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Abstract

The aim of this master project is the development of an R-Package for generating fractals
via iterated function systems (IFS). At first glance fractals are eye-catching, self-similar
patterns that form a pretty or interesting picture. However, the inner workings of fractals
are much more complex and can be extremely useful in applications for image compres-
sion, image animation, for identification and for modeling.

Extensive research on fractal theory was undertake to effectively define functions in
R capable of handling diverse IF'S. Two algorithms are analyzed and implemented in the
generation of fractals, the Deterministic Algorithm and the Random Iteration Algorithm.
Through the functions developed for an R-package to construct fractals, some of the major
theorems and corollaries in fractal theory were successfully verified. The convergence of
the Hutchinson operator is validated in the Hausdorff metric; while, experimentation with
IFS with probabilities through the implementation of the Random Iteration Algorithm
helps illustrate and define measures on fractals in R%. Furthermore, a comparison between
the Deterministic Algorithm and the Random Iteration Algorithm for generating fractals
proves the effective and time efficient use of the Random Iteration Algorithm.

The result of this master project is the development of multiple functions to compose
an R-package for generating fractals via iterated function systems. Determ R2 was cre-
ated to generate fractals in the two-dimensional vector space of real numbers, R?, via the
Deterministic Algorithm. The functions RandItl R2, Randlt R3 and RandIt C were
programed to build fractals in R?, R® and the complex plane (C), respectively, using
the Random Iteration Algorithm. A function, IFS Prob, was developed to randomly
generate probabilities for a hyperbolic IFS. Additionally, IFSP _Gen R2 was developed
to recursively test random probabilities for a given IFS. The function FractalMeas R2
calculates the measure of a Borel subset of X, given the limiting coordinates of said
Borel subset. Lastly, TransMat R2 approximates the attractor for an IFS induced by a
transformation matrix.

Keywords: Master Project, Soft Computing, Fractals, Iterated Function Systems, Mea-
sure, Attractor
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Chapter 1

Introduction

At first glance fractals are eye-catching, self-similar patterns that form a pretty or in-
teresting picture. However, the inner workings of fractals are much more complex and
can be extremely useful in real-world applications. Fractals can be generated mathemat-
ically, or observing closely, fractals can even be found in nature. The exact meaning of
a fractal is difficult to condense into a short, simplistic definition. For the time begin, a
fractal is a subset of a simple geometrical space, where said subset may be geometrically
complex. This fractal subset can be built through an iterated function system (IFS). A
more precise definition of a fractal and an IFS is given in Chapter 3; just the same, some
visual examples of fractals are provided on the following page in Figure 1.1.

The detailed description of the master project herein was prepared as the final project
for the Master in Soft Computing and Intelligent Data Analysis at the University of
Oviedo. The central objective of this master project is the development of an R-Package
for generating fractals via IFS. R was chosen for the development of this project because
R is a free programming environment effective in data manipulation, calculations, and
graphical display. R can be easily adapted and extended via the creation of new functions
and /or new packages, such as those constructed in this master project. When considering
the computational times mentioned throughout, note that the programming of the R
functions was performed on a 2.7 GHz Intel Core i7 processor.

Clearly, Chapter 1 serves as a brief introduction to the development of this master
project. Chapter 2 further details the objectives of the project. Extensive research on
fractal theory was undertake to effectively define functions in R capable of handling
diverse IFS. A summary of this research is presented in Chapter 3, the Materials and
Methods section of this text, to give the reader an understanding of the basic concepts
in fractal theory relevant to the formation of fractals via IFS. Chapter 4 describes the
results of this master project, that is, each one of the functions developed in R, which
compose the core of the R-package. This section summarizes how the functions were built,
which are their inputs, their outputs and some possible uses of said functions. Finally,
Chapter 5 enumerates the outcomes of this master project, draws important conclusions
developed during the project and discusses relevant future work. Appendix A includes
the IFS used and developed throughout the project, and Appendix B provides the R
function programmed for the R-package.
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(a) Sierpinski Carpet (b) Fractal Tree

(¢) Koch Curve (d) Maple Leaf

Figure 1.1: Fractals Generated Via IFS

What link exists between fractals and a Master in Soft Computing and Intelligent
Data Analysis? Soft computing and intelligent data analysis combine both traditional and
emerging problem solving methodologies, including fuzzy logic, artificial neural networks,
evolutionary algorithms and probabilistic reasoning. The aim is to develop powerful, ap-
proximate reasoning systems with the ability to handle and model ill-define problems
with large-scale solutions spaces that emerge in real-world situations. Fractal theory pro-
vides soft computing and intelligent data analysis researchers with mathematical tools
capable of analyzing the geometrical complexity of natural and artificial objects, and can
be used for identification and modeling [2]. Moreover, fractal theory provides the ability
to interpolate between similar fractal images; this is particularly useful image animation.
The capacity to control fractals by adjusting parameters in the IFS is extremely impor-
tant in image compression applications [1|. Even though this master project does not
specifically concern image compression, a glimpse of the connection between fractals and



image compression is illustrated in the following figure [6].
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Figure 1.2: Fractals and Image Compression
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Chapter 2

Objectives

Chapter 2 of this text details the objectives of this master project, whose principle ob-
jective is the development of an R-package for generating fractals via IFS.

2.1 Objectives

As previously mentioned the main goal of the master project describe herein is the cre-
ation of an R-package for generating fractals via IFS. Two algorithms for generating
fractals will be analyzed and implemented through the developed R functions, the Deter-
ministic Algorithm and the Random Iteration Algorithm. The functions developed for
an R-package to construct fractals, should uphold the major theorems and corollaries in
fractal theory.

The functions programmed must be robust and user friendly. More specifically
the functions should be able to operate in various mathematical spaces, i.e., the two-
dimensional Euclidean plane (R?), the three-dimensional Euclidean plane (R?) and the
complex plane (C).

Determ R2 will be created to generate fractals in R? via the Deterministic Algorithm.
The functions RandItl R2, RandIt R3 and Randlt C shall be programed to build
fractals in R?, R? and C, respectively, using the Random Iteration Algorithm. A function,
IFS Prob, is to be developed to randomly generate probabilities for a hyperbolic IFS.
Additionally, IFSP _Gen R2 will recursively test random probabilities for a given IFS.
The function FractalMeas R2 will calculate the measure of a Borel subset of X, given
the limiting coordinates of said Borel subset. Lastly, TransMat R2 will approximates
the attractor for an IFS using a transformation matrix.

The package should be easy to use. The functions should have parameters the user
can adjust to suit his or her needs; yet, inputs should have a standard form to ensure
the correct execution of each function. Error checking shall be added to control the
implementation of each function. Computational time will be minimized to the greatest
extent possible, in turn maxing the efficiency of the R-package.
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Chapter 3

Materials and Methods

Chapter 3 on materials and methods offers information on the R environment as well as
essential background knowledge on fractal theory. It is assumed that the reader has a
basic understanding of certain mathematical concepts, particularly: linear algebra, metric
spaces and set theory. Unless otherwise noted, any definitions, theorems, and corollaries
mention in this chapter are referenced from Fractals Everywhere by Michael F. Barnsley

1.

3.1 The R Environment

R is a free programming environment for data analysis and graphics. While R has many
applications, it is widely used for its statistical techniques. The source code is accessible
online at http://www.r-project.org/ and is available for download on all major platforms,
i.e, Linux, MacOS, UNIX and Windows.

R is effective in data manipulation, calculation, and graphical display. Among its
many features, the advantages of R arise from

e an effective data handling and storage facility,

a suite of operators for calculations on arrays, in particular matrices,

a large, coherent, integrated collection of intermediate tools for data analysis,

graphical facilities for data analysis and display either on-screen or on hardcopy,
and

a well-developed, simple and effective programming language which includes con-
ditionals, loops, user-defined recursive functions and input and output facilities

[5]-

The R environment is a network characterized by its fully planned and coherent
system. R can be easily adapted and extended via the creation of new functions and/or
“packages.” Packages are groups of functions developed for a particular application or area
of interest. There are approximately 25 packages supplied with the original download of
R. However, thousands of packages are available through the CRAN family of Internet
sites (http://cran.r-project.org/).
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Because of its versatility, ease of access, effective array operation and superb graphical
capabilities, the R environment was the obvious choice for generating fractals via iterated
function systems.

3.2 The Space of Fractals

Foremost, consider the ideal space in which to study fractal theory and fractal geometry.
Begin by working in a complete metric space, for instance R? with the Euclidean metric or
the Riemann sphere with the spherical metric, denoted (X,d). The space H is introduced
to analyze pictures, drawings, "black-on-white" subsets of our complete metric space.

Definition 3.2.1. Let (X,d) be a complete metric space. Then H(X) denotes the space
whose points are the compact subsets of X, other than the empty set.

Definition 3.2.2. Let (X, d) be a complete metric space, v € X, and B € H(X). Define
d(x, B) = min{d(z,y) : y € B}.

d(x, B) is called the distance from the point x to the set B.

Definition 3.2.3. Let (X, d) be a complete metric space. Let A, B € H(X). Define
d(A, B) = max{d(z,B) : x € A}.

d(A, B) is called the distance from the set A € H(X) to the set B € H(X).

Definition 3.2.4. Let (X,d) be a complete metric space. The the Hausdorff distance
between points A and B in the H(X) is defined by

h(A, B) = d(A, B) v d(B, A).

This metric space (H(X), h) is referred to as the "space of fractals."

3.3 Affine Transformations

Definition 3.3.1. A transformation w : R? — R? of the form
w(wy, ) = (axy + bry + e, cxy + dag + f),

where a, b, ¢, d, e, and f are real numbers, is called a (two-dimensional) affine transfor-
mation.

An affine transformation is often represented as the multiplication of a matrix and a
vector, plus a vector, with the following equivalent notations

w-e(2) (2 1) () (5) e

The general form of an affine transformation, w(x) = Ax + t, can be described in two
parts. A, a 2 x 2 real matrix, is a linear transformation which deforms space relative to
the origin. The multiplication of Ax is followed by a translation or shift specified by the
column vector t. Furthermore, the matrix A can also take the following special form.



3.4. Analytic Transformations 9

Definition 3.3.2. A transformation w : R? — R? is called a similitude if it is an affine
transformation having one of the special forms

x1 \ [ rcos —rsinf T n e
w xy )\ rsin@ rcosf Ty f
x1 \ _ [ rcosf rsind 1 n e
v xy )\ rsin@ —rcos6 T f

for some translation (e, f) € R?, some real number r # 0, and some angle 0, 0 < 6 < 2.
0 is called the rotation angle while r is called the scale factor or scaling. The linear

transformation
1 rcosff —rsinf 1
Ry = .
T9 rsinf rcosf T

1s a rotation. The linear transformation
r(2) -0 5) ()

In the development of this package, it is convenient to treat the affine transforma-
tions as an operation of matrices and vectors as the R environment has a distinguished
capability of efficiently manipulating such elements.

1s a reflection.

3.4 Analytic Transformations

Definition 3.4.1. Let (C,d) denote the complex plane with the Euclidean metric. A
transformation f : C — C is called analytic if for each zy € C there is a similitude of
the form

w(z) =az+b,  for some pair of numbers a,b, € C,

such that d(f(z),w(z))/d(z,20) = 0 as z — zy. The numbers a and b depend on z.

3.5 Iterated Function System

Definition 3.5.1. A transformation f : X — X on a metric space (X,d) is called
contractive or a contraction mapping if there is a constant 0 < s < 1 such that

d(f(z), f(y)) < sd(z,y)Vo, yeX

Any such number s is called a contractivity factor for f.

Definition 3.5.2. A (hyperbolic) iterated function system consists of a complete
metric space (X,d) together with a finite set of contraction mappings w, : X — X, with
respective contractivity factors s,, formn=1,2,...,N.
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From this definition the notation for the IFS is develop as {X;w,,n = 1,2,..., N}
and its contractivity factor as s = maxz{s, :n =1,2,..., N}. In practice, the word
"hyperbolic" is oftentimes dropped. Simply, IFS can be used to refer to a finite set of
maps acting on a metric space, with no particular condition imposed upon the maps. A
summary of hyperbolic IFS is presented in the subsequent theorem.

Theorem 3.5.1. Let {X;w,,n = 1,2,..., N} be a hyperbolic iterated function system
with contractivity factor s. Then the transformation W : H(X) — H(X) defined by

W(B) = U= wn(B)

for all B € H(X), is a contraction mapping on the complete metric space (H(X), h(d))
with contractivity factor s. That is

h(W(B), W(C)) < sh(B,C)
for all B,C € H(X). Its unique fized point, A € H(X), obeys
A=W(A) = Uz, wa(4)
and is given by A = lim,,_,oo W°"(B) for any B € H(X).

Definition 3.5.3. The fized point A € H(X) described in the theorem is called the
attractor of the IFS.

In Theorem 3.5.1, A = W(A) = J_, w,(A) is commonly referred to as the Hutchin-
son operator.

3.6 The Deterministic Algorithm

Principally, there are two algorithms for computing fractals from IFS. First, we consider
the Deterministic Algorithm.

Algorithm 3.6.1. The Deterministic Algorithm Let {X; wq,ws, ..., wn} be a hyper-
bolic IFS. Choose a compact set Ay C R% Then compute successively A, = W°"(A)
according to

Avr =Ujs wi(An)  forn=1,2,...

The Deterministic Algorithm leads to the construction of a sequence
{4, :n =0,1,2,3,...} € H(X), which by Theorem 3.5.1 converges to the attractor,
A*, of the IFS in the Hausdorff metric.

3.7 The Random Iteration Algorithm

Definition 3.7.1. An iterated function system with probabilities consists of an IFS
{X;wy, wa, ..., wy}

together with an ordered set of numbers {p1,pa,...,pn}, such that
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pr+p+ps+---+pv=1andp; >0  fori=1,2,..., N.
Thus, the notation for an iterated function system with probabilities (IFSP) is

{X; Wy, Wa, ey WN; P1, D2y ooy PN }-

The second algorithm for generating fractals from IF'S is the Random Iteration Algo-
rithm.

Algorithm 3.7.1. The Random Iteration Algorithm Let {X;ws,wy,...,wy} be a
hyperbolic IFS, where probability p; > 0 has been assigned to w; for 1 =1,2,..., N, where
Yo pi =1. Choose xy € X and then choose recursively, independently,

xy € {w1(Tpo1), wo(xp_1), ..., wn(Tp1)}  forn=1,2,3,..

where the probability of the event x,, = w;(x,—1) s p;. Thus, construct a sequence {x,, :
n=0,1,23,..} ¢ X.

The Random Iteration Algorithm constructs a sequence where x is selected randomly,
then =1 = w;(zo), v2 = wi(z1), v3 = w;(zz) and so forth, for ¢ = 1,2,...,N. This
process is repeated a number of times, resulting in a finite sequence of points {z, : n =
0,1,2,3,...numits} C H(X), where numits is a positive integer. This sequence is known
as the "orbit." For simplicity, assume that xo C A*, the attractor. It follows that the
{z, :n =0,1,2,3,...} would lie in the attractor and converges to A* of the IFS in the
Hausdorff metric.

It is very important to note that, unlike with the Deterministic Algorithm, the initial
points computed via the Random Iteration Algorithm are not necessarily located within
the attractor of the IFS. It is necessary to eliminate these points which are not subsets
of the attractor, from the generated sequence, before it can be concluded that the se-
quence {z,}, of infinity many points, converges to the attractor. The Random Iteration
Algorithm is more commonly known as the Chaos Game.

Since neither the Deterministic Algorithm nor the Random Iteration Algorithm can
realistically generate infinitely many subsets. The functions defined for each algorithm
will be able to generate a large, but finite, number of subsets in the attractor, which yield
a good approximation of the attractor.

3.8 Measures

Definition 3.8.1. Let X be a space. Let F denote a nonempty class of subsets of a space
X, such that

()A,Be F= AUBE F;
2)Ac F=X\Ae F.

Then F is called o field.

Definition 3.8.2. A measure u, on a field F, is a real nonnegative function pu : F —
[0,00) C R, such that whenever A; € F fori=1,2,3,..., with A;NA; =0 fori# j and
U2, Ai € F, we have
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Uy Ai) = D00 n(As).

Let (X,d) be a complete metric space. Let {X;wi,...,wy;p1,...,pn} be an IFSP.
Let A denote the attractor of the IFS. Then there exists a concept called the invariant
measure of the IFS, which we denote here by u. p assigns "mass" to many subsets of X.
For example, u(A) = 1 and p(@) = 0. That is, the "mass" of the attractor is one unit,
and the "mass" of the empty set is zero. Also u(X) = 1, which says that the whole space
has the same "mass" as the attractor of the IF'S; the "mass" is located on the attractor

[1].
Not all subsets of X have a "mass" assigned to them. The subsets of X that do have
a "mass" are called the Borel subsets of X, denoted by B(X). The Borel subsets of X

include the compact nonempty subsets of X, so that H(X) C B(X) [1].

Definition 3.8.3. Let (X be a metric space. Let B denote the Borel subsets of X. Let p
be a measure on B. Then y is called o Borel measure.

Theorem 3.8.1. Let (X, d) be a compact metric space. Let

{X;wl,'LUg, -y WN; P1, P2, "'apN}

be a hyperbolic IFS with probabilities. Let (X,d) be a compact metric space. Let {x,}52,
denote an orbit of the IFS produced by the Random Iteration Algorithm, starting at xq.
That 1s,

T, = We,, © W, 4 O+ 0 We (To).
where the maps are chosen independently according to the probabilities

b1,pP2,---, PN, forn:1,2,3,...

Let p be the unique invariant measure for the IF'S. Then with probability one (that is, for
all code sequences o1, 09, ... except for a set of sequences having probability zero).

limy, o0 577 ko f @) = [x f(@)du()
for all continuous functions f : X — R and all xy.

Corollary 3.8.1. Let B be a Borel subset of X and let u(boundary of B) = 0. Let
N(B,n) = number of points in {xg, x1, T2, T3, ....,2,} N B, forn = 0,1,2,... Then, with
probability one,

. N(B,n
p(B) = limy, 00 (r(z+1))}

for all starting points xo. That is, the "mass" of B is the proportion of iteration steps,
when running the Random Iteration Algorithm, which produces points in B.



Chapter 4

Results

The results section of this master project presents the functions developed for an R-
package for generating fractal via iterated function systems. Each function is described
in its respective section and important links are draw to the fractal theory described in
the previous chapter.

4.1 Determ 2R

The Determ R2 function (Section B.1 of Appendix B) generates an image of a fractal
based on the Deterministic Algorithm (Algorithm 3.6.1) described in Chapter 3.

The function takes as input a previously defined IFS as well as the number of desired
compact sets, n,to be computed from the initial set Ay. The initial set, Ay, consists of a
single point generated randomly from the uniform distribution on the interval [0,1]. In
reality, this initial set can lie anywhere in R? and consist of any finite number of points.

Next, we apply each of the mappings in the IFS to the set Ay, that is w;(A) for all
w in the IFS. Take for instance the IFS defined for the black spleewort fern in Table A.2.
This IFS consists of 4 mappings. The calculations below create the new compact set A;.

Ay = {wi(Ap), wa(Ag), w3(Ao), wa(Ao)}

Determ R2 contains a loop that constructs and plots compact sets Ag, A, Ao, ..., A,.

Note that for the black spleewort fern IF'S the first iteration creates 4 points, the
second iteration creates 16 points, the third creates 64 points, the forth creates 256
points and so on. By n = 8, 65,536 points have been generated. The following figure
illustrates Ag through Ag for the fern.

13
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Figure 4.1: Progression of a Black Spleewort Fern in R? by Implementing the
Deterministic Algorithm

Implementing this function in the R environment requires approximately 24 seconds
to create the above sequence of images. However, the greatest disadvantage of the De-
terministic Algorithm is that the required number of mappings increases exponentially
as n increases. Consider the IFS for the Sierpinski Triangle in R?, Table A.1. Let n = 11
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Determ R2 generates Ayy, with 177,147 points, in approximately 215 seconds, a sig-
nificant increase in computational time. An even larger increase is seen when computing
Ay, with 531,441 points. A;, requires approximately 2155 seconds.

This function can only generate an approximation of the attractor from a finite number
of points. However, it is obvious that the attractor of IFS illustrated is the Sierpinski
Triangle. It is observed that by n = 8 the estimation of attractor clearly indicates the
Sierpinski Triangle fractal. This approximation is, more often than not, sufficient and
significantly more time effective.

4.2 RandIt R2

RandIt _R2 (Section B.2 of Appendix B) constructs an image of a fractal based on the
Random Iteration Algorithm (Algorithm 3.7.1) as denoted in the previous chapter.

The function takes as input a previously defined IFSP as well as the number of desired
points, n, to be computed from the initial point x¢. The initial point, zq, consists of a
single point in the form of a two-element column vector generated randomly from the
uniform distribution on the interval [0, 1]. Again, this initial set can lie anywhere in R

Error checking in the RandIt R2 ensures that the length of the probability vector
defined for the IFSP is equivalent to the number of mappings in the IFS. The ", p; = 1.
is also verified. If either of these conditions are not met, the user will receive an error
message describing the discrepancy.

The function proceeds by computing n points using the Random iteration Algorithm.
Recall, that the when implementing the Random Iteration algorithm it is not guaranteed
that the initial points are a subset of the attractor. To make certain that the points
plotted for the approximation of the attractor are indeed subsets of the attractor, the
function RandIt R2 plots point vectors {zs001, T5002, ---, Tn }-

If the function was not programmed to eliminate the first 5000 points of the sequence,
the user would see points dispersed throughout the plot which do not lie in the attractor.
Figure 4.3 depicts four iterations of the Random Iteration Algorithm for the Sierpinski
Triangle attractor, without the elimination of the initial points of the constructed se-
quence. The first 20 points of the generated sequence of points are in blue. The reader
can see that several of these points, in each case, are not located within the attractor.
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Figure 4.3: Random Iterated Function for the Sierpinski Triangle Attractor with Initial
Points

Nevertheless, the goal is to provide fractal approximations where all points are in
a subset of the attractor, so the first 5000 points are eliminated from the plots. The
RandIt R2 function outputs a pointplot of n — 5000 points to approximate the attrac-
tor. With the aid of the ggplot R-package, a second plot containing a two-dimensional
histogram is drawn. This histogram supplies the user with information about the density
of points in a specific region of the fractal image. The two-dimensional histogram in the
RandIt R2 function divides the plot region into 600 bins. These bins act as baskets
collecting and counting the points that fall within and then consequently assigning each
bin a color depending on its density. The fractal in Figure 4.4 is the attractor of the IFS
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code for the Black Spleewort Fern (Table A.2) generated with the Randlt R2 function
and n = 100,000 in about 55 seconds. A close-up of the edge of the leaves at the tip of
the blade is seen in Figure 4.5. Note there is a higher density at the tips of the leaves,
evident from the magenta and yellow colors.

Pointplot Histogram
Probabilities ={ 0.01,0.85,0.07, 0.07 } Probabilities = { 0.01 ,0.85,0.07 , 0.07 }

Figure 4.4: Black Spleewort Fern Generated by RandIt R2

Figure 4.5: Close-Up of Black Spleewort Fern

The RandIt R2 function is also capable of handling similitudes, or affine transfor-
mations of the special form
T rcosf —ssin¢ T h

w = .
To rsinf  scos¢ T k

The IF'S code in Table A.12 is for the same Black Spleewort Fern but in the scale and
angle format, where the affine transformation is described as translations, rotations and
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scalings. Figure 4.6 illustrates how RandIt R2 is able to produce the same image when
the IFS is input in scale and angle format.
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Figure 4.6: Fern Generated by RandIt R2 in Scale and Angle Format

The application of the RandIt R2 function, n = 100, 00, yields a set of 95,001 points,
plotted in Figure 4.7 (a). Figure 4.7 (b), the Hutchinson operator of this set is shown,
which consists of 3 x 95,001 points in case of an this IFS with 3 functions.
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(a) RandIt R2 for the Sierpinski Triangle (b) RandIt R2 Plus Hutchinson Operator
where n = 100, 000 for the Sierpinski Triangle

Figure 4.7: Random Iteration Algorithm vs. Deterministic Algorithm for a Triangle
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Aside from a longer computational time and the greater number of points plotted
in Figure 4.7 (b), the fractal approximations are identical, and it is evident that infinity
many points in both images would converge to the same attractor, the Sierpinski Triangle.
It is clear that the Random Iteration Algorithm is just as effective as the Deterministic
Algorithm, but without the exponential growth in required calculations and with a much
shorter computational time.

4.3 RandIt R3

RandIt R3 (Section B.3 of Appendix B) generates an image of a fractal based on the
Random Tteration Algorithm (Algorithm 3.7.1) in R3.

Like RandIt R2 this function takes as input a previously defined IFS, a vector p of
probabilities, as well as the number of desired points, n, to be computed from the initial
point xg. But in this case the IFS is of the type

1 a b c 1 J
w | 9 = d e f T |+ k | =Ax+t
xs3 qg h 1 T3 [

The initial point, x, consists of a single point in the form of a three-element column
vector generated randomly from the uniform distribution on the interval [0,1]. This
initial point can lie anywhere in R3.

Error checking in the Randlt R3 also guarantees that the length of the probability
vector defined for the IFSP is equivalent to the number of mappings in the IFS and that

> b =1
The function proceeds by computing n points using the Random iteration Algorithm.
The function RandIt R3 plots point vectors {xs5001, Z5002, ---, Tn } to make certain that the

points plotted for the approximation of the attractor are indeed subsets of the attractor.
To obtain three-dimensional fractal approximations the rgl R-package is loaded.

Figure 4.8 depicts a pointplot for a Sierpinski Triangle in R, IFSP in Table A.9. The
approximation of the attractor was computed in 45 seconds, when n = 100, 000. Figure
4.9 illustrates a pointplot for a Merger Sponge in R?, IFSP in Table A.11, with compu-
tational time equal to 677 seconds, when n = 400, 000 Lastly, a three-dimensional fractal
approximation is generated for the IFSP of a fern, in Table A.10, via the Randlt R3
function in 171 seconds, for n = 200, 000. The resulting image is shown in Figure 4.10.
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Figure 4.8: Pointplot for a Sierpinski Triangle in R? from Different Angles
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Figure 4.9: Pointplot for a Merger Sponge in R3 from Different Angles
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Figure 4.10: Pointplot for a Fern in R? from Different Angles
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4.4 Randlt C

The RandIt C function (Section B.4 of Appendix B) computes and plots the an image
of a fractal based on the Random Iteration Algorithm (Algorithm 3.7.1) in C.

In RandIt C the IFSP are analytic transformations. The function inputs an IFSP of
the type shown in sections A.12 and A.13 of Appendix A, as well as the number of points
to be computed in three-dimensional space, n. Similarly to RandIt R2, the initial point,
zo, consists of a single point in the form of complex number generated randomly from
the uniform distribution on the interval [0, 1]. This initial point can lie anywhere in C.

The function proceeds by computing n points using the Random iteration Algorithm.
The function RandIt C plots complex numbers {25001, 25002, ---, 2n } t0 make certain that
the points plotted for the approximation of the attractor are indeed subsets of the at-
tractor. Once more the ggplot R-package is implemented for plotting.

The result of applying the RandIt C to the IFSP for a square in C, as defined in
Section A.13 of Appendix A, is shown below.

Pointplot Histogram
Probabilities ={0.1,0.2,0.3, 0.4} Probabilities ={0.1,0.2,0.3,0.4 }

0.8- 0.8-

o
o
1

Imaginary
Imaginary

o
~
|

0.2-

0.0-

0.2 0.4 0.6 0.8 0.0 0.2 0.4 0.6 0.8 1.0
Real Real

Figure 4.11: Square Attractor Approximation Generated by RandIlt C

The square depicted above contains 95,001 points in the complex plane and was
generated in approximately 11 seconds. The RandIlt C function appears to be have a
faster computational time than the RandIlt R2 function. This is due to R’s capability
of dealing with complex numbers. There are similarities between R? and C, however, the
user must be careful when defining a metric, since vector operations are not the same as
complex operations.
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4.5 IFS Prob

The IFS _Prob function randomly generates a vector p of probabilities for a given IFS,
based on the number of transformations in said IF'S.

Let n be the number of transformations in the given IFS. Once the input, n, is de-
fined the function, internally, generates a random value p; from the uniform distribution
on the interval (0,1]. The next probability, ps, is generated randomly from the uni-
form distribution on the interval (0,1 — p;], p3 is selected randomly from the interval
(0,1 —p1 — pol, and so on until p,,_; is assigned. Lastly, define p,, = 1 — Z?:_ll p; to ensure
the sum of the elements composing the probability vector p is 1, that is

Z?:l pi =1

Note that p; > 0 for all p;. The function output is a probability vector, p, of the form

p=[p1p2-..Pnl

4.6 IFSP Gen R2

The user can generate a selected number, ¢, of fractal images with varying probabilities
by implementing the single function IFSP _Gen R2.

The variety probabilities for each iteration are selected randomly via the previously
defined function, IFS Prob. The IFSP_ Gen R2 function uses the same code as the
Rand R2 function to preform the Random Iteration Algorithm.

The ggplot package is used to generate the two-dimensional histograms for
IFSP _Gen_R2. The bin size of the histograms was changed to 100 bins, so as to more
clearly indicate variations in plot density. The output of four iterations, ¢ = 4, on the
Maple Leaf IFS (Table A.8) is shown figure 4.12.

Notice, as the probabilities of the probability vector change so do the depicted and
stressed areas of the fractal approximation. Figure 4.12 (a) has a high ps, which indicates
that the area with the greatest density is the middle left portion of the maple leaf. py,
in Figure 4.12 (b), clearly correspond to w; and the stem of the leaf. Figure 4.12 (c),
illustrates how wy maps to the middle right portion of the maple leaf. The probabilities
in Figure 4.12 (d), are more favorably balanced, as most of the maple leaf is visible.

If the ideal probability vector of an IFS is unknown, the IFSP _Gen R2 function is
a quick method to iteratively test different probabilities and find relationships between
the mappings and the image. Thus, an estimate of the ideal probability vector can be
drawn for a given IF'S.
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Figure 4.12: Four Iterations with Varying Probability Vectors
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4.7 FractalMeas R2

The FractalMeas R2 function computes fractal images in much the same way the
RandIt R2 function does, using the Random Iteration Algorithm. However, instead
of analyzing the density of the points with a two-dimensional histogram, the measure, pu,
is calculated according to Corollary 3.8.1.

p(B) = lim, o {22

The user must input a previously define IFS (ifs), the number of points to be generated
(n), a vector of probabilities (p), and the limits of x (zlim) and y (ylim) to denote the
area of interest, where the user wishes to calculate the measure. The limits of x and y
are to be designated as vectors of length two, such that

zlim = [x1,25] and  ylim = [yy, yal,

where

Figure 4.13: Limits of Borel Subset

Firstly, the orbit is generated via the Random Iteration Algorithm. Next, given the
limits of the Borel subset, the points within the subset are counted and the measure,
p(B), is determined. The final output includes a pointplot of the fractal, a red rectangle
delimiting the Borel subset and the calculated measure as shown in the next figure. The
IFSP used is defined in Section A.4 of Appendix A.
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Pointplot
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Figure 4.14: Measure of a Borel Subset of X

Remember that the measure, pu, assigns a "mass" to the subsets of X. Thus, if the
probabilities of an IFSP are equivalent for each function in the IFSP, it can be expected
that selecting a Borel subset of X which encompasses one-third of the attractors area
will yield p(B) = 0.333. This fact is evident from the pointplot of the Sierpinski Triangle
shown on the next page.
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Figure 4.15: Limits of Borel Subset
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Figure 4.15 (a) yields a measure of 0.333 while Figure 4.15 (b) calculates a measure
of 0.328. This small inconstancy is due to the randomness of the Random Iteration algo-
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rithm. For the above images, 100,000 points were generated. The Hutchinson operator
assures that the larger the value of n, the smaller the variation among iterations of the
measure of the same Borel subset because the union of the generated subsets of points
coverages to the attractor.

It can be shown that the measure of the attractor is one, that is u(A) = 1, see Figure
4.16.
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Figure 4.16: p(A) =1

Furthermore, it can be shown that the measure of the empty set is zero, that is
u(@) = 0, see Figure 4.17.

Pointplot
Probabilities = { 0.33,0.33, 0.34 }

60

40

Measure= 0

Figure 4.17: u(0) =0
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4.8 TransMat R2

Finally a very special case of the chaos game can be analyzed with the TransMat R2
function.

The input for the function TransMat R2 is a matrix, M, which has nonnegative
entries, has no row or column that has all entries equal to zero and the sum of the
probabilities is one, i.e., Y, p; = 1 [3]. This matrix is referred to as a transformation
matrix. For this particular function the matrix M, additionally is quadratic and has
at least 2 rows. Error checking for each of these conditions is added to the function to
ensure correct execution.

The affine mapping is defined wy; : [0,1]* = [aj_1, a;] X [bi—1,b:], 1 <14,5 <3, by

wji(xa 3/) = (ajfl + x(“j - ijfl), bi—1 + x(bi - biﬂ))

where a and b are the cumulative column and row sums, respectively, of M.

Previously, the Random Iteration Algorithm was preformed on a constant IFS and
the user could vary the probability vector using the IFSP _Gen R2 function. Now, the
affine transformation will vary dependent to the input transformation matrix.

The number of points to be generated is input as n. And like before, the function
preforms the Random Iteration Algorithm and uses the ggplot R-package to output useful
plots. This function allows the user to better understand the effects of the values of p;
on the fractal.

Let
1/6 0 1/6
M = 0 1/3 0
1/6 0 1/6

The result with n = 100, 000 is presented in Figure 4.18.

count 0.6 count
- 06 | Y | B

. - M 1000 - M 20
s 04 M 1500 04d | EY

B 2000 B 0
° 0.2~ 0.2
° 0.0 0.0~

0.0 02 04 06 0.8 1.0 1
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0. 0.8 1.0
X X
(a) Pointplot (b) 2-D Histogram with 20 Bins (c) 2-D Histogram with 100 Bins

Figure 4.18: Transformation Matrix with Changing IFS

Notice that the center square has the greatest frequency since it corresponds to the
largest selection probability, %, in matrix M. The corners have a smaller density corre-
sponding to the corner entries of M, %. Now change the transformation matrix M and
observe how the image changes.
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Chapter 5

Conclusions

The final chapter summarizes the outcome and results of this master project. Addition-
ally, the conclusion considers possible improvements and future work.

5.1 Outcome

Throughout the master project a deeper understanding of fractal theory was achieved.
The programming of new functions and R-packages was learned, and a deeper and more
proficient use of the R environment was gained.

The outcome of this master project is the development of eight functions to compose
an R-package for generating fractals via iterated function systems. Determ R2 was cre-
ated to generate fractals in the two-dimensional vector space of real numbers, R?, via
the Deterministic Algorithm. The functions RandItl R2 builds an approximation of the
attractor in R? via an affine transformation and the chaos game. RandIt R3 gener-
ates a fractal in R® and plots a three-dimensional model of the fractal approximation,
also implementing the chaos game and an IFS of affine transformations. RandIt C was
programed to build fractals in complex plane (C), using analytic transformations and
the Random Iteration Algorithm. A function, IFS Prob, was developed to randomly
generate probabilities for a hyperbolic IFS. Additionally, IFSP _Gen R2 was developed
to recursively test random probabilities for a given IFS. This function is useful in de-
termining the ideal probability vector p, if the probabilities are unknown. The function
FractalMeas R2 calculates the measure of a Borel subset of X, given the limiting co-
ordinates of said Borel subset. Lastly, TransMat R2 approximates the attractor for an
changing IFS induced by a transformation matrix.

Experimentation with the developed functions makes it clear that the Random Iter-
ation Algorithm is more effective and time efficient than the Deterministic Algorithm.
Since only a large finite number of iterations can be performed it is necessary to note that
the fractals developed are simply approximations of the attractor, to which the infinite
series of subset would converge to in the Hausdorff metric. Implementations of theses
functions provides a more complete of fractal theory that can be applied to problem
solving and applications.

31



32 Chapter 5. Conclusions

5.2 Future Work

Overall, a giant stride has been taken in developing an R-package for generating fractals
via iterated function systems. However, the completion of this R-package might possibly
include more functions to manipulate and experiment with fractals in R? but more par-
ticularly in R® and C. The inclusion of additional error checking is necessary. Further
research in fractal theory and the R environment will lead to a more efficient, robust and
computationally time optimal R-package. Additionally, it is essential to develop user help
documentation as well as a manual for the R-package for generating fractals via iterated
function systems.



Appendix A

Iterated Function Systems

Appendix A contains a complete collect the IFS implemented and developed during this
master project.

A.1 TFS Code for a Sierpinski Triangle in R? [1]

Table A.1: IFS Code for a Sierpinski Triangle in R?

w a b ¢ d e f p

1 05 0 0 05 0 0 0.33
2 05 0 0 05 25 50 0.33
3 05 0 0 05 50 0 034

A.2 TFS Code for a Black Spleewort Fern in R* [1]

Table A.2: IFS Code for a Black Spleewort Fern in R?
w a b ¢ d e f p
1 0 0 0 016 0 0 0.01
2 08 0.04 -004 08 0 16 0.8
3 02 -026 023 022 0 16 0.07
4 -0.15 0.28 0.26 024 0 044 0.07

33
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A.3 1IFS Code for a Sierpinski Carpet in R* [5]

Table A.3: IFS Code for a Sierpinski Carpet in R?

w a b ¢ d e f p

1 0333 0 0 0.333 0 0 0.125
2 0333 0 0 0.333 0 0.333 0.125
3 0333 0 0 0.333 0 0.667 0.125
4 0333 0 0 0.333 0.333 0 0.125
5 0333 0 0 0.333 0.333 0.667 0.125
6 0333 0 0 0.333 0.667 0 0.125
7 0333 0 0 0.333 0.667 0.333 0.125
8§ 0333 0 0 0.333 0.667 0.667 0.125

A.4 1IFS Code for a Sierpinski Pentagon in R? [5]

Table A.4: IFS Code for a Sierpinski Pentagon in R?

W a b ¢ d e f p

1 0382 0 0 0.382 0 0 0.1
2 0382 0 0 0.382 0.618 0 0.15
3 0382 0 0 0.382 0.809 0.588 0.2
4 0382 0 0 0.382 0.309 0.951 0.25
5 0382 0 0 0382 -0.191 0.588 0.3

A.5 TFS Code for a Square in R? [1]

Table A.5: IFS Code for a Square in R?

w a b c¢c d e f p
1 05 0 0 05 1 1 0.1
2 05 0 0 05 50 1 0.2
3 05 0 0 05 1 50 0.3
4 05 0 0 05 50 50 0.4
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A.6 IFS Code for a Koch Curve in R? [5]

Table A.6: IFS Code for a Koch Curve in R?
a b ¢ d e f p

0.333 0 0 0.333 0 0 0.25
0.167 -0.289 0.289 0.167 0.333 0 0.25
0.167 0.289 -0.289 0.167 0.5 0.289 0.25
0.333 0 0 0.333 0.667 0 0.25

NGV ORI

A.7 TFS Code for a Fractal Tree in R? [1]

Table A.7: IFS Code for a Fractal Tree in R?
a b ¢ d e f p

0 0 0 05 0 0 0.05
042 -042 042 042 0 02 04
042 042 -042 042 0 02 04
0.1 0 0 01 0 0.2 0.15

B~ w N | S

A.8 TIFS Code for a Maple Leaf in R* [4]

A.9

Table A.8: IFS Code for a Maple Leaf in R?

a b ¢ d e f p
0.14 0.01 0 051 -0.08 -1.31 0.1
043 052 -045 0.5 149 -0.75 0.35
0.45 -0.49 047 047 -1.62 -0.74 0.35
049 0 0 051 002 162 0.2

B~ w o | S

IFS Code for a Sierpinski Triangle in R?

Table A.9: IFS Code for a Sierpinski Triangle in R?

e f

w a b ¢ d g h i j k 1 p

1 05 0 0 0 05 0 0 0 0.5 1 1 1 025
2 05 0 0 0 05 0 0 0 05 13.3975 50 1 0.25
3 05 0 0 0 05 0 0 0 05 50 13.3975 1 0.25
4 05 0 0 0 05 0 0 0 0.5 21.1325 21.1325 50 0.25
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A.10 IFS Code for a Fern in R’ [1]

Table A.10: IF'S Code for a Fern. in R3

k

wa b ¢ d e f g h i j 1 »p

1 0 0O 0 0 018 0 0 O 0 0 0 0 o001

2 08 0 O O 08 01 0 -01 08 0 1.6 0 0.8

3 02 -02 0 02 02 0O O O 03 0 08 0 0.07

4 -02 02 0 02 02 O O O 03 0 0.8 0 0.07

A.11 1IFS Code for a Merger Sponge in R?
Table A.11: IFS Code for a Merger sponge in R3

w a b ¢ d e f g h i j k 1 p
1 0333 0 0 0 0333 0 0 0 0.333 0 0 0 0.05
2 0333 0 0 0 0333 0 0 0 0.333 0 0.333 0 0.05
3 0333 0 0 0 0333 0 0 0 0.333 0 0.667 0 0.05
4 0333 0 0 0 0333 0 0 0 0.333 0.333 0 0 0.05
5 0333 0 0 0 0333 0 0 0 0.333 0.333 0.667 0 0.05
6 0333 0 0 0 0333 0 0 0 0.333 0.667 0 0 0.05
7 0333 0 0 0 0333 0 0 0 0.333 0.667 0.333 0 0.05
8§ 0333 0 0 0 0333 0 0 0 0.333 0.667 0.667 0 0.05
9 0333 0 0 0 0333 0 0 0 0.333 0.667 0.667 0.667 0.05
10 0333 0 0 0 0333 0 0 0O 0.333 0 0 0.333 0.05
11 0333 0 0 0 0333 0 0 0 0.333 0 0 0.667 0.05
12 0333 0 0 0 0333 0 0 0 0.333 0 0.667 0.667 0.05
13 0333 0 0 0 0333 0 0 0 0.333 0 0.667 0.333 0.05
14 0333 0 0 0 0333 0 0 0 0.333 0 0.333 0.667 0.05
15 0333 0 0 0 0333 0 0 0 0.333 0.667 0 0.667 0.05
16 0333 0 0 0 0333 0 0 0 0.333 0.333 0 0.667 0.05
17 0333 0 0 0 0333 0 0 0 0.333 0.667 0 0.333 0.05
18 0333 0 0 0 0333 0 0 0 0.333 0.333 0.667 0.667 0.05
19 0333 0 0 0 0333 0 0 0 0.333 0.667 0.667 0.333 0.05
20 0333 0 0 0 0333 0 0 0 0.333 0.667 0.333 0.667 0.05

A.12 TIFS for a Sierpinski Triangle in C [1]

wi(z) = 0.5z 4+ 24 + 244
we(2) = 0.5z + 24i
ws(z) = 0.5z

p={0.25,0.25,0.5}
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A.13 [IFS for a Square in C [1]

wy(z) = 0.5z
wsy(z) = 0.5z + 0.5
ws(z) = 0.5z + (0.5)1
wy(z) = 0.52 + 0.5+ (0.5)3

p=1{0.1,0.2,0.3,0.4}

A.14 1IFS Code for a Fern in R? in Scale and Angle
Format [1]

Table A.12: FS Code for a Fern in R? in Scale and Angle Format
h k 0 0] e f p

0 0 0 0 0 0.16 0.01

0 16 -25 -25 0.8 085 0.85
0
0

1.6 49 49 03 034 0.07
044 120 -50 0.3 037 0.07

NGV ORI =
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Appendix B

R Functions

Appendix B contains the R-code written for the R-Package for generating fractals via
iterated function systems developed during this master project.

B.1 Determ R2

Determ R2<—function (ifs ,n){

# initialize list a to hold vectors of points
a<—list ()

# generate the first set of points, a(0)
# start with a set consisting of a single point
a[[l]] < —rbind (runif(1,0,1),runif(1,0,1))

# plot settings

pdf("FractalDeterm . pdf" ,paper="special " ,width=6,height=9)

par (mfrow=c(ceiling ((n+1)/3),3),cex=0.2,pch=16,cex . main=2,
cex.lab=1.5,cex.axis=1.2)

# extract x and y coordinates from a(0)
x<—a[[1]][1]
y<—al[[1]][2]

# pointplot with a(0)
title <—expression (A[0])
plot (x,y, col="blue" ;main=title)

# affine transformation for mapping new set of points, a(n), from a(n—1)
for(j in 1:n){

m<—1
# initialize new set of points a(n)
a_ new<—list ()
g<—length (a)
for(k in 1:g){
for(r in 1:length(ifs)){
a_new [[ml] <—ifs [[]] (a[[k]])
m<—m+-1

39
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}
}

# the new set of points becomes a(n—1)
a<—a_ new

# extract x and y coordinates from set a(n)
x<—rep (0,length (a))

y<—rep (0,length (a))

for (i in 1:length(a)){x[i]<—al[i]][1]}
for (i in 1:length(a)){y[i]l<—al[i]][2]}

# pointplot of points a(n)
title <—bquote (expression (AJ.(
plot (x,y,col="blue" ,main=eval

}

dev.off ()
}
B.2 RandIt R2

i)
(title))

RandIlt R2<—function (ifs ,p,n){

library (ggplot2)
library (gridExtra)

# check if the number of functions in the IFS equals the number
# of probabilities
if (length (ifs)!=length(p)){
print ("Error: Number of functions in the IFS does not equal the number
of probabilities.")

¥
# check that the sum of the probabilities is one

if (sum(p)!=1){
print ("Error: Sum of the probabilities is not equal to 1.")
}

# sample of mappings determined by the probabilities in vector p
w<—sample (ifs ,n, replace=TRUE, prob=p)

# initialize list v to store point vectors

v<—list ()
# initialize the first point, v(0), randomly
v[[1]] < —rbind (runif (1,0,1),runif(1,0,1))

# affine mapping
for (i in 1:n){
} vIli+l<=w[[i]](v[[i]])
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# points to plot eliminating first 5000 points
x<—rep (0,(n+1-5000))
for (i in 5001:(n+1)){x[1-5000]<—v[[i]][1]}
y<—rep (0,(n+1-5000))

for (i in 5001:(n+1)){y[i—-5000]<—v[[i]][2]}
fractal <—data.frame(x,y)

# pointplot
d<—round (p,3)
pstring<—paste (d[1:length(d)—1],",",collapse="")
titlel <—paste (" Pointplot\nProbabilities={",pstring ,d[length(d)],"}")
pl<—ggplot (fractal ,aes(x,y))+opts(title=titlel ,plot.title=
theme text(size=12))+geom point(size=0.3)

# 2d histogram
title2 <—paste (" Histogram\nProbabilities={",pstring ,d[length(d)],"}")
colors <—rainbow (100,start =.7,end=.17)
p2<—ggplot (fractal ;aes(x,y))+opts(title=
title2 ,plot.title=theme text(size=12))+stat_ bin2d(bins=
600)+scale fill gradientn (colour=colors ,legend=TRUE)

pdf("FractalRandItR2.pdf" ,paper="special ", width=12,height=6.3)
grid . arrange (pl,p2,ncol=2)
dev. off ()

}
B.3 RandIt RS3

RandIt R3<—function (ifs ,p,n){
library (rgl)

# check if the number of functions in the IFS equals the number
# of probabilities
if (length (ifs)!=1length(p)){
print ("Error: Number of functions in the IFS does not equal the number
of probabilities.")

}

# check that the sum of the probabilities is one
if (sum(p)!=1){

print ("Error: Sum of the probabilities is not equal to 1.")
}

# sample of mappings determined by the probabilities in vector p
w<—sample (ifs ,n,replace=TRUE, prob=p)

# intilalize list v to store point vectors
v<—list ()

, randomly

# intilalize the first point, v(0
(1,0,1),runif (1,0,1))

)
v[[1]] < —rbind (runif (1,0,1),runif (1
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# affine mapping
for(i in 1:n){

} vIfi<=w[[i]](v[[1]])

# points to plot eliminating first 5000 points
x<—rep (0,(n+1-5000)
for (i in 5001:(n+1)){x[1-5000]<—v[[i]][1]}
y<—rep (0,(n+1-5000)
for(i in 5001:(n-+1)
z<—rep (0,(n+1-5000)

)

)
g{
g{Y[i—5000]<—V[[iH[2]}
for (i in 5001:(n+1)){

2]1-5000<—v[[i]][3]}

# 3d pointplot

d<—round (p,3)

pstring<—paste(d[1:length(d)—1],",",collapse="")

title <—paste ("3D Pointplot with Probabilities={",pstring ,d[length(d)],"}")
plot3d (x,y,z,size=0.3, main=title)

}
B.4 Randlt C

Randlt C<—function (ifs ,p,n){

# check if the number of functions in the IFS equals the number
# of probabilities
if (length (ifs)!=1length(p)){
print ("Error: Number of functions in the IFS does not equal the number
of probabilities.")
}

# check that the sum of the probabilities is one
if (sum(p)!=1){
print ("Error: Sum of the probabilities is not equal to 1.")

}

library (ggplot2)
library (gridExtra)

# sample of mappings determined by the probabilities in vector p
w<—sample (ifs ,n, replace=TRUE, prob=p)

# initialize the first point, z(0), randomly
z<—rep (0,n+1)

x<—runif(1,0,1)

y<—runif(1,0,1)

z[1]<—complex (real=x, imaginary=y)
# analytic mapping

for(m in 1:n){
z[mt1]<—w[[m]](z[m])
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# points to plot eliminating first 5000 points
x<—Re(z)

x<—x[5001:(n+1)]

y<—Im(z)

y<=y[5001:(n+1)]

fractal <—data.frame(x,y)

# pointplot
d<—round (p,3)
pstring<—paste (d[1:length(d)—1],",",collapse="")
titlel <—paste (" Pointplot\nProbabilities = {",pstring ,d[length(d)],"}")
pl<—ggplot (fractal ,aes(x,y))+opts(title=titlel ,plot.title=
theme text(size=12))+geom point(size=0.3)+
scale _x_continuous(’Real’)+scale y continuous(’Imaginary’)

# 2d histogram
title2 <—paste ("Histogram\nProbabilities = {",pstring ,d[length(d)],"}")
colors <—rainbow (100,start =.7,end=.17)
p2<—ggplot (fractal ;aes(x,y))+opts(title=title2 ,
plot. title=theme text(size=12))+stat bin2d(bins=600)+
scale fill gradientn (colour=colors ,legend=TRUE)+
scale _x_continuous(’Real’)+scale y continuous(’Imaginary’)

pdf ("FractalRandItC . pdf", ,paper="special " , width=12,height=6.3)

grid .arrange (pl,p2,ncol=2)
dev. off ()

}
B.5 IFS Prob

IFS Prob<—function (n){

# initialize vector of probabilities p
p<—rep (0,n)

# randomly generate p(1l) through p(n-1)

for (i in 1:n—1){
} pli]<—runif(1,0,1—sum(p))

# calculate p(n)
p[n]<—1—sum(p)
p

}
B.6 IFSP Gen R2

IFSP_Gen_ R2<—function (ifs ,n,t){

library (ggplot2)
library (gridExtra)
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pdf("FractalGen.pdf" ,paper="special" width=12,height =6.3)
for (m in 1:t) {

# generate a vector of probabilities p using the IFS_ Prob
# function
p<—IFS Prob(length (ifs))

# check if the number of functions in the IFS equals the number of
# probabilities
if (length(ifs)!=1length(p)){
print ("Error: Number of functions in the IFS does not equal the number
of probabilities.")
}

# check that the sum of the probabilities is one
Hf (sum (p)!—1)
print ("Error: Sum of the probabilities is not equal to 1.")

}

# sample of mappings determined by the probabilities in vector p
w<—sample (ifs ,n,replace=TRUE, prob=p)

# initialize list v to store point vectors
v<—list ()

# initialize the first point, v(0), randomly
v[[1]] < —rbind (runif (1,0,1),runif(1,0,1))

# affine mapping
for (i in 1:n){
} vili+tl<=w[[i]](v[[i]])

# points to plot eliminating first 5000 points
x<—rep (0,(n+1-5000))
for (i in 5001:(n+1)){x[i—-5000]<—v[[i]][1]}
y<—rep (0,(n+1-5000))

for (i in 5001:(n+1)){y[i—5000]<—v[[i]][2]}
fractal <—data.frame(x,y)

# pointplot
d<—round (p,3)
pstring <—paste (d[1:length(d)—1],",",collapse="")
titlel=paste (" Pointplot\nProbabilities={",pstring ,d[length(d)]|,"}")
pl<—ggplot (fractal ,aes(x,y))+opts(title=titlel ,plot.title=
theme text(size=12))+geom point(size=0.3)

# 2d histogram
title2=paste (" Histogram\nProbabilities={",pstring ,d[length(d)],"}")
colors <—rainbow (100 ,start =.7,end=.17)
p2<—ggplot (fractal ,aes(x,y))+opts(title=
title2 ,plot.title=theme text(size=12))+
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stat _bin2d (bins=100)+scale fill gradientn (colour=colors,
legend=TRUE)

grid . arrange (pl,p2,ncol=2)

}

dev.off ()

}
B.7 FractalMeas R2

FractalMeas R2<—function (ifs ,p,n,xlim,ylim){

# check if the number of functions in the IFS equals the number
# of probabilities
if (length(ifs)!=1length(p)){
print ("Error: Number of functions in the IFS does not equal the number
of probabilities.")
}

# check that the sum of the probabilities is one

if (sum(p)!=1){
print ("Error: Sum of the probabilities is not equal to 1.")

}

# sample of mappings determined by the probabilities in vector p
w<—sample (ifs ,n,replace=TRUE, prob=p)

# intilalize list v to store point vectors
v<—list ()

# intilalize the first point, v(0), randomly
v[[1]] < —rbind (runif(1,0,1),runif(1,0,1))

# affine mapping
for (i in 1:n){

} vIli<=w[[i[](v[[1]])

# points to plot eliminating first 5000 points
x<—rep (0,(n+1-5000))
for (i in 5001:(n+1))
y<—rep (0,(n+1-5000))
for(i in 5001:(n+1))

{x[1-5000]<—v[[i]][1]}
{y[i=5000]<—=v[[i]][2]}

mass<—data . frame (x,y)

# check that the input vector vl and v2 delimit a rectangle

if (xlim[1]==x1lim [2]){
print ("Error: xlim and ylim do not delimit a rectangular subset.")

}
if (ylim[1l]==ylim [2]){
print ("Error: xlim and ylim do not delimit a rectangular subset.")
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}

# eliminate points not in the specified subset
mass<—subset (mass , mass$x>xlim [1])
mass<—subset (mass , mass$x<xlim [2])
mass<—subset (mass , mass$y>ylim [1])
mass<—subset (mass , mass$y<ylim [2])

# calculate measure mu
mu<—nrow (mass ) /(length (x)+1)
mu<—round (mu, 3)

# pointplot
pdf("FractalMeas.pdf" ,paper="special",width=6,height=6)

d<—round (p,3)

pstring<—paste (d[1:length(d)—1],",",collapse="")

title <—paste (" Pointplot\nProbabilities={",pstring ,d[length(d)],"}")
sub<—paste ("Measure=",mu)

plot (x,y,main=title ,sub=sub,cex=0.1,pch=16)

x2<—c(xlim [1] ,xlim [2] ,xlim [2] , xlim [1], xlim [1])

y2<—c(ylim [1] ,ylim [1],ylim [2],ylim [2],ylim [1])

lines (x2,y2,col="red")

dev. off ()
}
B.8 TransMat R2

TransMat_R2<—function (M,n){
library (ggplot2)

# check if M is quadratic
if (nrow(M)!=ncol (M)) print("Error: Matrix of selection
probabilities is not quadratic.")

# check if M is contains a negative value
for(j in l:nrow(M)){
for (i in l:ncol(M)){
if M[j,1]<0) print("Error: Matrix of selection probabilities
contains negative value.")
}

}

# check if M has at least 2 rows and 2 columns

if (nrow(M)<2) print ("Error: Matrix of selection probabilities
has less than 2 rows.")

if (ncol(M)<2) print("Error: Matrix of selection probabilities
has less than 2 columns.")

# check that no column or row of M has all 0 entries
if (all (colSums (M)>0)==FALSE) print (" Error: Matrix of selection
probabilities contains column with all 0 entries.")
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if (all (rowSums(M)>0)==FALSE) print("Error: Matrix of selection
probabilities contains row with all 0 entries.")

# define column sums, a, and row sums, b, of M
a<—c (0, cumsum ( colSums (M) ))
b<—c (0 ,cumsum (rowSums (M) ))

# check that the sum of the selection probabilities is 1
if (a[length(a)]!=1) print("Error: Sum of selection probabilities
is not 1.")

# create vector of selection probabilities
t<—rep (0,nrow (M)*ncol (M))
m<—1
for(j in l:nrow(M)){
for (i in l:ncol(M)){
tl<-M[j i
m<—m+-1
}
}

# create vector of indices
index<—rep (0 ,nrow (M)*ncol (M))
m<—1
for(j in l:nrow(M)){
for (i in l:ncol(M)){
index [m|<—j*10+1
m<—m+1
}
}

index sample<—sample (index ,n, replace=TRUE, prob=t)

# create vectors x and y
x<—rep (0,n+1)
y<—rep (0,n+1)

# intilalize x0 and y0 randomly
x[1]<—runif(1,-2,2)
y[1]<—runif(1,-2,2)

# affine mapping

for(k in 1:n){
j<—index _sample [k|%/%10
i<—index sample [k]%%10
x[ktl]<—alj]+x[k]«(a[j+1]-a[j])

} y [ kt1]<=b[i]+y[k]+(b[i+1]=b[i])

# points to plot
x<—x[5000:(n+1)]
y<—y[5000:(n+1)]

# point plot
pdf("Points.pdf")
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plot (x,y,pch=20,col="mediumorchid4" ,cex=0.3)
dev.off ()

# 2d histogram with 20 bins
ChaosGame<—data . frame (x,y)
d<—ggplot (ChaosGame, aes (x,y))
d+stat _bin2d (bins=20)
ggsave (" Bins20. pdf")

# 2d histogram with 1000 bins
d+stat _bin2d (bins=100)
ggsave ("Bins100.pdf")
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