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ABSTRACT 
 

 

 

DNA microarrays are a high throughput technology used to measure the expression 

levels of thousands of genes. Microarray datasets may contain up to thousands or 

tens of thousands of columns (genes) but only tens or hundreds of rows (samples). 

Discovering frequent patterns from microarray datasets is very important and useful 

to derive biological knowledge from gene expression data. However, the high-

dimensionality and the complex relationships among genes impose great challenges 

for existing data mining methods. While there are a large number of algorithms that 

have been developed for frequent item set mining, their basic approaches are based 

on item enumeration in which combinations of items are tested systematically to 

search for frequent (closed) item sets. 

 

In this project we propose an improvement over an algorithm that adopts an 

alternative approach, such as intersecting transactions.  The IsTa algorithm works in 

a cumulative scheme, in which new transactions are intersected with a repository of 

already found closed item sets. IsTa has demonstrated to significantly outperform 

other approaches to frequent item set mining on specific data sets that occur 

particularly often in the area of gene expression analysis.  

 

The original version of the IsTa relies on a prefix tree to store and compute the 

transactions. Our proposal to improve the IsTa algorithm is change the underlying 

data structure by using a compressed tree representation, which is the Patricia tree. 

 

This document reports several experimental results on real datasets, which assess the 

effectiveness of the implementation. It is shown that the implementation with 

Patricia trees is more efficient in terms of memory usage, in fact, the number of 

nodes and memory occupied is smaller than the original version of IsTa with Prefix 

trees,   although the best execution time was attained by the Prefix tree.  
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CHAPTER 1  
INTRODUCTION 

 

 

Many areas of science, business and other environments deal with a vast amount of 

data, which needs to be turned into something meaningful, knowledge. This is the 

aim of data mining, extraction of useful patterns and relationships from data.  With 

the rapid growth of computational biology and e-commerce applications, extremely 

high dimensional data becomes more common. Thus, mining these kinds of data sets 

is a problem of great practical importance. 

 

Studies of Frequent Item set (or pattern) Mining are acknowledged in the data 

mining field because of its broad applications in mining association rules, 

correlations, sequential patterns, and many other data mining tasks. This project 

takes on the challenge of extending one of the Frequent Item set algorithms, which is 

IsTa. The idea is to improve the algorithm by changing the underlying data structure 

through the use of Patricia trees, implement the extended algorithm, test it on gene 

expression data, and finally determine whether Patricia trees yield advantages over 

the current implementation. 

 

1.1. DATA MINING  
 

Data mining is an interdisciplinary field of computer science, [2, 3] is defined as the 

process of discovering new patterns in large data sets. It utilizes methods at the 

intersection of artificial intelligence, machine learning, statistics, and database 

systems [2]. The overall goal of the data mining process is to extract knowledge from 

an existing data set and transform it into a human-understandable structure for 

further use [2]. 

 

Simply stated, data mining is a method of extracting interesting knowledge, such as 

rules, patterns, regularities, or constraints, from data in large data sets. The extracted 

knowledge should be non-trivial, previously unknown, implicit, and potentially 

useful in that it may serve as an important input for making decisions. Some 

applications of data mining are target marketing, customer relation management, 

market basket analysis, cross selling, market segmentation, forecasting, quality 

control, fraud detection, and intelligent query answering. 
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Mainly, data mining involves six common classes of tasks: Anomaly detection, 

Association rule learning, Clustering, Classification, Regression and Summarization. 

 

Frequent item set mining is an essential part of association rules mining, and its 

concept has also been extended for many other data mining tasks such as 

classification [3, 4], clustering [5], and sequential pattern discovery [6]. Thus, 

effective and efficient frequent pattern mining is an important and interesting 

research problem.  

 

Among the best-known frequent set mining algorithms are Apriori [7, 8], Eclat [9] 

and FP-growth [10]. Most of these algorithms adopt an enumerate items approach 

that works “top-down”, since they start at the one-element item sets and work their 

way downward by extending found frequent items sets by new items.  

 

These algorithms can find frequent closed patterns when the dimensionality is low to 

moderate, but when the number of dimensions (items) is very high, e.g., greater than 

100, the efficiency of these algorithms could be significantly impacted. 

CARPENTER [11] and IsTa [12] are some of algorithms proposed to solve this 

problem. They use a different solution approach; instead of enumerating items the 

approach adopted is the intersection of transactions. This approach works “bottom-

up”, because they start with large items sets, namely the transactions, which are 

reduced to smaller sets by intersecting them with other transactions. 

 

1.2. MOTIVATION  
 

The emergence of various new application domains stresses the need for analyzing 

extremely high dimensional data. Bioinformatics as an example, with the rapid 

advance of microarray technology, gene expression data are being generated in large 

throughput so that discovering frequent patterns from microarray datasets is very 

important and useful to extract biological knowledge.  

 

However, these high-dimensional microarray datasets pose a great challenge for 

existing frequent pattern discovery algorithms. While there is a large number of 

algorithms that have been developed for frequent pattern discovery and closed 

pattern mining [13, 14, 15], their basic approaches are based on item enumeration in 

which combinations of items are tested systematically to search for frequent (closed) 

patterns. As a result, their running time increases exponentially with increasing 

average length of the records. The high dimensional microarray datasets render most 

of these algorithms impractical 

 

The IsTa algorithm has proven to significantly outperform other frequent mining 

approaches on this particular type of datasets, in which there are very many 

dimensions or items (several thousand to tens of thousands), but fairly few 

transactions (several dozens to hundreds). 
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The IsTa algorithm intersects transactions in accumulative approach, representing 

the dataset through a prefix tree, built on the already found transactions. The 

advantage of using a prefix tree is substantial for dense datasets because of the 

compression achieved by merging common prefixes, but in the worst case, when the 

dataset is highly sparse, the number of nodes may be close to the size N of the 

original dataset.  Since our target are extremely high dimensional data sets, it has 

been proposed to change the data structure to a compressed tree, better known as 

Patricia tree, in order to improve space and time efficiency. 

 

 

1.3. DOCUMENT ORGANIZATION  
 

 

The outline of this project is as follows: 

 

 Chapter 2 briefly discusses few essential topics in frequent set mining and some 

well-known algorithms.  

 

 Chapter 3 introduces the IsTa algorithm and its current implementation.  

 

 Chapter 4 presents our Patricia tree building.  

 

 Chapter 5 shows the experimental results and the comparison against the 

original IsTa implementation.  

 

 We conclude the document and describe future directions of research in Chapter 

6. 
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CHAPTER 2 
FREQUENT ITEM SET MINING 

 

 

Frequent item set mining is a useful model for extracting salient features of the data. 

It was first proposed by [7, 8] for market basket analysis in the form of association 

rule mining. It analyses customer buying habits by finding associations between the 

different items that customers place in their “shopping baskets”. For instance, if 

customers are buying milk, how likely are they going to also buy cereal (and what 

kind of cereal) on the same trip to the supermarket? Such information can lead to 

increased sales by helping retailers do selective marketing and arrange their shelf 

space.   

 

A market basket data set is typically represented as a set of transactions.  Each 

transaction contains a set of items from a finite vocabulary. The goal is to find the 

collection of item sets appearing in a large number of transactions 

 

2.1. SETTING THE PROBLEM  
 

The frequent pattern mining problem was first introduced by R. Agrawal, et al. in [7, 

8] as mining association rules between sets of items. 

 

Let B be a set of distinct items, called the item base. The items could represent 

different products in a supermarket. A set of items is called an item set.  

 

Each transaction is an item set and could represent some customer purchases of 

products from a supermarket. A database T = {t1, …, tn} is just a set of transactions.  

The cover KT(I) of an item set     w.r.t. this database  is set of indices  of 

transactions that contain it, that is,   ( )  {    {     } |       }. 

 

The support   ( ) of an item set      is the size of tis cover, that is, the number of 

transactions in the database T it is contained in. There is a user-defined minimum 

support threshold     . An item set is frequent iff its support is above the minimum 

support. Otherwise, it is infrequent. 

 

Problem statement: Given a user-specified support threshold     , X is called a frequent 

item set or frequent pattern if   ( ) ≥     . The problem of mining frequent item sets is 
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to find the complete set of frequent item sets in a transaction database T with respect 

to a given support threshold     . 

 

 
FIGURE 1:  AN EXAMPLE DATABASE 

 

Example: Consider our example database in figure 1. There are five distinct items, 

from ‘a’ to ‘e’, in the item base. There are four transactions. If the minimum support 

is set to 2, then the frequent items are: {a}, {b}, {c}, {d}, {a, b}, {a, c}, {b, c}, {b, 

d}, {a, b, c}, {a, b, d}, {a, c, d}, and {a, b, c, d}, since they occur at least in 2 

transactions. For instance, item set {a, b} is frequent, since three out of the four 

transactions (transactions 1, 3 and 4) contain the items ‘a’ and ‘b’. On the other 

hand, item set {b, e} is infrequent, since only one out of the four transactions 

contains items ‘b’ and ‘e’. 

 

2.2. TYPES OF FREQUENT ITEM SETS  
 

In order to find a frequent item set we have to go through all the sub-item sets which 

are frequent, so we unavoidably generate an exponential number of sub-patterns that 

we might not really need. In order to reduce the output the most basic approaches is 

to restrict the output to closed or maximal items frequent item sets.  

 

A frequent set is maximal if it has no frequent superset; the set of maximal patterns is 

typically orders of magnitude smaller than all frequent patterns. Formally: 

                    ( )                       (   { })        

 

The only one downside of a maximal frequent item set is that, even though we know 

that all the sub-item sets are frequent, we don't know the actual support of those sub-

item sets. 

 

 An item set is closed if it has no superset with the same support. Formally: 

                   ( )                       (   { })     ( ) 

 

Closed sets are lossless in the sense that they uniquely determine the set of all frequent 

item sets and their support. At the same time closed sets can themselves be orders of 

magnitude smaller than all frequent sets. 

 

Item base 
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b 
c 
d 
e 
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{a,b,c,d} 



6 
 

2 

3 

4 

3 

3 

2 

0 

0 

0 

0 

0 

0 

0 

0 

0 

1 

1 

 

1 

1 

1 

3 

2 

2 

2 

3 

3 

2 

1 

1 

1 

1 

1 

2 

1 

 

2 

Example Consider the figure below (figure 2), corresponding to the example 

transaction database from figure 1. When the minimum support is set to 2, the 

individual items {a}, {b}, {c}, {d} are frequent item sets because their support is at 

least 2. But only {a} is closed because none of its immediate supersets has the same 

support, for instance the item {b} has the superset {a, b} having the same support. So 

it contradicts the definition. The item set {a, b, c, d} is frequent because it is present 

in at least 2 of the transactions, and it is maximal as well because its only superset {a, 

b, c, d, e} is not frequent. 

 

 

 
FIGURE 2  MAXIMAL AND CLOSED ITEM SETS 

 

2.3. ITEM SET ENUMERATION ALGORITHMS  
 

The first algorithm to generate all frequent item sets and confident association rules 

was the AIS algorithm by Agrawal et al. [7, 8], which was given together with the 

introduction of this mining problem. Shortly after that, the algorithm was improved 

and renamed Apriori by Agrawal et al., by exploiting the monotonicity property of 

the support of item sets and the confidence of association rules [8, 16]. The algorithm 

scans the transaction datasets several times. After the first scan the frequent 1-

itemsets are found, and in general after the nth scan the frequent n-item sets are 

extracted. The method does not determine the support of every possible item set. In 

an attempt to narrow the domain to be searched, before every pass it generates 

candidate item sets and only the support of the candidates are determined. An item 

set becomes a candidate if all its proper subsets of are frequent. Due to the bottom-up 

abcde 

abcd 

abc ab 

abd ac 

a 

abce 

abe ad 

acd ae 

b 

abde 

ace bc 

ade bd 
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acde 

bcd be 

bce cd 

d 
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bde ce 

cde de 

e 

1 

1 1 

1 

1 

Maximal Frequent Item set 

Closed Frequent Item set 

Non-Frequent Item set 

Non- Closed Frequent Item set 

 

Support = 2 
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search, all frequent item sets of size smaller than the candidate are already 

determined; therefore it is possible to do the subset validations. 

 

The Eclat algorithm by Zaki [17, 18] was the first algorithm proposed to generate all 

frequent item sets in a depth-first manner. It uses a vertical database layout i.e. 

instead of explicitly listing all transactions; each item is stored together with its cover 

(also called tidlist) and uses the intersection based approach to compute the support 

of an item set. In this way, the support of an item set X can be easily computed by 

simply intersecting the covers of any two subsets        , such that       . It 

states that, when the database is stored in the vertical layout, the support of a set can 

be counted much easier by simply intersecting the covers of two of its subsets that 

together give the set itself. In this algorithm each frequent item is added in the output 

set. After that, for every such frequent item i, the i-projected database    is created. 

This is done by first finding every item j that frequently occurs together with i. The 

support of this set {i, j} is computed by intersecting the covers of both items.  If {i, j} 

is frequent, then j is inserted into    together with its cover. Then the algorithm is 

called recursively to find all frequent item sets in the new database   . 

 

Later, several other depth-first algorithms have been proposed [19, 20, 21] of which 

the FP-growth algorithm by Han et al. [21, 10] is the most well-known. The main 

aim of this algorithm was to remove the bottlenecks of the Apriori algorithm in 

generating and testing candidate set. The problem of Apriori algorithm was dealt by 

introducing a compact data structure, called frequent pattern tree (FP-tree), then 

based on this structure a pattern fragment growth method was developed. FP-growth 

uses a combination of the vertical and horizontal database layout to store the 

database in main memory. Instead of storing the cover for every item in the database, 

it stores the actual transactions from the database in a tree structure and every item 

has a linked list going through all transactions that contain that item.  

 

 

The SaM (Split and Merge) algorithm established by [22] is a simplification of the 

already fairly simple RElim (Recursive Elimination) algorithm. While RElim 

represents a (conditional) database by storing one transaction list for each item 

(partially vertical representation), the split and merge algorithm employs only a 

single transaction list (purely horizontal representation), stored as an array.   

This array is processed with a simple split and merge scheme, which computes a 

conditional database, processes this conditional database recursively, and finally 

eliminates the split item from the original (conditional) database 
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2.4. INTERSECTION APPROACH ALGORITHMS  
 

Basically, there are basically two techniques for implementing the intersection 

approach: enumerating transaction sets, as it is done in the Carpenter algorithm [11], 

and a cumulative scheme, adopted by the IsTa algorithm.  

 

Pan et al. [11] proposed Carpenter, a method for finding closed patterns in high-

dimensional biological datasets, which integrates the advantages of vertical data 

formats and pattern growth methods. By converting data into vertical data format 

{item: TID_set}, the TID_set can be viewed as row set and the FP-tree so 

constructed can be viewed as a row enumeration tree. Carpenter conducts a depth-

first traversal of the row enumeration tree, and checks each row set corresponding to 

the node visited to see whether it is frequent and closed. 

 

Technically, the task to enumerate all transaction index sets is split into two sub-

tasks: (1) enumerate all transaction index sets that contain the index 1 and (2) 

enumerate all transaction index sets that do not contain the index 1. These sub-tasks 

are then further divided w.r.t. the transaction index 2: enumerate all transaction 

index sets containing (1.1) both indices 1 and 2, (1.2) index 1, but not index 2, (2.1) 

index 2, but not index 1, (2.2) neither index 1 nor index 2, and so on. 
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CHAPTER 3 
ISTA ALGORITHM 

 

 

The IsTa algorithm works with an intersection of transactions approach, in which all 

closed item sets are kept in repository that is updated each time a new transaction is 

intersected with the items in the repository.  

 

The reported experimental results conclude that for data sets with few transactions 

and (very) many items, as they commonly occur in gene expression analysis, IsTa 

achieved good performance in terms of processing time, comparable with the 

Carpenter algorithm, but in some data sets IsTa clearly outperforms Carpenter. 

 

3.1. DEFINITION  
 

The idea of this approach was first outlined in [23], then improved and implemented 

as the IsTa algorithm [12]. 

 

The overall process starts with an empty set of closed item sets, and then the 

transactions are processed one by one. When a new transaction is processed, the set 

of closed item sets is updated by adding the new transaction itself and the additional 

closed item sets that result from intersecting the already known closed item sets with 

the new transaction. In addition, the support of already known closed item sets may 

have to be updated. 

 

To justify this approach formally, consider the set of all closed frequent item set sets 

for        , that is the set 

 ( )  {       |               ⋂  

     

  } 

 

The set  ( ) satisfies the following simple recursive relation: 

  ( )     

        (   { })   ( )  { }  {  |     ( )        }  

 

In practice it is not used the minimum support        as it underlies  ( ). But 

this yields to removing transactions that could lead to find frequent items because 

they do not reach the specified minimum support. This problem is tackle by IsTa 
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doing an initial pass through the transaction database to determine the frequency of 

the in individual items. The obtained frequencies are updated with each processed 

transaction, so that they always represent the number of occurrences of each item in 

the unprocessed transactions. 

 

3.2. PREFIX TREE IMPLEMENTATION  
 

The prefix tree is the data structure used to store the closed item set in the algorithm, 

its main advantage is that it enables to compute the intersections between 

transactions quickly, as well as merging the result with them. 

 

 
FIGURE 3:  STRUCTURE OF THE PREFIX TREE NODES  

 

Figure 3 shows the structure of a node within the tree. Each node represents an item 

set. The field children holds the head of the list of child nodes, which are linked by 

the field sibling, which thus implements a sibling list. The item set that is represented 

by a node consists of the item stored in it plus the items in the nodes on the path 

from the root. The support of this item set is stored in the field supp. In order to 

avoid duplicate representations of the same item set, all children of a node must refer 

to items with lower codes than the item referred to by the node itself. In addition, the 

items referred to by the nodes in a sibling list are in descending order w.r.t. their 

codes. Finally, the field step is used in the intersection process to indicate whether 

the support of a node has already been updated from an intersection or not.  

 

The algorithm works on the prefix tree as follows:  

 

1. Start with an empty tree (consisting only of a root node, which does not 

store any item and thus represents the empty set) is created. 

 

2. Process the transactions one by one.  

 

3. Each new transaction is first simply added to the prefix tree. Any new nodes 

created in this step are initialized with a support of zero. 

 

4. Intersect new transactions with all sets represented by the current prefix tree. 

This is achieved with a recursive procedure that is basically a selective 

typedef struct node {  // a prefix tree node 
    int step;   // most recent update step 
    int item;   // assoc. item (last in set) 
    int supp;   // support of item set 
    struct node *sibling;  // successor in sibling list 
    struct node *children;  // list of child nodes 
} NODE; 
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depth-first traversal of the prefix tree and matches the items in the tree nodes 

with the items of the transaction.  

 

 
FIGURE 4:  CODE OF THE INTERSECT ION FUNCTION 

Figure 4 Illustrates the core steps of the intersection function (for a detailed version 

refer to the source code). 

 

Each call of the function isect traverses a sibling list, the start of which is passed as 

the parameter node. The parameter ins points to the location in the prefix tree that 

represents the item set that resulted from intersecting the already processed part of 

the current transaction with the item set represented by node. Hence it indicates the 

location where new nodes have to be inserted in order to represent new closed item 

sets that result from intersections of the subtree rooted at node with (the unprocessed 

part of) the current transaction. 

 

The procedure works as follows: 

  

void isect (NODE *node, NODE **ins) 
{    // intersect with transaction 
    int i;    // buffer for current item 
    NODE *d;   // to allocate new nodes 
    while (node) {   // traverse the sibling list 
        i = node->item;  // get the current item 
        if (trans[i]) {   // if item is in intersection 
            while ((d = *ins) && (d->item > i)) 
                ins = &d->sibling;  // find the insertion position 
            if (d   // if an intersection node with 
                && (d->item == i)){ // the item already exists 
                    if (d->step >= step) d->supp--; 
                    if (d->supp < node->supp) 
                        d->supp = node->supp; 
                    d->supp++;  // update intersection support 
                    d->step = step; }  // and set current update step 
            else {   // if there is no corresp. node 
                d = malloc(sizeof(NODE)); 
                d->step = step;  // create a new node and 
                d->item = i;  // set item and support 
                d->supp = node->supp+1; 
                d->sibling = 0ns; *ins = d; 
                d->children = NULL; 
            }    // insert node into the tree 
            if (i <= imin) return;  // if beyond last item, abort 
            isect(node!children, &d!children); } 
        else {    // if item is not in intersection 
            if (i <= imin) return;  // if beyond last item, abort 
            isect(node->children, ins); 
        }    // intersect with subtree 
        node = node->sibling;  // go to the next sibling 
    }    // end of while (node) 
}    // isect() 
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1. Whenever the item in the current sibling equals an item in the transaction, it 

is checked whether the sibling list starting at *ins contains a node with this 

item. 

2. If such a node exists, its support is updated. The step field determines 

whether the current transaction was already counted for the support in the 

node or not.  

3. If a node with the intersection item does not exist, a new node is allocated 

and inserted into the tree at the location indicated by ins. 

 

4. The subtree is processed recursively, unless the item of the current node is 

not larger than the minimum item in the current transaction. In this case no 

later siblings can produce any intersection, because they and their 

descendants refer to items with lower codes.  
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CHAPTER 4 
IMPROVING ISTA 

 

 

Crucial to the efficiency of the main strategy presented by the IsTa algorithm is the 

choice of the data structure employed to represent the item sets. On previous section 

we discuss the current implementation based on a prefix tree to represent the dataset 

built on the set of transactions, with items sorted by decreasing support.  

 

The advantage of using the prefix tree is substantial for dense datasets because of the 

compression achieved by merging common prefixes, but in the worst case, when the 

dataset is highly sparse, the number of nodes may be close to the size N of the 

original dataset (i.e., the sum of all transaction lengths). Since each node of the tree 

stores an item, a count value, which indicates the number of transactions sharing the 

prefix found along the path from the node to the root, plus other information needed 

for navigating the tree (e.g., pointers to the children and/or to the sibling), the overall 

space taken by the tree may turn out to be   , where   is a constant greater than 1. 

For these reasons, it has been suggested to store the item sets to a compressed tree, a 

Patricia tree [8]. 

 

4.1. PATRICIA TREES  
 

Patricia stands for “Practical Algorithm to Retrieve Information Coded in 

Alphanumeric”; this data structure was introduced by Donald R. Morrison, 1968 

[24]. 

 

A Patricia tree is a compressed tree that uses common sequences of characters as a 

starting point for collapsing tree branches. Each node with only one child is merged 

with its child; as a consequence every internal node has at least two children. Unlike 

in regular tries, edges can be labeled with sequences of characters as well as single 

characters. 

 

As a result of this compression, Patricia tries are "denser" than regular tries. That is 

specifically the reason why operations on the structure, e.g. addition, removal, 

lookup, prefix lookup, and its memory consumption are more efficient for small sets 

(especially if the strings are long) and for sets of strings that share long prefixes. 
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. 

 

4.2. CONSTRUCTION OF THE PATRICIA TREE  
 

The overall construction strategy is as follows: 

  

1. Starts from an initial empty tree. 

2. Insert one transaction at a time in it. Initially set the item support as zero.  

3. To insert a transaction t, the current tree is traversed downwards along the path 

that corresponds to the prefix shared by t with previously inserted transactions. 

4. Intersect to update the support count, and also insert the item sets generated 

during the insertion.  

 

 
FIGURE 5:  STRUCTURE OF THE PATRICIA TREE NODE  

 

Figure 5 shows the structure of a patricia node (patnode). Each node represents a 

sequence of items in an item set. The patnode can hold multiple or single items 

according with the prefix shared by transaction inserted previously, the number of 

the items at a particular node is stored in the field size.  The field children holds the 

head of the list of child nodes, which are linked by the field sibling, which thus 

implements a sibling list. The individual information about the items represented in 

the node is defined by the PATDATA structure that contains the item,   its associated 

support stored in the field supp. And the field step is used in the intersection process to 

indicate whether the support of a node has already been updated from an intersection 

or not.  

 

The item set that is represented by a node consists of the items stored in it plus the 

items in the nodes on the path from the root. In order to avoid duplicate 

representations of the same item set, all children of a node must refer to items with 

typedef struct { 
    int item; // assoc. item 
    SUPP_T supp; // support of item 
    int step; // most recent update step 
}PATDATA; 

typedef struct patnode { // a PATRICIA tree node 
    int size;   // number of items 
    struct patnode *sibling; // successor node in sibling list 
    struct patnode *children;  //  list of child nodes 
    PATDATA data[1]; // associated items and support 
} PATNODE 

PATNODE 

size = 4 

*children *sibling 

supp         

item         

step         
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lower codes than the item referred to by the node itself. In addition, the items 

referred to by the nodes in a sibling list are in descending order w.r.t. their codes. 

 

 

 

 
FIGURE 6:  PATRICIA TREE EXAMPLE  

 

The patricia tree on figure 6 was built using the transaction database from figure 1 

with a minimum support equal to 1, if we recall, it consisted in 4 different 

transactions from an item base of 5 elements. The resulting representation consists in 

3 nodes. 

 

 
FIGURE 7:  PREFIX TREE EXAMPLE  

 

Figure 7 shows the representation of the same transaction database but using a prefix 

tree. The prefix tree has 6 nodes, each for a distinct item in the path. As we can 

observe the main difference between these representations is that at a patricia tree 

none of its nodes can have a single child, thus yielding the compression of the nodes 

{b}, {c}, {d}, {e} into a single node {b, c, d, e}.   

PATRICIA tree structure: 

 

  

a 

4 

  

  

 b   c   d   e 

 3   2   2   1  

 

    

c 

2 

PATRICIA tree listed: 
 
- a (4) 
      - b (3), c(2), d(2), e(1) 
      - c (3) 
 
 
 
Nodes: 3 

Prefix tree listed: 
 
- a (4) 
      - b (3) 
            - c (2) 
                  - d (2) 
                       -  e (1) 
      - c (3) 
 
 
 
nodes: 6 

Prefix tree structure: 

a      4 

b      3 

c      2 

d      2 

e      1 

c      3 
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4.2.1. INSERTING TRANSACTION S  
 

In the insertion function new transactions are added to the tree by recursively 

traversing nodes from the tree. But before describing the code, it is important to 

review some of the cases that can be found when inserting a transaction.  

 

 
FIGURE 8:  INSERTION EXAMPLES 

 

Figure 8 illustrate the result of inserting new transactions. The Step 1 is the basic case 

in which the tree is empty; a node is created with all of the items contained in the 

new transaction. In the Step 2, the new items partially match the items in the node, 

as a consequence the items shared are kept in the node, and then 2 new nodes are 

created; one node containing the remaining items in the new transaction, and the 

second node containing the not matched items at the node. The nodes are ordered by 

decreasing order according with the first item at the nodes. Finally the node at first 

place is set as the child node of the existing node, and the second node is set as the 

sibling of the first.  

 

At Step 3 the items in the new transaction match a path within the tree except for the 

last item; which is not contained in the path. In this case the missing item is simply 

added to the node.  

 

Step 1 
Insert { z, y, c, b } : 

z     y    c     b 

1    1    1    1  

  

Step 2 
Insert {z, y, x, w, v} : 

Step 3 
Insert { z, y, c, b, a}  : 

Step 4 
Insert {z, y, g, f}  : 

z    y 

3    3  

  

c     b    a 

2     2    1 

  

x    w   v  

1    1    1  

  

z     y 

2     2  

  

c    b 

1    1  

  

x    w    v 

1    1    1  

  

z     y 

4    4  

  

c    b    a 

2    2    1 

  

g     f 

1    1  

  

x    w   v 

1    1    1  
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In Step 4 the items in the new transaction partially match a path within the tree; 

resulting in the creation of a new node with the not matched items. The new node is 

set at the children level of the node containing the matched items, and then the 

position at sibling list is determined following the decreasing order at the first item. 

 

 
FIGURE 9:  CODE OF THE ADD FUNCTION 

 

void add (PATNODE *patn, int *items, int n) 
{     /* --- add item set to patricia tree */ 
  PATNODE *splitNode, *diffNode, *node /* pointers to insertion position */ 
  int j;      /* */ 
  node = patn->children;    /* Point node to children of patn */ 
  if (!node){                                  /* If node doesn't exist*/ 
    diffNode = (PATNODE*)malloc(sizeof(PATNODE) +(n-1)*sizeof(PATDATA)); 
    for (j=0; j<n; j++){                              /* Create a new PATNODE diffNode*/ 
      store each item and its support }       /* and store the new items*/ 
    patn->children = diffNode;}              /* */ 
  else{                                        /* If node exists */ 
    while (node->sibling &&                   /* Traverse the list of siblings until */ 
      node->sibling->data[0].item >= items[0]){/* find the approppiate insertion position */ 
      node = node->sibling;}                  /* */ 
    if (node->data[0].item != items[0]){     /* If the item is unique at sibling list*/ 
      diffNode = malloc(sizeof(PATNODE));    /* Create a new PATNODE diffNode */ 
      for (j=0; j<n; j++){                    /* and store the new items */ 
        store each item and its support       /* Determine the insertion position*/ 
      }                                        /* (rigth/left)with respect to node according */ 
    }                                          /* with the decreasing order in sibling list*/ 
    else{                                      /* Some items at node might match with new items */ 
      firstDiff( &diff, &foundDiff, node, items, n); /* Compare items at nodes vs. the new items and */ 
      if (foundDiff == 1)                    /* return if they're different and at which position*/ 
   {                                       /* If found difference*/  
        if (node->size >= diff){              /* Process the left items at node */ 
          splitNode = malloc(sizeof(PATNODE)); /* Create a new PATNODE spltNode*/ 
          for (j=0; j < (node->size - diff); j++){ /* and store the not matched items a node*/   
            store each item and its support}} /* */ 
        if (n >= diff){                        /* Process the left items at insert node */ 
          diffNode = malloc(sizeof(PATNODE)); /* Create a new PATNODE diffNode,*/ 
          for (j=0; j< (n - diff); j++){      /* store the not matched new items*/ 
            store each item and its support}  /* and determine the insertion position*/ 
          }                                   /* at sibling list */ 
        node->size = diff;                    /* Modify the node size with number of matched */ 
        node = (realloc(sizeof(PATNODE));   /* elements and reduce the space allocated */ 
      else{                                    /* If NOT found difference*/ 
        if (n != diff){                        /* and there are still new items to process*/ 
          if (node->size == diff){            /* */ 
            if (node->children){              /* if the node has children*/    
              add(pat, node, items+diff, n-diff, supp, step);}/* process the left items recursively*/ 
            else{                              /* if the node does't have children*/ 
              node = (PATNODE*)realloc(node, sizeof(PATNODE) +(n)*sizeof(PATDATA)); 
              for (j = diff; j<n; j++){       /* allocate more memory for new items */ 
                store each item and its suppor} /* and store the new items in the node*/  
              node->size = n;}                /* update the number of items at node*/                 
}  }  }  }  }   
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Figure 9. Illustrates the core steps of the add function (for a detailed version refer to 

the source code) . The function is fed with a new transaction, which items are kept in 

*items and the item count in 'n'; and the node at which we want to start the search is 

patn. 'node' points to the children of patn. So we actually start searching at children 

level of patn. 

If there isn't a node at that level then we allocate all the items of the new transaction 

in diffNode, and finally, set diffNode as child of patn, and the function is over. 

 

In case there is a node at children level, that means we need to compare the items in 

the transaction against the items in 'node'. First it is determined if there is a node in 

the sibling list whose first item equal to the first item in the new transaction, so we 

traverse the sibling list. The first item at both lists serves as an index that indicates the 

right position to insert the items. 

 

If the first item didn't matched, all items in the new transaction are allocated in 

diffNode, next, we determine the insertion position of diffNode within the sibling list 

and the respective pointers are updated. 

 

In case there the first item matched, it means that the items from both lists partially 

matched, and we need to continue the search in the current node.  The items are 

compared one by one until we find a difference; this is calculated by the firstDiff 

function. From there, we have two cases: 

 

 If there are items that didn't matched at both lists; then we need to split 'node'. 

Keep in 'node' the matched items, then create two nodes and allocate the left 

items at 'node' and in the transaction. And update the respective pointers. 

 

 If there are items that didn't matched only at transaction list; Process the not 

matched items recursively if the node has children, else, just add the missing 

items to 'node'. 

 

 

4.2.2. INTERSECTING TRANSACT IONS  
 

The intersection function is the key step in IsTa. In this step the support of the 

frequent items are updated and also new frequent items sets are discovered. We’ll 

review step by step how this function works through the following example, shown 

in the figure 10.  

 

 



19 
 

 

FIGURE 10:  AN EXAMPLE OF INTERSECTION 

 

Initially the tree is empty, then  in step 1 the transaction {e, c, a} is added to the tree. 

Since it was empty before, no new intersections have to be taken care of, so no 

further processing is carried out. In step 2 the transaction {e, d, b} is added. This is 

done in two steps: first the two nodes on the bottom left are added to represent the 

transaction. Then, in the recursion, it is discovered that the new transaction overlaps 

with the one that was already present on the item e. As a consequence, the support 

value of the node that represents the item set {e} is incremented to 2. In the third step 

the transaction {d, c, b, a} is processed. Since things are more complicated now, we 

split the processing into three steps. In step 3.1 the new transaction is added to the 

tree, with new nodes initialized to support 0. Steps 3.2 and 3.3 show how the tree is 

extended by the two intersections {d, b} = {e, d, b} {d, c, b, a} and {c, a} = {e, c, 

Step 1 
Insert {e, c, a} : 

e    c    a 

1    1    1 

  

Step 2 
Insert { e, d, b } : 

Step 3.1 
Insert {d, c, b, a }  : 

Step 3.2 

e  

2  

  

c    a 

1    1  

  

d    b 

1    1 

  

e  

2  

  

c    a 

1    1  

  

d    b 

1    1 

  

d    c    b    a 

0    0    0    0  

  

e  

2  

  

c    a 

1    1  

  

d    b 

1    1 

  

 c    b    a 

1    1    1  

  

d  

2  

  

b  

2  

  

Step 3.3 

e  

2  

  

c    a 

1    1  

  

d    b 

1    1 

  

 c    b    a 

1    1    1  

  

d  

2  

  

b  

2  

  

c    a 

2    2  
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a} {d, c, b, a}. Note that the increment of the counters in the nodes for the full 

transaction {d, c, b, a} is not shown as a separate step. 

 

 

FIGURE 11:  FUNCTION TO ADD NEW TRANSACTION TO TREE  

 

Figure 11. Illustrates the core steps of the intersection function (for a detailed version, 

refer to the source code). In this function, the nodes and their item list are traverse 

recursively in order to be intersected with the items in a new transaction. The 

parameters introduced are the node to intersect (patn), the index variables (Nlower, 

Nupper) that help to travel over the items, the new transaction (*items) and its index 

variables (Ilower, Iupper), *ins that will point to an insertion position, and finally, 

*isectItems that stores items that result from the intersection. 

 

First it is verified if all transaction items have been intersected, if so, the items that 

result from the intersection are added to the tree. 

int isect(PATNODE *patn, int Nlower, int Nupper, int *items, int Ilower, int Iupper, PATNODE ins, int 
*isectItems) 
{ 
  PATNODE *node; 
  if (Ilower== Iupper){   // If there are no more items to intersect   
    if (setIns == 1 && pos>0){   // Insert to tree new elements found at intersection 
      isectAdd (pat, ins,isectItems, pos, isectSupp, step, supp);} //   
  }     // Else if there are more items to intersect then 
  else if (Nlower == Nupper){   // If all elements at *patn have been compared 
    if (patn->children){   // Intersect recursively the left *items with patn children     
      isect(pat, patn->children, 0, patn->children->size, items, Ilower, Iupper, ins, isectItems); 
      for (node= patn->children->sibling; node; node= node->sibling){ // Traverse the sibling list and intersect   
        isect(pat, node, 0, node->size, items, Ilower, Iupper, ins, isectItems);} }// recursively the missing items  
    else{     // If there are not children at *patn, then insert to tree   
        isectAdd (pat, ins,isectItems, pos, isectSupp, step, supp);}}// new elements found at intersection 
  } 
  else{     // If there are still elements to proces at *patn 
    if (patn->data[Nlower].supp < pat->mins[patn->data[Nlower].item]) {  // If item to intersect doesn't  
      isect(pat, patn, Nlower, Nupper, items, Ilower+1, Iupper, ins, isectItems)} // have the minimum    
    else {     // support, skip the item              
      if (patn->data[Nlower].item == items[Ilower]){ // If the item to intersect match an item in the tree, 
        isectItems[pos]= items[Ilower];   // Save the item 
        if (patn->data[Nlower].step != step){// Verify that the support hasn't being updated at current step 
            patn->data[Nlower].supp = patn->data[Nlower].supp + supp;// update its support 
            patn->data[Nlower].step = step;}  // and set last modification to current step 
        isect(pat, patn, Nlower+1, Nupper, items, Ilower+1, Iupper, ins, isectItems); 
      }     //Intersect recursively the missing *items 
      else if (patn->data[Nlower].item < items[Ilower]) 
      {       // Skip the element at *items since it is > than item at *patn 
        isect(pat, patn, Nlower, Nupper, items, Ilower+1, Iupper, ins, isectItems); 
      }     //Intersect recursively the missing *items 
      else if (patn->data[Nlower].item > items[Ilower]) 
      {      // Skip the element at *patn since it is > than item at *items 
        isect(pat, patn, Nlower+1, Nupper, items, Ilower, Iupper, ins, isectItems); 
      }     //Intersect recursively the missing *items 
    } 
  } 
  return 0;} 
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Else, if there are still transaction items that have to be intersected, we proceed to 

verify if all the items at 'patn' have been processed. If it is the case, the intersection 

process continues recursively with the children nodes of patn.  

 

Else, we know that there still items, in both lists, which have to be intersected. If the 

node item is equal to the transaction item (at current indexes); the item support is 

increased if it hasn't been updated in current step. The matched item is stored in 

isectItems to be later added to the tree. 

 

In the next part, we take advantage that the items are sorted in decreasing order. 

Hence, if the node item is greater than the transaction item, the node item is skipped, 

and the next node item is intersected recursively. 

 

If the node item is lower than the transaction item, the transaction item is skipped, 

and the following transaction item is processed recursively. 
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CHAPTER 5 
EXPERIMENTAL EVALUATION 

 

 

In this section we present the experimental evaluation of our IsTa implementation 

with Patricia trees and compare its result against the original version built with Prefix 

trees. We assess the algorithms performance with three different datasets. 

  

For the experimental analysis, the performance measure is the execution time of the 

algorithms with different minimum support thresholds. In addition, we studied the 

memory usage and the number of nodes in the resulting trees. 

 

5.1. GENE EXPRESSION ANALYSIS  
 

Gene expression is the process of transcribing a gene’s DNA sequence into mRNA 

sequences, which are later translated into amino acid sequences of proteins.  

 

Microarray technologies provide the opportunity to measure the expression levels of 

tens of thousands of genes in cells simultaneously which is correlated with the 

corresponding protein made either under different conditions or during different time 

spots. Gene expression profiles generated by microarrays can help us understand the 

cellular mechanism of biological process. For instance, it provides information about 

the cancerous mutation of cells: which genes are most responsible for the mutation, 

how they are regulated, and how experimental conditions can affect cellular 

function. With these advantages, microarray technology has been widely used in 

post-genome cancer research studies.  

 

A key task to derive biological knowledge from gene expression data is to detect the 

presence of sets of genes that share similar expression patterns and common 

biological properties. Frequent item set mining has proved to be very efficient for the 

integrative analysis of such data [26, 27]. 

 

In this project we have used three different datasets. A gene expression profiling of 

skin from 15 people that comprises of 37,777 distinct features. 
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The yeast dataset provided in [28] which contains expression profiles for 9,948 

transcripts corresponding to 300 diverse mutations and chemical treatments in 

Saccharomyces cerevisiae (baker's yeast). 

 

The Webview-1 data set, which was derived from click streams of the online shop of 

a leg-care company that no longer exists and has been used in the KDD cup 2000 

[29]. We used the transposed form to obtain a data set with many items and few 

transactions, as this is the type of data set the algorithms presented here are designed 

for. At the end, it comprises 497 items and 59,602 transactions. 

 

5.2. EXPERIMENTAL RESULTS  
 

In this section, we discuss results of several experimentations of our proposed data 

structure over different datasets. The goal of these experimentations is to find out the 

extent of the advantages thrown by the Patricia tree over the current implementation. 

 

The experiments were performed on a 2.1GHz Intel Core i3 virtual machine with 

1003.6MB of memory, running Fedora Linux. Our version of Patricia tree was 

implemented in C, as well as the Prefix tree version coded by Christian Borgelt [12]. 

 

The first experiment is about the memory usage and the number of nodes in the 

trees. For this experiment, the measures are based on the resulting trees from both 

implementations with different minimum support thresholds. The memory usage is 

calculated according to the number of nodes. In the case of the Prefix tree the size for 

each node is fixed; each node is 20 bytes. The node size in a Patricia tree varies 

according to the number of items held. An item is assumed to fit in 12 bytes, plus an 

overhead per node of 15 bytes, which are needed to store the item count and the 

pointers to the children and sibling. Finally, for both of the trees we add 4 bytes per 

node for the administrative overhead of the memory management. 

 

The results are shown in Figure 12. In this figure, there are six charts; three of them 

correspond to the memory usage (in megabytes) with respect to each minimum 

support for both algorithms in the three datasets (skin, yeast and webview1). And the 

other three describe the number of nodes in the final tree for each minimum support. 
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FIGURE 12:  MEMORY USAGE PERFORMANCE 

 

As shown in Figure 12, memory usage of the Patricia tree is lower than the Prefix 

tree representation, especially when the minimum support is small. This is true for all 

datasets and it is due to the more compact data structure of the Patricia tree. The 

Patricia tree has far smaller number of nodes and thus has better memory usage. 

Therefore, the Patricia tree outperforms the Prefix tree in terms of memory usage. 
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It is important to remark that even for sparse datasets, which exhibit a moderate 

sharing of prefixes among transactions, the total number of items stored in the tree 

may turn out much less than N, and if the number of transactions is M<< N, as is 

the case of the three datasets, the Patricia tree becomes very space efficient. 

 

The second experiment compares the run time of Patricia tree against the Prefix tree. 

Figure 13 shows the result of this experiment for different minimum support 

thresholds. In this Figure, for the three charts, horizontal axis show minimum 

support values and vertical axis shows the run time measured in seconds.  

 

As shown in figure 13, the Prefix tree implementation is more efficient than the 

Patricia tree implementation for the three datasets. As the minimum support 

decreased, the efficiency of the Prefix tree implementation is more revealed and the 

performance gap becomes more significant. 

 

 

 

 

0

1

2

3

4

5

6

7

8

0 2 4 6 8 10

e
xe

cu
ti

o
n

 t
im

e
 (

se
co

n
d

s)
 

minimum support 

Skin 

IsTa PAT

IsTa PXT

0

20

40

60

80

100

120

0 10 20 30 40

e
xe

cu
ti

o
n

 t
im

e
 (

se
co

n
d

s)
 

minimum support 

Yeast 
Ista PAT

IsTa PXT



26 
 

 

FIGURE 13:  RUNTIME COMPARISON OF THE DATA STRUCTURES  

 

Figure 13 shows that the Prefix tree is faster than the Patricia tree implementation 

even for low support thresholds where the number of generated frequent item sets is 

high. 

 

Although the Patricia tree provides a space efficient data structure for representing 

the item set, its actual construction may be rather costly, thus influencing the overall 

performance of the algorithm. 
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CHAPTER 6 
CONCLUSIONS 

 

 

As world is now in its digital era, huge amounts of data are generated every day, and 

a real challenge is to discover knowledge from it. High-dimensional data, such as 

images, handwriting and gene expression profiles, are becoming common, and thus 

analyzing and handling such kinds of data have become an issue of great practical 

importance. Revealing the hidden patterns, efficiently and effectively, in high-

dimensional data imposes a greater challenge on data mining. 

 

In this project, we have proposed a modified version of IsTa, which was developed 

by [12]. In our version, we use Patricia trees as the underlying data structure to 

replace the Prefix tree used in the original version. The objective was to test this new 

implementation with a gene expression dataset and determine whether Patricia trees 

yield advantages over the current implementation. We found that although the 

Patricia tree provides a space efficient data structure for representing the item set, its 

actual construction may be rather costly, thus influencing the overall performance of 

the algorithm. Still there are areas of opportunity for performance improvements on 

the side of the code as well as the overall Patricia tree design.  

 

While we focus on gene expression data, this data mining techniques can be applied 

to other kinds of high-dimensional data with similar characteristics.  
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