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1 Introduction

It is notoriously difficult to describe from first principles dense baryonic matter in QCD at

small temperatures and large densities. Perturbation theory can be used only at extremely

high densities [1, 2]. Lattice calculations on the other hand are restricted to values of

the baryon chemical potential smaller than the temperature [3]. One then has to rely

on phenomenological models, but those are usually fitted to describe the physics in very

different regimes, so it is far from clear that they can give an accurate description (see e.g.

section 7.3 of [4] for a review). A common difficulty is that models are usually adapted to

describe either quark or hadronic matter, but there should be a transition (which could be

smooth) between the two as the density is changed.
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It would be very interesting to have a theory that can be described in all density

regimes from first principles. A natural proposal is to study gauge/gravity models [5–7].

A strongly coupled field theory in the large-Nc limit has a holographic dual description in

terms of a classical higher dimensional geometry, which is a black hole if the temperature is

nonzero [8]. Flavor degrees of freedom are introduced by adding D-branes in the geometry

(we will refer to them as “flavor branes”) [9]. If the number of flavors is much smaller than

the number of colors Nf � Nc, the branes can be treated as probes. Flavor currents are

dual to gauge fields living in the worldvolume of the branes, in such a way that a state

with finite density is realized by having non-zero electric flux on the brane.

The worldvolume electric flux has to be sourced by some charges, which we can think

of as open strings attached to the brane. In the models that are usually considered, the

two string endpoints carry opposite charges, so in order to have a non-zero density one of

the endpoints should end on the brane and the other somewhere else. A possibility is that

the strings extend from the flavor brane to the horizon. One can think of this situation as

having quarks in a plasma. A finite density of them will pull the brane embedding, in such

a way that the finite density state can be described by a brane embedding that reaches the

horizon from where the electric field is sourced [10].

The second possibility is that the strings extend from the flavor branes to a different

kind of brane, dual to a “baryon vertex”, which wraps the internal directions in the ge-

ometry and is point-like in the field theory directions [11, 12]. The tension of the strings

produces a force such that typically at the equilibrium configuration the brane dual to the

baryon vertex lies on the flavor brane and can be described as a solitonic configuration

on the flavor brane worldvolume [13–15]. This corresponds to baryonic matter in the dual

field theory.

Although holographic models can accommodate both quark and baryonic matter in this

fashion, there is a clear asymmetry between the two. In order to describe baryonic matter

one needs to study multi-soliton solutions [16–19] or use a phenomenological approach if one

is interested in homogeneous states [20–29], with the drawback that the physical properties

of the state depends on the assumptions one needs to make. Furthermore, stable soliton

solutions have sizes that are typically of the order of the string scale [14], thus casting

doubts on the validity of the brane action used to find those solutions. Therefore, our

understanding of baryonic matter in holographic models is on much more shaky ground

than that of quark matter.

The difference between quark and baryonic matter in holographic models can be traced

back to the large-Nc limit. Baryonic operators are constructed with Nc fundamental fields,

thus they are very heavy objects and this is reflected in the holographic dual description,

where they are described by branes or solitonic configurations in the flavor branes. Mesonic

operators on the other hand can be constructed with a small number of fields and have a

holographic dual description in terms of open strings ending on the flavor branes, or small

fluctuations of the fields living in their worldvolume. This hierarchy between baryons and

mesons is an artifact of the large-Nc limit and is not observed in real QCD (see e.g. [30]).

It is thus desirable to study different models where this distinction is erased.
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The holographic picture gives us a clue about how to do this. Mesons are open strings

attached to the flavor branes. They have zero baryon number because the endpoints of

each string have opposite charge. This suggests that one could describe states with nonzero

baryon number with open strings if both endpoints had the same charge, but this would

be possible only if there are unoriented strings. Therefore, in order to describe baryons

on equal footing as mesons (we will refer to them as “light baryons”) it is necessary to

introduce orientifold planes in the geometry. Orientifold theories were introduced in the

context of large-Nc equivalences between supersymmetric theories and QCD [31, 32],1 but

similar proposals existed long time ago as alternative large-Nc limits of QCD [34]. In this

paper we will consider a particular model proposed in [35], which is an orientifold of the

well-known D3/D7 model.

We will introduce a chemical potential in the phase with hadronic bound states and

show that there is a critical value above which the baryon density becomes non-zero. This

provides the first example of homogeneous baryonic matter in a holographic model that

does not rely on additional assumptions on the gravity side besides the usual weak coupling

and small curvature approximations. Note that in this model chiral symmetry is explicitly

broken by terms in the superpotential, so it is not expected to give a realistic description

of baryonic matter in QCD at low densities where chiral dynamics are important.

In the new phase light baryon operators acquire an expectation value. Thus in this

phase baryon symmetry is spontaneously broken and the holographic model describes a

baryon superfluid state. To our knowledge this is the first realization of a baryon superfluid

phase in a string theory model. Baryon superfluid matter may exist in nuclei and the

interior of neutron stars, as originally shown by Migdal [36]. At asymptotically large

densities, the color flavor locking (CFL) phase exhibits baryon superfluidity [37].2 In both

cases weak attractive interactions between charged fermions (nucleons or quarks) induce the

formation of a superfluid following the standard Bardeen-Cooper-Schrieffer (BCS) theory.

However, at intermediate density regimes, interactions for both baryons and quarks become

stronger and there can be a crossover to a state where fermions bound in molecules and

form a Bose-Einstein condensate (BEC). This behavior is very general and it appears in

many systems, including nuclear matter and cold atoms, regardless of the microscopic

origin of the interactions (see e.g. [39] for a review). The baryon superfluid described by

the holographic model resembles such BEC states.

The outline of the paper is as follows. In section 2 we review the field theory model

with light baryon operators and its holographic dual. In section 3 we derive the effective

action for the fields dual to light baryonic and mesonic operators from the flavor brane ac-

tion. In section 4 we study the phase diagram at zero temperature and non-zero chemical

potential, and show that the zero charge density phase becomes thermodynamically disfa-

vored above a critical value of the chemical potential. In section 5 we construct a superfluid

baryon phase in a simple case with a single scalar operator condensing. We present our

conclusions and discuss future directions in section 6. We have collected several technical

details in the appendices.

1Other types of large-Nc equivalences have been proposed as well, see e.g. [33].
2CFL phases in a model with flavor branes were introduced in [38], however those still preserve a U(1)

baryon symmetry.
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2 A holographic model with light baryons

The model was originally introduced in [35], based on the usual D3/D7 intersection [9].

Let us review first the usual case. The theory is based on the following arrangement of D3

and D7 branes, where bullets denote the directions along which the branes are extended

0 1 2 3 4 5 6 7 8 9

D3 • • • •
D7 • • • • • • • •

On the field theory side there are 2Nc D3 branes (the “color branes”) whose low-energy

description is U(2Nc) N = 4 super Yang-Mills (SYM).3 In N = 2 language it contains a

vector multiplet and a hypermultiplet in the adjoint representation. In N = 1 language

there is a vector multiplet V and three chiral multiplets in the adjoint representation.

We can split the space transverse to the D3 branes into three planes 45, 67 and 89, in

such a way that the expectation value of the scalar component of each chiral multiplet is

associated to the position of D3 branes on each plane. We thus label the corresponding

chiral multiplets as X45, X67 and X89. In this notation X45 is charged under rotations on

the 45 plane while the other chiral multiplets are neutral.

In the model there are also 2Nf D7 branes (the “flavor branes”) that introduce the

same number of hypermultiplets in the fundamental representation. Flavor hypermultiplets

contain two chiral multiplets Q and Q̃ in conjugate representations. From the point of view

of the theory living in the (3 + 1)-dimensional intersection of D3 and D7 branes there is

a global U(2Nf ) symmetry, a U(1)R symmetry acting as rotations on the 45 plane and a

SO(4) ' SU(2)L × SU(2)R acting as rotations on the 6789 space. The R-symmetry group

is SU(2)R ×U(1)R.

The holographic dual to the theory on the D3 branes when Nc →∞ is type IIB string

theory in an AdS5 × S5 geometry with RR 5-form flux F5 = F5 + ∗F5, F5 = dC4

ds2 =
r2

R2
dx21,3 +

R2

r2
dr2 +R2dΩ2

5, C4 =
R4

r4
dx0 ∧ dx1 ∧ dx2 ∧ dx3. (2.1)

The AdS radius R is related to the ’t Hooft coupling of the N = 4 SYM theory as

R4/(α′)2 = λYM, where `s =
√
α′ is the string length.

If the number of flavors is much smaller than the number of colors Nf � Nc, the D7

branes do not affect the physics of the D3 branes to leading order in the large-Nc expansion

and can be treated as probes. The flavored degrees of freedom on the field theory side are

captured by the dynamics of probe D7 branes embedded in the AdS5×S5 geometry. These

are extended along the AdS5 directions and wrap a S3 ⊂ S5. We will use the following

conventions for indices for the fields on the branes

• a, b, . . .: denote the worldvolume directions of the D7 brane,

• µ, ν, . . .: denote the spacetime directions along which lies the D7 brane,

3We introduce factors of 2 for later convenience when we introduce orbifold and orientifold projections.
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• i, j, . . .: denote the spacetime directions that are transverse to the D7 brane,

• A, B, . . .: denote the directions of the D7 brane that wrap S3,

• and M , N , . . .: denote the directions of the D7 brane along the spacetime directions

0, 1, 2, 3 and ρ.

So for the worldvolume directions of the D7 brane we have a = (M,A).

The bosonic fields on the D7 brane are a U(2Nf ) gauge field, Aa, and scalars in the

adjoint representation of flavor that are associated to the directions transverse to the D7

brane, Xi, i = 4, 5. Supersymmetric embeddings have a very simple form in a particular

set of coordinates. Following [40], we will write the metric as

ds2 =
r2

R2
dx21,3 +

R2

r2

((
dY 4

)2
+
(
dY 5

)2
+ dρ2 + ρ2dΩ2

3

)
, (2.2)

where r2 =
(
Y 4
)2

+
(
Y 5
)2

+ ρ2. Identifying xM = {x0, x1, x2, x3, ρ} and the coordinates

of the S3 with the worldvolume coordinates of the D7, the solutions to the equations for

the embedding (up to rigid rotations in the (Y 4, Y 5) plane) are simply X4 = Y 4 = L,

X5 = Y 5 = 0. The induced metric on the flavor brane can then be written as

ds2 =
ρ2 + L2

R2
dx21,3 +

R2

ρ2 + L2

(
dρ2 + ρ2dΩ2

3

)
. (2.3)

To obtain light baryon operators this model is deformed by the introduction of an

orbifold acting as a reflection in the directions along the D7 branes that are transverse

to the D3 branes and an orientifold O7 plane parallel to the D7 branes. The new brane

configuration is:

0 1 2 3 4 5 6 7 8 9

D3 • • • •
O7/D7 • • • • • • • •

Z2 • • • • • •

For the orbifold we have Z2 ⊂ SU(2)L and thus N = 2 supersymmetry (SUSY) is preserved.

The effect of the orbifold and the orientifold can be seen as imposing a condition over the

physical states of the theory. One can define an orbifold/orientifold action in the original

theory that consists of a reflection, on the 6789 directions for the orbifold and the 45

directions for the orientifold, plus transformations acting on the Chan-Paton factors of

the open strings ending on the branes. These transformations can be different for the D3

and D7 branes and for the orientifold they also involve a change in the orientation of the

strings. In both cases the orbifold/orientifold action squares to the identity. Physical states

are invariant under both the orbifold and orientifold action and this projects out a set of

states of the original theory. The orbifold action we are considering has no fixed point,

so there is no additional twisted sector. Since the orbifold and orientifold actions act on

Chan-Paton factors, they can change the gauge group and the representation of the fields

on the branes.
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The combined effect of the orbifold and the orientifold is to reduce by half the rank of

the color and flavor groups, to U(Nc) and U(Nf ) respectively, and to turn the N = 2 adjoint

hypermultiplet (constructed with the chiral multiplets X67, X89) into a hypermultiplet in

a two-index antisymmetric representation of U(Nc) (details can be found in [35]). In

N = 1 notation, the antisymmetric chiral multiplets A[αβ], Ã
[αβ] can be combined with the

(anti)fundamental chiral multiplets Qα, Q̃α to construct BPS gauge invariant operators

with non-zero baryonic charge

B = QÃQ, B̃ = Q̃AQ̃. (2.4)

Since Q, A are bosonic operators, the light baryon operators above have to be in the

antisymmetric representation of the SU(Nf ) flavor group. Note that when Nc = 3 the

antisymmetric representation coincides with the anti-fundamental,4 so the color structure

of B and B̃ is exactly the same as that of baryons in QCD.

On the gravity side the geometry is changed to AdS5 × RP5 and the Nf probe D7

branes wrap a RP3 ⊂ RP5. The theory on the D7 branes can be obtained by projecting

out the modes in the original setup that are not invariant under the combined orbifold and

orientifold action. The projection acts differently depending on the angular momentum `

of the fields along the S3 directions, since the orbifold action acts as a reflection in these di-

rections. We can distinguish between the gauge field components along the xM directions,

AM , the gauge field components along the S3 directions, AA and the scalar fields associated

to the directions transverse to the D7 branes Xi, i = 4, 5 (we will omit the index for the

rest of this section and refer to both as X). The orbifold and orientifold projections are de-

termined by the following matrices acting on the Chan-Paton factors of the D7 open strings

γ7 = iσ3 ⊗ 1Nf , ω7 = σ1 ⊗ 1Nf . (2.5)

Physical states must satisfy the following conditions (T denotes transpose)

A`M = (−1)`γ7A
`
Mγ
−1
7 , A`M = −ω7(A

`
M )Tω−17 ,

A`A = (−1)`+1γ7A
`
Aγ
−1
7 , A`A = −ω7(A

`
A)Tω−17 ,

X` = (−1)`γ7X
`γ−17 , X` = −ω7(X

`)Tω−17 .

(2.6)

Note that the action of the orbifold projection depends on the angular momentum on the

S3. This can be implemented by a large gauge transformation on the S3, such that the

transformed fields are periodic in the RP3 orbit of the Z2 action that identifies the an-

tipodal points on the S3. We give the details in appendix A. The combined orbifold plus

orientifold projections produce the following structure

Aeven
M ∼ Xeven ∼ Aodd

A ∼

(
H

−H∗

)
,

Aodd
M ∼ Xodd ∼ Aeven

A ∼

(
B

−B∗

)
,

(2.7)

4Since they are related by the invariant antisymmetric symbol A[αβ] = εαβγ q̃
γ .
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Where H = H† is Hermitian and B = −BT is antisymmetric, both Nf × Nf matrices.

The first type are dual to operators in the adjoint representation of U(Nf ) flavor, while the

second are dual to the baryon operators in the antisymmetric representation. Note that

they are charged under the U(1)B symmetry, since

i

[(
1
−1

)
,

(
B

−B∗

)]
= 2

(
iB

−(iB)∗

)
. (2.8)

The spectrum of BPS operators follows from the spectrum of the original theory specified

in [40]. The multiplets of BPS operators are classified by the representation of the SU(2)L
group, which can be labelled by a half-integer jL. The representation under SU(2)R×U(1)R
is determined by a half-integer jR and an integer R. We will group all these using the nota-

tion (jR, jL)R. In addition, there is a U(Nf ) global flavor symmetry under which hadronic

operators can be in the adjoint (adj) or two-index antisymmetric (antis) representations.

The lowest BPS operators, corresponding to relevant and marginal operators, are dual to

the following modes (X45 is an adjoint chiral multiplet)

∆ ` mode U(Nf ) rep (jR, jL)R operator (candidates)

2 1 AA adj (1, 0)0 QQ̃

3 0 X adj (0, 0)2 QX45Q̃

3 0 AM adj (0, 0)0 Jµ ∼ QDµQ̃

3 2 AA antis
(
3
2 ,

1
2

)
0

B ∼ QÃQ
4 1 X antis

(
1
2 ,

1
2

)
2

QÃX45Q

4 1 AM antis
(
1
2 ,

1
2

)
0

QÃDµQ

4 3 AA adj (2, 1)0 QD2Q̃

3 Effective action of fields dual to light baryons

In order to do the projections we introduce two stacks of Nf D7 branes, one at Y 4 = L and

the other at Y 4 = −L. In terms of the scalar fields on the brane X4 = Lσ3⊗1Nf , X5 = 0,

which is of the form (2.7). The induced metric and the coupling to the RR potential in

each stack is the same, so there is no difference between the flavor embeddings before and

after the projection at zero density. When the density is non-zero we expect that the

shape of the embedding will be affected. In order to avoid complications we will use the

approximation that the density is small enough to neglect this effect, so we will expand

around a background configuration with the induced metric (2.3).

The lowest BPS operators with flavor charges have a dual description in terms of the

fields on the brane, whose dynamics are determined by the non-Abelian D-brane action.

Although the general form of the action is not known, in the supersymmetric case Myers

used T-duality arguments to propose an action [41]. The bosonic fields living on the

D-brane worldvolume are the gauge field Aa, whose field strength is Fab and the scalar

fields Xi, all in the adjoint representation of U(2Nf ). Let us define λ = 2πα′, σa the

coordinates in the D-brane worldvolume and the worldvolume scalar fields will be expanded

as Xi(σ) = xi(σ) +λΦi with xi the position of the branes in the transverse directions. The

– 7 –
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tension of the Dp-brane is

T7 =
2π

gs(2πλ)4
. (3.1)

The D-brane action has a Born-Infeld and a Wess-Zumino term5

SD7 = SBI + SWZ,

SBI = −T7
∫
d8σTr2Nf

[
e−φ
√
− det

(
P
[
Eab + Eai(Q−1 − δ)ijEjb

]
+ λFab

)
detQij

]
,

SWZ = T7

∫
D7

Tr2Nf

[
P

(
e
i
λ
iX iX

∑
n

Cn ∧ eB
)
∧ eλF

]
. (3.2)

In these expressions enter the closed string fields

Eµν = Gµν +Bµν , Qij = δij +
i

λ

[
Xi, Xk

]
Ekj , (3.3)

where Gµν is the string frame metric, Bµν is the NS two-form field and P [· · · ] denotes the

pullback

P [Eab] = Eµν∂ax
µ∂bx

ν + Eµi∂ax
µDbX

i + EiµDaX
i∂bx

µ + EijDaX
iDbX

j ,

DaX
i = ∂aX

i + i[Aa, X
i]. (3.4)

Cn is a RR n-form and iX is the interior product with Xi

(iXCn)µ1···µn−1 = Xi(Cn)iµ1···µn−1 . (3.5)

Also the second index in
(
Q−1 − δ

)ij
is being raised using Eij which is the inverse of Eij ,

that is EikEkj = δij . The determinants are over the spacetime indices, while the trace

is over the matrix indices. Note that the D-brane action is gauge-invariant, so the action

for fields satisfying the orbifold projection is the same as the original action. Thus, it is

enough to restrict the form of the fields to the structure given in (2.6) at the end of the

calculation. We will also use that the fields satisfying the orbifold projection are periodic

in the RP3 orbit of the S3. This implies that we can do the integral over the RP3 directions

by doing it over the S3 and dividing by two to take into account the difference in volume.

3.1 Small amplitude expansion

In order to completely determine the action, it is necessary to give an ordering prescription

inside the trace. This has been shown to be a symmetrized trace up to quartic terms in

the fields, but it is unknown for higher order terms [42, 43], although there are concrete

proposals for additional derivative contributions up to O((α′)4) [44, 45]. For this reason,

and to simplify the calculation, we will do an expansion for small amplitudes and keep only

the lowest terms. In the expansion we will introduce a small parameter ε� 1:

Φi = εφi, AM = AMJ + εaM , AA = εaA. (3.6)

5We choose the same normalizations as [41] so the BI and WZ terms have the same overall factor.
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Where we have defined the matrix J as

J = σ3 ⊗ 1Nf . (3.7)

We are denoting by AM the ` = 0 mode of the gauge potential and aM the remaining ` > 0

modes. We can identify AM as the gauge field dual to the current of the U(1)B symmetry.

At leading order in the small ε expansion, the equations reduce to the (non-linear)

equations for the AM gauge field. It follows from the gauge invariance of the D-brane

action that flat connections FMN = 2∂[MAN ] = 0 satisfy the equations of motion to this

order. Note that charged fields on the brane can source the field strength of the AM gauge

field. However this will only happen at O(ε2) in the equations of motion, since the charge

current itself will be charge neutral. Therefore it is enough to keep only the quadratic terms

in the field strength FMN in the action for the class of solutions we will study. Also up to

O(ε2) the action has only quadratic products of flavor matrices and thus the symmetrized

trace is equivalent to the usual trace.

The action to next-to-leading order can then be split as6

SD7 ' −T7
∫
d4xdΩ3dρρ

3 Tr2Nf
[
LF + Lkin + Lm + LS3

]
, (3.8)

where

LF =
λ2

4
FMNFMN ,

Lkin =
ε2

4

√
detG

[
G44G

MN

(
Lλ
(
i[aM , J ]DNφ4+DMφ4i[aN , J ]

)
+λ2DMφ4DNφ4

)

+ λ2GMNG55DMφ5DNφ5 +
1

2
GMNGPQf̂MP f̂NQ +GMNGAB f̂MAf̂NB

]
,

Lm =
ε2

4

√
detG

[
L2
(
i[J, φ5]

)2
G44G55 +G44G

abL2i[aa, J ]i[ab, J ]
]
,

LS3 =
ε2

4

√
detG

[
G44G

AB
(
Lλ
(
i[aA, J ]DBφ4 +DAφ4i[aB, J ]

)
+ λ2DAφ4DBφ4

)
+ λ2G55G

ABDAφ5DBφ5 +
1

2
GADGBC f̂AB f̂DC

]
− ε2

4
C4ε

ABC f̂ρAf̂BC .

(3.9)

Indices are raised with the induced metric, and we have defined the covariant derivatives

(for any X = φi, aM , aA) and the field strengths as

DMX = ∂MX + i[J,X]AM , f̂ab = λ(Daab −Dbaa), AA = 0. (3.10)

6We are dropping a lower order contribution that depends on the embedding but is independent of the

fields, so it does not affect to the discussion.
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3.2 Integration over S3

Next, we expand in scalar (YS) and vector (YV ) spherical harmonics as follows

AM =
√

2πVMY0
S(Ω3),

φi =
∑
`≥0

N`
S∑

a=1

σi a` (x)Y` aS (Ω3),

aM =
∑
`≥1

N`
S∑

a=1

va`,M (x)Y` aS (Ω3),

aA =
∑
`≥1

N`
V∑

a=1

ηa` (x)Y` aV A(Ω3) +
∑
`≥1

N`
S∑

a=1

τa` (x)∇AY` aS (Ω3).

(3.11)

The number of modes for each ` is N `
S = (`+ 1)2 for scalar modes and N `

V = 2`(`+ 1) for

vector modes.

The harmonics are eigenvectors of the S3 Laplacian with eigenvalues (we follow the

conventions of [40])

∇2
S3Y`S = −`(`+ 2)Y`S , ∇2

S3Y`V A −R B
A Y`V B = −(`+ 1)2Y`V A. (3.12)

In addition, the vector spherical harmonics satisfy

∇AY`AV = 0, ε BC
A ∇BY`,±V C = ±(`+ 1)Y`,±V A. (3.13)

Note that N `
V is an even number, half of the harmonics correspond to the Y`,+V A and the

other half to the Y`,−V A. The harmonics form an orthonormal basis

∫
dΩ3 Y` aS Y`

′ b
S = δ``

′
δab,

∫
dΩ3 g

AB
S3 Y` aV AY`

′ b
V,B = δ``

′
δab. (3.14)

We introduce these expansions in (3.8), integrate by parts and use (3.12) and (3.13) to

get rid of derivatives along the S3 directions and use (3.14) to do the integrals. The orbifold

plus orientifold projections constrain the fields to have the form in (2.7). After integrating,

the fields that are neutral under the U(1)B symmetry are completely decoupled from the

rest at the order we are computing the action and we can turn them off. We will reduce the

action to a trace over Nf×Nf matrices using the results in appendix B. The action becomes:

SD7 ' −T7
∫
d4xdρρ3 TrNf

LF +
∑
`≥1
odd

N`
S∑

a=1

(
L` aσ +L` aτ +L` av +L` amix

)
+
∑
`≥2
even

N`
V /2∑
a=1

∑
α=±
L` aαη

 ,
(3.15)
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where, omitting the ` and spherical harmonic indices,

LF =
π2λ2

2
VMNVMN ,

Lσ = λ2
ε2

2
ρ3

[
R2

r2
GMN (DMσi)†DNσi +

4L2

λ2
R4

r4
(σ5)†σ5 +

`(`+ 2)

ρ2
(σi)†σi

]
,

Lτ = `(`+ 2)λ2
ε2

2
ρ3

[
r2

R2ρ2
GMN (DMτ)†DNτ +

4L2

λ2
1

ρ2
τ †τ

]
,

Lv = λ2
ε2

2
ρ3

[(
GMNGPQ −GMQGPN

)
(DMvP )†DNvQ

+ `(`+ 2)
r2

R2ρ2
GMNv†MvN +

4L2

λ2
R2

r2
GMNv†MvN

]
,

L±η = λ2
ε2

2
ρ3

[
r2

R2ρ2
GMN (DMη±)†DNη± +

4L2

λ2
1

ρ2
(η±)†η± + (`+ 1)2

r4

R4ρ4
(η±)†η±

∓ (`+ 1)
r4

ρ3R4

[
∂ρ(η

±)†η± + h.c.
]]
,

Lmix = λ2
ε2

2
ρ3

[
2iL

λ

R2

r2
GMN

(
v†MDNσ

4 − vM (DNσ4)†
)

− `(`+2)
r2

R2ρ2
GMN

[
(DMτ)†vN + h.c.

]
+

1

ρ2
2iL

λ
`(`+2)

[
τ †σ4 − h.c.

]]
, (3.16)

where the covariant derivative and field strength now are

DMX = ∂MX + 2iVMX, VMN = ∂MVN − ∂NVM . (3.17)

The charged fields are antisymmetric Nf ×Nf matrices XT = −X, while VM ∝ 1Nf .

4 Spontaneous breaking of baryon symmetry

In the absence of light baryons, two different kind of phases with a non-zero density of

baryon charge have been studied in holographic models with flavor branes. In one type,

the baryon charge is sourced by strings extending between the flavor brane and the horizon.

In the dual field theory this corresponds to a state where the charge is carried by quarks

rather than baryons. In the other type of phase, there is a baryon vertex that sources the

charge. The baryon vertex has equivalent descriptions as a brane wrapping the internal

directions or a solitonic configuration on the brane with flux along the internal directions.

This corresponds to a state with heavy baryons in the dual field theory.

In a theory of light baryons there is a third kind of state with non-zero charge density

that can appear naturally. The light baryon operator, that is charged under baryon sym-

metry, can acquire a non-zero expectation value. In the gravity side, this corresponds to
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having a solution of finite energy density where the fields dual to the light baryon opera-

tors are turned on. Since they are charged under the U(1)B symmetry on the brane, these

solutions will also support a non-zero flux.

In principle we expect that for a zero chemical potential the ground state has zero

charge density. As the chemical potential is increased there can be a phase transition to

the phase with spontaneously broken symmetry. A necessary condition is that there are

solutions for the fields on the brane that satisfy the right boundary conditions, they have

to be regular at the tip of the brane and normalizable close to the boundary. If such

solutions exist, then one has to compare the free energy of each phase to determine which

one is thermodynamically favored. In the following we will show that at large enough

values of the chemical potential a phase with spontaneous symmetry breaking exists and

is thermodynamically preferred over the zero charge phase.

4.1 Small amplitude solutions of charged fields

We work in the small amplitude expansion that we introduced in the previous section. To

leading order, we just introduce a chemical potential µ as a constant value for the U(1)B
gauge field

VM = µδ0M . (4.1)

To the next order we have to solve the linear equations for the charged fields. For conve-

nience we define

v0 = 2iµṽ0, σ4 = 2i
L

λ
σ̃4, (4.2)

and

µ̃2 = 4

(
µ2 − L2

λ2

)
. (4.3)

From (3.15) and (3.16) we get the following set of equations for each ` and spherical

harmonic

• σ5

0 = ∂ρ
(
ρ3∂ρσ

5
)
− `(`+ 2)ρσ5 + µ̃2ρ3

R4

r4
σ5. (4.4)

• η

0 = ∂ρ

(
ρ
r4

R4
∂ρη
±
)
− (`+ 1)2

r4

ρR4
η± + µ̃2ρη± ∓ (`+ 1)∂ρ

(
r4

R4

)
η±. (4.5)

• vi
0 = ∂ρ(ρ

3∂ρvi)− `(`+ 2)ρvi + µ̃2ρ3
R4

r4
vi. (4.6)

• ṽ0
0 = ∂ρ(ρ

3(vρ − ∂ρṽ0)) + `(`+ 2)ρ(ṽ0 − τ) +
4L2

λ2
ρ3
R4

r4
(ṽ0 − σ̃4). (4.7)

• vρ

0 = `(`+ 2)
r4

R4ρ2
(vρ − ∂ρτ)− 4µ2(vρ − ∂ρṽ0)−

4L2

λ2
(∂ρσ̃

4 − vρ). (4.8)
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• τ
0 = ∂ρ

[
ρ
r4

R4
(vρ − ∂ρτ)

]
+ 4µ2ρ(ṽ0 − τ)− 4L2

λ2
ρ3(σ̃4 − τ). (4.9)

• σ4

0 = ∂ρ(ρ
3(∂ρσ̃

4 − ṽρ))− `(`+ 2)ρ(σ̃4 − τ) + 4µ2ρ3
R4

r4
(σ̃4 − ṽ0). (4.10)

Note that there is a residual gauge symmetry that leaves the equations invariant

δṽ0 = δτ = δσ̃4 = α, δvρ = ∂ρα. (4.11)

We can then fix the gauge to ṽ0 = 0. If we add (4.7)+(4.10), we get a decoupled equation

for σ̃4 which is the same as the equation for σ5 (4.4)

0 = ∂ρ

(
ρ3∂ρσ̃

4
)
− `(`+ 2)ρσ̃4 + µ̃2ρ3

R4

r4
σ̃4. (4.12)

On the other hand, we can check that the equations are not all independent, since

∂ρ(ρ
3 (4.8)) −`(` + 2)(4.9) +4µ2 (4.7) +4L2

λ2
(4.10) = 0. We will discard (4.9). From (4.7)

we get

τ =
1

`(`+ 2)

[
1

ρ
∂ρ

(
ρ3vρ

)
− 4L2

λ2
ρ2
R4

r4
σ̃4
]
. (4.13)

Substituting in (4.8), we get

0 = ∂ρ

[
1

ρ
∂ρ

(
ρ3vρ

)]
− `(`+ 2)vρ + µ̃2ρ2

R4

r4
vρ −

4L2

λ2
∂ρ

(
ρ2
R4

r4

)
σ̃4. (4.14)

Except for τ and vρ, the equations of motion are the same as for the fluctuations in [40],

with the substitution of the mass by the chemical potential M2 −→ µ̃2. The relation is

σ5, σ̃4 → φ, η± → φ±I , vi → φII , vρ → φIII , τ → φ̃III . (4.15)

For vρ and τ the difference are the inhomogeneous terms proportional to σ̃4. The analysis

in [40] showed that there are solutions that are both regular and normalizable for discrete

values of the mass. Since the equations we have derived are almost identical, we expect that

in our case for a set of discrete values of the chemical potential regular and normalizable

solutions to exist. We only need to determine the effect of the additional terms in the

equation for vρ. Let us denote by v
(h)
ρ the solution to the homogeneous equation, which is

the same as in [40], and write

vρ = v(h)ρ V. (4.16)

The expansion of the solutions close to the boundary and at the tip of the brane are

v(h)ρ ∼
ρ→∞

1

ρ`+3
, v(h)ρ ∼

ρ→0
ρ`−1,

σ̃4 ∼
ρ→∞

1

ρ`+2
, σ̃4 ∼

ρ→0
ρ` .

(4.17)
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Then (4.14) becomes

0 = ∂2ρV +

(
5

ρ
+ 2

∂ρv
(h)
ρ

v
(h)
ρ

)
∂ρV −

4L2

λ2
∂ρ

(
ρ2
R4

r4

)
σ̃4

v
(h)
ρ

. (4.18)

Let us define

K = ρ5(v(h)ρ )2, (4.19)

so the coefficient of ∂ρV is ∂ρK/K. Then, the solution for the first derivative is

∂ρV =
4L2

λ2
1

K

∫ ρ

0
dρ̃K∂ρ̃

(
ρ̃2
R4

r4

)
σ̃4

v
(h)
ρ

. (4.20)

The limit of the integral is fixed by regularity of the solution at ρ = 0. Close to the

boundary

∂ρV ∼
ρ→∞

ρ2`+1. (4.21)

Therefore,

vρ ∼
ρ→∞

ρ`−1. (4.22)

Since this turns on a non-normalizable contribution, we would have to add to vρ a non-

normalizable homogeneous solution such that the leading terms are canceled out. However,

for the values of µ̃ for which there is a normalizable and regular σ̃4, the non-normalizable

homogeneous solution of vρ is not regular. Then, we have to set σ̃4 = 0.

With this condition the equations are the same as in [40], so we can borrow their results

for the meson spectrum with the proper identification between the mass and the chemical

potential. The critical values of the chemical potential for which regular and normalizable

solutions exist are

• σ5

µ̃2 =
4L2

R4
(n+ `+ 1)(n+ `+ 2), n = 0, 1, 2, . . . , ` ≥ 1 odd. (4.23)

• η

(µ̃+)2 =
4L2

R4
(n+ `+ 2)(n+ `+ 3), n = 0, 1, 2, . . . , ` ≥ 2 even,

(µ̃−)2 =
4L2

R4
(n+ `)(n+ `+ 1), n = 0, 1, 2, . . . , ` ≥ 2 even.

(4.24)

• vi
µ̃2 =

4L2

R4
(n+ `+ 1)(n+ `+ 2), n = 0, 1, 2, . . . , ` ≥ 1 odd. (4.25)

• vρ, τ

µ̃2 =
4L2

R4
(n+ `+ 1)(n+ `+ 2), n = 0, 1, 2, . . . , ` ≥ 1 odd. (4.26)

The lowest value is for n = 0 and ` = 1 (σ5, vi, vρ, τ) or ` = 2 (η−). This gives the critical

chemical potential

µ2c =
L2

λ2
+

6L2

R4
=
R4

λ2

(
L2

R4
+
λ2

R4

6L2

R4

)
. (4.27)
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Note that R4/λ2 = λYM
(2π)2

, where λYM is the ’t Hooft coupling in the dual field theory. On the

other hand, L/R2 is the mass scale of mesons, the mass gap is m2
gap = 8L2/R4 [40]. Then,

µ2c =
λYM

8(2π)2

(
1 +

6(2π)2

λYM

)
m2

gap. (4.28)

This implies that µc is of the order of the quark mass mq ∼
√
λYMmgap.

4.2 Backreaction on the gauge field

We have found that when µ = µc, there are regular and normalizable solutions for σ5`=1 (4

modes), η−`=2 (6 modes), v`=1, i (4 modes) and v`=1, ρ, τ`=1 (4 modes). These are members of

the lowest supermultiplet in the antisymmetric representation (jL = 1/2). If any (possibly

all) of them are non-zero, there will be expectation values for charged operators in the

dual field theory. The solution will then be dual to a superfluid state with spontaneously

broken baryon symmetry. If v`=1, i 6= 0 the condensate will have a p-wave component and

rotational invariance will be broken as well. In contrast to the usual D3/D7 model here

scalar condensation can happen at the same time as vector condensation.

Let us compute the equation of motion for the gauge field. Taking a variation of the

small amplitude action (3.15), (3.16) with respect to the gauge potential we find

∂N

(√
−GVNM

)
=

ε2

2π2
JM . (4.29)

We can split the current as

JM =
1

Nf
TrNf

∑
`≥1
odd

N`
S∑

a=1

(
JM `a
σ + JM `a

v + JM `a
τ

)
+
∑
`≥2
even

N`
V /2∑
a=1

∑
α=±

JM `aα
η

 , (4.30)

where, omitting the ` and spherical harmonic indices,

JMσ = iρ3GMN R
2

r2

[(
DNσ5

)†
σ5 − (σ5)†DNσ5

]
,

JMv = iρ3
(
GMNGPQ −GMQGNP

)[(
DNvQ

)†
vP − v†PDNvQ

]
,

JMτ = iρGMN r2

R2
`(`+ 2)

[(
DNτ − vN

)†
τ − τ †

(
DNτ − vN

)]
,

JM ±η = iρGMN r2

R2

[(
DNη±

)†
η± − (η±)†DNη±

]
.

(4.31)

Since the charged fields are antisymmetric in flavor indices, they will not source the non-

Abelian components of the gauge field if Nf = 2. For Nf > 2 they can be ignored at this

level of the small amplitude analysis, as we have the freedom to select any configuration of

the charged fields, and in particular pick one that only sources the Abelian gauge field. A

full analysis taking into account the non-Abelian components is beyond the scope of this

paper and we will postpone it for future work.
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Taking into account that the solutions for homogeneous fields are time-independent

and homogeneous, and that the dependence on ρ is the same for a field and its hermi-

tian conjugate (only an overall constant coefficient changes), one can show that Jρ = 0.

Therefore, the field strength is time-independent and homogeneous as well

∂ρ

(
ρ3ηµνVρν

)
=

ε2

2π2
Jµ, (4.32)

where

J0
σ = −4µρ3

R4

r4
(σ5)†σ5,

J0
v = −4µρ3

(
R4

r4
δijv†i vj + v†ρvρ

)
,

J0
τ = −4µρ`(`+ 2)τ †τ,

J0±
η = −4µρ(η±)†η±.

(4.33)

and

J iσ = 0,

J iv = iρ3δij
(
v†ρ∂ρvj − ∂ρv

†
jvρ

)
,

J iτ = iρδij`(`+ 2)
(
τ †vj − v†jτ

)
,

J i±η = 0.

(4.34)

Using the equation of motion for τ :

τ =
1

`(`+ 2)

1

ρ
∂ρ

(
ρ3vρ

)
, (4.35)

the spatial components of the current becomes a total derivative

J iv + J iτ = iδij∂ρ

[
ρ3
(
v†ρvj − v

†
jvρ

)]
. (4.36)

This leads to the equation

Vρi =
1

2π2

∑
`≥1
odd

N`
S∑

a=1

1

Nf
TrNf

[
iε2
(
v†ρvi − v

†
i vρ

)]
. (4.37)

The normalizable solution would be

Vi =
1

2π2

∑
`≥1
odd

N`
S∑

a=1

1

Nf
TrNf

[
−iε2

∫ ∞
ρ

(
v†ρvi − v

†
i vρ

)]
. (4.38)

Note that this contribution vanishes for Nf = 2, or in some other cases, for instance if vi
and vρ are proportional to the same flavor matrix.

For the time component, the regular solutions are

∂ρV0 = − 1

2π2
ε2

ρ3

∫ ρ

0
J0, (4.39)

and the normalizable solution is

V0 =
1

2π2
ε2
∫ ∞
ρ

dρ1
ρ31

∫ ρ1

0
J0. (4.40)
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4.3 Free energy

According to the usual AdS/CFT dictionary, the free energy density is equal to minus the

on-shell action density (in Lorentzian signature)

F = −LD7 ' T7
∫
dρρ3 TrNf

LF +
∑
`≥1
odd

N`
S∑

a=1

(
L` aσ +L` aτ +L` av +L` amix

)
+
∑
`≥2
even

N`
V /2∑
a=1

∑
α=±
L` aαη

,
(4.41)

where each of the terms (3.16) has to be evaluated on the solutions to the equations of

motion. Integrating by parts the terms with derivatives acting on the (σi)†, v†M , τ
† and

(η±)† and using the equations of motion for the fields σi, vM , τ and η±, the action for

the charged fields reduces to a boundary term, which for each ` and spherical harmonic

component has the form

Lcharged ∼ lim
ρ→∞

λ2
ε2

2
ρ3

[
(σ5)†∂ρσ

5 + δijv†i ∂ρvj + `τ (`τ + 2)
r4

R4ρ2
τ †
(
∂ρτ − vρ

)
+
∑
α=±

r4

R4ρ2
(ηα)†∂ρη

α + (`η + 1)
r4

R4ρ3
(ηα)†ηα

]
.

(4.42)

However, the solutions we are considering are normalizable, so they vanish as ρ → ∞ in

such a way that the contribution to the on-shell action vanishes as well Lcharged = 0.

Then, the free energy density is determined by the action for the gauge field

F '
Nf

2
π2λ2T7

∫ ∞
0

dρρ3 VMNVMN = −Nfπ
2λ2T7

∫ ∞
0

dρρ3
[(
∂ρV0

)2 − (∂ρVi)2]. (4.43)

The ground state of the system is the one of lowest free energy. If the charge is zero,

then ∂ρVM = 0 and the free energy density vanishes. From the expression above we see

that when the charged fields are non-zero the free energy becomes negative generically, in

particular if Vi = 0. Therefore, states with non-zero charge density are thermodynamically

favored and as soon as the chemical potential reaches the critical value, a condensate will

form and the U(1)B symmetry will be spontaneously broken. However, at this order in

the expansion the amplitude of the charged fields can have arbitrary values (as long as the

expansion does not break down), so we cannot determine the endpoint of the condensation.

5 Ground state in a simple case

If the amplitude of the fields becomes large one can run into the problem of not having

a full definition of the non-Abelian brane action. This could be avoided when the action

has an expansion in λ such that one can consistently keep the lower order terms. The

usual flat spacetime expansion of [41] in the gauge field Aa and scalars Φi does not work in

this case because of the additional terms that appear when there are two stacks of probe

branes separated by a distance 2L. We can nevertheless attempt an expansion in λ by

taking L ∼ λ
L =

λ

R2
L̃, L̃ ∼ R. (5.1)
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Physically, this choice corresponds to making the mass of the quarks of order one in the

strong coupling expansion mq ∼ O(λ0YM).

Even with the expansion above, the phase diagram of the model with light baryons that

we are studying is potentially quite complicated, since there are many charged operators

that can condense as soon as the chemical potential reaches the critical value. However, in

order to show the existence of a charged ground state, it would be enough to introduce a

consistent ansatz such that only a few fields on the brane are turned on. Thus, we will make

a series of simplifications that will allow us to reduce to a simple system corresponding to a

particular section of the phase diagram where only one type of scalar operator condenses.

5.1 Effective action and equations

We saw that for small amplitudes Φ4 = 0, so we will take this condition to be part of the

ansatz. This simplifies the matrix Q

Q4
4 = Q5

5 = 1, Q4
5 = LG55

(
i[J,Φ5]

)
, Q5

4 = LG44

(
i[Φ5, J ]

)
. (5.2)

Such that

detQ = 1 + L2
(
i[J,Φ5]

)2
G44G55. (5.3)

The main complication of the action is the non-quadratic coupling between charged fields.

In order to gain some understanding of the charged phase we will further simplify our

action by setting the charged vector fields to zero, so we are left with Φ5 and the U(1)B
gauge field. In this case

P
[
Eai

(
Q−1 − δ

)ij
Ejb

]
= 0. (5.4)

The Born-Infeld action is

SBI = −1

2
T7

∫
d4xdΩ3dρTr2NfLBI, (5.5)

LBI = ρ3
√

12Nf + L2G44G55

(
i[J,Φ5]

)2√
det
[
δ b
a 12Nf + λ2G55GbcDaΦ5DcΦ5 + λGbcFac

]
.

We will impose that the solutions are static and homogeneous in the field theory directions,

so the only dependence of the fields is along the S3 directions and the radial coordinate,

and we will turn on only the time component of the U(1)B gauge field.

We will also restrict to the simpler case of Nf = 2, for which the charged fields are SU(2)

singlets, so we can neglect the non-Abelian part of the flavor gauge field. We will also turn

off the even modes that are not charged under the baryon symmetry after the projection

(but charged under the SU(2) flavor symmetry). The two sectors could be coupled only

by quartic terms, so there are always solutions where the U(1)B neutral fields are turned

off. However, the coupling between the two sectors may trigger an instability such that

the U(1)B neutral fields become nonzero, we will not consider this possibility here.

For Nf = 2 (σ2 is the antisymmetric Pauli matrix)

Φ5 =

(
0 φ5σ2

φ5σ2 0

)
. (5.6)
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Note that (
i[J,Φ5]

)2
= 4

∣∣φ5∣∣2 14. (5.7)

Expanding to O(λ2)

SD7 ' −2T7

∫
d4xdΩ3dρLD7,

LD7 = ρ3

[
1+2L2G44G55|φ5|2+2λ2G55G

00A2
0|φ5|2+

λ2

2
G55

(
Gρρ|∂ρφ5|2+GAB∂Aφ5∂Bφ

5
)

+
λ2

2
GρρG00

(
∂ρA0

)2]
. (5.8)

Expanding in spherical harmonics

φ5 =
∑
`≥1
odd

N`
S∑

a=1

σa`Y` aS (Ω3), A0 =
√

2πV0Y0
S(Ω3), (5.9)

and integrating over the S3 directions (we omit the ` and spherical harmonic indices in the

second line)

SD7 ' −2T7

∫
d4xdρ

ρ3 + LV +
∑
`≥1
odd

N`
S∑

a=1

L` aσ

 ,
Lσ = ρ3

[
2L2R4

(ρ2+L2)2
|σ|2−2λ2

R4

(ρ2+L2)2
V20 |σ|2+

λ2

2

(
|∂ρσ|2 +

`(`+2)

ρ2
|σ|2

)]
,

LV = −π2λ2ρ3
(
∂ρV0

)2
.

(5.10)

The equations of motion are

0 = σ′′ +
3

ρ
σ′ − `(`+ 2)

ρ2
σ +

4R4

(ρ2 + L2)2

(
V20 −

L2

λ2

)
σ,

0 = V ′′0 +
3

ρ
V ′0 −

2R4

π2(ρ2 + L2)2
|σ|2V0.

(5.11)

We can eliminate the dependence on λ, L and R from the equations through the following

change of variables

ρ = Lx, V0 =
L

λ
+

λL

4R4
α0, σ = π

λL

2
√

2R4
s. (5.12)

Then, to leading order in the λ expansion, the equations become

0 = s′′ +
3

x
s′ − `(`+ 2)

x2
s+

2α0

(x2 + 1)2
s,

0 = α′′0 +
3

x
α′0 −

|s|2

(x2 + 1)2
.

(5.13)

These resemble the typical equations of charged holographic superconductors in the probe

approximation. A difference is that the effective background geometry has no horizon, but

ends smoothly at x = 0.
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Figure 1. Scalar (left) and gauge field (right) solutions as functions of the radial coordinate for

three different values of α
(0)
B . The boundary is at u = 0 and the tip of the brane at u = 1.

5.2 Solutions

The equations (5.13) are non-linear and have no known analytical solutions. We resort

to numerics to find a solution for the lowest angular momentum ` = 1. First, we change

coordinates to constraint the calculation to a finite interval. We define

s(x) = x y(x), x =
1

u
− 1, (5.14)

so that the boundary is at u = 0 and the tip of the brane at u = 1. Normalizable solutions

have the following expansions at the boundary

y =
∑
n≥4

y
(n)
B un, α0 = α

(0)
B +

∑
n≥2

α
(n)
B un , (5.15)

with undetermined coefficients y
(4)
B , α

(0)
B and α

(2)
B .

Regular solutions at the tip of the brane have an expansion

y = y
(0)
H +

∑
n≥2

y
(n)
H (u− 1)n, α0 = α

(0)
H +

∑
n≥4

α
(n)
H (u− 1)n. (5.16)

The undetermined coefficients are y
(0)
H and α

(0)
H .

The coefficient α
(0)
B determines the value of the chemical potential and we will take its

value as an input for our calculation. To find the solution we shoot from the boundary

(u = 0) and from the tip (u = 1) of the brane and match the two solutions at u = 1/2.

There are four matching conditions from taking the values of y and α0 and of their first

derivatives to be the same at the midpoint. These four conditions fix the value of the

coefficients y
(4)
B , α

(2)
B , y

(0)
H and α

(0)
H . In figure 1 we plot some of the numerical solutions we

find with this method.

The coefficient y
(4)
B is proportional to the the expectation value of the charged operator〈

QĀX5Q
〉
, while α

(2)
B is proportional to the baryon charge density

〈
J0
B

〉
. The expectation

values of dual operators can be computed by following the usual AdS/CFT prescription.

The variation of the on-shell action gives a total derivative term

δSD7 = lim
ρ→∞

−2T7

∫
d4xρ3

[
λ2

2

(
∂ρσ

†δσ + ∂ρσδσ
†
)
− 2π2λ2∂ρV0δV0

]
. (5.17)
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We can identify the leading terms in the expansions of δσ and δṼ0 as variations of sources for

the dual fields, δJ and δµ, and the subleading terms will determine the expectation values

δσ =
1

R

[
ρ

L
δJ +

L3

ρ3
R4δσ(4)

]
, δV0 = δµ+

L2

ρ2
R2δV(2)0 . (5.18)

Then, the identification of the on-shell gravity action with the generating functional of the

dual field theory leads to the following expressions for the expectation value of the dual

operators

〈
QĀX5Q

〉
=
δSD7

δJ
= lim

ρ→∞
−T7

λ2

R

ρ4

L
∂ρσ,

〈
J0
B

〉
=
δSD7

δµ
= lim

ρ→∞
4π2T7λ

2ρ3∂ρV0. (5.19)

The relation between the coefficients of the numerical calculation and physical observables

in the field theory is

µ =
L

λ
+

λL

4R4
α
(0)
B ,

〈
QĀX5Q

〉
=

3π

2
√

2

λ3L3

R5
T7y

(4)
B ,

〈
J0
B

〉
= −2π2λ3L3

R4
T7α

(2)
B . (5.20)

To this order in λ, the critical value of the chemical potential (4.27) corresponds to

α
(0)
B = 12. We plot the numerical values in figure 2. For values of the chemical poten-

tial below the critical value, the condensate and the charge density are zero. At the critical

chemical potential there is a second order phase transition of mean field type to the spon-

taneously broken phase and the condensate and the charge density increase monotonically

as the value of the chemical potential increases. We do not observe any special feature at

α
(0)
B = 24, which would correspond to the critical value for n = 1 in (4.23), but it is possible

that a second solution, not connected to the one we are computing, exists after this point.

5.3 Free energy and thermodynamics

The free energy density is equal to minus the on-shell action density (in Lorentzian signa-

ture). Although the on-shell action is divergent, the divergence can be removed by adding

a suitable counterterm proportional to the volume of the brane or by subtracting with

respect to a reference state, that we can take to be the zero charge density state. In this

case, the finite free energy density is7

F = 2T7

∫ ∞
0

dρ

LV +
∑
`≥1
odd

N`
S∑

a=1

L` aD7

 . (5.21)

Integrating by parts the action for σ and using the equations of motion, one finds that the

only non-vanishing contribution is proportional to the action of the gauge field

F = −2π2λ2T7

∫ ∞
0

dρρ3
(
∂ρV0

)2
. (5.22)

7In general more counterterms are required to regularize the on-shell action, but in the case at hand

where all the solutions are normalizable we can neglect this issue.
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Figure 2. Scalar condensate (left) and charge density (right) as functions of the chemical potential.

The last graph is a zoom of the first graph near the critical value of the chemical potential. The rela-

tions between the dimensionless quantities in the figures and the physical ones are given by (5.20).

Changing variables to the dimensionless coordinates and numerical functions, the free en-

ergy density becomes

F = −π
2λ4L4

8R8
T7

∫ ∞
0

dxx3
(
∂xα0

)2 ≡ π2λ4L4

8R8
T7f̂ . (5.23)

We have plotted the dimensionless value f̂ in figure 3. As we can see, the behavior is con-

sistent with having a second order phase transition from the zero charge phase to the spon-

taneously broken phase as the value of the chemical potential surpasses the critical value.

The free energy density is equal to minus the pressure p = −F , and the charge density

is the derivative with respect to the chemical potential n = ∂p
∂µ . The thermodynamic

energy density is the Legendre transformation of the free energy density with respect to

the chemical potential, thus

ε = µn− p. (5.24)

From these expressions one finds that the speed of sound is

c2s =
∂p

∂ε
=

n

µ∂n∂µ
. (5.25)

The speed of sound measures the stiffness of the equation of state, or in other words, how

difficult it is to compress to smaller volumes the matter in nonzero charge phase. We can
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Figure 3. Free energy as a function of the chemical potential. The relation between the dimen-

sionless quantities in the figure and physical ones is given by (5.20), (5.23).
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Figure 4. Speed of sound as a function of the chemical potential. The relation between the

dimensionless quantities in the figure and physical ones is given by (5.20), (5.26).

identify the thermodynamic charge density with n =
〈
J0
B

〉
in (5.20). Then, in terms of the

coefficients computed through the numerical solutions:

c2s '
λ2

4R4

a
(2)
B(

∂a
(2)
B /∂a

(0)
B

) ≡ λ2

4R4
ĉ2s. (5.26)

The speed of sound is parametrically small, so the spontaneously broken phase is very

soft. At the transition the speed of sound goes to zero. We have plotted the coefficient ĉ2s
in figure 4.

6 Summary and outlook

Light baryon operators exist in the large-Nc limit if the Nc = 3 anti-fundamental repre-

sentation is identified with the two-index antisymmetric representation. In [35] a string

theory construction was proposed as a holographic dual of a concrete large-Nc theory with

light baryons. The model consists of the near-horizon geometry of Nc D3 branes on a Z2

orbifold together with an orientifold O7 plane and Nf probe (flavor) D7 branes. A set of
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modes of the fields on the D7 branes are dual to the light baryon operators. Using the

string theory model, we have shown that above a critical baryon chemical potential of the

order of the quark mass, there will be a transition from the vacuum to a novel phase with

spontaneously broken baryon symmetry, a baryon superfluid. The new phase would be re-

alized by having a non-trivial profile of the modes on the D7 branes dual to the light baryon

operators. By restricting to a subsector where a single scalar operator condenses and the

quark mass is mq ∼ O
(
λ0YM

)
, we were able to find a solution for the dual fields on the

brane and compute the thermodynamic properties of the superfluid phase. An analogous

superfluid phase exists for isospin charge in the usual models with flavor branes [46].

There are many possible extensions of this work. An open question is what is the

true ground state of the theory above the critical chemical potential or when the distance

between the D3 and D7 branes is not of the order of string length. We have studied only

the formation of a homogeneous condensate of a single scalar operator, but there are many

others that can condense at the same value of the chemical potential, even some vector op-

erators. The state that minimizes the free energy could be a combination of s- and p-wave

components and there could be some degeneracy. It could also happen that the homoge-

neous state becomes unstable and some spatial symmetries break in the ground state, as

has been found in some instances in the Sakai-Sugimoto model [47–49]. As the value of the

chemical potential is increased, more operators would be susceptible to form a condensate.

A natural next step is to consider nonzero temperature. Even for small temperatures

compared to the quark mass, the phase diagram will be affected because the superfluid

baryon phase described here will compete with a phase where quarks do not form bound

states, corresponding to D7 branes falling into the horizon. The baryon charge can be at the

horizon, in which case it is associated with deconfined quarks in the field theory dual, or it

could also be carried by the modes dual to the light baryons, giving a superfluid component.

There can also be a competition with phases with an isospin superfluid component due to

the formation of a meson condensate, as the ones found in [50–52].

Further physical quantities that can be of interest are correlation functions in the

charged phase and in particular transport coefficients and the dispersion relation of col-

lective modes. It may also be possible to derive an effective action for the superfluid or a

hydrodynamic description of the mixed phase with no bound states of quarks.

A short and non-exhaustive list of interesting generalizations of this work would be:

• To go beyond the limit of small number of flavors, i.e. to take Nf/Nc ∼ O(1). This

requires considering the backreaction of the flavor branes on the geometry, which

is a difficult task, but that can be made tractable by “smearing”, so the individual

branes are replaced by a continuous distribution [53]. This approach has already

been succesfully applied to finite density configurations in [54–58].

• To look for other stringy constructions with light baryon operators, in particular in ge-

ometries which are dual to theories with confinement, such as Klebanov-Strassler [59].

• On a different note it could be possible to construct topological superfluids along the

lines of the holographic topological insulators studied in [60, 61].

We hope to be able to develop these possible directions and others in the future.
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A Explicit form of the orbifold projection

A S3 is a hypersurface in R4 determined by the equation

x21 + x32 + x23 + x24 = 1. (A.1)

The toroidal/Hopf parametrization is

x1 = cosχ cos θ,

x2 = cosχ sin θ,

x3 = sinχ cosϕ,

x4 = sinχ sinϕ.

(A.2)

With χ ∈ [0, π/2], θ, ϕ ∈ [0, 2π]. We can group the xi in complex coordinates

w = x1 + ix2 = cosχeiθ, z = x3 + ix4 = sinχeiϕ, (A.3)

so that the equation for S3 is equivalent to the condition detU = 1 for the SU(2) matrix

U =

(
w iz

iz̄ w̄

)
. (A.4)

The detU = 1 condition is invariant under SU(2)L × SU(2)R transformations

U −→ gLUgR. (A.5)

Note that the U(1)L rotation gL = eiαLσ
3

shifts

θ → θ + αL, ϕ→ ϕ+ αL, (A.6)

while the U(1)R rotation gR = eiαRσ
3

shifts

θ → θ + αR, ϕ→ ϕ− αR. (A.7)

The Z2 ⊂ SU(2)L subgroup that we use to do the orbifold consists of the identity and the

U(1)L transformation with αL = π.

Before the orbifold, the fields on the brane are periodic in the (θ, ϕ) directions if we

are not considering non-trivial fiber bundles. However, these are not the right boundary
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conditions for the fields that survive the projections. Let us do a large gauge transformation

(periodic up to an element of the center of SU(2Nf )) on the torus γ(θ, ϕ)

γ(θ + 2π, ϕ) = γ(θ, ϕ)e
2πi

nθ
2Nf ,

γ(θ, ϕ+ 2π) = γ(θ, ϕ)e
2πi

nϕ
2Nf .

(A.8)

Where nθ, nϕ = 0, 1, . . . , 2Nf − 1. The fields will be

AM −→ AγM = γAMγ
−1,

Φ −→ Φγ = γΦγ−1,

AA −→ AγA = γAAγ
−1 − iγ∂Aγ−1.

(A.9)

We can expand the AM , Φ and AA that are sandwiched between the γs in spherical har-

monics as usual. The orbifold projection can be formulated as the periodicity condition

(for X = AM , AA,Φ)

Xγ(θ + π, ϕ+ π) = Xγ(θ, ϕ). (A.10)

The form of the projection (2.6) imposes the following condition:

γ(θ + π, ϕ+ π) = γ(θ, ϕ)γ7. (A.11)

A set of possible transformations labelled by n = 0, 1, . . . , Nf are

γn,±(θ, ϕ) =

 e
i

2Nf
(nθ+(Nf−n)ϕ)

1Nf

e
i

2Nf
(nθ+(Nf−n)ϕ)− i

2
(θ+ϕ±(θ−ϕ)

1Nf

 . (A.12)

Note that

−iγ−1n,±∂θγn,± =

 n
2Nf

1Nf (
n

2Nf
− 1±1

2

)
1Nf

 ,

−iγ−1n,±∂ϕγn,± =

 Nf−n
2Nf

1Nf (
Nf−n
2Nf

− 1∓1
2

)
1Nf

 , (A.13)

If we impose that these matrices have the structure of the projected fields compatible with

the orientifold projection in (2.8), we are restricted to two possibilities

γNf ,+ =

(
e
iθ
2 1Nf

e− iθ2 1Nf

)
, γ0,− =

(
e
iϕ
2 1Nf

e− iϕ2 1Nf

)
. (A.14)

B Projected form of covariant derivatives and commutators

Let us compute the covariant derivative of block diagonal fields Xd. In the following we

will denote 2Nf × 2Nf fields with hats, X̂d and the Nf ×Nf without hats, Xd. Then,

D̂MX̂d = ∂MX̂d + i[ÂM , X̂d] =

(
DMXd

−(DMXd)
∗

)
. (B.1)

– 26 –



J
H
E
P
0
1
(
2
0
1
7
)
1
3
9

Where

DMXd = ∂MXd + i[AM , Xd]. (B.2)

The covariant derivative of block off-diagonal fields Xo is

D̂MX̂o = ∂MX̂o + i[ÂM , X̂o] =

(
DMXo

−(DMXo)
∗

)
. (B.3)

Where

DMXo = ∂MXo + i (AMXo +XoA
∗
M ) . (B.4)

Note that XT
o = −Xo implies (DMXo)

T = −DMXo.

We will also need the commutator between two fields. For the block diagonal fields

i[X̂1
d , X̂

2
d ] =

(
i[X1

d , X
2
d ]

i
(

[X1
d , X

2
d ]
)∗) . (B.5)

This preserves the same block diagonal structure. For the block off-diagonal fields

i[X̂1
o , X̂

2
o ] =

 i
[
X2
o (X1

o )∗ −X1
o (X2

o )∗
]
i
[
(X2

o )∗X1
o − (X1

o )∗X2
o

] . (B.6)

This also has the same block diagonal structure. Using XT
o = −Xo, we can write it as

i[X̂1
o , X̂

2
o ] =

 i
[
X1
o (X2

o )† −X2
o (X1

o )†
]
i
[
(X1

o )†X2
o − (X2

o )†X1
o

] . (B.7)

Since the structure of 2Nf × 2Nf matrices is preserved by the covariant derivative and

the commutator, all the terms in the action can be written as the product of two block

diagonal or two block off-diagonal matrices. The product of two block diagonal matrices is

X̂1
dX̂

2
d =

(
X1
dX

2
d

(X1
d)T (X2

d)T

)
, (B.8)

where we have used that X†d = Xd.

The product of two block off-diagonal is

X̂1
o X̂

2
o =

(
X1
o (X2

o )†

(X1
o )†X2

o

)
, (B.9)

where we have used that XT
o = −Xo.

In each case the trace becomes

Tr2Nf

(
X̂1
dX̂

2
d

)
= TrNf

[
X1
dX

2
d + (X1

d)T (X2
d)T
]

= 2 TrNf

(
X1
dX

2
d

)
,

Tr2Nf

(
X̂1
o X̂

2
o

)
= TrNf

[
X1
o (X2

o )† + (X1
o )†X2

o

]
= TrNf

[
X1
o (X2

o )† + h.c.
]
,

(B.10)

where in both cases we have used the cyclic property of the trace and for the block diagonal

fields TrXT
d = TrXd.
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