 0.05 bohr from the following one.

input file: “1 licl dg.inp”
output file: “licl.mte.dg” containing information about the calculation:

timing, atom positions. . .
property file: “licl.mte.rho r” and “licl.mte.elid r a aa” containing the

result —electron density and ELI-D grid, respectively—.

Whole unit cell formation In order to recover the whole unit cell from the
1/8th calculated, DGrid has a utility that mirrors the data along each of the axis.
Since the mirroring operation is a really fast process a lot of computational time
is saved. The operation is invoked by:

dgrid licl.mte.rho r op1

Once the interactive dialog is opened the mirror in will do the mirroring along
the i direction. The n just specifies that the mirroring is done from the end of
the small cell, unlike mirror i that makes the operation to be done from the
begining.

A.3. STEP 2: Space partitioning

From the files containing a grid with the electron density and ELI-D for LiCl a
partition of the space in basins can be performed. DGrid input is as follows:

:TITLE

:-----------------------------------------------------------|

:: LiCl ELI-D alpha-alpha basins

:-----------------------------------------------------------|

:KEYWORDS

:------------------------------------------------------------

property =licl.mte.elid_r_a_aa
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integrate=licl.mte.rho_r

output=.

top=1.5

eli_core

symmetry=translation i j k

END

This input file tells DGrid to search for basins according to the property

keyword and integrates integrate within them. For the input to calculate the
QTAIM basins the same density .rho r file is given in both keywords.

top is a variable which permits the control of how many basins are created. A
good description of how this keyword works is given in the user’s guide
which can be downloaded from the program web site free of charge [1].
To decide at which value basins corresponding to irreducible domains are
drawn it is recomended to have a look at isosurfaces of the property. With
the visualization software ParaView [48] it can be seen for what ELI-D value
the localization domains can not further bifurcate.

eli core is a keyword that avoids the formation of numerous basins close to the
nucleus. Up to a internally defined radius all basins are assigned to the
atomic core basin.

symmetry is another variable indicating that the system is symmetrical in the
three dimensions. It tells DGrid to automatically assign symmetrically
equivalent basins to the same one.

input file: “2 bas licl elidaa.inp”
output file: “licl.mte.elid r a aa.bas”
property file: “licl.mte.elid r a aa.bsn”

The respective files are created for the remaining calculated properties.

A.4. STEP 3

A.4.1. Overlap integrals evaluation

Once the basins have been created, the overlap integrals within each of them can
be evaluated and the LI and DI calculated.
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:TITLE

:-----------------------------------------------------------|

:: LiCl overlap over ELI-D basins

:-----------------------------------------------------------|

:KEYWORDS

:-------------------------------------------------------------

property=licl.mte.elid_r_a_aa.bsn

integrate=licl.mte.rho_r

output=.

overlap

symmetry=translation i j k

:basin_mte = 8 80.0

END

Similarly as in the previous step, the integrate keyword tells DGrid what
whould be integrated within each basin of the while the determined by the key-
word property: ELI-D basins in this example. The corresponding .rho r.bsn

file would be introduced for LI and DI over Bader basins.

overlap is the keyword indicating the code it must calculate overlap integrals
using the above files.

basin mte default values are 30 and 50.0. First value controls the expansion size
of the multipole whilst the second regulates the Fourier expansions of the
basin shape. Note it is commented out here by the colon.

input file: “3 ovl licl elidaa.inp”
output file: “licl.mte.elid r a aa.ovl” where the “pair density analysis”

section includes LI and DI.
property file: “licl.mte.elid r a aa.sij” containing the overlap integrals.

A.4.2. Critical points search

Once the basins were found a topological analysis of the property can be per-
formed. It consists of a search for critical points of the field according to the
rank and signature of the hessian for the considered property. According to that
attractors, repellors and saddle points can be found.

:TITLE

:-----------------------------------------------------------|
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:: LiCl ELI-D topology

:-----------------------------------------------------------|

:KEYWORDS

:------------------------------------------------------------

property =licl.mte.elid_r_a_aa.bsn

output=.

eli_core

topology

:icl_graph=full

END

topology is the keyword that we need to specify the program in order to perform
a topological analysis of the ELI-D basins.

icl graph tells the program to find the interconnection paths between all the
critical points searched. However only a particular type of CP can be in-
terconnected, as for example the saddle points or the bond points. The
resulting paths can be visualized with ParaView.
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