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Abstract

In assessing fuzzy numbers to model imprecise data associated with random ex-
periments, trapezoidal fuzzy numbers are often considered. Such an assessment is
mainly due to easing both interpretation and computation. This becomes espe-
cially noticeable when those assessing fuzzy numbers to data have a weak knowl-
edge, low background and little or no expertise in using fuzzy sets (as it happens
when questionnaires whose responses involve a free fuzzy rating are conducted),
since the required training to explain the meaning and use of trapezoidal fuzzy
numbers is definitely lower than that associated with other shapes. Nevertheless,
a question that constantly arises in connection with this trapezoidal assessment is
whether it can importantly affect the conclusions of the study involving such data.

This paper aims to answer the last question from a statistical perspective. More

concretely, the analysis of the influence of the choice of trapezoidal fuzzy numbers

to model data is to be based on the conclusions from statistical hypothesis testing

about the mean values of the involved fuzzy datasets. For this purpose, the p-

values of tests have been compared for trapezoidal assessment vs. other frequently

used ones, like some LU assessments. The analysis is first performed by developing

simulation-based pairwise comparisons, and it is later illustrated and corroborated

to some extent with a real-life example. The analysis indicates that the shape of

the fuzzy assessment scarcely affects statistical conclusions.
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1. Introduction

As recently pointed out by Grzegorzewski and Stefanini [27], fuzzy num-
bers have shown to play an especially relevant role in modeling and handling
imprecise information, usually associated with people’s cognitive states.

A problem that has been frequently investigated in connection with the
use of fuzzy numbers is how to determine them. More concretely, how to
assess/choose curves formalizing the imprecise valuations/perceptions, etc.
As posed by Belohlavek [5]: “Do exact shapes of fuzzy sets matter?” Different
responses to this question, being mostly context-dependent, can be found in
the literature. In this regard, Dombi and Gera [17] pointed out that “... most
fuzzy applications use piecewise linear membership functions because of their
easy handling, ... In other areas where the model parameters are learned by
a gradient-based optimization method, they cannot be used because of the
lack of continuous derivatives.”

On one hand, in several studies related to fuzzy logical models, and ac-
cording to some usual criteria in such a context, the exact shape seems not
to really matter (see, for instance, Belohlavek [5]). The same applies to most
of fuzzy linear programming problems for which, in accordance with different
sensitivity developments (see, for instance, Garćıa-Aguado and Verdegay [19],
Ebrahimnejad and Verdegay [18], and Verdegay [47]), the optimal solutions
appear not to be very much affected by changes in the membership functions,
and advantages associated with considering trapezoidal fuzzy numbers have
been highlighted. On the other hand, many studies related to fuzzy systems
(see, for instance, Šaletić et al. [38]) conclude that their performances are
very sensitive to the shape of the membership functions. The last asser-
tion is corroborated, among others, in the framework of fuzzy control where
the suitability of using bell-shaped fuzzy numbers has been underlined by
several studies (see, for instance, Baglio et al. [2], Koprinkova-Hristova and
Penev [31], and Koprinkova [30]).

Trapezoidal (including triangular as a special case) fuzzy numbers have
been proved to be a commonly welcome choice because of they showing the
following skills:

• the ease to handle for most of the methodological and practical com-
putations, whenever no differentiability of fuzzy numbers is required;

• the ease to interpret them in a natural way;
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• the ease of the practical elicitation, especially when the expertise of
people assessing fuzzy numbers is rather low, as it happens with chil-
dren or people with no previous fuzzy set background.

In this way, a trapezoidal fuzzy number is fully determined by establishing
its core, or 1-level set, which is the interval of the real values considered to be
fully compatible with the valuation to be elicited, along with its support (or
its closure, usually called 0-level set), which is the interval of the real values
considered to be compatible to some extent with the valuation to be elicited.
The remaining values can be directly obtained by linearly interpolating from
these two intervals.

Therefore, the intuition behind the trapezoidal representation is rather
easily catched. This fact becomes especially useful when people in charge
of fuzzy assessments are not familiarized enough with the concepts around,
like it often happens, for instance, in dealing with questionnaires about opin-
ion/satisfaction/judgement/... (see, e.g., Hesketh et al. [29], Hesketh and
Hesketh [28], Colubi et al. [11], Denoeux [15], González-Rodŕıguez et al. [22],
Gil et al. [20], and Lubiano et al. [34]).

It should be also pointed out that a topic receiving a wide attention in
recent years is the approximation (w.r.t. certain metrics) of fuzzy numbers by
means of trapezoidal ones, often preserving some key characteristics, like the
expected interval, the ambiguity, and so on (see, among others, Abbasbandy
and Asady [1], Grzegorzewski and Mrówka [25], Grzegorzewski [24], Yeh [49,
50], Ban and Coroianu [3, 4], Grzegorzewski and Pasternak-Winiarska [26]
and Coroainu and Stefanini [12]).

In this paper, we are going to show empirically that when fuzzy numbers
are modelling imprecise data coming from random experiments and fuzzy
datasets are summarized by their means, data shape is usually not relevant.
The discussion is carried out on the basis of a methodology for testing hy-
pothesis about means with fuzzy data and it is accomplished in two ways,
both of them assuming fuzzy data moving in a free fuzzy scale.

Firstly, and after recalling some preliminaries in Section 2, two simulation
studies are developed in Section 3. These studies concern the computation of
the two-sample test about means p-values (Montenegro et al. [35]) when one
of the two samples refers to trapezoidal fuzzy data and the other one refers
to data from another class of LR fuzzy numbers (actually, LU fuzzy numbers
chosen from the families in Stefanini et al. [45], Sorini and Stefanini [42], and
Stefanini and Sorini [44]). Simulations have been accomplished according to
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two different models. Although realistic, successful and popular models for
the distributions of the random mechanisms generating fuzzy data cannot be
found in the literature yet, we are going to consider two different ones that
have been used for purposes of statistical comparisons in recent studies (see,
for instance, the one by Sinova et al. [39, 40, 41] and the one in De la Rosa
de Sáa et al. [13], this last one mimicking to a large extent the assessments
in different real-life examples involving the fuzzy rating scale by Hesketh et
al. [29]).

Secondly, and once it is empirically shown that differences in shape of
fuzzy data do not generally entail significant differences, the real-life example
analyzed in detail in Gil et al. [20] and Lubiano et al. [34] is considered to
perform an additional discussion in Section 4. Some of the one-, two- and k-
samples hypothesis test about means p-values in Lubiano et al. [34] have been
computed by considering all data as either being trapezoidal (as assumed in
[34]), or belonging to any of the classes involved in the discussion in Section
3. Conclusions agree with those in Section 3.

The paper ends with some comments about some practical implications
and open problems.

2. Preliminaries

Fuzzy numbers (also referred to as compact fuzzy intervals) will be in-
tended along the paper as follows:

Definition 2.1. A fuzzy number is a mapping Ũ : R → [0, 1] such that
for each α ∈ [0, 1] its α-level set

Ũα =

{
{x ∈ R : Ũ(x) ≥ α} if α ∈ (0, 1]

cl{x ∈ R : Ũ(x) > 0} if α = 0

(with cl = topological closure) is a nonempty compact interval. The space of
fuzzy numbers will be denoted by Fc(R).

The core of Ũ , or 1-level set, Ũ1, corresponds to the interval (in particular
it can reduce to a singleton) of real numbers which are considered to be ‘fully

compatible’ with (the property associated with) Ũ . The support of Ũ (its

closure being the 0-level set, Ũ0), corresponds to the interval of real numbers

which are considered to be ‘compatible to some extent’ with Ũ .
In developing statistics with fuzzy data, the two following extended op-

erations based on Zadeh’s extension principle [51] should be considered:
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Definition 2.2. If Ũ , Ṽ ∈ Fc(R), then the sum of Ũ and Ṽ is defined as

the fuzzy number Ũ + Ṽ ∈ Fc(R) such that for each α ∈ [0, 1]

(Ũ + Ṽ )α = [ inf Ũα + inf Ṽα, sup Ũα + sup Ṽα].

If Ũ ∈ Fc(R) and γ ∈ R, the product of Ũ by the scalar γ is defined as

the fuzzy number γ · Ũ ∈ Fc(R) such that for each α ∈ [0, 1]

(γ · Ũ)α = γ · Ũα = {γ · y : y ∈ Ũα} =

{
[γ inf Ũα, γ sup Ũα] if γ ≥ 0,

[γ sup Ũα, γ inf Ũα] if γ < 0.

It is well-known that when Fc(R) is endowed with the preceding opera-
tions, the space of fuzzy numbers is semilinear. In fact, it is not possible to
establish a difference operator between fuzzy numbers that is always well-
defined and preserves all the properties of the difference of real numbers.
In testing hypothesis about the equality of fuzzy-valued parameters, the use
of differences between their sample counterparts in the real-valued case has
been replaced (see, for instance, Blanco et al. [7, 8] and Lubiano et al. [34])
by that of convenient metrics between fuzzy numbers, like the L2 one by Dia-
mond and Kloeden [16] which levelwise extends Vitale’s one [48] for compact
sets.

Definition 2.3. Let Ũ , Ṽ ∈ Fc(R). The L2 Diamond and Kloeden dis-

tance between Ũ and Ṽ is given by

ρ2(Ũ , Ṽ ) =

√
1

2

∫

[0,1]

([
inf Ũα − inf Ṽα

]2
+
[
sup Ũα − sup Ṽα

]2)
dα.

When fuzzy data are analyzed from an inferential perspective, the random
mechanism generating these data associated with a random experiment can
be properly formalized within the probabilistic setting by means of the so-
called fuzzy random variables by Puri and Ralescu [37] (see also Kruse and
Meyer [33]), that we will refer to as random fuzzy numbers in case of taking
values on Fc(R).

Consider a random experiment which is mathematically modeled by means
of a probability space (Ω,A, P ).

Definition 2.4. A random fuzzy number (for short RFN) associated
with (Ω,A, P ) is a mapping X : Ω → Fc(R) such that for all α ∈ [0, 1] the α-
level mapping Xα is a compact random interval; that is, for all α ∈ [0, 1] the
real-valued mappings inf Xα and supXα (with Xα(ω) = (X (ω))α) are random
variables.
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It is known (see, for instance, Colubi et al. [10]) that a mapping X :
Ω → Fc(R) is an RFN if and only if it is Borel-measurable w.r.t. the σ-field
generated by the topology induced by ρ2 on Fc(R). This equivalent formal-
ization allows us to rigourously refer to the (induced from P ) distribution
of the RFN X , the independence of several RFNs, and so on. It also allows
us to extend or preserve almost all the concepts and ideas from statistical
inference with real-valued data. Consequently, with the use of random fuzzy
sets one can properly refer to their (induced) parameters, the p-value and
consistency of a test, the unbiasedness and consistency of an estimator, and
so on.

In performing inferential analysis about the distribution of RFNs, the
best known involved parameter is the Aumann-type mean value by Puri and
Ralescu [37], which is defined as follows:

Definition 2.5. Let (Ω,A, P ) be the probability space modeling a random
experiment and X be an associated RFN. The Aumann-type mean of X
is the fuzzy number Ẽ(X ) ∈ Fc(R), if it exists, such that for all α ∈ [0, 1]

(
Ẽ(X )

)
α
= [E(inf Xα), E(supXα)] ,

with E denoting the mean value of the corresponding real-valued random vari-
able.

To test the null hypothesis that the Aumann-type mean of an RFN X
equals a given fuzzy number Ũ , one can consider the bootstrapped algo-

rithm to one-sample test about the mean of an RFN by González-
Rodŕıguez et al. [23] (see also Colubi [9]), approximating the asymptotic
approaches by Körner [32] and Montenegro et al. [36], which is now algo-
rithmically summarized. Let x̃n = (x̃1, . . . , x̃n) be a sample of independent

observations from the RFN X , and let Ũ ∈ Fc(R). Then, to test the null

hypothesis H0 : Ẽ(X ) = Ũ we can proceed following the one-sample algo-
rithm:

Step 1. Compute the value of the statistic

Tn =
An(x̃n, Ũ)

Bn(x̃n)
=

[
ρ2(

1
n
· (x̃1 + . . .+ x̃n), Ũ)

]2

1
n−1

∑n
i=1

[
ρ2(x̃i,

1
n
· (x̃1 + . . .+ x̃n))

]2 (1)

Step 2. Fix the bootstrap population to be {x̃1, . . . , x̃n}.
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Step 3. Obtain a sample of independent observations from the bootstrap pop-
ulation, x̃∗

n = (x̃∗

1, . . . , x̃
∗

n).

Step 4. Compute the value of the bootstrap statistic

T ∗

n =
An

(
x̃∗

n,
1
n
· (x̃1 + . . .+ x̃n)

)

Bn(x̃∗

n)
(2)

Step 5. Steps 3 and 4 should be repeated a large number W of times to get
a set of estimates, denoted by {t∗1, . . . , t

∗

W}.

Step 6. Compute the bootstrap p-value as the proportion of values in {t∗1, . . . ,
t∗W} which are greater than Tn.

To test the null hypothesis of equality of the Aumann-type means of
two independent RFNs, X and Y , one can consider the bootstrapped al-

gorithm to two-sample test about the equality of means of two

independent RFNs in Colubi [9], approximating the procedure by Mon-
tenegro et al. [35], which is now algorithmically summarized. If X and Y are
two independent RFNs, consider a sample of independent observations from
X , x̃n1

= (x̃1, . . . , x̃n1
), and a sample of independent observations from Y ,

ỹn2
= (ỹ1, . . . , ỹn2

). The algorithm to test H0 : Ẽ(X ) = Ẽ(Y) proceeds as
follows:

Step 1. Compute the value of the statistic

Tn1,n2
=

An1,n2
(x̃n1

, ỹn2
)

Bn1
(x̃n1

)
n1

+
Bn2

(ỹn2
)

n2

(3)

where

An1,n2
(x̃n1

, ỹn2
) =

[
ρ2

( 1

n1
· (x̃1 + . . .+ x̃n1

),
1

n2
· (ỹ1 + . . .+ ỹn2

)
)]2

,

Bn1
(x̃n1

) =
1

n1 − 1

n1∑

i=1

[
ρ2

(
x̃i,

1

n1
· (x̃1 + . . .+ x̃n1

)
)]2

,

Bn2
(ỹn2

) =
1

n2 − 1

n2∑

j=1

[
ρ2

(
ỹj,

1

n2
· (ỹ1 + . . .+ ỹn2

)
)]2

.
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Step 2. Fix the bootstrap populations to be as follows (to ensure that boot-
strap populations fulfill the null hypothesis, one can add to each
value in each sample the mean of the other one):{
x̃1 +

1
n2

· (ỹ1 + . . .+ ỹn2
), . . . , x̃n1

+ 1
n2

· (ỹ1 + . . .+ ỹn2
)
}
,

{
ỹ1 +

1
n1

· (x̃1 + . . .+ x̃n1
), . . . , ỹn2

+ 1
n1

· (x̃1 + . . .+ x̃n1
)
}
.

Step 3. Obtain a sample of independent observations from each bootstrap
population, x̃∗

n1
= (x̃∗

1, . . . , x̃
∗

n1
) and ỹ∗

n2
= (ỹ∗1, . . . , ỹ

∗

n2
).

Step 4. Compute the value of the bootstrap statistic

T ∗

n1,n2
=

An1,n2
(x̃∗

n1
, ỹ∗

n2
)

Bn1
(x̃∗

n1
)

n1
+

Bn2
(ỹ∗

n2
)

n2

(4)

Step 5. Steps 3 and 4 should be repeated a large number W of times to get
a set of estimates, denoted by {t∗1, . . . , t

∗

W}.

Step 6. Compute the bootstrap p-value as the proportion of values in {t∗1, . . . ,
t∗W} being greater than Tn1,n2

.

To test the null hypothesis of equality of the Aumann-type means of
k independent RFNs, X1, . . . ,Xk, one can consider the bootstrapped al-

gorithm to oneway ANOVA test about the equality of means of

k independent RFNs in González-Rodŕıguez et al. [22], extending the
procedure by Gil et al. [21], which is now algorithmically summarized. If
X1, . . . ,Xk are independent RFNs, consider a sample of independent ob-
servations x̃j = (x̃1j , . . . , x̃njj) from Xj , j = 1, . . . , k, the k samples be-
ing also independent. Denote x̃n1+...+nk

= (x̃11, . . . , x̃n11, . . . , x̃1k, . . . , x̃nkk),
x̃j =

1
nj

· (x̃1j + . . .+ x̃njj) and x̃(−j) = x̃1 + . . .+ x̃j−1 + x̃j+1 + . . .+ x̃k.

Then, the algorithm to test the null hypothesis H0 : Ẽ(X1) = . . . = Ẽ(Xk)
proceeds as follows:

Step 1. Compute the value of the statistic

Tn1,...,nk
=

∑k
j=1 nj · Anj ,n1+...+nk

(x̃j , x̃n1+...+nk
)

∑k
j=1

nj−1

nj
Bnj

(x̃j)
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=

k∑

j=1

nj

[
ρ2

(
1
nj

· (x̃1j + . . .+ x̃njj),
1

n1+...+nk
· (x̃11 + . . .+ x̃nkk)

)]2

k∑

j=1

1
nj

nj∑

i=1

[
ρ2

(
x̃ij ,

1
nj

· (x̃1j + . . .+ x̃njj)
)]2

(5)

Step 2. Fix the bootstrap populations to be
{
x̃1j + x̃(−j), . . . , x̃njj+ x̃(−j)

}
,

for each j = 1, . . . , k (to get bootstrap populations fulfilling the null
hypothesis).

Step 3. Obtain a sample of independent observations from each bootstrap
population, x̃∗

j = (x̃∗

1j , . . . , x̃
∗

njj
), j = 1, . . . , k, and denote x̃∗

n1+...+nk

= (x̃∗

11, . . . , x̃
∗

n11, . . . , x̃∗

1k, . . . , x̃
∗

nkk
).

Step 4. Compute the value of the bootstrap statistic

T ∗

n1,...,nk
=

∑k
j=1 nj · Anj ,n1+...+nk

(x̃∗

j , x̃
∗

n1+...+nk
)

∑k
j=1

nj−1

nj
Bnj

(x̃∗

j )
(6)

Step 5. Steps 3 and 4 should be repeated a large number W of times to get
a set of estimates, denoted by {t∗1, . . . , t

∗

W}.

Step 6. Compute the bootstrap p-value as the proportion of values in {t∗1, . . . ,
t∗W} being greater than Tn1,...,nk

.

The preceding algorithms have been implemented in the R package SAFD
(Statistical Analysis of Fuzzy Data, see Trutschnig and Lubiano [46]). In Lu-
biano et al. [34], we can find the particularization of the preceding algorithms
when all the involved data are trapezoidal.

3. Hypothesis testing-based empirical analysis of the

sensitivity of means of RFNs w.r.t. changes in shape

This section deals with the analysis of the influence of the choice of the
shape of the membership functions of fuzzy data on the Aumann-type mean
of such data. More concretely, this analysis is to be focussed on discussing
whether choosing trapezoidal fuzzy numbers to model fuzzy data associated
with random experiments leads to significantly different mean values that
making some other usual choices.
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Certainly, the lack of realistic models for the distributions of random
fuzzy numbers prevents us to establish general conclusions. Nevertheless,
rather broad conclusions can be drawn by developing simulation studies and
applying pairwise comparisons of trapezoidal vs the other considered types
of data. To this purpose, the pairwise comparison is to be based on the
bootstrapped two-sample test about the equality of means in Section 2.

The types of fuzzy numbers to be involved in this section correspond
to some of the LUs (see, for instance, Stefanini et al. [45], Sorini and Ste-
fanini [42], Stefanini and Bede [43]) that can be characterized by means of
four real numbers (namely, the extremes of their core and support).

In particular, we have chosen trapezoidal fuzzy numbers (Tra) vs quadratic
functions (Π-curves), functions with parametric monotonic Hermite-type in-
terpolation either using (2,2)-rational splines (LU1A and LU1B), or mixed
exponential splines (LU2A and LU2B) (see Figure 1). More specifically, if

Ũ ≡ LU(a, b, c, d) with a = inf Ũ0, b = inf Ũ1, c = sup Ũ1, d = sup Ũ0, and
LU ∈ {Π, LU1A, LU1B, LU2A, LU2B}, then for each α ∈ [0, 1]

Ũα = [a + lLU(α)(b− a), c+ rLU(α)(d− c)] ,

where the functions involved in the left and right arms can be found in
Table 1.

Table 1: Expressions for functions lLU and rLU in the horizontal view of LU fuzzy numbers
with LU ranging on {Tra,Π, LU1A, LU1B, LU2A, LU2B}

LU lLU (α) rLU (α)

Tra α 1− α

Π







√

α/2 if α < 1/2

1−

√

(1− α)/2 otherwise







1−

√

α/2 if α < 1/2

√

(1− α)/2 otherwise

LU1A
α2 + 5α(1 − α)

1 + 3.5α(1 − α)
(1− α)(1 + 0.9α)

LU1B α 1−

α2 + 5α(1 − α)

1 + 3.2α(1 − α)

LU2A

α2(3− 2α) − 0.5(1 − α)1.55 + 0.5 + 0.05α1.55

1.55
1−

α2(3 − 2α) − 5(1 − α)11 + 5 + 5α11

11

LU2B
α2(3− 2α) − 0.5(1 − α)1.55 + 0.5 + 0.05α1.55

1.55
1−

α2(3− 2α) − 5(1 − α)6.05 + 5 + 0.05α6.05

6.05
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Figure 1: Six types of fuzzy numbers sharing core [20, 25] and support (10, 40) and differing
in shape. On the left, trapezoidal (top) and Π-curve (bottom), along with four different
LU fuzzy numbers on the middle and the right

Two additional fuzzy numbers have been added to the comparison, namely
(see Figure 2), triangular (Tri),

Tri(a, b, c, d) = Tra(a, (b+ c)/2, (b+ c)/2, d),

and symmetric triangular (TriS),

TriS(a, b, c, d) = Tra(a, (a+ d)/2, (a+ d)/2, d).
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Figure 2: Trapezoidal (on the left) along with triangular (on the middle) and symmetric
triangular (on the right) fuzzy numbers sharing support (10, 40) although different in core.
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Two key common guidelines in the simulation studies are the following:

• to generate fuzzy data, we generate values from four real-valued random
variables X1, X2, X3 and X4 so that the R× [0,∞)× [0,∞)× [0,∞)-
valued random vector (X1, X2, X3, X4) will provide us with the 4-tuples
(x1, x2, x3, x4) = ((b+c)/2, (c−b)/2,b−a, d−c) (i.e., as they are usually
known, x1/x2 = center/radius of the core, and x3/x4 = lower/uper
spread of the fuzzy number, see Figure 3);

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

a                     b c dx1

x 2
x3 x4

Figure 3: Different LU -fuzzy numbers associated with the same 4-tuples (a, b, c, d) and
(x1, x2, x3, x4)

• to each generated 4-tuple (x1, x2, x3, x4) we associate the eight fuzzy
numbers indistinctly denoted as

LU〈x1, x2, x3, x4〉 = LU(x1 − x2 − x3, x1 − x2, x1 + x2, x1 + x2 + x4)

with LU ∈ {Tra,Π, LU1A, LU1B, LU2A, LU2B,Tri,TriS}.

On the other hand, one should take into account that

• whenever LU ∈ {Tra,Π, LU1A, LU1B, LU2A, LU2B,Tri,TriS}, we have
that (see Stefanini et al. [45])

1

n
· [LU(a1, b1, c1, d1) + · · ·+ LU(an, bn, cn, dn)]

= LU

(
1

n

n∑

i=1

ai,
1

n

n∑

i=1

bi,
1

n

n∑

i=1

ci,
1

n

n∑

i=1

di

)
;
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• in computing the values of the statistic Tn,n in Step 1 of the boot-
strapped algorithm to two-sample test in Section 2 when it is ap-
plied to compare means of trapezoidal and LU fuzzy data (with LU
∈ {Π, LU1A, LU1B, LU2A, LU2B,Tri,TriS}), one should make use of

– distances between Tra(a, b, c, d) and LU(a, b, c, d) for the numera-
tor, whose exact expressions are gathered in Table 2;

Table 2: Exact expressions for the ρ2 distances between fuzzy numbers Tra(a, b, c, d) and
LU(a, b, c, d) with LU ranging on {Π, LU1A, LU1B, LU2A, LU2B,Tri,TriS}

LU
[
ρ2(Tra(a, b, c, d), LU(a, b, c, d))

]2

Π 0.00416667 (a− b)2 + 0.00416667 (c− d)2

LU1A 0.03129046 (a− b)2 + 0.0135 (c− d)2

LU1B 0.03724265 (c− d)2

LU2A 0.00171940 (a− b)2 + 0.01325610 (c− d)2

LU2B 0.00171940 (a− b)2 + 0.05307135 (c− d)2

Tri (c− b)2/12

TriS [(b − a + c− d)2 + (c− b)2]/12

– distances between LU(a1, b1, c1, d1) and LU(a2, b2, c2, d2) involved
in the denominator, where LU ∈ {Tra,Π, LU1A, LU1B, LU2A, LU2B},
whose exact expressions are gathered in Table 3;
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Table 3: Exact expressions for the ρ2 distances between fuzzy numbers LU(a1, b1, c1, d1)
and LU(a2, b2, c2, d2) with LU ranging on {Tra,Π, LU1A, LU1B, LU2A, LU2B}

LU
[

ρ2(LU(a1, b1, c1, d1), LU(a2, b2, c2, d2))
]

2

[(a1 − a2)2 + (b1 − b2)2 + (a1 − a2)(b1 − b2)]/6
Tra +[(c1 − c2)2 + (d1 − d2)2 + (c1 − c2)(d1 − d2)]/6

[7(a1 − a2)2 + 7(b1 − b2)2 + 10(a1 − a2)(b1 − b2)]/48
Π +[7(c1 − c2)2 + 7(d1 − d2)2 + 10(c1 − c2)(d1 − d2)]/48

0.06622634(a1 − a2)2 + 0.2900244(b1 − b2)2 + 0.14374922(a1 − a2)(b1 − b2)
LU1A +0.10516667(c1 − c2)2 + 0.25516667(d1 − d2)2 + 0.13966667(c1 − c2)(d1 − d2)

0.16666666(a1 − a2)2 + 0.16666666(b1 − b2)2 + 0.16666666(a1 − a2)(b1 − b2)
LU1B +0.30881332(c1 − c2)2 + 0.06176266(d1 − d2)2 + 0.12942402(c1 − c2)(d1 − d2)

0.16429256(a1 − a2)2 + 0.19560186(b1 − b2)2 + 0.14010559(a1 − a2)(b1 − b2)
LU2A +0.13773163(c1 − c2)2 + 0.13773163(d1 − d2)2 + 0.22453675(c1 − c2)(d1 − d2)

0.16429256(a1 − a2)2 + 0.19560186(b1 − b2)2 + 0.14010559(a1 − a2)(b1 − b2)
LU2B +0.34394341(c1 − c2)2 + 0.05090666(d1 − d2)2 + 0.10514993(c1 − c2)(d1 − d2)

by using these exact expressions for distances, the value of the statistic
Tn,n will be computed by adapting the algorithm implemented in the
SAFD package [46];

• in computing the values of the bootstrapped statistic T ∗

n,n in Step 4 of
the two-sample test in Section 2 when it is applied to compare means of
trapezoidal and the other LU fuzzy data, the involved bootstrap fuzzy
data will not be purely LU ones, but the output of adding a trapezoidal
and another LU fuzzy number; consequently, exact expressions for the
distances are cumbersome, and we will run the SAFD package [46].

The common scheme of the multiple comparison analyses adapt-
ing the two-sample algorithm can be summarized as follows:

S.1. A sample of n 4-tuples {(x(i)
1 , x

(i)
2 , x

(i)
3 , x

(i)
4 )}ni=1 is generated by the

selected simulation procedure. To each of the 4-tuples we can as-
sociate eight samples of size n, {LU〈x

(i)
1 , x

(i)
2 , x

(i)
3 , x

(i)
4 〉}ni=1, of fuzzy

data, where LU ∈ {Tra,Π, LU1A, LU1B, LU2A, LU2B ,Tri,TriS}. Then,
to test the null hypothesis of the equality of the means of the random
fuzzy numbers Tra〈X1, X2, X3, X4〉 and LU〈X1, X2, X3, X4〉 (that is,

H0 : Ẽ(Tra〈X1, X2, X3, X4〉) = Ẽ(LU〈X1, X2, X3, X4〉)) for each of
LU ∈ {Π, LU1A, LU1B , LU2A, LU2B,Tri,TriS}, the values of the seven
statistics Tn,n (as in equation (3)) are computed.
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S.2. For each of the seven LU types different from Tra, the bootstrap pop-
ulations would be

{
Tra〈x

(i)
1 , x

(i)
2 , x

(i)
3 , x

(i)
4 〉+ LU

〈
n∑

j=1

x
(j)
1

n
,

n∑

j=1

x
(j)
2

n
,

n∑

j=1

x
(j)
3

n
,

n∑

j=1

x
(j)
4

n

〉}n

i=1

,

{
LU〈x

(i)
1 , x

(i)
2 , x

(i)
3 , x

(i)
4 〉+ Tra

〈
n∑

j=1

x
(j)
1

n
,

n∑

j=1

x
(j)
2

n
,

n∑

j=1

x
(j)
3

n
,

n∑

j=1

x
(j)
4

n

〉}n

i=1

.

S.3. Obtain a sample of independent observations from each bootstrap pop-
ulation.

S.4. Compute the value of the bootstrap statistic T ∗

n,n (as in Equation (4)).

S.5. Repeat 1000 times S.3 to get a set of statistic values, denoted by
{t∗1, . . . , t

∗

1000}.

S.6. Compute the bootstrap p-value as the proportion of values in {t∗1, . . . ,
t∗1000} being greater than the value of Tn,n.

Remark 3.1. It should be pointed out that, although the sample of Tra’s
and the sample of LU ’s in S.1 share the same sample of 4-tuples to avoid
differences in mean coming from differences in the starting 4-tuples, they
should not be treated as linked since they are actually assumed to come
from two independent samples of people each sample being associated with
one of the two different shapes. Of course, samples in S.3 do not share in
general the same sample of 4-tuples.

As we have announced before, the simulation developments have been
carried out in two ways.

According to the FIRST SIMULATION PROCEDURE, data have been
generated from random fuzzy numbers with an unbounded reference set and
having a kind of ‘normal’ distribution. More concretely, from random vec-
tors (X1, X2, X3, X4) for which X1 is normally distributed, similar to some
ones considered by Sinova et al. (see [39], [40]), so that X1 ∼ N (0, 1) and
X2, X3, X4 ∼ χ2

1, all of them being independent.
The scheme S.1 to S.6 has been run in both simulation studies for 30

samples of size n = 100. Results from this FIRST PROCEDURE are shown
in Table 4.

The p-values in testing the equality of means of trapezoidal data vs either
Π, LU1A, LU1B, LU2A, and LU2B are high in this table. However, they are
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Table 4: Pairwise-based means hypothesis testing p-values for trapezoidal vs other LU ’s
data in 30 simulations of samples of size 100 with the 1st procedure

Tra vs Π Tra vs LU1A Tra vs LU1B Tra vs LU2A Tra vs LU2B Tra vs Tri Tra vs TriS

Sample 1 0.855 0.452 0.257 0.622 0.140 0.006 0.009

Sample 2 0.932 0.569 0.631 0.870 0.530 0.009 0.015

Sample 3 0.862 0.408 0.412 0.753 0.242 0.000 0.007

Sample 4 0.882 0.498 0.430 0.756 0.277 0.009 0.015

Sample 5 0.938 0.581 0.802 0.915 0.717 0.002 0.003

Sample 6 0.915 0.638 0.511 0.776 0.385 0.003 0.003

Sample 7 0.865 0.263 0.688 0.852 0.513 0.003 0.002

Sample 8 0.932 0.547 0.659 0.862 0.514 0.013 0.032

Sample 9 0.937 0.624 0.690 0.859 0.600 0.021 0.015

Sample 10 0.873 0.500 0.541 0.807 0.432 0.001 0.001

Sample 11 0.868 0.480 0.401 0.732 0.288 0.000 0.001

Sample 12 0.957 0.723 0.862 0.948 0.807 0.040 0.048

Sample 13 0.851 0.358 0.536 0.794 0.398 0.005 0.001

Sample 14 0.932 0.618 0.647 0.855 0.516 0.002 0.006

Sample 15 0.913 0.560 0.720 0.912 0.601 0.001 0.000

Sample 16 0.886 0.494 0.426 0.746 0.265 0.012 0.034

Sample 17 0.937 0.688 0.547 0.822 0.447 0.003 0.011

Sample 18 0.897 0.472 0.681 0.858 0.551 0.020 0.017

Sample 19 0.884 0.427 0.567 0.837 0.427 0.001 0.004

Sample 20 0.887 0.572 0.385 0.743 0.274 0.012 0.016

Sample 21 0.899 0.594 0.507 0.786 0.382 0.004 0.006

Sample 22 0.871 0.373 0.490 0.787 0.339 0.006 0.016

Sample 23 0.893 0.402 0.613 0.826 0.470 0.026 0.033

Sample 24 0.924 0.590 0.592 0.852 0.466 0.006 0.005

Sample 25 0.889 0.364 0.464 0.774 0.314 0.009 0.029

Sample 26 0.874 0.441 0.436 0.767 0.333 0.017 0.020

Sample 27 0.898 0.548 0.551 0.823 0.403 0.004 0.013

Sample 28 0.887 0.468 0.584 0.809 0.426 0.005 0.005

Sample 29 0.919 0.518 0.506 0.809 0.382 0.014 0.030

Sample 30 0.850 0.356 0.320 0.662 0.192 0.006 0.005

very small in testing the equality of means of trapezoidal data vs triangular
ones. Consequently, we can conclude that there are no evidences against
the null hypothesis of the equality of means in the first five cases (actually,
those preserving not only the support but also the core), but there are strong
evidences against such a hypothesis when fuzzy data are triangular (notice
that although the support is shared, the core is reduced to a singleton).
Among the first five comparisons, evidences against the equality of means
are weaker for the Π and LU2A (which seems to be expected by looking at
Figure 1).

According to the SECOND SIMULATION PROCEDURE, data have
been generated from random fuzzy numbers with a bounded reference set
and abstracting and mimicking what we have observed in conducting different
(computerized and paper-and-pencil) questionnaires based on the fuzzy rat-
ing scale by Hesketh et al. [29] (see, for instance, Colubi et al. [11], González-
Rodŕıguez et al. [22], and Lubiano et al. [34]) and being similar to the ones
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followed by De la Rosa de Sáa et al. [13]. More concretely, fuzzy data have
been generated so that

− 5% of the data have been obtained by first considering a simulation
from a simple random sample of size 4 from a beta β(1, 1) distribution,
later scaling values in the sample to (say) interval [0, 10] and considering
the ordered sample, and finally computing the values of the xi.

− 35% of the data have been obtained considering a simulation of four
random variables Xi = 10 · Yi as follows:

Y1 ∼ β(1, 1),

Y2 ∼ Uniform[0,min{1/10, Y1, 1− Y1}],

Y3 ∼ Uniform[0,min{1/5, Y1 − Y2}],

Y4 ∼ Uniform[0,min{1/5, 1− Y1 − Y2}];

− 60% of the data have been obtained considering a simulation of four
random variables Xi = 10 · Yi as follows:

Y1 ∼ β(1, 1),

Y2 ∼






Exp(200) if Y1 ∈ [0.25, 0.75]
Exp(100 + 4 Y1) if Y1 < 0.25
Exp(500− 4 Y1) otherwise

Y3 ∼

{
γ(4, 100) if Y1 − Y2 ≥ 0.25
γ(4, 100 + 4 Y1) otherwise

Y4 ∼

{
γ(4, 100) if 1− Y1 − Y2 ≤ 0.75
γ(4, 500− 4 Y1) otherwise.

When this SECOND PROCEDURE is considered, results have been gath-
ered in Table 5.

The p-values in testing the equality of means of trapezoidal data vs any
of the other LU -type data are all high in this table. Consequently, we can
conclude that there are no evidences against the null hypothesis of the equal-
ity of means. Among the seven comparisons, evidences against the equality
of means are very weak for the Π and LU2A cases and slightly less weak for
the triangular one.

Remark 3.2. Studies similar to those in Tables 4 and 5 have been also
developed for other sample sizes as well as for Bertoluzza et al.’s L2 metric [6]

D(Ũ , Ṽ ) =

√∫

[0,1]

[∫

[0,1]

[Ũ
[t]
α − Ṽ

[t]
α ]2 dt

]
dα,
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Table 5: Pairwise-based means hypothesis testing p-values for trapezoidal vs other LU ’s
data in 30 simulations of samples of size 100 with the 2nd procedure

Tra vs Π Tra vs LU1A Tra vs LU1B Tra vs LU2A Tra vs LU2B Tra vs Tri Tra vs TriS

Sample 1 0.946 0.788 0.823 0.904 0.759 0.583 0.557

Sample 2 0.957 0.791 0.831 0.926 0.770 0.654 0.661

Sample 3 0.955 0.810 0.832 0.931 0.748 0.594 0.589

Sample 4 0.959 0.838 0.844 0.935 0.779 0.620 0.600

Sample 5 0.926 0.752 0.787 0.878 0.692 0.613 0.615

Sample 6 0.966 0.835 0.862 0.944 0.799 0.610 0.601

Sample 7 0.954 0.804 0.809 0.904 0.766 0.721 0.696

Sample 8 0.955 0.834 0.812 0.908 0.761 0.643 0.634

Sample 9 0.960 0.825 0.809 0.911 0.741 0.626 0.632

Sample 10 0.950 0.816 0.805 0.912 0.754 0.616 0.640

Sample 11 0.963 0.836 0.824 0.927 0.776 0.568 0.549

Sample 12 0.929 0.705 0.760 0.878 0.719 0.551 0.518

Sample 13 0.949 0.771 0.779 0.896 0.717 0.619 0.627

Sample 14 0.957 0.803 0.836 0.933 0.769 0.597 0.598

Sample 15 0.968 0.836 0.866 0.947 0.790 0.591 0.616

Sample 16 0.972 0.851 0.867 0.939 0.797 0.658 0.661

Sample 17 0.964 0.832 0.847 0.926 0.802 0.617 0.608

Sample 18 0.955 0.793 0.752 0.900 0.703 0.595 0.626

Sample 19 0.947 0.766 0.816 0.913 0.749 0.642 0.651

Sample 20 0.947 0.786 0.785 0.897 0.768 0.632 0.655

Sample 21 0.938 0.758 0.792 0.902 0.714 0.660 0.633

Sample 22 0.933 0.746 0.736 0.869 0.644 0.658 0.606

Sample 23 0.949 0.788 0.816 0.915 0.762 0.601 0.616

Sample 24 0.961 0.787 0.803 0.899 0.746 0.627 0.639

Sample 25 0.952 0.802 0.819 0.928 0.769 0.690 0.673

Sample 26 0.932 0.746 0.770 0.898 0.718 0.639 0.636

Sample 27 0.950 0.789 0.829 0.925 0.797 0.661 0.647

Sample 28 0.936 0.748 0.803 0.890 0.729 0.577 0.579

Sample 29 0.963 0.809 0.840 0.945 0.792 0.584 0.598

Sample 30 0.952 0.785 0.795 0.904 0.703 0.653 0.647

where Ũ
[t]
α = t · sup Ũα + (1− t) · inf Ũα. Conclusions do not vary too much.

In connection with the change of sample size, one can comment that p-values
are mostly higher for smaller sample sizes, for both simulation procedures. In
connection with the choice of the metric, the influence is not that big but p-
values are generally slightly higher for Bertoluzza et al.’s metric to the extent
that, in testing vs triangular data, ‘differences’ which are not significant at
the significance level .05 with Bertoluzza et al.’s metric for some samples
from the 1st procedure are associated with significant ones at the same level
with ρ2.

4. Additional discussion of the influence of the shape of fuzzy data

on their mean values through a real-life example

In this section we examine the case study in Gil et al. [20] and Lubiano et
al. [34] regarding some bootstrapped test about means of the one-, two- and
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k-samples p-values. Results from this real-life example will confirm, from a
slightly different perspective, the conclusions in Section 3, in accordance with
which the shape of the fuzzy data does not affect very much the statistical
conclusions about means.

The real-life example concerns the questionnaire TIMSS-PIRLS 2011,
that was designed to be conducted on fourth grade students and questions
referring to their attitude w.r.t. reading, mathematics and science. Most of
the involved items had to be answered according to the 4-point Likert scale
given by A1 = disagree a lot, A2 = disagree a little, A3 = agree

a little and A4 = agree a lot.
The problem faced in [20, 34] is that of statistically analyzing whether

adapting these questions with the fuzzy rating scale approach would yield
somewhat different statistical conclusions. For this reason, the questionnaire
form has been adapted to allow a double-type response, namely, the original
Likert and a fuzzy rating scale-based one (see Figure 4 for Question M.2,
“My teacher is easy to understand”).

M.2 My teacher is easy to understand

Figure 4: Example of the double-response form to a question

The questionnaire has been conducted in 2014 on fourth grade students
from Colegio San Ignacio, Oviedo-Asturias, Spain (see http://bellman.ciencias.

uniovi.es/SMIRE/FuzzyRatingScaleQuestionnaire-SanIgnacio.html for the full paper-
and-pencil and computerized versions). In this way, each of the questions is
assumed to be filled in accordance with both the 4-point Likert and the
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fuzzy rating scales with reference interval [0, 10] (Spain uses a 10-point grad-
ing scale for elementary and high schools, so it could mean a proper simile
for students).

The fuzzy rating scale is assumed to be based on the free trapezoidal as-
sessment of responses. Some students have used the computer-administered
format, whereas the others have filled the paper-and-pencil one. The training
of the 9-year-old children has taken up to fifteen minutes, and there were not
incidences to be noticed in conducting the questionnaire. The complete ques-
tionnaire and dataset can be found in http://bellman.ciencias.uniovi.es/SMIRE/

FuzzyRatingScaleQuestionnaire-SanIgnacio.html.
For each of the three bootstrapped testing methods in Section 2 (namely,

the one-, the two- and the k-sample), the p-values associated with the sam-
ple(s) of trapezoidal data are to be compared with those for the sample(s)
of the corresponding LU -type fuzzy data with LU ∈ {Π, LU1A, LU1B, LU2A,
LU2B,Tri,TriS}. For a more detailed illustration, two situations have been
considered for each method: one leading to small p-values and another one
leading to moderate/high p-values.

In connection with the one-sample test we have the following:

Example 4.1. Consider the fuzzy rating scale datasets associated with the
responses to item M.2 (“My teacher is easy to understand”) for the 45 stu-
dents who have responded to the question by using the computerized form.

In testing whether the mean of the LU response to M.2 equals the ‘LU -
ized’ version of the original fuzzy number which appears in the computerized
form as the default answer, LU(2.5, 3.75, 6.25, 7.5) = LU〈5, 1.25, 1.25, 1.25〉,
we get the p-values in Table 6.

Table 6: One-sample hypothesis testing p-values about the equality of the mean response to
item M.2 in the computerized form and the hypothetical response LU(2.5, 3.75, 6.25, 7.5)
for different LU -type of data

Tra Π LU1A LU1B LU2A LU2B Tri TriS

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

On the other hand, in testing whether the mean of the LU response
to M.2 equals LU(5, 6.5, 7.5, 9) = LU〈7, 0.5, 1.5, 1.5〉 we get the p-values in
Table 7.

In connection with the two-sample test we have the following:
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Table 7: One-sample hypothesis testing p-values about the equality of the mean response
to item M.2 in the computerized form and the hypothetical response LU(5, 6.5, 7.5, 9) for
different LU -type of data

Tra Π LU1A LU1B LU2A LU2B Tri TriS

0.107 0.141 0.268 0.095 0.134 0.101 0.093 0.085

Example 4.2. Consider the fuzzy rating scale dataset associated with the
responses to item M.2 (“My teacher is easy to understand”) for the 45 stu-
dents who have responded to the item by using the computerized form and
the dataset for the 23 who have responded to the item by using the paper-
and-pencil form.

In testing whether the means of the ‘LU -ized’ responses to M.2 for both
forms coincide we get the p-values in Table 8.

Table 8: Two-sample hypothesis testing p-values about the equality of the mean responses
to item M.2 of students using the computerized vs the paper-and-pencil form for different
LU -type of data

Tra Π LU1A LU1B LU2A LU2B Tri TriS

0.015 0.012 0.005 0.012 0.013 0.010 0.009 0.013

On the other hand, consider the fuzzy rating scale datasets associated
with the responses to item M.2 for the 37 girls and the 31 boys who have
responded to this item. In testing whether the means of the ‘LU -ized’ re-
sponses to M.2 are irrespective of sex, we get the p-values in Table 9.

Table 9: Two-sample hypothesis testing p-values about the equality of the mean response
to item M.2 of girls vs boys for different LU -type of data

Tra Π LU1A LU1B LU2A LU2B Tri TriS

0.589 0.545 0.571 0.534 0.563 0.587 0.536 0.572

In connection with the one-way ANOVA test we have the following:

Example 4.3. In the first ANOVA study the considered factor has been
‘mark taken by the students in the last examination of math’ (an additional
question included in the conducted student’s questionnaire). This factor has
been assumed to act at 4 levels, associated with

G1 = [0, 6], G2 = (6, 8], G3 = (8, 9], G4 = (9, 10],
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the choice of these levels having been based on attempting to get a rather
balanced distribution of students among groups. The influence of the factor
is to be analyzed on the response to item M.2 of the 62 students responding
simultaneously to M.2 and the additional question leading to assign them
with one of the levels of the factor. We get the p-values in Table 10.

Table 10: ANOVA hypothesis testing p-values for the responses to item M.2 of students
depending on the mark taken in the last examination of math

Tra Π LU1A LU1B LU2A LU2B Tri TriS

0.011 0.013 0.022 0.011 0.024 0.019 0.027 0.030

In the second ANOVA study the considered factor has been ‘mark taken
by the students in the last examination of reading’ (also an additional ques-
tion included in the conducted student’s questionnaire). This factor has been
assumed to act at the above described 4 levels G1, G2, G3, and G4. The
influence of the factor is to be analyzed on the response to item R.3 of the 62
students responding simultaneously to R.3 (“Reading is harder for me than
any other subject”) and the additional question leading to assign them with
one of the levels of the factor. We get the p-values in Table 11.

Table 11: ANOVA hypothesis testing p-values for the responses to item R.3 of students
depending on the mark taken in the last examination of reading

Tra Π LU1A LU1B LU2A LU2B Tri TriS

0.471 0.455 0.477 0.459 0.474 0.441 0.470 0.507

As a common conclusion from the last three examples, one can empirically
assert that the results for both low and not that low p-values seem not to be
very much affected by the shape of the fuzzy responses. This supports and
reinforces the conclusions in Section 3. If ρ2 is replaced by Bertoluza et al.’s
metric, conclusions scarcely change.

5. Concluding remarks

The main implication from the analysis in this paper is that the use
of trapezoidal data, especially in developments involving the fuzzy rating
scale, can be appropriately justified/allowed when we are interested in the
statistical conclusions about means. It should be pointed out that the use of
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triangular data can be more or less influential on the conclusions when cores
are far from singletons.

A closely related open problem is that of analyzing the influence of the
choice of the shape of fuzzy data associated with random experiments on
other location/central tendency or dispersion/scale measures of the distri-
bution of random fuzzy numbers, like for instance, the robust measures by
Sinova et al. [39, 40, 41] and De la Rosa de Sáa et al. [14].

Acknowledgements

The research in this paper has been partially supported by the Princi-
pality of Asturias/FEDER Grant GRUPIN14-101. Its financial support is
gratefully acknowledged. The authors are also grateful to their colleagues
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Gil, G. González-Rodŕıguez, M.T. López, M.A. Lubiano, M. Montenegro, A.B.
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