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Abstract

Mathematical morphology is a technique that allows analyzing and

transforming images. In this work I'm going to experiment with the pos-

sibility of using fuzzy logic and sets, instead of the classic ones, to improve

the results of the mathematical morphology operations and its robustness

against noise. I also have used a genetic algorithm to optimize the result

between di�erent sizes and shapes of structural elements and di�erent ar-

rays of operations, thus obtaining the best possible outcome for each case

using the fuzzy mathematical morphology, and then comparing it to the

results of the classic morphology.
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1 Introduction

Mathematical morphology is a series of methods and processes used to analyze
images, based in classical mathematical theories. Basically the goal of all those
processes is to remove useless information of the image, like noise or errors in the
image, while preserving its shape and all the important aspects of it. But, in the
presence of too much noise and imperfections, this operations do not perform
as well as we would like to. This is the main motivation for this work. Using
certain fuzzy operators, particularly the Fuzzy Inclusion Indicator approach in
[1], I'm going to try and solve these cases where to much noise could be a hin-
drance to our work. Of course this methods have already been tested in [1] but,
not only I'm going to use a Fuzzy Mathematical Morphology (FMM), but also
a Genetic Algorihtm (GA), based on the work of [2] which uses a GA to �lter
images using the classical mathematical morphology. These algorithms, based
on the theory of the evolution, have shown good results before, in other aspects
of image processing as I will show in the next sections.

So, my main approach to the problem will be a Genetic Algorithm to opti-
mize di�erent sizes and shapes of structural elements, and di�erent strings of
operations based on a FMM, this way I will determine a sequence of operations
and compare how well di�erent types of structural elements will do when �lter-
ing an image and providing a program capable of adapt to the best situation
given any image.

1.1 Objectives

The main objectives of this work are:

• Investigate the state of the FMM to analyze images.

• Implement an original algorithm based on the work of [2] and the Gener-
alized Fuzzy Mathematical Morphology of [1].

• Run several experiments to solve noise problems and compare the results
with the classical morphology.

1.2 Structure of the work

This work is structured in di�erent sections, the section �Theoretical Concepts�
will explain each concept that could be important to understand the main con-
tents of this work, in �State of the Art of Fuzzy Mathematical Morphologies and
Genetics Algorithms for image processing� I will show how is the state of the
Fuzzy Mathematical Morphology and image analysis in general, in �Metodology,
experiments and results� you will �nd the main experiment and the results, as
well as the process and program to achieve these results, the next section �Fu-
ture work� will cover a few concepts that were researched, but did not make it
into the �nal experiment, �nally in �Conclusions� I will give the conclusions I
have gathered from this work.
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2 Theoretical Concepts

In this section I'm going to present a few key concepts to facilitate the under-
standing of this work and the subjects related to it.

2.1 Computer vision

Computer vision is a �eld of research that tries to imitate one of the most e�-
cient ways of acquiring information that the human brain has, the vision, which
basically is processing information from the light re�ected on every object. The
methods used in this �eld process, analyze and understand images, to determine
certain features of them, like how far they are, their shape, color, orientation
and others. In the current state of the �eld we can achieve things like face
recognition, reconstruction of 3D and 2D images, tracking of the movement of
objects in di�erent images and more.

For more about how this subject started you can check [22], a classical reference
on computer vision.

2.2 Mathematical morphology

As said in the previous section the mathematical morphology is a powerfull se-
ries of tools, the basic ones are Set theory and Boolean operators, to enhance
the information given by an image, based on mathematical theories. The pro-
cesses that could be done with these techniques involve pre- and post-processing
methods, as well as discovering borders and boundaries of the image, for more
information about the subject the book of J. Serra, [10], is a good source.

Some of the applications of mathematical morphology:

• Edge sharpening.

• Contrast enhancement.

• Gradient operators.

The main operations of the morphology are erosion and dilation, which con-
sists basically in shrinking and expanding certain areas of the binary image,
gray-scale images are treated in a di�erent way. Usually the mathematical mor-
phology is applicated to binary and gray scale images only.

2.2.1 Structural Element

The structural element is our tool to change the image, is a very small image,
that usually has an odd numbered size because there is a center in it. For every
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problem the structural element may need an speci�c shape and size, that's where
a genetic algorithm will come in handy, changing the size and shape, trying the
best combination possible for the image. The way the structural element change
the image is by applying it in di�erent ways de�ning the two basic operations
are erosion and dilation.

2.2.2 Erosion

Erosion is one of the main operations of the mathematical morphology. Basi-
cally consists in eroding certain zones of the image, by putting the center of the
structural element in each black point and transforming every white point into
a black one where the ones of the structuring element overlap them.

A more mathematical de�nition would be:

A⊖B = {z|(B)z ∩Ac ̸= 0} =
∪
z∈A

Bz

where A is the image, B is the structural element, and z is a point belonging
to A. In Figure 1 the white pixels are 1s and the black ones are 0s, see how
applying the structural element �eroding� eliminates the object.

Figure 1: Example of an erosion, the white pixels are 1s and the black ones are
0s, see how applying the structural element �eroding� eliminates the object.

2.2.3 Dilation

Dilation is the other main operation of the morphology, as well as the erosion
it's applied by the structuring element. This operation is the total oposite of
the erosion, it basically puts the center of the structural element in each white
point and transforms every black point into a white one where the ones of the
structuring element overlap them.
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The mathematical de�nition:

A⊕B = {z|(B)z ∩A ̸= 0} =
∪
z∈A

Bz

where A is the image, B is the structural element, and z is a point belonging
to A. In Figure 2 the white pixels are 1s and the black ones are 0s, see how
applying the structural element �dilating� expands the object.

Figure 2: Example of a dilation, the white pixels are 1s and the black ones are
0s, see how applying the structural element �dilating� expands the object.

2.2.4 Opening

The opening operation is erosion followed by dilation, it removes all areas smaller
than the structural element, smooths boundaries, erase thin portions of the
image with almost no change in the object area, it's de�ned as:

A ◦B = (A⊖B)⊕B

where A is the image and B is the structural element. In Figure 3 eroding erases
the lines and most of the noise, dilating then enhances the words in the image.
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Figure 3: Opening example, clockwise: original, eroded, dilated, see how eroding
erases the lines and most of the noise, dilating then enhances the words in the
image.

2.2.5 Closing

Closing is dilation followed by erosion, it �lls small areas of the image, connects
close objects, and just as the opening operation it smooths boundaries and
makes almost no changes in the object area, it's de�ned as:

A •B = (A⊕B)⊖B

where A is the image, B is the structural element. In Figure 4 the dilation
erases the internal lines and the erosion enhances the words.
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Figure 4: Closing example, clockwise: original, dilated, eroded, here the dilation
erases the internal lines and the erosion enhances the words.

2.2.6 Gradient

Applying erosion and dilation operations to the image can be used to �nd the
boundaries of objects, to discover di�erence between the original image and the
transformed ones we use the gradient:

• External gradient: arithmetic di�erence between the dilated image and
the original image: AΩ+B = (A⊕B)−A

• Internal gradient: arithmetic di�erence between the original image and
the eroded image: AΩ−B = A− (A⊖B)

• Morphological gradient: arithmetic di�erence between the dilation and
the erosion: AΩB = (A⊕B)− (A⊖B)

12



Figure 5: Gradient examples.

2.2.7 Hit or miss transformation

This transformation is a basic tool for pattern recognition, it allows the selection
of sub-images with certain properties, and with them you can obtain thinning,
skeleton and pruning. It is de�ned as:

A⊗B = (A⊖B1)
∩

(Ac ⊖B2)

where A is the image, B1 and B2 are structural elements and Ac is the comple-
ment of A. For a point x to be in the result, the structural element B1 matches
A at x and B2 matches A at x.

2.3 Fuzzy logic

This concept was introduced by Lofti A. Zadeh in [3] and refers to a logic made
by predicates that are not completely true or false, that belongs or not entirely
to a class, but instead each concept is de�ned by a membership grade to a cer-
tain class, usually a grade that range between 0 and 1, and de�nes how true it is.

The main concept behind this logic is that if humans can gain knowledge with
imprecise or incomplete information, computers should be able to do the same.
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This concept has given birth to many theories and aid in many �elds, from ma-
chine learning or control theory to computational intelligence and many more.

2.3.1 Fuzzy sets

These sets are characterized by all their elements having a membership degree,
which is de�ned by the memebership function represented as:

A = {(x, µA(x))|x ∈ U}, µA : U → [0, 1]

where A is a fuzzy set, x is a point in the set and µA(x) is the membership
function, as shown in [19] by Zadeh. In this work, we are going to use a fuzzy
set as the structuring element, hoping to introduce resistance to imprecision or
imperfections in our algorithm.

Figure 6: Example of a typical fuzzy set de�ning gray levels.

2.4 Thresholding

Thresholding is an operation that separates, or classi�es, all the pixels of an
image in two classes, background and foreground, thus transforming an RGB
or gray-scale image into a binary image. Basically the method consits in cal-
culating a threshold, by any mean, like for example calculating the histogram
of an image and choosing a mid point, which will be considered the minimum
of the threshold, or just calculating the local minimun of a bimodal histogram
and then separate every pixel between the ones greater than the threshold and
the lower ones.

Here I will list some of these methods:

• Statistical Decision Theory based Threshold Computation: Sta-
tistical Decision Rule, Gaussian Distributions and Model �tting method.
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• Thresholding minimizing the intra-class variance, Otsu's method:
Tries to minimize the spread of the left and right sides of the histogram
halved by the threshold, the goal is to �nd a threshold that minimizes the
sum of the spreads for background and foreground pixels, this spread is
measured using the intra-class (within-class) variance.

• Thresholding minimizing Kullback divergence: For each possible
thresholding value, the distance, which is the Kullback's divergence, to
the image histogram is measured.

• Fuzzy Thresholding Algorithm (Huang and Wang method): The
image is an array of fuzzy singletons, each one represents a pixel has a
membership belonging to background or foreground.

• Hierarchical thresholding: The image is processed with di�erent reso-
lutions.

Thresholding is usually used to discover forms and counting or just as a way to
obtain a binary image.

Figure 7: Example of a thresholded image.

2.4.1 Top-hat transformation

The top-hat transformation is used when the thresholding of an image is dif-
�cult, usually because the gray level of the image changes slowly. This is a
morphological operation thus is applied with a structural element, and is de-
�ned as follows:

T = A− (A ◦B)

where A is the image, B is the structural element.vision

2.5 Genetic algorithm

Genetic Algorithms, presented in [4], are part of the Evolutionary Computa-
tion, a branch of computational intelligence which is based on Darwin's theory
of Evolution. Good references to this subject are [23] or [24].
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The main component of the GA is the chromosome, which tries to imitate a
string of DNA composed by genes, the location and encoding of this genes
makes certain traits to appear. In this case the chromosome is a string of char-
acters, usually 0s ans 1s, which are part of a population of chromosomes and
de�nes a solution of the algorithm.

These are the main steps of a basic GA:

1. Initialization: initialize the population creating the chromosomes, usu-
ally this process is totally random. After the creation of the population,
the algorihthm calculates a �tness function for each chromosome, the �t-
ness of each chromosome represents how good a solution is.

2. Selection: select the best individuals of the population to make the new
ones with them as parents.

3. Reproduction: in this step two parents of the previously selected are
going to create two new individuals from them, usually comprehends two
operations: crossover and mutation. Crossover consists on switching part
of one parent with the other to create a new one. Mutation runs over
every character of the new individual, and if triggered then changes it.
Both operations have a probability of happening.

This process is repeated a �xed number of iterations or whith any other stopping
criteria, each time the algorithm iterates the new chromsomes created in step
3 replace the worst ones of the population. The result is the chromosome with
the best �tness.

Figure 8: Sequence of a genetic algorithm, adapted from [4]
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3 State of the Art of Fuzzy Mathematical Mor-

phology and Genetic Algorithms for image pro-

cessing

In this section I'm going to talk about the current state of the Image Analysis
using Fuzzy Mathematical Morphology and Genetic Algorithms, which are the
main themes of this work. I'm going to show papers and books related to this
subjects to illustrate their state.

3.1 Fuzzy Mathematical Morphology

Fuzzy mathematical morphology is supposed to show better results with images
corrupted with noise than the classical morphology so I'm going now to present
[1], and many other references, which is one of the papers that inspired my work,
it covered the problem of the creation of a fuzzy mathematical morphology that
showed good results on the presence of noise.

Binary morphology has some problems, mainly in the presence of too much
noise as demonstrated in [5], therefore many researchers have tried to use soft
computing solutions to solve it, with success only in certain conditions as we can
see in [6]-[8]. In [1] a new generalized fuzzy mathematical morphology (GFMM)
based on a fuzzy inclusion indicator (FII) is presented, and provides good results
with 2D and 3D grayscale images.

This fuzzy inclusion indicator presented in [1] let us known when a fuzzy set is
included on another, it's based on an binary inclusion indicator and translated
into fuzzy mathematics, having all the propierties of the original indicator, and
this will be the base of all the GFMM. The de�nition of the inclusion indicator
is:

µI(A,B)(u) = infx:µA(x)=uµB(x)∀uϵ[0, 1]

where A and B are fuzzy sets, µ represents a membership function, x is a point
that belongs to A and gives as a result u and I(A,B) is the result of applying
the FII to A and B.

The main operation of the GFMM is erosion, dilation is de�ned as the con-
trary of it. Of course opening and closing are de�ned by erosion and dilation,
so the GFMM is analog with a binary mathematic morphology and this one is
a particular case of the GFMM, if we use a bi-valued membership function. To
obtain the robustness we are looking for, this GFMM uses a fuzzy structural
element as represented in Figure 9, when its core set it's bigger than a pixel
then it gets good results, even with noise, when applying previously mentioned
operations.
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Figure 9: Fuzzy structural element, picture taken from [1].

For instance the morphological skeleton and morphological shape are good meth-
ods to get the shape of an image, so these will be de�ned in the GFMM as
follows:

X =
N∪

k=0

S(k)⊕ kB

X =

N∪
k=0

L(k)⊕ kB

where X is the resulting object, B is the structural element, S(k) are the skele-
tal subsets de�ned on [1], L(k) are the spines to �nd the shape and N is the
largest integer such that X = NB ̸= 0. Finally some experiments were done
in [1] to show that it's true that GFMM performs better analyzing images with
noise than binary and grayscale techniques, both with 2D and 3D images.

Mathematical morphology was created for binary images, and later on, extended
to gray-level images, transforming these ones into binary images through thresh-
olding, Serra was the �rst to try this in [10]. In [9] is proposed that to transform
this gray-level images into fuzzy sets you can consider the gray-level information
of each pixel as a membership degree to the data set, to do this she scales the
information of every pixel into the range [0,1], using any kind of normalization,
a N-function, a single-sigmoid or any other, this process can be seen in Figure
10.
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Figure 10: Fuzzy image processing, taken from [13]

With the gray-scale image fuzzi�ed it's time to apply the morphology operations.
The fuzzy erosion in [9] is de�ned by two di�erent methods, Minimum or Average
functions:

Emin = (I ′ ⊖ SE)min = min{1− |I ′ − SE|}

Eave = (I ′ ⊖ SE)ave = 1−
∑

|I ′ − SE|/sizese

where I ′ is the image, SE the structural element and sizese is the number of
active pixels in the structuring element. The Minimum erosion corresponds to
the classical erosion, and the average one provides smoother results, which to
apply depends on the image, with high degree of connectivity between pixels a
Minimum erosion would be enough, for example. The dilation is then de�ned
as the opposite of the erosion:

I ′ ⊕ SE = Ec(I ′c, SE) = 1− E(1− I ′, SE)

where I ′ is the image, SE the structural element, I ′c is the fuzzy complement of
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I ′, and Ec is the complement of the erosion. Apart from this [9] covers a fuzzy
method to detect edges, the Normalized Fuzzy Sigma NFS distance transform
based on Euclidian distance:

NFS(Iij , Eij) =

{
NFE(Iij , Eij)/2 for0 ≤ dij ≤ 0.5

1−NFE(Iij , Eij)/2 for0.5 ≤ dij ≤ 1

where I is the image, E is the erosion, NFE is the Normalized Fuzzy Entropy
function and dij is the distance between the image and the erosion in the point
(i, j). This will detect the fuzzy boundaries of the image, and the fuzzy skeleton
by thresholding and thining the fuzzy boundary set. Some results can be seen
in Figure 11.

Figure 11: Finding the fuzzy skeleton, a) image b) Minimum erosion c) NFS d)
boundary set e) radius image f) result. Image taken from [9]

An interesting part of [13] was how the Top-Hat transform was translated to
fuzzy morphology, in [14] the author gives a universal framework to create a
fuzzy mathematical morphology and his approach on the fuzzy hit-or-miss trans-
form.

He de�nes erosion and dilation as an adjunction, that means that for every
dilation (δ) there is an erosion (ε) that follows:

δ : L → F ⇐⇒ ε : F → L

20



where L and F are two lattices. Now, if there is a conjunctor in which c(0, 1) =
c(1, 0) = 0 and c(1, 1) = 1, and there is an implicator in which i(0, 0) = i(1, 1) =
1 and i(1, 0) = 0 then they are an adjoint conjunctor-implicator pair and then
the erosion and dilation are universally de�ne by:

δ(X)(x) =
∨
y∈E

c(Ax(y), X(y))

ε(X)(x) =
∧
y∈E

c(Ay(x), X(y))

in which E is an universal set, and A and X are fuzzy subsets of E. This way
the author de�nes a universal framework for any fuzzy mathematical morphol-
ogy.

Another interesting aspect of that paper is the hit-or-miss transform, which
is mathematically de�ned by:

π̃A,B(X) = εA(X)△εB(X
c)

where △ is a t-norm of the membership function of the fuzzy subsets A and B.

A lot of the papers related to image processing have as an objective image
segmentation, for example the ones that I'm showing here, which is a basic
operation in many researches this and the fact that a fuzzy structural element
is one of the pillars of this work made [11] a really interesting paper, basically
in [11] the authors describe an approach for fuzzy structural elements in image
segmentation.

Image segmentation separates an image into uniform regions or subsets, in which
all pixels share a commom feature, and each region is signi�cantly di�erent from
the other. There are three major approachs to segment an image, region grow-
ing, region merging and pixel classi�cation, and the last one is the one that it's
used in [11], as it's the one that allows fuzzy techniques and facilitates uncer-
tainty management.

The algorithm proposed in [11] is divided into three steps:

• A fuzzy set is associated to every region which is going to be segmented.

• Analyze each pixel and discover the membership degree to every previously
mentioned fuzzy set, to discover in which one its going to be.

• Transform the fuzzy segmentation into a crisp one.
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The problem with this algorithm it's that it has a very restrictive of rule:

µRk
(pij) > µRl

(pij)∀pij ∈ Rk; l ̸= k

where R is a region, and p is a pixel. For this reason a fuzzy structural element
is proposed, such that satis�es that for every region a high enough number of
pixels satisfy the previously de�ned rule, and that the regions to be segmented
must be big enough. To do this the authors suggest to decide the best shape, size
and structure for the structural element for every di�erent image. In relation
to the shape, it should be elliptical when the objects of the image are almost
linear with only a few corners, rectangular when there are a lot of corners, and
a circle when neither of the previous conditions are met. The size would be
usually small, to not overlap adjacent regions. The structure depends on the
size and the shape as show in Figure 12, if the size is to small it makes no sense
to divide the structural element into sub-regions, and when the shape is not a
circle the orientation of the axis must be considered like in Figure 13.

Figure 12: Di�erent sizes and shapes for structural elements, and sub-regions.
Taken from [11]

Figure 13: Axis orientation on rectangular and elliptical structural elements.
Image taken from [11]
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Once the main aspects of the structural element have been decided, an aggrega-
tion function that will assign a new membership degree to each pixel is necessary,
the greater the initial membership degree of the pixel was, the greater the new
one is going to be, and the larger the number of pixels with great membership
degrees the larger the �nal membership degree of the region will be.

This structural elements have proved to give very accurate results for segmen-
tation in [11], always if the tuning of the parameters is right.

Following on the segmentation subject, in [12] the authors introduce a di�erent
approach in fuzzy morphology to solve it.

The de�nition of the process, the erosion, the dilation and the di�erent opera-
tors of a morphology it's what di�erentiates a fuzzy morphology from another
one. In [12] the authors de�ne this parameters as follows, with the objective
of obtaining segmentation on medical images to discover blood vessels. The
fuzzi�cation is done in that paper with the sigmoid function for the image and
a speci�c formula for the structural element. Once the image and the struc-
tural element are fuzzi�ed, fuzzy erosion is then de�ned by a binary inclusion
operator, very similar to what it's shown in [1]:

εF (f,B)(x) := infy∈f{I(B(y)), f(y)}

where f is the image, B is the structural element and I(B, f) is the binary
inclusion operator. The dilation is de�ned by the binary conjunction:

δF (f,B)(x) := supy∈f{C(B(y)), f(y)}

where f is the image, B is the structural element and C(B, f) is the binary
conjuction operator. It's interesting to note that in [13] it's proposed these al-
most the same operations, but using a fuzzy inclusion and fuzzy conjunction
operators, instead of the binary ones. Anyway it doesn't seems to have much
impact on the results, as the fuzzy inclusion and conjunction operators give the
same output as the boolean ones.

Opening, closing, gradient and the fuzzy top-hat operations are then de�ned
with these two operations, and the method followed in [12] to segmentate the
image is:

1. Image fuzzi�cation.

2. Image fuzzy dilation.

3. Calculation of fuzzy Top-Hat transform.

4. Image De�uzi�cation.
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5. Visualization.

Results for this algorihtm can be seen in Figure 14.

Figure 14: Example taken from [12]. a) Original image b) Fuzzy erosion c)
Fuzzy dilation d) Fuzzy Top-Hat e) De�uzi�cation f) Result

3.2 Genetic Algorithms on image processing

Another paper that was key at the time of doing this work and one of the �rst
to use GA as a image proccessing tool is [2], which demonstrates that a good
implementation of a genetic algorithm shows good results for image �ltering.

Sometimes the techniques used for image analysis give bad performance, this
happens as well with morphology based operations, even if they are good in
theory and have solved many problems, like the presence of too much noise on
an image, the methods designed tend to be une�cient.

In [2] the authors suggest the use of Genetic Algorithms (GA), which, as stated
before, are probabilistic methods, based on natural selection, to search for the
optimal morphological operator. The paper introduces both mathematical mor-
phology and GA, but I'm going to leave out those sections, so I can explain their
work better.
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The �rst thing you can notice when trying to solve a �ltering problem is how
big the search space is, you need to search for the optimal morphological opera-
tor and structural element, so the possibilities are approximately (525)31, which
gives us an idea of how important the GA are in these situations. So, to be able
to use GA in my work, �rst I need to convert the structural elements and the
morphological operators in chromosomes. To do this the structural elements
will be mapped as 0s and 1s in their appropriate position of the chromosome
if they're binary, if not, just transform their digits into binary code and the
mapped each digit in its proper position. In case of having positions of the
structural element that are not used, they can be coded as 0s and then add one
to every digit, for example. As for the morphological operations, I just need
to codify the operators (�erosion�, �dilation�, �do-nothing�), and put them in
sequence. Once I have both the structural element and the morphological op-
erations I put them together and form the chromosome.

The next thing to do is de�ne the properties and operators of the GA. In [2]
the selection operator is totally random, the crossover operator is a simple one
with a probability of 0.75, it takes a random point of the parents and separates
each of them in that point, then join one part of a parent with other part of the
other parent. The mutation operator presented in [2] has a probability of 0.025
of �ipping a binary digit of each gene. And �nally the stopping criterion is a
�xed number of iterations.

To know if the GA has been successful the authors recommended the use of
images from which we know the optimum �lter. Finally they recommend �o�-
line� and �on-line� performance meassurement, during optimization, as well as
mean absolute error (MAE) and mean squared error (MSE), to measure the
overall performance of the method.

Later I will show that the coding of the chromosomes of the genetic algorithm
will be based in the work of [2].

An interest way to solve segmentation can be seen in [16], the authors use a
Genetic Algorithm to solve the problem and make possible object counting,
Note that the method showed in [16] does not use any kind of mathematical
morphology, but instead is centered in the use of the GA to improve e�ciency.

To �nd the di�erent objects on an image the algorithm must look for point
features, the authors of [16] suggest the use of a Hough Transform to do this,
which provide the robustness necessary and reduces the overall complexity of
the GA. The paper's approach for the main body of the GA is an steady-state
model, which di�erentiates from the rest for having very small generations gaps,
with few o�spring chromosomes and a much quicker availability of them. The
selection process is based on the rank of every chromosome of the population,
the population is ordered and the higher the chromosome is the more possibili-
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ties of reproduction.

When trying to �nd an object in an image there a certain aspects that can
make harder this process, occlusions, noise, damage and distortion, so it's im-
portant to choose the more robust �tness function possible so the algorithm
gets the exact number of objects, no more and no less. The function that the
authors found to give the best results is:

f4 = {
p′∑
i=1

c′′i } − {
p′∑
i=1

c′i −
p′∑
i=1

c′′i }

where c′′i is the number of pairwise compatibilities between features in the image,
which de�nes the number of objects, and p′ is the number of pseudo-objects,
real and noise objects, this function did well in the tests of that paper showing
the potential of GAs as an image processing tool.

3.3 Fuzzy Mathematical Morphology and Genetic Algo-

rithms on colour images

I've shown in this work how the fuzzy mathematic morphology and genetic al-
gorithms can be applied to binary and gray-scale images, but what about colour
images? there a few interesting works on the subject that I'm going to show.

This topic is covered in [15] where the morphological operations follow the same
de�nition as in [14], thus I'm going to focus into the new aspects of [15] and it's
approach to colour image processing.

The main problem of the colour images is that they work in a multidimen-
sional space, and there is no natural order of the elements, so there are three
di�erent approaches to represent colour images that could be used in a fuzzy
morphology, the HSV (hue, saturation, value), the HLS (family, purity, inten-
sity) and YCrCb (luma, red-cyan, yellow-blue). Of those three the desirable
approach is the last one, YCrCb, because it's the only one whose paremeters
are all linear and correspond to RGB, and also because Cr and Cb have the same
weight, so the only parameter with priority is the luma, which is the parameter
that let the human eye to distinguish di�erent objects.

Now, if X is a colour image, N the number of labels in the range [0,1], T (x)
is the colour integer code of each pixel and Y (x) is the luma, then with this
transformation:

(χ(X))(x) =
N2[(N2 − 1)Y (x)] + T (x)− 1

N4 − 1

we can obtain Y (x) when we have χ(X), and χ−1(χ(X)) gives you an ap-
proximation of the original colour of the image, so for any gray-scale image
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χ(χ−1(Y )) = Y . And now it's possible to de�ne the erosion and dilation, with
B as an structural element:

δB(X)(x) = χ−1

[∨
y

c(B(x− y), (χ(X))(y))

]

εB(X)(x) = χ−1

[∧
y

c(B(y − x), (χ(X))(y))

]

The authors of [17] propose another example of colour images treated with a
fuzzy morphology, in this case transforming the image into a fuzzy set following
the approach of pixel classi�cation and getting the di�erent colours that appear
in the image.

The �rst step, of the method the authors propose, is to calculate the modes
of the probability distribution function (PDF) of the image to get the fuzzy set
from it. To do this they use a co-ocurrence matrix (CCM), which considers
the spatial and color interactions between pixels, calculate the CCM for each
observation of each color feature of every point of the image and then nor-
malize the results into the range [0,1], so it can be considered a membership
function, this normalization is the fuzzi�cation of the results, which is done by
analysing the variation of the PDF in the domain of observations of every point.

Now that the image is transformed into a fuzzy set, the authors de�ne erosion
and dilation as follows:

Ev[µx(X(c1, c2))] = inf(max[µx(Y ), 1− v(Y −X(c1, c2))]

Dv[µx(X(c1, c2))] = sup(min[µx(Y ), v(Y −X(c1, c2))]

in these formulae Y is the structural element, X is the image and v is an
structuring function which is de�ned for erosion and dilation in a di�erent way:

vE(X(c1, c2)) = [1− µx(X(c1, c2)).(1− gµx(X(c1, c2))]

vD(X(c1, c2)) = [µx(X(c1, c2)).(1− gµx(X(c1, c2))]

where X is the image, and gµx is the gradient of µx . In Figure 15 you can see
the result of the method, from a picture with �ve di�erent colours.
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Figure 15: Example of fuzzy set after applying the method of [17], taken from
that paper. Each column is a segmented colour.

In [18] the authors use a genetic algorithm to �nd image similarity in colour
images.

The main motivation behind [18] is the retrieval of images from databases,
the usual approach is to assign keywords to pictures and images and search
for similar keywords to �nd similar images, but if segmenting the colours of
an image you can search for similar images based on the colours and textures.
First the image is segmented based in the colours and the texture features with
a segmentation algorithm, to do this the authors normalize the colours and
features mapping them into the colour space S-CIELAB, which is a metric to
measure distances between colours, from them the segmentation process is done
through clustering and Bayesian networks, the results can be seen in Figure 16.
The colour information will be stored as a probability function, to discover dis-
similarities though the Kolmogorov-Smirnov distance, and the texture features
would be a distribution of the magnitude of its complex wavelet coe�cients.
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Figure 16: Example of the colour segmentation process, taken from [18]

The genetic algorithm in [18] is used to measure the degree of similarity between
two sets of features, and it's a really basic one. The initial population is ran-
domly created, the chromosome is a binarization of the feature set, the �tness
function is de�ned as:

F =
1

a+HLK(P,Q)

where H is the Hausdor� distance between the two sets P an Q, and a is a
positive constant. The selection is done following this function:

ps =
F∑l

j=1 Fj

where F is the �tness of the chromosomes and l is the number of chromosomes
in the population. The crossover and mutation operations are the basic ones,
but the paper does not mention their probabilities of happening, the stopping
criteria is not mentioned either.

In Figure 17 is shown the main process of segmentation described on [18]
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Figure 17: Process of segmentations from [18]
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4 Metodology, experiments and results

In this section I'm going to present my experiment and all it's components, �rst
I'm going to explain how it works, and all the theory behind it, and after that
I'm going to show the results of this work in di�erent images.

My approach consists in a genetic algorithm that uses a fuzzy mathematical
morphology, based on a fuzzy inclusion indicator, to �nd the best shape and
sequence of operations needed to �lter and eliminate the noise of an image. The
GA has been adapted to work also with the classical morphology to compare the
results between these two di�erent approaches, and see which one does better,
after this I'm going to test the results on di�erent images than the ones used
for the previous steps.

4.1 A fuzzy inclusion indicator and the fuzzy mathemati-

cal morphology operators

First of all I'm going to explain one of the main concepts of my approach, the
fuzzy inclusion indicator, and how it a�ects the di�erent operations.

To better understand what is the fuzzy inclusion indicator I'm going to show
how the binary inclusion indicator works. An inclusion indicator calculates how
true is that a fuzzy set is included into another, so if we have a fuzzy set A and a
fuzzy set B and the inclusion indicator is de�ned as I(A,B), this will calculate
how true is that �A is a subset of B�, now if we look at [20] there are a number
of properties that the inclusion indicator must follow:

1. I(A,B) = 0 ↔ {x : µA(x) = 1}
∩
{x : µB(x) = 0} ̸= 0

2. B ⊂ C ⇒ I(A,B) ≤ I(A,C)

3. B ⊂ C ⇒ I(C,A) ≤ I(B,A)

4. I(A,B) = I(T (A; v), T (B; v))∀v, I(A,B) = I(−A,−B)

5. I(A,B) = I(Bc, Ac)

6. I(
∪

i Bi, A) = infi I(Bi, A)

7. I(A,
∩

i Bi) = infi I(A,Bi)

8. I(A,
∪

i Bi) ≥ infi I(A,Bi)

where A, B and C are fuzzy sets, Ac and Bc are the complements of A and
B, and T (A, v) is the translation of A by the crisp vector v. The authors of
[21] found out some similarities of this inclusion indicator with the fuzzy math-
ematical morphology so the authors of [1] used it to create the fuzzy inclusion
indicator which is de�ned by this axioms or properties:

1. I(A,B) = O ↔ ∀α ∈ [0, 1], {x : µA(x) = α}
∩
{x : µB(x) = 0} ̸= 0
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2. B ⊂ C ⇒ I(A,B) ⊂ I(A,C)

3. If A is convex and B ⊂ C ⇒ I(C,A) ⊂ I(B,A)

4. I(A,B) = I(T (A; v), T (B; v))∀v

5. In the general case I(
∪

i Bi, A) ⊃
∩

i I(Bi, A). If A is convex I(
∪

i Bi, A) =∩
i I(Bi, A)

6. I(A,
∩

i Bi) =
∩

i I(A,Bi)the

7. I(A,
∪

i Bi) ⊃
∪

i I(A,Bi)

where A, B and C are fuzzy sets, Ac and Bc are the complements of A and B,
T (A, v) is the translation of A by the crisp vector v and O is a fuzzy set with
membership function µO(x) = 0. As the �fth property, the duality principle,
is lost in the translation, it will be solved by de�ning the dilation as the dual
operation of the erosion.

As shown in the previous section of this work, while reviewing the research
made on [1], the authors propose a fuzzy inclusion indicator following the pre-
vious axioms that will be used in this work as well and it's de�ned as:

µI(A,B)(u) = infx:µA(x)=uµB(x)∀uϵ[0, 1]

where A and B are fuzzy sets, µ represents a membership function, x is a point
that belongs to A and gives as a result u and I(A,B) is the result of applying
the fuzzy inclusion indicator to A and B. In Figure 18 it's shown graphically
how the fuzzy inclusion indicator works with two fuzzy sets, and a crisp and
fuzzy set.
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Figure 18: Example of the fuzzy inclusion indicator taken from [1]. a) Two
fuzzy sets b) Crisp and fuzzy set

The authors of [1] then de�ne erosion and dilation based on the previously
de�ned fuzzy inclusion indicator, the membership function of the erosion ε(A,B)
is:

µε(A,B)(x) = µI(T (B,x),A)D(I(T (B, x), A))

where A and B are fuzzy sets, x is a point of the image, T (B, x) is the translation
of B to the point x, I(B,A) is the fuzzy inclusion indicator and D(I(B,A)) is
the defuzzi�cation of the operation. The dilation is de�ned in [1] considering
the duality principle mentioned before:

δ(A,B) = ε(Ac,−Bc)

where A and B are fuzzy sets, and Ac and Bc are the complements of A and B.

Now that I've de�ned the morphological operations it's time to de�ne the frame-
work, I'm going to use a fuzzy structural element with a binary image, this can
be done because the fuzzy mathematical morphology can be compatible with the
binary mathematical morphology as shown in [1], if we have a crisp set A with
a function equivalent to a membership function with two values µA(x) = fA(x)
and a fuzzy set B with a membership value µB(x) = 1∀x then the fuzzy inclusion
indicator membership function is de�ned as:

µI(B,A)(u) =

{
0, ∃x ∈ B : µA(x) = 0

1, otherwise
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then the erosion is de�ned as:

µε(A,B)(x) =

{
0, ∃y ∈ T (B;x) : µA(y) = 0

1, otherwise

After calculating the membership function of the inclusion indicator we need to
de�ne a defuzzi�cation process. For the erosion I will take the minimum as the
defuzzi�cation process, and the maximum for the dilation.

I'm going to use a binary image with a fuzzy structural element, thus the only
thing left to be de�ned is the structural element. The structural element will
have a pyramidal membership function, with di�erent sizes from 4x4 pixels to
7x7 pixels, and di�erent support areas, the support area is the top of the pyra-
mid and the only point or points in which µ(x) = 1 for the structural element's
membership function.

4.2 Coding the chromosomes of the genetic algorithm

Genetic algorithms work with direct solutions, they select the best ones, repro-
duce them and change them to �nd new solutions, so there is the obvious need
to code the information I want as a solution into a chromosome, which in this
case is a string of binary digits.

There are two things that need to be coded, the �rst one is the sequence of
operations that are going to be done to the image, there is going to be two
operations (erosion and dilation) and the possibility of doing nothing, and for
each operation there is a binary code of two digits, I need at least two digits
to code three di�erent elements. The representation of the di�erent operations
is In Table 1 . There is no need to indicate which operations are �rst, the
position in the chromosome serves as the position in which the operations are
done. In Figure 19 there is an example of the translation of operations into the
chromosome.

Operation Binary code

Do nothing 00
Do nothing 01
Erosion 10
Dilation 11

Table 1: How the di�erent operations of the solution are coded.
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Figure 19: Sequence of operations translated into a chromosome.

The last thing to be coded is the size and shape of the structural element,
it is going to be coded into three binary digits, allowing until eight di�erent
combinations of sizes and shapes, the codi�cation for the structural element is
in Table 2. In Figure 20 you can see the translation of a 5x5 fuzzy structural
element with a 1x1 support area into a two dimensional array. In Figure 21
there is an example of a complete chromosome.

Size Support area Binary code

4x4 2x2 000
5x5 1x1 001
5x5 3x3 010
6x6 2x2 011
6x6 4x4 100
7x7 1x1 101
7x7 3x3 110
7x7 5x5 111

Table 2: How the di�erent sizes and shapes of the structural element are coded.

Figure 20: A 5x5 fuzzy structural element is translated to a two dimensional
array. The fuzzy structural element has been taken from [1].
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Figure 21: Example of a complete chromosome.

4.3 Structure and properties of the genetic algorithm

The structure and the properties of the genetic algorithm will de�ne how it
works, so in this section I'm going to show the di�erent aspects of my imple-
mentation.

4.3.1 Population and initialization

How big is the number of chromosomes in the population will a�ect the running
time to initialize the entire population or the selection of better individuals,
and apart from this if we have a many individuals and we select only a few,
we are just consuming memory saving a lot of individuals that have low �tness
and are not going to be selected, in fact they are going to be replaced. As the
number of individuals that are going to be selected as the best ones is going to
be small to save running time in the experiment, genetic algorithms could get
too complex thus wasting a lot of e�ciency, then the population will count with
ten individuals.

A random binary number generator will initialize each chromosome of the pop-
ulation at the beginning of the algorithm.

4.3.2 Fitness function

After creating the initial population or introducing the new individuals from
the reproduction, the genetic algorithms needs to calculate their �tness to know
which solutions are better than the others.

The objective of this procedure is, as said previously, to �lter the image and get
rid of the noise, so if we have the original image, the one without noise, and the
corrupted image, we can indeed calculate the di�erence between the �ltered one
and the corrupted one, so �rst each chromosome will apply its sequence with
its particular structural element to the image to get the �ltered image by that
particular chromosome. With the �ltered image, the corrupted and the original
then it's possible to de�ne a �tness function as follows:

F = d(C,O)− d(I −O)
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where C is the corrupted image, O is the original and I is the �ltered one and
d(C,O) is the distance between the corrupted image and the original the same
for d(I,O). Note that if the result of this equation is negative then the �ltered
image is worse than the corrupted one and the solution should be replaced.

4.3.3 Selection

For reproduction the algorithm selects the four best individuals of the popula-
tion, those are the ones with greater �tness, from this group of four the algorithm
will select two di�erent individuals each time that will be use as parents for two
new individuals, the resulting individuals which will later replace the worst four
individuals of the whole population.

4.3.4 Crossover

Once two parents are selected to create the new individuals there is a probability
of 0.75 to produce this new individuals with crossover, if not then the two indi-
viduals will be indentical to their parents. The crossover works as follows, with
the two parents selected the algorithm choose one position, from this position
the parents are separated in two and then the part to the right from one parent
is exchanged with the part from the other parent. An example of crossover can
be seen in Figure 22.

Figure 22: Example of crossover between two chromosomes.

4.3.5 Mutation

After the previous step every digit of the new individual have a probability of
0.10 to be �ipped, this means that the 0s will be transformed into 1s and the 1s
into 0s. The high probability of mutation enhances variability in the o�spring,
as I'm going to use a relatively small number of iterations for a genetic algorithm
this will aid in the search of totally new solutions.

4.3.6 Stopping criterion

The algorithm will stop when it reach a certain number of iterations, in this
case 100 and 250 iterations, for two di�erent tests, this way I will have a better
way to see how the genetic algorithm behaves.
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4.4 General procedure of the experiment

The experiment will be separated into four steps:

1. Add noise to the selected images and binarize them through thresholding.

2. Run the genetic algorithm for each image with fuzzy mathematical mor-
phology.

3. Run the genetic algorithm for each image with classical mathematical
morphology.

4. Use the results of the fuzzy mathematical run to test with images di�erent
than the ones used on train.

4.5 Results

I've tested the algorithm with various images, the most signi�cant results were
found with three particular images, the �rst one can be seen in Figure 23, it
has simple objects and forms, the second one it's in Figure 24 it has more
complicated objects and numbers and in Figure 25 there is the last image which
have more complicated forms. I've applied random noise to all of them, 5%
speckle noise, the results can be seen in their respective �gures.

Figure 23: First image, �Parts.tif�. a) Original image b) Corrupted one
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Figure 24: Second image, �Matricula.tif�. a) Original image b) Corrupted one

Figure 25: Last image, �lena.tif�. a) Original image b) Corrupted one

In Table 3 and Figure 26 there are the results for the image �Parts.tif� with both
fuzzy and classical morphology, in Table 4 and Figure 27 there are the results
for the image �Matricula.tif� and �nally in Table 5 and Figure 28 there are the
results for �lena.tif.�

In the tables �Morphology� indicates the type of morphology of that partic-
ular case, �Iterations� refers to the number of iterations used for test, �Fitness�
is the result of the �tness equation de�ned previously, �Sequence� is the se-
quence of operations of the solution, �dn� is �do nothing�, �d� is dilation and �e�
is erosion, �SE� is the size (and shape) of the selected structural element and
�Improvement� is the percentage of improvement of the �ltered image over the
corrupted one de�ned by this function:

Average =
(C − I)

(C −O)
∗ 100

where C is the corrupted image, O is the original and I is the �ltered one. For
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example, if C has 10 pixels of noise and I only 5 then the result would be 50%.

Morphology Iterations Fitness Sequence SE Improvement

Fuzzy 100 4452 dn-d-d-dn 7x7 (5x5) 96.99%
Classical 100 4536 e-d-dn-dn 6x6 98.82%
Fuzzy 250 4575 dn-e-d-dn 6x6 (2x2) 99.67%

Classical 250 4536 dn-e-d-dn 7x7 98.82%

Table 3: Results of the experiment for the image �Parts.tif�

Morphology Iterations Fitness Sequence SE Improvement

Fuzzy 100 5655 dn-dn-e-d 5x5 (3x3) 76.14%
Classical 100 5459 dn-dn-d-e 6x6 73.5%
Fuzzy 250 5947 e-d-d-e 5x5 (1x1) 80.07%

Classical 250 5783 dn-dn-e-d 7x7 77.86%

Table 4: Results of the experiment for the image �Matricula.tif�

Morphology Iterations Fitness Sequence SE Improvement

Fuzzy 100 1079 dn-e-e-d 6x6 (2x2) 39.7%
Classical 100 -267 dn-dn-d-e 4x4 -9.82%
Fuzzy 250 1263 d-dn-e-d 4x4 (2x2) 46.47%

Classical 250 -267 d-e-dn-dn 4x4 -9.82%

Table 5: Results of the experiment for the image �lena.tif�
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Figure 26: Results for the image �Parts.tif�.a) Fuzzy morphology with 100 it-
erations b) Fuzzy morphology with 250 iterations c) Classical morphology with
100 iterations d) Classical morphology with 250 iterations.
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Figure 28: Results for the image �lena.tif�.a) Fuzzy morphology with 100 iter-
ations b) Fuzzy morphology with 250 iterations c) Classical morphology with
100 iterations d) Classical morphology with 250 iterations.

After getting these results they were tested with three di�erent images, �Girl2.tif�,
�House.tif�, �Lisa.tif�, because of their similarity to �lena.tif�, �Girl2.tif� and
�Lisa.tif� were tested with the results obtained from that image with 250 itera-
tions and fuzzy morphology, �House.tif� was tested with the results of �Matric-
ula.tif� with 250 iterations and fuzzy morphology. The results of this second
part of the experiment can be seen in Table 6 and Figures 29, 30 and 31.
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Image Fitness Sequence SE Improvement

�Girl2.tif� 854 d-dn-e-d 4x4 (2x2) 44.5%
�House.tif� 417 e-d-d-e 5x5 (1x1) 36.74%
�Lisa.tif� 773 d-dn-e-d 4x4 (2x2) 44.88%

Table 6: Results of the test images.

Figure 30: Results for the image �House.tif�.a) Original image b) Corrupted
image c) Fuzzy morphology with 250 iterations.
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Figure 29: Results for the image �Girl2.tif�.a) Original image b) Corrupted
image c) Fuzzy morphology with 250 iterations.
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Figure 31: Results for the image �Lisa.tif�.a) Original image b) Corrupted image
c) Fuzzy morphology with 250 iterations.
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5 Future work

In this section I'm going to present two alternatives that didn't get to the �nal
experiment, the �rst one are di�erent shapes of structural elements an how to
code them, the second one is translating the image directly to a fuzzy set.

5.1 Structural element shapes

In my experiment I only use square shaped sctructural elements, changing size
and only the shape of the support area, but it could be really a good alternative
to change the shape of the structural element as hinted in [11], for example they
demonstrate that rectangular structural elements like the one I use are good for
when the image has objects with several corners, elliptical structural elements
when the objects have few corners and circular when neither of those conditions
are met, or just as an standar structural element.

To code a di�erent shape of structural element the 2D array representing it
will have a null value that will indicate that that place is empty and it's not
part of the structural element. In �gure 29 I show an example, taking as null
value �-1�.

Figure 32: Example of circular structural element, with �-1� as null value.

Apart from this the only thing left to do would be introduce a new parameter
into the chromosome, to do this I would insert two new digits so I could code
three di�erent possibilities as shown in Table 6.
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Shape Binary code

Rectangular 00
Rectangular 01
Elliptical 10
Circular 11

Table 7: Coding di�erent shapes for the structural element.

5.2 Images into fuzzy sets

Another approach to the Fuzzy mathematical morphology is using gray-level
images transfromed into fuzzy sets instead of binary images, this can be done
fuzzifying the gray-level image, as a gray level pixel is already a grade of gray
it's really easy to normalize every pixel into the range [0,1], thus acting like a
membership degree.

The process then is very simple:

1. Load the image into the program.

2. If the image is in RGB transform it to gray-levels.

3. Normalize the pixels of the image into the range [0,1]

4. Certain libraries use fuzzy sets as 1D arrays, in that case transform the
2D array into a 1D array and then convert it into a fuzzy set.
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6 Conclusions

Fuzzy mathematical morphology has proven to be a usefool tool to give more ro-
bustness to the classical operations of morphology, in the experiment is obvious
that with basic images fuzzy and classical morphologies perform almost as well
and maybe classical morphology is more e�cient in terms of time and resources,
anyway when dealing with noise in more complicated images like �Matricula.tif�
or �lena.tif� fuzzy morphology achieves to eliminate noise without changing too
much the image, while classical morphology changes the image too much and
could end up being worse than the original image corrupted with noise, as you
can see in the results of �lena.tif�.

As for the addition of genetic algorithms to the equation, they can consume
a lot of resources, but they've demonstrated to be very useful as it's obvious
that di�erent structural elements and di�erent sequences of operations are se-
lected for each image, I want to remark that, in the results, opening and closing
appear several times, which was expected knowing the results of applying both
operations.

Another interesting result is that for the image �lena.tif� the structural ele-
ment has always an even size, as shown before these structural elements have
support areas usually bigger than the odd sizes, so it could be possible than
with objects with a lot of curves and few hard corners, even-sized structural
elements are better.

The test images also shown overall good results, they were not perfect and
in some cases part of the original image were even erased like in �House.tif�
but it seems that knowing how to �lter one image can help us �ltering simillar
images, or at least give close enough results.
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