

Received 17 September 2016 Accepted 13 October 2016

Edited by M. Weil, Vienna University of Technology, Austria

Keywords: crystal structure; azobenzene; O— H···O hydrogen bonding.

CCDC references: 1509708; 1509707

Supporting information: this article has supporting information at journals.iucr.org/e

Crystal structures of 3,3'-bis(hydroxydimethylsilanyl)azobenzene and 4,4'-bis(hydroxydimethylsilane)azobenzene

Jan Strüben,^a Jonas Hoffmann,^a David Presa-Soto,^b Christian Näther^{c*} and Anne Staubitz^{a,d,e*}

^aOtto-Diels-Institut für Organische Chemie, Christian-Albrechts-Universität Kiel, Otto-Hahn-Platz 4, 24118 Kiel, Germany, ^bDepartment of Organic and Inorganic Chemistry IUQOEM, University of Oviedo, Julián Claveria, 33006 Oviedo, Spain, ^cInstitut für Anorganische Chemie, Christian-Albrechts-Universität Kiel, Max-Eyth-Strasse 2, 24118 Kiel, Germany, ^dInstitute for Organic and Analytical Chemistry, University of Bremen, Leobener Strasse NW2 C, 28359 Bremen, Germany, and ^eMAPEX Center for Materials and Processes University of Bremen, Bibliothekstrasse 1, 28359 Bremen, Germany. *Correspondence e-mail: cnaether@ac.uni-kiel.de, staubitz@uni-bremen.de

The title compounds {systematic names (*E*)-[diazene-1,2-diylbis(3,1-phenylene)]bis(dimethylsilanol) and (*E*)-[diazene-1,2-diylbis(4,1-phenylene)]bis(dimethylsilanol)}, both of the sum formula $C_{16}H_{22}N_2O_2Si_2$, were obtained by transmetallation of the respective bis-stannylated azobenzenes with dichlorodimethylsilane and esterification followed by hydrolysis. The asymmetric unit of 3,3'-diazenediylbis[dimethyl(phenyl)silanol] (with the silanol functional group in a *meta* position) consists of two molecules, of which one occupies a general position, whereas the second is located on a centre of inversion. In 4,4'-diazenediylbis[dimethyl(phenyl)silanol] (with the silanol functional group in a *para* position) likewise two molecules are present in the asymmetric unit, but in this case both occupy general positions. Differences between all molecules can be found in the torsions about the N==N bond, as well as in the dihedral angles between the benzene rings. In both structures, intermolecular $O-H\cdots O$ hydrogen bonding is observed, leading to the formation of layers parallel to (011) for (I) and to chains parallel to the *a* axis for (II).

1. Chemical context

Azobenzenes have been widely investigated as photoswitches due to their photochemically induced *trans/cis*-isomerization. Furthermore, they are common motifs in dyes due to their high thermal and photochemical stability (Yesodha *et al.*, 2004; Lagrasta *et al.*, 1997). Their application as molecular switches is sometimes limited by their synthetical accessability. For *ortho*, *meta* and *para*-substituted azobenzenes, a novel functionalization has been presented recently (Strüben *et al.*, 2014, 2015). This opens access to new synthetic pathways and hence new dyes and materials, for example light-responsive polymers (Yu *et al.*, 2003; Kizilkan *et al.*, 2016).

OPEN d ACCESS

In the above context, we report here on the synthesis and crystal structures of two regioisomers with composition

Figure 1

The molecular structures of the two crystallographically independent molecules in the crystal structure of isomer (I) (*a* top and *b* bottom) with labelling and displacement ellipsoids drawn at the 50% probability level. Symmetry code for the generation of equivalent atoms: -x + 2, -y + 2, -z + 2.

 $C_{16}H_{22}N_2O_2Si_2$, obtained by transmetalation of the respective bis-stannylated azobenzenes.

2. Structural commentary

The crystal structures of the *meta*- (I) and *para*-substituted (II) azobenzenes each comprise two crystallographically independent molecules [(Ia) and centrosymmetric (Ib), and (IIa) and (IIb), respectively; Figs. 1 and 2). With respect to the central N=N bond, the azogroups are *trans* configured. The N=N bond lengths in all molecules [1.256 (3) Å for (Ia),

Figure 2

The molecular structure of the two crystallographically independent molecules in the crystal structure of isomer (II) (a top and b bottom) with labelling and displacement ellipsoids drawn at the 50% probability level.

Table 1			
Hydrogen-bond geometry	(Å,	°) for	(I).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$\begin{array}{c} O1 - H1 O \cdots O2^{i} \\ O2 - H2 O \cdots O3 \\ O3 - H3 O \cdots O1^{ii} \end{array}$	0.84	1.87	2.708 (3)	173
	0.84	1.86	2.701 (3)	177
	0.84	1.86	2.696 (3)	175

Symmetry codes: (i) -x + 1, -y + 1, -z + 1; (ii) -x + 2, -y + 1, -z + 1.

Table 2Hydrogen-bond geometry (Å, °) for (II).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$
$O1-H1O\cdots O3^{i}$	0.84	1.86	2.6686 (15)	161
$O2-H2O\cdots O4^{i}$	0.84	1.92	2.7297 (16)	160
$O3-H3O\cdots O2^{ii}$	0.84	1.90	2.7010 (15)	160
$O4-H4O\cdots O1^{iii}$	0.84	1.87	2.7063 (14)	175

Symmetry codes: (i) $x - \frac{1}{2}, -y + \frac{1}{2}, z + \frac{1}{2}$, (ii) $-x + \frac{1}{2}, y + \frac{1}{2}, -z + \frac{1}{2}$, (iii) $x - \frac{1}{2}, -y + \frac{1}{2}, z - \frac{1}{2}$.

1.250 (5) Å for (Ib), 1.246 (2) for (IIa) and 1.248 (2) Å for (IIb)] are comparable and agree well with values retrieved from the literature (Groom *et al.*, 2016). Differences between the independent molecules are found, *e.g.* in the C-N=N-C torsion angles which amount to -178.6 (2)° in (Ia) and due to symmetry restrictions to 0° in (Ib). For molecules of isomer (II) values of -177.93 (14)° (IIa) and 178.47 (14)° (IIb) are observed. In molecule (Ib), the benzene rings are coplanar (dihedral angle = 0°), whereas in (Ia) they are rotated by 11.87 (14)°. In isomer (II), values of 27.40 (8)° (IIa) and 17.28 (9)° (IIb) are found for the two molecules.

3. Supramolecular features

In the crystal structure of isomer (I), neighboring molecules are linked by intermolecular $O-H\cdots O$ hydrogen bonding between the silvlhydroxyl hydrogen atoms of the first independent molecules, forming chains that elongate in the *a*-axis direction (Fig. 3 top). These chains are further linked via O-H...O hydrogen bonds to the second crystallographically independent molecules, forming layers that are parallel to $(01\overline{1})$ (Fig. 3, bottom, Table 1). The O-H···O angles and $O \cdots O$ contacts indicate that these are rather strong hydrogen bonds (Table 1). Between the layers, slipped π - π interactions [centroid-to-centroid distances 3.767 (2) and 3.811 (2) Å] are present, consolidating the crystal packing. In isomer (II), the molecules are likewise linked by intermolecular O-H···O hydrogen bonding into tetrameric units, which are further linked into chains that elongate in the *a*-axis direction (Fig. 4, top, Table 2). By this arrangement, 16-membered cyclic hydrogen-bonded motifs are formed that consist of eight alternating hydroxysilyl groups and that can be described as $R_8^8(16)$ according to the graph-set notation (Etter *et al.*, 1990; Bernstein et al., 1995). As in isomer (I), the values of the O- $H \cdots O$ angles and $O \cdots O$ distances indicate rather strong hydrogen bonding (Table 2). These tetrameric chains are packed along the *a* axis in a pseudo-hexagonal arrangement (Fig. 4, bottom).

research communications

Figure 3

Crystal structure of isomer (I) in a view along the crystallographic b axis (top) and along the a axis (bottom). Intermolecular O-H···O hydrogen bonding is shown as dashed lines and C-H hydrogen atoms have been omitted for clarity.

4. Database Survey

Hundreds of azobenze-based structures are found in the Cambridge Structural Database (Groom *et al.*, 2016) but compounds with silanol groups are unknown (*ConQuest* Version 1.18, CSD Version 5.37). There are also no compounds reported with silyl groups in a *meta* or a *para* position but some compounds have been deposited in which both benzene rings are substituted in the *ortho* position by, *e.g.*, trimethyl-silyl, fluoro-dimethylsilyl, difluoro-methylsilyl or trifluorosilyl groups (Kano *et al.*, 2001). It is noted that two structures are reported in which two azobenenzene molecules are bridged by Si-O-Si groups in the *ortho* position (Kano *et al.*, 2003; Yamamura *et al.*, 2009).

Figure 4

Crystal structure of isomer (II) showing a view of the hydrogen-bonded chains (top) and along the crystallographic *b* axis (bottom). Intermolecular $O-H\cdots O$ hydrogen bonding is shown as dashed lines and C-H hydrogen atoms have been omitted for clarity.

5. Synthesis and crystallization

The syntheses of 3,3'-bis(trimethylstannyl)azobenzene and 4,4'-bis(trimethylstannyl)azobenzene were described in the literature (Strüben *et al.*, 2014). For further details of the transmetallation, see: Strüben *et al.* (2015). Dimethyldichlorosilane (99%) was purchased from ABCR Inc., degassed and distilled from calcium hydride. Methyl lithium (1.6 *M* in diethyl ether) was purchased from Acros Organics, monopotassium phosphate (99.7%) was purchased from Sigma-Aldrich, sodium methoxide (99%) from TCI Inc. and used without further purification. THF was purchased from Merck-Polaro and was dried and degassed with a PS-MD-5 by Innovation Technology. Methanol as obtained from BCD was distilled from sodium and was stored over molecular sieves (3 Å).

3,3'-Bis(Hydroxydimethylsilane)azobenzene

3,3'-Bis(trimethylstannyl)azobenzene (3.80 g, 7.48 mmol) was dissolved in dry THF (100 ml). Then, at 195 K, methyl lithium (12.0 ml, 19.0 mmol, 1.6 *M* solution in diethyl ether) in THF (18.0 ml) was added and the mixture was stirred for 10 min at 195 K. Then the reaction was quenched with dichlorodimethylsilane (30.0 ml, 32.1 g, 249 mmol) and the reaction mixture allowed to warm to 298 K in a cooling bath. Subsequently the solvent and the excess of dichlorodimethylsilane were evaporated in inert conditions under reduced pressure. The residual orange solid was dissolved in diethyl ether (25 ml) and added dropwise over the course of 15 min to a solution of sodium methoxide (4.00 g, 74.0 mmol) in methanol (50 ml). Both of the latter steps were performed under inert conditions. To this mixture, a solution of sodium

Table 3Experimental details.

	(I)	(II)
Crystal data		
Chemical formula	$C_{16}H_{22}N_2O_2Si_2$	$C_{16}H_{22}N_2O_2Si_2$
M_r	330.53	330.53
Crystal system, space group	Triclinic, $P\overline{1}$	Monoclinic, $P2_1/n$
Temperature (K)	200	200
a, b, c (Å)	6.6731 (4), 9.8806 (6), 21.4108 (10)	17.8705 (4), 10.0016 (3), 20.5323 (5)
α, β, γ (°)	83.992 (4), 82.810 (4), 87.508 (5)	90, 97.013 (2), 90
$V(\dot{A}^3)$	1392.25 (14)	3642.36 (16)
Z	3	8
Radiation type	Μο Κα	Μο Κα
$\mu (\text{mm}^{-1})$	0.20	0.20
Crystal size (mm)	$0.30 \times 0.20 \times 0.10$	$0.15 \times 0.15 \times 0.10$
Data collection		
Diffractometer	Stoe IPDS2	Stoe IPDS2
Absorption correction	Numerical (X-RED32 and X-SHAPE; Stoe, 2008)	_
T_{\min}, T_{\max}	0.850, 0.974	_
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	11236, 4845, 3542	30514, 7877, 6720
R _{int}	0.040	0.026
$(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$	0.595	0.639
Refinement		
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.050, 0.126, 1.03	0.037, 0.096, 1.04
No. of reflections	4845	7877
No. of parameters	308	409
H-atom treatment	H-atom parameters constrained	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} ({\rm e} {\rm \AA}^{-3})$	0.22, -0.26	0.32, -0.20

Computer programs: X-AREA (Stoe, 2008), SHELXS97 (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2015), XP in SHELXTL (Sheldrick, 2008), DIAMOND (Brandenburg, 1999) and publCIF (Westrip, 2010).

hydroxide (17.5 g, 438 mmol) in methanol (105 ml) and water (10.0 ml) was added. The resulting solution was stirred for 15 minutes and then a further portion of sodium hydroxide (17.5 g, 438 mmol) in water (105 ml) was added. The reaction mixture was stirred for 1 h. This mixture was finally poured into a vigorously stirred solution of monopotassium phosphate (155 g, 1.14 mol) in water (200 ml). The orange precipitate was filtered and purified by three recrystallization cycles from diethyl ether/*n*-hexane (v/v 1:1). The final product was isolated as an orange solid in a yield of 500 mg (20%). Crystals were obtained by dissolving the product in chlroroform, adding a layer of *n*-hexane and allowing the *n*-hexane to diffuse into the chloroform, leading to crystal formation at the phase boundary.

¹**H** NMR (500 MHz, CDCl₃): δ = 8.14 (at, ⁴*J* = 4.6 Hz, 2 H, H–2), 7.92 (adt, ³*J* = 7.9 Hz, 4*J* = 4.6 Hz, 2 H, *H*–4), 7.70 (adt, ³*J* = 7.9 Hz, 4*J* = 4.6 Hz, 2 H, *H*–6), 7.53 (atd, ³*J* = 7.9 Hz, 2 H, *H*–5), 2.5 (*s*, 2 H, OH), 0.46 (*s*, 18 H, *H*–7) p.p.m.

¹³C NMR (126 MHz, CDCl₃): δ = 152.0 (*C*-3), 140.5 (*C*-1), 135.7 (*C*-6), 128.8 (*C*-5), 128.0 (*C*-2), 123.4 (*C*-4), 0.2 (*C*-8) p.p.m.

²⁹Si NMR (187 MHz, CDCl₃): δ = 7.61 p.p.m.

IR (ATR): $v = 3189 \ (m)$, 2955 (w), 1398 (m), 1251 (m), 1111 (w), 1068 (m), 897 (s), 863 (s), 820 (s), 799 (s), 764 (s), 691 (s), 645 (m), 534 (m) cm⁻¹.

HRMS (EI–sector) m/z: $[M]^+$ calculated for $[C_{16}H_{22}N_2O_2Si_2]^+$ 330.1220, found 330.1222.

M.p.: *T* = 374 K.

4,4'-Bis(hydroxydimethylsilane)azobenzene

4,4'-Bis(trimethylstannyl)azobenzene (3.80 g, 7.48 mmol) was dissolved in dry THF (100 ml). A solution of methyl lithium (12.0 ml, 19.0 mmol, 1.6 M solution in diethyl ether) in THF (18.0 ml) was added at 195 K. The orange solution turned dark and was stirred for 10 min. Then dichlorodimethylsilane (30.0 ml, 32.1 g, 249 mmol) was added to quench the reaction and the reaction mixture allowed to warm to 298 K in a cooling bath. Then the solvent and the excess of dichlorodimethylsilane were evaporated in inert conditions under reduced pressure. The residual orange solid was dissolved in diethyl ether (25 ml) and added dropwise over the course of 15 min to a solution of sodium methoxide (4.00 g, 74.0 mmol) in methanol (50 ml). Both of the latter steps were performed under inert conditions. To this mixture, a solution of sodium hydroxide (17.5 g, 435 mmol) in methanol (105 ml) and water (10 ml) was added. The resulting mixture was stirred 15 minutes and then a further portion of sodium hydroxide (17.5 g) in water (105 ml) was added. The reaction mixture was stirred for 1 h. This mixture was then poured into a vigorously stirred solution of monopotassium phosphate (155 g, 1.14 mol) in water (200 ml). The orange precipitate was filtered and purified by three recrystallization cycles from diethyl ether/*n*-hexane (v/v, 1:1). The product was isolated as a bright-orange solid in a yield of 864 mg (35%). Crystals were obtained by dissolving the product in chlroroform, adding a layer of *n*-hexane and allowing the *n*-hexane to diffuse into the

chloroform, leading to crystal formation at the phase boundary.

¹**H NMR** (500 MHz, CDCl₃): δ = 7.92 (*m*, 4 H, *H*–3, 3'), 7.75 (*m*, 4 H, *H*–2, 2'), 1.99 (*s*, 2H, OH), 0.46 (*s*, 12 H, *H*–5) p.p.m.

¹³**C NMR** (126 MHz, CDCl₃): $\delta = 153.3$ (*C*-4), 142.8 (*C*-1), 133.9 (*C*-2,2'), 122.1 (*C*-3,3'), 0.2 (*C*-5) p.p.m.

²⁹Si NMR (187 MHz, CDCl₃): δ = 7.77 p.p.m.

IR (ATR): v = 3141 (*m*), 2956 (*w*), 1385 (*m*), 1251 (*m*), 1106 (*w*), 859 (*s*), 833 (*s*), 815 (*s*), 776 (*s*), 667 (*s*), 553 (*s*), 529 (*m*), 491 (*m*) cm⁻¹.

HRMS (EI–sector) m/z: $[M]^+$ calculated for $[C_{16}H_{22}N_2O_2Si_2]^+$ 330.1220, found 330.1221.

M.p.: T = 414 K.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3. All C- and O-bound H atoms were located in difference maps but were positioned with idealized geometry (methyl and hydroxyl H atoms allowed to rotate but not to tip) and refined with $U_{iso}(H) = 1.2U_{eq}(C)$ (1.5 for methyl and hydroxyl H atoms) using a riding model.

Acknowledgements

The authors are thankful for financial support by Special Research Area 677 'Function by Switching' of the Deutsche Forschungsgemeinschaft (DFG), Project C14. AS and DPS acknowledge funding for a Short Term Scientific Mission from the COST action COST 1302: 'European Network on Smart Inorganic Polymers'. This research has been supported by the Institutional Strategy of the University of Bremen, funded by the German Excellence Initiative. DPS is grateful to the MEC for a FPU grant.

References

- Bernstein, J., Davis, E. R., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
- Brandenburg, K. (1999). *DIAMOND*. Crystal Impact GbR, Bonn, Germany.
- Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.
- Kano, N., Komatsu, F. & Kawashima, T. (2001). *Chem. Lett.* **30**, 338–339.
- Kano, N., Yamamura, M., Komatsu, F. & Kawashima, T. (2003). J. Organomet. Chem. 686, 192–197.
- Kizilkan, E., Strüben, J., Jin, X., Schaber, C. F., Adelung, R., Staubitz, A. & Gorb, S. N. (2016). *R. Soc. Open Sci.* 3, 150700.
- Lagrasta, C., Bellobono, I. R. & Bonardi, M. (1997). J. Photochem. Photobiol. A, **110**, 201–205.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
- Stoe (2008). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie, Darmstadt, Germany.
- Strüben, J., Gates, P. J. & Staubitz, A. (2014). J. Org. Chem. 79, 1719– 1728.
- Strüben, J., Lipfert, M., Springer, J.-O., Gould, C. A., Gates, P. J., Soennichsen, F. D. & Staubitz, A. (2015). *Chem. Eur. J.* 21, 11165– 11173.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.
- Yamamura, M., Kano, N. & Kawashima, T. (2009). Z. Anorg. Allg. Chem. 635, 1295–1299.
- Yesodha, S. K., Sadashiva, C. K., Pillai, P. & Tsutsumi, N. (2004). Prog. Polym. Sci. 29, 45–74.
- Yu, Y., Nakano, M. & Ikeda, T. (2003). Nature, 425, 145.

Acta Cryst. (2016). E72, 1590-1594 [https://doi.org/10.1107/S2056989016016297]

Crystal structures of 3,3'-bis(hydroxydimethylsilanyl)azobenzene and 4,4'-bis-(hydroxydimethylsilane)azobenzene

Jan Strüben, Jonas Hoffmann, David Presa-Soto, Christian Näther and Anne Staubitz

Computing details

For both compounds, data collection: *X-AREA* (Stoe, 2008); cell refinement: *X-AREA* (Stoe, 2008); data reduction: *X-AREA* (Stoe, 2008); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL2014* (Sheldrick, 2015); molecular graphics: *XP* in *SHELXTL* (Sheldrick, 2008) and *DIAMOND* (Brandenburg, 1999); software used to prepare material for publication: *publCIF* (Westrip, 2010).

(I) (E)-[Diazene-1,2-diylbis(3,1-phenylene)]bis(dimethylsilanol)

Crystal data	
$C_{16}H_{22}N_2O_2Si_2$ $M_r = 330.53$ Triclinic, <i>P</i> 1 <i>a</i> = 6.6731 (4) Å <i>b</i> = 9.8806 (6) Å <i>c</i> = 21.4108 (10) Å <i>a</i> = 83.992 (4)° <i>β</i> = 82.810 (4)°	Z = 3 F(000) = 528 $D_x = 1.183 \text{ Mg m}^{-3}$ Mo Ka radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 11236 reflections $\theta = 1.9-25.0^{\circ}$ $\mu = 0.20 \text{ mm}^{-1}$ T = 200 K
$\gamma = 87.508 (5)^{\circ}$ V = 1392.25 (14) Å ³	Block, yellow-orange $0.30 \times 0.20 \times 0.10 \text{ mm}$
Data collection	
Stoe IPDS-2 diffractometer ω scan Absorption correction: numerical (X-RED32 and X-SHAPE; Stoe, 2008) $T_{min} = 0.850, T_{max} = 0.974$ 11236 measured reflections	4845 independent reflections 3542 reflections with $I > 2\sigma(I)$ $R_{int} = 0.040$ $\theta_{max} = 25.0^{\circ}, \ \theta_{min} = 1.9^{\circ}$ $h = -7 \rightarrow 7$ $k = -9 \rightarrow 11$ $l = -25 \rightarrow 25$
RefinementRefinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.050$ $wR(F^2) = 0.126$ $S = 1.03$ 4845 reflections308 parameters0 restraintsHydrogen site location: inferred from neighbouring sites	H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0567P)^2 + 0.3154P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.22 \text{ e } \text{Å}^{-3}$ $\Delta\rho_{min} = -0.26 \text{ e } \text{Å}^{-3}$ Extinction correction: SHELXL2014 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4} Extinction coefficient: 0.029 (4)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	у	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
C1	0.8173 (4)	0.1655 (3)	0.46148 (13)	0.0589 (7)
C2	0.9324 (4)	0.1796 (3)	0.40274 (12)	0.0588 (7)
H2	0.9793	0.2669	0.3858	0.071*
C3	0.9809 (4)	0.0679 (3)	0.36788 (12)	0.0590 (7)
C4	0.9071 (5)	-0.0579 (3)	0.39497 (13)	0.0657 (7)
H4	0.9367	-0.1356	0.3724	0.079*
C5	0.7927 (5)	-0.0728 (3)	0.45353 (14)	0.0679 (8)
Н5	0.7448	-0.1597	0.4705	0.082*
C6	0.7477 (4)	0.0383 (3)	0.48736 (13)	0.0641 (7)
H6	0.6702	0.0283	0.5278	0.077*
Si1	1.14136 (12)	0.07944 (8)	0.28970 (4)	0.0599 (2)
01	1.1934 (3)	0.23933 (19)	0.26646 (9)	0.0620 (5)
H1O	1.0878	0.2822	0.2574	0.093*
C7	1.3851 (5)	-0.0109 (4)	0.29776 (17)	0.0863 (10)
H7A	1.4698	-0.0033	0.2568	0.129*
H7B	1.3620	-0.1071	0.3119	0.129*
H7C	1.4535	0.0297	0.3289	0.129*
C8	1.0036 (6)	0.0100 (4)	0.23111 (15)	0.0858 (10)
H8A	0.8789	0.0642	0.2265	0.129*
H8B	0.9701	-0.0847	0.2455	0.129*
H8C	1.0886	0.0135	0.1902	0.129*
N1	0.7784 (4)	0.2872 (3)	0.49246 (11)	0.0636 (6)
N2	0.6495 (4)	0.2720 (3)	0.54049 (11)	0.0660 (6)
C9	0.6026 (4)	0.3926 (3)	0.57206 (13)	0.0610 (7)
C10	0.4536 (4)	0.3763 (3)	0.62337 (12)	0.0602 (7)
H10	0.3961	0.2895	0.6347	0.072*
C11	0.3852 (4)	0.4840 (3)	0.65906 (12)	0.0576 (7)
C12	0.4745 (4)	0.6092 (3)	0.63984 (13)	0.0624 (7)
H12	0.4325	0.6850	0.6626	0.075*
C13	0.6230 (5)	0.6259 (3)	0.58829 (13)	0.0646 (7)
H13	0.6802	0.7125	0.5763	0.077*
C14	0.6878 (4)	0.5178 (3)	0.55437 (13)	0.0642 (7)
H14	0.7899	0.5293	0.5193	0.077*
Si2	0.18738 (12)	0.45838 (8)	0.72857 (4)	0.0575 (2)
O2	0.1366 (3)	0.60480 (19)	0.75838 (9)	0.0611 (5)
H2O	0.2396	0.6300	0.7723	0.092*
C15	-0.0549 (5)	0.4071 (3)	0.70559 (16)	0.0727 (8)
H15A	-0.1505	0.3862	0.7437	0.109*
H15B	-0.0314	0.3263	0.6824	0.109*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

H15C	-0.1109	0.4818	0.6785	0.109*
C16	0.2840 (5)	0.3318 (3)	0.78818 (14)	0.0736 (8)
H16A	0.4026	0.3672	0.8031	0.110*
H16B	0.3222	0.2470	0.7691	0.110*
H16C	0.1786	0.3140	0.8240	0.110*
C21	0.8037 (5)	0.9557 (3)	0.95728 (13)	0.0678 (8)
C22	0.7417 (5)	0.8341 (3)	0.94069 (13)	0.0690 (8)
H22	0.8111	0.7519	0.9535	0.083*
C23	0.5797 (5)	0.8287 (3)	0.90556 (13)	0.0687 (8)
C24	0.4812 (5)	0.9522 (4)	0.88898 (14)	0.0749 (9)
H24	0.3698	0.9524	0.8653	0.090*
C25	0.5405 (5)	1.0746 (4)	0.90590 (15)	0.0776 (9)
H25	0.4691	1.1568	0.8942	0.093*
C26	0.7043 (5)	1.0774 (4)	0.93990 (14)	0.0757 (9)
H26	0.7473	1.1611	0.9510	0.091*
Si3	0.49665 (14)	0.66640 (10)	0.88091 (4)	0.0702 (3)
O3	0.4598 (3)	0.6900 (2)	0.80611 (8)	0.0677 (5)
H3O	0.5699	0.7075	0.7837	0.102*
C27	0.6904 (6)	0.5296 (4)	0.8920 (2)	0.0997 (12)
H27A	0.6439	0.4448	0.8795	0.150*
H27B	0.7132	0.5164	0.9366	0.150*
H27C	0.8169	0.5549	0.8658	0.150*
C28	0.2455 (6)	0.6217 (5)	0.92350 (17)	0.1031 (13)
H28A	0.1436	0.6892	0.9099	0.155*
H28B	0.2491	0.6210	0.9691	0.155*
H28C	0.2108	0.5314	0.9140	0.155*
N3	0.9716 (4)	0.9442 (3)	0.99348 (12)	0.0740 (7)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0606 (16)	0.0613 (17)	0.0564 (15)	0.0072 (13)	-0.0107 (12)	-0.0128 (13)
C2	0.0612 (16)	0.0597 (17)	0.0559 (15)	0.0026 (12)	-0.0085 (12)	-0.0074 (12)
C3	0.0614 (16)	0.0602 (17)	0.0571 (15)	0.0065 (13)	-0.0120 (12)	-0.0126 (13)
C4	0.0732 (18)	0.0611 (18)	0.0636 (17)	0.0021 (14)	-0.0063 (14)	-0.0146 (14)
C5	0.0716 (18)	0.0658 (19)	0.0658 (17)	-0.0038 (14)	-0.0040 (14)	-0.0085 (14)
C6	0.0618 (17)	0.073 (2)	0.0578 (16)	0.0028 (14)	-0.0060 (13)	-0.0108 (14)
Si1	0.0667 (5)	0.0561 (5)	0.0563 (4)	0.0066 (3)	-0.0036 (4)	-0.0103 (3)
01	0.0623 (11)	0.0595 (12)	0.0640 (11)	0.0066 (9)	-0.0075 (9)	-0.0082 (9)
C7	0.085 (2)	0.081 (2)	0.084 (2)	0.0239 (18)	0.0051 (18)	0.0033 (17)
C8	0.108 (3)	0.087 (2)	0.0633 (18)	-0.015 (2)	-0.0026 (18)	-0.0195 (17)
N1	0.0657 (14)	0.0709 (16)	0.0557 (13)	0.0081 (11)	-0.0102 (11)	-0.0142 (11)
N2	0.0680 (15)	0.0708 (16)	0.0600 (14)	0.0053 (12)	-0.0050 (12)	-0.0162 (11)
C9	0.0654 (17)	0.0649 (18)	0.0548 (15)	0.0078 (13)	-0.0114 (13)	-0.0148 (13)
C10	0.0653 (17)	0.0583 (17)	0.0589 (16)	0.0036 (13)	-0.0112 (13)	-0.0119 (13)
C11	0.0627 (16)	0.0575 (17)	0.0556 (15)	0.0072 (12)	-0.0170 (12)	-0.0120 (12)
C12	0.0704 (18)	0.0606 (18)	0.0593 (16)	0.0093 (14)	-0.0186 (14)	-0.0124 (13)
C13	0.0748 (19)	0.0587 (17)	0.0621 (16)	0.0011 (14)	-0.0157 (14)	-0.0075 (13)

C14	0.0657 (17)	0.073 (2)	0.0545 (15)	0.0036 (14)	-0.0114 (13)	-0.0084 (14)
Si2	0.0626 (5)	0.0558 (5)	0.0563 (4)	0.0083 (3)	-0.0125 (3)	-0.0139 (3)
O2	0.0612 (11)	0.0605 (11)	0.0652 (11)	0.0086 (9)	-0.0150 (9)	-0.0196 (9)
C15	0.0712 (19)	0.071 (2)	0.081 (2)	0.0037 (15)	-0.0183 (16)	-0.0245 (16)
C16	0.083 (2)	0.068 (2)	0.0701 (19)	0.0099 (16)	-0.0127 (16)	-0.0087 (15)
C21	0.0696 (18)	0.080(2)	0.0578 (16)	0.0022 (15)	-0.0166 (14)	-0.0172 (14)
C22	0.0742 (19)	0.077 (2)	0.0599 (16)	0.0046 (15)	-0.0185 (14)	-0.0172 (14)
C23	0.0694 (18)	0.088 (2)	0.0527 (15)	0.0013 (16)	-0.0142 (13)	-0.0175 (14)
C24	0.076 (2)	0.092 (2)	0.0613 (17)	0.0020 (17)	-0.0201 (15)	-0.0163 (16)
C25	0.087 (2)	0.082 (2)	0.0681 (19)	0.0087 (17)	-0.0245 (17)	-0.0164 (16)
C26	0.087 (2)	0.081 (2)	0.0642 (18)	0.0045 (17)	-0.0236 (16)	-0.0211 (16)
Si3	0.0746 (6)	0.0834 (6)	0.0560 (5)	-0.0069 (4)	-0.0152 (4)	-0.0130 (4)
O3	0.0668 (12)	0.0866 (14)	0.0530 (10)	-0.0069 (11)	-0.0113 (9)	-0.0155 (10)
C27	0.120 (3)	0.085 (3)	0.104 (3)	-0.003 (2)	-0.049 (2)	-0.011 (2)
C28	0.106 (3)	0.137 (4)	0.068 (2)	-0.031 (2)	0.002 (2)	-0.019 (2)
N3	0.0767 (16)	0.0849 (19)	0.0667 (15)	-0.0016 (14)	-0.0218 (13)	-0.0214 (13)

Geometric parameters (Å, °)

C1—C2	1.386 (4)	C14—H14	0.9500
C1—C6	1.394 (4)	Si2—O2	1.6468 (18)
C1—N1	1.432 (3)	Si2-C16	1.847 (3)
C2—C3	1.400 (4)	Si2—C15	1.853 (3)
С2—Н2	0.9500	O2—H2O	0.8400
C3—C4	1.398 (4)	C15—H15A	0.9800
C3—Si1	1.867 (3)	C15—H15B	0.9800
C4—C5	1.381 (4)	C15—H15C	0.9800
C4—H4	0.9500	C16—H16A	0.9800
С5—С6	1.379 (4)	C16—H16B	0.9800
С5—Н5	0.9500	C16—H16C	0.9800
С6—Н6	0.9500	C21—C22	1.382 (4)
Sil—Ol	1.644 (2)	C21—C26	1.387 (4)
Sil—C7	1.839 (3)	C21—N3	1.434 (4)
Sil—C8	1.848 (3)	C22—C23	1.398 (4)
01—H10	0.8400	C22—H22	0.9500
C7—H7A	0.9800	C23—C24	1.394 (4)
С7—Н7В	0.9800	C23—Si3	1.867 (3)
C7—H7C	0.9800	C24—C25	1.386 (5)
C8—H8A	0.9800	C24—H24	0.9500
C8—H8B	0.9800	C25—C26	1.389 (4)
C8—H8C	0.9800	C25—H25	0.9500
N1—N2	1.256 (3)	C26—H26	0.9500
N2—C9	1.434 (3)	Si3—O3	1.642 (2)
C9—C14	1.381 (4)	Si3—C27	1.848 (4)
C9—C10	1.387 (4)	Si3—C28	1.853 (4)
C10-C11	1.402 (4)	O3—H3O	0.8400
C10—H10	0.9500	C27—H27A	0.9800
C11—C12	1.396 (4)	C27—H27B	0.9800

C11—Si2	1.865 (3)	С27—Н27С	0.9800
C12—C13	1.389 (4)	C28—H28A	0.9800
C12—H12	0.9500	C28—H28B	0.9800
C13—C14	1.378 (4)	C28—H28C	0.9800
С13—Н13	0.9500	N3—N3 ⁱ	1.250 (5)
C2—C1—C6	120.3 (2)	O2—Si2—C16	110.15 (12)
C2—C1—N1	116.0 (3)	O2—Si2—C15	105.38 (12)
C6—C1—N1	123.7 (2)	C16—Si2—C15	111.68 (16)
C1—C2—C3	121.3 (3)	O2—Si2—C11	108.83 (12)
C1—C2—H2	119.3	C16—Si2—C11	108.79 (13)
С3—С2—Н2	119.3	C15—Si2—C11	111.93 (14)
C4—C3—C2	116.9 (2)	Si2—O2—H2O	109.5
C4—C3—Si1	119.7 (2)	Si2—C15—H15A	109.5
C2-C3-Si1	123.3 (2)	Si2—C15—H15B	109.5
C5-C4-C3	122.1 (3)	H15A—C15—H15B	109.5
C5-C4-H4	119.0	Si2—C15—H15C	109.5
C3—C4—H4	119.0	H15A-C15-H15C	109.5
C6-C5-C4	120.2 (3)	H15B-C15-H15C	109.5
С6—С5—Н5	119.9	Si2-C16-H16A	109.5
C4-C5-H5	119.9	Si2—C16—H16B	109.5
C_{5} C_{6} C_{1}	119.2 (3)	H_{16A} $-C_{16}$ $-H_{16B}$	109.5
C5-C6-H6	120.4	Si2-C16-H16C	109.5
C1-C6-H6	120.1	H_{16A} $-C_{16}$ H_{16C}	109.5
01—Si1—C7	106 33 (15)	H_{16B} $-C_{16}$ $-H_{16C}$	109.5
01—Si1—C8	109.67 (14)	$C^{22}-C^{21}-C^{26}$	109.5 120 5 (3)
C7—Si1—C8	109.07 (11) 112 18 (18)	C^{22} C^{21} C^{20}	120.3(3) 115.2(3)
01—Si1—C3	109 77 (11)	$C_{22} = C_{21} = N_3$	1243(3)
C7—Si1—C3	109.77 (11)	$C_{21} - C_{22} - C_{23}$	121.9(3)
C8 = Si1 = C3	109.72(14) 109.13(14)	$C_{21} = C_{22} = C_{23}$	119 1
Si1-01-H10	109.15 (11)	C_{23} C_{22} H_{22}	119.1
Sil—C7—H7A	109.5	C_{24} C_{23} C_{22} C_{23}	116.6 (3)
Sil—C7—H7B	109.5	$C_{24} = C_{23} = S_{13}$	120.7(2)
H7A - C7 - H7B	109.5	C^{22} C^{23} S^{13}	120.7(2) 122.7(2)
Sil—C7—H7C	109.5	$C_{22} = C_{23} = C_{23}$	122.7(2) 122.1(3)
H7A - C7 - H7C	109.5	C_{25} C_{24} H_{24}	118.9
H7B-C7-H7C	109.5	C_{23} C_{24} H_{24}	118.9
Sil—C8—H8A	109.5	C_{24} C_{25} C_{26}	120.1(3)
Sil—C8—H8B	109.5	C_{24} C_{25} C_{20} C_{25} C_{20} C_{25} C_{20} C_{25} C_{20} C_{25} C_{20} C	119.9
H8A—C8—H8B	109.5	$C_{26} - C_{25} - H_{25}$	119.9
Sil-C8-H8C	109.5	$C_{20} = C_{20} = C_{20} = C_{20}$	118.8 (3)
H8A - C8 - H8C	109.5	$C_{21} - C_{26} - H_{26}$	120.6
H8B-C8-H8C	109.5	C_{25} C_{26} H_{26}	120.0
$N_2 - N_1 - C_1$	112.8 (2)	03 - 8i3 - C27	109 67 (15)
N1—N2—C9	114 5 (3)	$O_3 = S_{13} = C_{28}$	104.44(15)
C14 - C9 - C10	120.2 (2)	C_{27} Si ³ C_{28}	112.7 (2)
C14-C9-N2	125.7(3)	O_3 —Si3—C23	109.09 (13)
C10-C9-N2	114.1 (3)	C_{27} Si3 $-C_{23}$	110.39 (17)
	(~ /		

C9—C10—C11	122.0 (3)	C28—Si3—C23	110.32 (17)
С9—С10—Н10	119.0	Si3—O3—H3O	109.5
C11—C10—H10	119.0	Si3—C27—H27A	109.5
C12—C11—C10	116.3 (3)	Si3—C27—H27B	109.5
C12—C11—Si2	122.7 (2)	H27A—C27—H27B	109.5
C10—C11—Si2	121.0 (2)	Si3—C27—H27C	109.5
C13—C12—C11	121.8 (3)	H27A—C27—H27C	109.5
C13—C12—H12	119.1	H27B—C27—H27C	109.5
C11—C12—H12	119.1	Si3—C28—H28A	109.5
C14—C13—C12	120.5 (3)	Si3—C28—H28B	109.5
C14—C13—H13	119.7	H28A—C28—H28B	109.5
C12—C13—H13	119.7	Si3—C28—H28C	109.5
C13—C14—C9	119.2 (3)	H28A—C28—H28C	109.5
C13—C14—H14	120.4	H28B—C28—H28C	109.5
C9—C14—H14	120.4	N3 ⁱ —N3—C21	114.0 (3)
C6—C1—C2—C3	0.3 (4)	C12—C13—C14—C9	0.3 (4)
N1—C1—C2—C3	179.9 (2)	C10-C9-C14-C13	0.0 (4)
C1—C2—C3—C4	0.3 (4)	N2-C9-C14-C13	178.0 (3)
C1—C2—C3—Si1	-178.2 (2)	C12—C11—Si2—O2	2.3 (3)
C2—C3—C4—C5	-0.4 (4)	C10-C11-Si2-O2	-178.2 (2)
Si1—C3—C4—C5	178.1 (2)	C12—C11—Si2—C16	-117.7 (2)
C3—C4—C5—C6	-0.1 (5)	C10-C11-Si2-C16	61.7 (3)
C4C5C1	0.6 (4)	C12—C11—Si2—C15	118.4 (2)
C2—C1—C6—C5	-0.8 (4)	C10-C11-Si2-C15	-62.2(3)
N1—C1—C6—C5	179.7 (3)	C26—C21—C22—C23	0.7 (5)
C4—C3—Si1—O1	175.9 (2)	N3—C21—C22—C23	179.8 (3)
C2—C3—Si1—O1	-5.7 (3)	C21—C22—C23—C24	-1.1 (4)
C4—C3—Si1—C7	-67.6 (3)	C21—C22—C23—Si3	178.5 (2)
C2—C3—Si1—C7	110.8 (3)	C22—C23—C24—C25	0.4 (5)
C4—C3—Si1—C8	55.7 (3)	Si3—C23—C24—C25	-179.2 (2)
C2—C3—Si1—C8	-125.9 (3)	C23—C24—C25—C26	0.7 (5)
C2—C1—N1—N2	169.9 (2)	C22—C21—C26—C25	0.4 (5)
C6—C1—N1—N2	-10.5 (4)	N3—C21—C26—C25	-178.6 (3)
C1—N1—N2—C9	-178.6 (2)	C24—C25—C26—C21	-1.1 (5)
N1—N2—C9—C14	-0.9 (4)	C24—C23—Si3—O3	45.4 (3)
N1—N2—C9—C10	177.3 (2)	C22—C23—Si3—O3	-134.2 (2)
C14—C9—C10—C11	-0.4 (4)	C24—C23—Si3—C27	166.0 (3)
N2-C9-C10-C11	-178.6 (2)	C22—C23—Si3—C27	-13.6(3)
C9-C10-C11-C12	0.4 (4)	C24—C23—Si3—C28	-68.8(3)
C9—C10—C11—Si2	-179.0 (2)	C22—C23—Si3—C28	111.6 (3)
C10-C11-C12-C13	-0.1 (4)	C22-C21-N3-N3 ⁱ	178.2 (3)
Si2—C11—C12—C13	179.4 (2)	C26-C21-N3-N3 ⁱ	-2.7 (5)
C11—C12—C13—C14	-0.3 (4)		-

Symmetry code: (i) -x+2, -y+2, -z+2.

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H··· A
01—H1 <i>O</i> ···O2 ⁱⁱ	0.84	1.87	2.708 (3)	173
O2—H2 <i>O</i> ···O3	0.84	1.86	2.701 (3)	177
O3—H3 <i>O</i> …O1 ⁱⁱⁱ	0.84	1.86	2.696 (3)	175

Hydrogen-bond geometry (Å, °)

Symmetry codes: (ii) -x+1, -y+1, -z+1; (iii) -x+2, -y+1, -z+1.

(II) (*E*)-[Diazene-1,2-diylbis(4,1-phenylene)]bis(dimethylsilanol)

Crystal data	
$C_{16}H_{22}N_2O_2Si_2$ $M_r = 330.53$ Monoclinic, $P2_1/n$ a = 17.8705 (4) Å b = 10.0016 (3) Å c = 20.5323 (5) Å $\beta = 97.013$ (2)° V = 3642.36 (16) Å ³ Z = 8	F(000) = 1408 $D_x = 1.206 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 30514 reflections $\theta = 1.6-27.0^{\circ}$ $\mu = 0.20 \text{ mm}^{-1}$ T = 200 K Block, yellow-orange $0.15 \times 0.15 \times 0.10 \text{ mm}$
Data collection	
Stoe IPDS-2 diffractometer ω scan 30514 measured reflections 7877 independent reflections 6720 reflections with $I > 2\sigma(I)$	$R_{int} = 0.026$ $\theta_{max} = 27.0^{\circ}, \ \theta_{min} = 1.6^{\circ}$ $h = -21 \rightarrow 22$ $k = -12 \rightarrow 12$ $l = -26 \rightarrow 26$
Refinement	
Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.037$ $wR(F^2) = 0.096$ S = 1.04 7877 reflections	Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0466P)^2 + 1.133P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$
0 restraints	$\Delta \rho_{\text{max}} = 0.32 \text{ e A}^{-3}$ $\Delta \rho_{\text{min}} = -0.20 \text{ e Å}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
0.19059 (8)	0.23669 (15)	0.59401 (8)	0.0364 (3)	
0.22138 (8)	0.17528 (17)	0.54266 (8)	0.0384 (3)	
0.1896	0.1430	0.5055	0.046*	
0.29912 (8)	0.16162 (16)	0.54617 (8)	0.0367 (3)	
	x 0.19059 (8) 0.22138 (8) 0.1896 0.29912 (8)	x y 0.19059 (8) 0.23669 (15) 0.22138 (8) 0.17528 (17) 0.1896 0.1430 0.29912 (8) 0.16162 (16)	x y z 0.19059 (8) 0.23669 (15) 0.59401 (8) 0.22138 (8) 0.17528 (17) 0.54266 (8) 0.1896 0.1430 0.5055 0.29912 (8) 0.16162 (16) 0.54617 (8)	xyz $U_{iso}*/U_{eq}$ 0.19059 (8)0.23669 (15)0.59401 (8)0.0364 (3)0.22138 (8)0.17528 (17)0.54266 (8)0.0384 (3)0.18960.14300.50550.046*0.29912 (8)0.16162 (16)0.54617 (8)0.0367 (3)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

H3	0.3200	0.1204	0.5108	0.044*
C4	0.34777 (8)	0.20714 (14)	0.60064 (8)	0.0327 (3)
C5	0.31467 (8)	0.26393 (16)	0.65218 (8)	0.0367 (3)
Н5	0.3459	0.2925	0.6904	0.044*
C6	0.23712 (9)	0.27968 (16)	0.64880 (8)	0.0390 (3)
H6	0.2159	0.3201	0.6842	0.047*
Sil	0.45332 (2)	0.20260 (4)	0.60238 (2)	0.03318 (10)
01	0.48169 (6)	0.05197 (11)	0.58463 (6)	0.0408 (3)
H1O	0.4497	-0.0046	0.5934	0.061*
C7	0.48428 (10)	0.3152 (2)	0.53913 (10)	0.0515 (4)
H7A	0.5386	0.3043	0.5378	0.077*
H7B	0.4736	0.4081	0.5500	0.077*
H7C	0.4570	0.2927	0.4962	0.077*
C8	0.49909 (9)	0.25256 (18)	0.68462 (9)	0.0461 (4)
H8A	0.4817	0.1941	0.7180	0.069*
H8B	0.4859	0.3454	0.6934	0.069*
H8C	0.5539	0.2446	0.6860	0.069*
N1	0.11185 (7)	0.26482 (15)	0.59598 (7)	0.0425 (3)
N2	0.06893 (7)	0.20943 (15)	0.55168 (7)	0.0450 (3)
C9	-0.00927(8)	0.24351 (18)	0.55369 (9)	0.0420 (4)
C10	-0.06127 (9)	0.16317 (19)	0.51704 (10)	0.0486 (4)
H10	-0.0447	0.0918	0.4918	0.058*
C11	-0.13769 (9)	0.18688 (18)	0.51714 (9)	0.0445 (4)
H11	-0.1730	0.1295	0.4927	0.053*
C12	-0.16403(8)	0.29287 (16)	0.55217 (8)	0.0363 (3)
C13	-0.11024(9)	0.37422 (19)	0.58751 (10)	0.0477 (4)
H13	-0.1265	0.4477	0.6115	0.057*
C14	-0.03342(9)	0.3507 (2)	0.58862 (10)	0.0505 (4)
H14	0.0022	0.4076	0.6131	0.061*
Si2	-0.26733(2)	0.32811 (4)	0.54879 (2)	0.03409 (10)
02	-0.31512 (6)	0.19837 (11)	0.51653 (6)	0.0398 (3)
H2O	-0.3238	0.1456	0.5465	0.060*
C15	-0.29259(10)	0.47159 (19)	0.49411 (10)	0.0525 (4)
H15A	-0.2787	0.4522	0.4504	0.079*
H15B	-0.2655	0.5513	0.5119	0.079*
H15C	-0.3470	0.4876	0.4910	0.079*
C16	-0.29391 (9)	0.3644 (2)	0.63169 (9)	0.0488 (4)
H16A	-0.3477	0.3865	0.6281	0.073*
H16B	-0.2642	0.4401	0.6509	0.073*
H16C	-0.2839	0.2856	0.6598	0.073*
C21	0.61508 (8)	0.71201 (17)	0.15593 (8)	0.0375(3)
C22	0.65679 (9)	0.59473(17)	0.15840 (9)	0.0415 (4)
H22	0.6321	0.5105	0.1568	0.050*
C23	0.73454 (9)	0.60146 (16)	0.16321 (9)	0.0406 (4)
H23	0.7628	0.5209	0.1645	0.049*
C24	0.77264 (8)	0.72423 (16)	0.16626 (8)	0.0349 (3)
C25	0.72921 (9)	0.84003 (16)	0.16432 (9)	0.0414 (4)
H25	0.7536	0.9246	0.1672	0.050*
-		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	

C26	0.65100 (9)	0.83465 (17)	0.15830 (9)	0.0439 (4)
H26	0.6223	0.9149	0.1558	0.053*
Si3	0.87781 (2)	0.72742 (4)	0.16980 (2)	0.03419 (10)
O3	0.90109 (6)	0.66783 (12)	0.10016 (6)	0.0385 (2)
H3O	0.8680	0.6894	0.0693	0.058*
C27	0.92173 (10)	0.6144 (2)	0.23463 (9)	0.0525 (5)
H27A	0.8987	0.5256	0.2290	0.079*
H27B	0.9139	0.6501	0.2777	0.079*
H27C	0.9759	0.6075	0.2316	0.079*
C28	0.91362 (10)	0.90032 (19)	0.18323 (11)	0.0525 (5)
H28A	0.9685	0.9008	0.1837	0.079*
H28B	0.9007	0.9336	0.2253	0.079*
H28C	0.8906	0.9581	0.1477	0.079*
N3	0.53461 (7)	0.71741 (15)	0.15146 (7)	0.0418 (3)
N4	0.50481 (7)	0.60550 (15)	0.15605 (8)	0.0444 (3)
C29	0.42441 (8)	0.61110 (18)	0.15328 (8)	0.0404 (4)
C30	0.39022 (10)	0.4941 (2)	0.16917 (12)	0.0610 (6)
H30	0.4195	0.4160	0.1797	0.073*
C31	0.31279 (10)	0.4912 (2)	0.16968 (13)	0.0619 (6)
H31	0.2898	0.4106	0.1816	0.074*
C32	0.26775 (8)	0.60174 (17)	0.15338 (8)	0.0403 (4)
C33	0.30402 (9)	0.7174 (2)	0.13659 (11)	0.0537 (5)
H33	0.2749	0.7951	0.1249	0.064*
C34	0.38159 (10)	0.7227 (2)	0.13647 (11)	0.0548 (5)
H34	0.4050	0.8030	0.1248	0.066*
Si4	0.16320 (2)	0.59274 (5)	0.15397 (2)	0.03874 (11)
O4	0.13140 (6)	0.49686 (12)	0.09145 (6)	0.0399 (3)
H4O	0.0847	0.4862	0.0908	0.060*
C35	0.14182 (11)	0.5168 (3)	0.23169 (10)	0.0614 (6)
H35A	0.0881	0.4944	0.2281	0.092*
H35B	0.1542	0.5804	0.2677	0.092*
H35C	0.1718	0.4354	0.2404	0.092*
C36	0.12030 (11)	0.7614 (2)	0.14383 (12)	0.0616 (5)
H36A	0.1370	0.8051	0.1054	0.092*
H36B	0.1360	0.8151	0.1831	0.092*
H36C	0.0652	0.7532	0.1377	0.092*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0243 (7)	0.0364 (8)	0.0494 (9)	0.0036 (6)	0.0080 (6)	0.0062 (7)
C2	0.0283 (7)	0.0438 (8)	0.0421 (8)	-0.0007 (6)	0.0008 (6)	0.0016 (7)
C3	0.0287 (7)	0.0406 (8)	0.0416 (8)	0.0022 (6)	0.0071 (6)	0.0003 (6)
C4	0.0244 (6)	0.0324 (7)	0.0417 (8)	0.0024 (5)	0.0054 (6)	0.0041 (6)
C5	0.0283 (7)	0.0393 (8)	0.0426 (8)	0.0007 (6)	0.0053 (6)	-0.0010 (6)
C6	0.0308 (7)	0.0412 (8)	0.0466 (9)	0.0028 (6)	0.0116 (6)	-0.0018 (7)
Si1	0.02102 (18)	0.0348 (2)	0.0440 (2)	0.00213 (15)	0.00485 (16)	0.00273 (17)
01	0.0256 (5)	0.0385 (6)	0.0595 (7)	0.0017 (4)	0.0104 (5)	-0.0014 (5)

C7	0.0327 (8)	0.0568 (11)	0.0667 (12)	0.0029 (7)	0.0123 (8)	0.0183 (9)
C8	0.0336 (8)	0.0465 (9)	0.0567 (10)	0.0040 (7)	-0.0006 (7)	-0.0046 (8)
N1	0.0282 (6)	0.0496 (8)	0.0498 (8)	0.0009 (6)	0.0058 (6)	0.0017 (6)
N2	0.0306 (7)	0.0527 (8)	0.0516 (8)	0.0044 (6)	0.0052 (6)	-0.0027 (7)
C9	0.0262 (7)	0.0523 (10)	0.0479 (9)	0.0057 (7)	0.0059 (6)	0.0014 (7)
C10	0.0340 (8)	0.0556 (10)	0.0558 (11)	0.0090 (7)	0.0032 (7)	-0.0117 (8)
C11	0.0295 (7)	0.0481 (9)	0.0549 (10)	0.0032 (7)	0.0007 (7)	-0.0087 (8)
C12	0.0257 (7)	0.0412 (8)	0.0418 (8)	0.0020 (6)	0.0033 (6)	0.0004 (6)
C13	0.0295 (8)	0.0516 (10)	0.0613 (11)	0.0014 (7)	0.0035 (7)	-0.0145 (8)
C14	0.0292 (8)	0.0577 (11)	0.0628 (12)	-0.0037 (7)	-0.0012 (8)	-0.0102 (9)
Si2	0.02215 (18)	0.0379 (2)	0.0418 (2)	0.00151 (15)	0.00216 (16)	-0.00057 (17)
O2	0.0321 (5)	0.0449 (6)	0.0413 (6)	-0.0063 (5)	0.0001 (5)	0.0027 (5)
C15	0.0448 (9)	0.0458 (10)	0.0662 (12)	0.0065 (8)	0.0036 (9)	0.0085 (9)
C16	0.0342 (8)	0.0613 (11)	0.0516 (10)	0.0026 (8)	0.0075 (7)	-0.0094 (8)
C21	0.0245 (7)	0.0461 (9)	0.0428 (8)	-0.0018 (6)	0.0083 (6)	-0.0057 (7)
C22	0.0319 (8)	0.0385 (8)	0.0551 (10)	-0.0057 (6)	0.0092 (7)	-0.0067 (7)
C23	0.0309 (7)	0.0357 (8)	0.0558 (10)	0.0014 (6)	0.0077 (7)	-0.0044 (7)
C24	0.0270 (7)	0.0384 (8)	0.0400 (8)	-0.0011 (6)	0.0065 (6)	-0.0029 (6)
C25	0.0289 (7)	0.0359 (8)	0.0604 (10)	-0.0021 (6)	0.0095 (7)	-0.0028 (7)
C26	0.0301 (7)	0.0390 (8)	0.0635 (11)	0.0038 (6)	0.0100 (7)	-0.0042 (8)
Si3	0.02369 (19)	0.0376 (2)	0.0413 (2)	0.00047 (15)	0.00444 (16)	-0.00222 (17)
03	0.0293 (5)	0.0447 (6)	0.0416 (6)	0.0066 (4)	0.0046 (4)	0.0003 (5)
C27	0.0408 (9)	0.0705 (12)	0.0466 (10)	0.0139 (8)	0.0073 (8)	0.0073 (9)
C28	0.0338 (8)	0.0480 (10)	0.0754 (13)	-0.0065 (7)	0.0055 (8)	-0.0148 (9)
N3	0.0255 (6)	0.0502 (8)	0.0505 (8)	-0.0027 (6)	0.0077 (6)	-0.0058 (6)
N4	0.0266 (6)	0.0522 (8)	0.0550 (9)	-0.0039 (6)	0.0070 (6)	-0.0097 (7)
C29	0.0250 (7)	0.0507 (9)	0.0458 (9)	-0.0047 (6)	0.0056 (6)	-0.0103 (7)
C30	0.0316 (8)	0.0468 (10)	0.1041 (17)	-0.0016 (7)	0.0063 (10)	-0.0007 (10)
C31	0.0309 (8)	0.0484 (10)	0.1067 (18)	-0.0088 (7)	0.0096 (10)	0.0032 (11)
C32	0.0270 (7)	0.0511 (9)	0.0425 (9)	-0.0064 (6)	0.0029 (6)	-0.0097 (7)
C33	0.0293 (8)	0.0553 (11)	0.0764 (13)	0.0002 (7)	0.0054 (8)	0.0086 (9)
C34	0.0320 (8)	0.0536 (11)	0.0792 (14)	-0.0066 (7)	0.0086 (8)	0.0113 (10)
Si4	0.02365 (19)	0.0507 (3)	0.0421 (2)	-0.00499 (17)	0.00473 (16)	-0.00942 (19)
O4	0.0237 (5)	0.0515 (7)	0.0448 (6)	-0.0043 (5)	0.0050 (4)	-0.0091 (5)
C35	0.0390 (9)	0.0998 (17)	0.0458 (10)	-0.0148 (10)	0.0074 (8)	-0.0047 (10)
C36	0.0388 (9)	0.0592 (12)	0.0872 (16)	0.0020 (8)	0.0094 (10)	-0.0177 (11)

Geometric parameters (Å, °)

C1—C6	1.383 (2)	C21—C26	1.383 (2)
C1—C2	1.390 (2)	C21—C22	1.387 (2)
C1—N1	1.4403 (19)	C21—N3	1.4307 (19)
С2—С3	1.389 (2)	C22—C23	1.382 (2)
С2—Н2	0.9500	С22—Н22	0.9500
C3—C4	1.406 (2)	C23—C24	1.402 (2)
С3—Н3	0.9500	С23—Н23	0.9500
C4—C5	1.395 (2)	C24—C25	1.392 (2)
C4—Si1	1.8827 (14)	C24—Si3	1.8723 (15)

C5 C6	1 299 (2)	C25 C26	1 220 (2)
C5C0	1.300 (2)	$C_{25} = C_{20}$	1.369 (2)
CS—HS	0.9500	C25—H25	0.9500
	0.9500	C26—H26	0.9500
Sil—Ol	1.6446 (12)	S13—O3	1.6487 (12)
Sil—C8	1.8527 (18)	Si3—C27	1.8466 (19)
Sil—C7	1.8536 (18)	Si3—C28	1.8528 (18)
01—H10	0.8400	O3—H3O	0.8400
С7—Н7А	0.9800	C27—H27A	0.9800
С7—Н7В	0.9800	С27—Н27В	0.9800
C7—H7C	0.9800	С27—Н27С	0.9800
C8—H8A	0.9800	C28—H28A	0.9800
C8—H8B	0.9800	C28—H28B	0.9800
C8—H8C	0.9800	C_{28} H28C	0.9800
N1 N2	1.246(2)	N3 N4	1.248(2)
$N_1 = N_2$	1.240(2) 1.4420(10)	NJ C20	1.240(2)
$N_2 = C_9$	1.4439 (19)	N4 - C29	1.4521 (19)
C9—C10	1.380 (2)	C29—C34	1.3/3 (3)
C9—C14	1.388 (3)	C29—C30	1.378 (3)
C10—C11	1.386 (2)	C30—C31	1.385 (2)
C10—H10	0.9500	С30—Н30	0.9500
C11—C12	1.395 (2)	C31—C32	1.385 (3)
C11—H11	0.9500	C31—H31	0.9500
C12—C13	1.394 (2)	C32—C33	1.390 (3)
C12—Si2	1.8723 (15)	C32—Si4	1.8719 (15)
C13—C14	1.390 (2)	C33—C34	1.387 (2)
С13—Н13	0.9500	С33—Н33	0.9500
C14—H14	0.9500	C34—H34	0.9500
Si202	1 6473 (11)	Si4	1 6469 (12)
Si2-02 Si2	1 8438 (19)	Si4	1.0109(12) 1.849(2)
Si2 C16	1.0438(17) 1.9578(10)	Si4_C36	1.049(2)
S12-C10	0.8400	04 140	1.834(2)
	0.8400		0.8400
CI5—HISA	0.9800	C35—H35A	0.9800
С15—Н15В	0.9800	C35—H35B	0.9800
C15—H15C	0.9800	C35—H35C	0.9800
C16—H16A	0.9800	С36—Н36А	0.9800
C16—H16B	0.9800	С36—Н36В	0.9800
C16—H16C	0.9800	С36—Н36С	0.9800
C6—C1—C2	119.98 (13)	C26—C21—C22	120.25 (14)
C6—C1—N1	114.13 (14)	C26—C21—N3	115.31 (14)
C2—C1—N1	125.87 (14)	C22—C21—N3	124.44 (14)
C3—C2—C1	119.34 (15)	C23—C22—C21	119.49 (15)
C3—C2—H2	120.3	C23—C22—H22	120.3
C1—C2—H2	120.3	C21—C22—H22	120.3
$C_2 - C_3 - C_4$	121.79 (15)	C^{22} C^{23} C^{24}	121.62 (15)
C2C3H3	110.1	$C_{22} = C_{23} = C_{23}$	119.2
C_{1} C_{2} C_{3} H_{3}	110.1	$C_{22} = C_{23} = H_{23}$	110.2
C_{-}	117.1 117.20(12)	C_{27} C_{23} C_{123} C_{25} C_{24} C_{22}	117.40 (12)
C_{3}	117.20(15)	(23 - (24 - (23 - (23 - (24 - (23	117.48 (13)
C3-C4-S11	120.80 (11)	C25—C24—S13	122.72 (12)

$C_2 = C_4 = C_1^{-1}$	101.00(10)	C22 C24 C3	110.77(11)
C3-C4-S11	121.88 (12)	C23-C24-S13	119.//(11)
C6—C5—C4	121.44 (15)	C26—C25—C24	121.45 (15)
С6—С5—Н5	119.3	C26—C25—H25	119.3
C4—C5—H5	119.3	C24—C25—H25	119.3
C1—C6—C5	120.19 (15)	C21—C26—C25	119.69 (15)
C1—C6—H6	119.9	С21—С26—Н26	120.2
С5—С6—Н6	119.9	C25—C26—H26	120.2
O1—Si1—C8	109.59 (7)	O3—Si3—C27	105.89 (8)
01—Si1—C7	105.95 (8)	O3—Si3—C28	110.33 (8)
C8—Si1—C7	109 78 (9)	C_{27} —Si3—C28	110.81(10)
01—Si1—C4	110.68 (6)	03 - 8i3 - C24	108 57 (6)
C_8 Sil C_4	100.01 (8)	$C_{27} S_{13} C_{24}$	100.57(0) 110.72(8)
$C_{7} = S_{11} = C_{4}$	109.91(0) 110.96(7)	$C_{27} = S_{13} = C_{24}$	110.72(0)
C/=SII=C4	110.80 (7)	$C_{20} = -515 = -C_{24}$	110.40 (8)
SII—OI—HIO	109.5	SI3-03-H30	109.5
$S_{11} - C - H/A$	109.5	S13—C2/—H2/A	109.5
S11—C7—H7B	109.5	S13—C27—H27B	109.5
H7A—C7—H7B	109.5	H27A—C27—H27B	109.5
Sil—C7—H7C	109.5	Si3—C27—H27C	109.5
H7A—C7—H7C	109.5	H27A—C27—H27C	109.5
H7B—C7—H7C	109.5	H27B—C27—H27C	109.5
Si1—C8—H8A	109.5	Si3—C28—H28A	109.5
Sil—C8—H8B	109.5	Si3—C28—H28B	109.5
H8A—C8—H8B	109.5	H28A—C28—H28B	109.5
Si1—C8—H8C	109.5	Si3—C28—H28C	109.5
H8A—C8—H8C	109.5	H28A—C28—H28C	109.5
H8B-C8-H8C	109.5	$H_{28B} - C_{28} - H_{28C}$	109.5
N2N1C1	114 15 (14)	N4_N3_C21	113 33 (14)
N1N2C9	114.10(14) 112.70(14)	N3_N4_C29	113.35(14) 113.40(14)
C_{10} C_{0} C_{14}	112.70(14) 120.02(15)	C_{24}^{34} C_{20}^{30} C_{20}^{30}	113.40(14)
C10 - C9 - C14	120.03(13)	$C_{24} = C_{29} = C_{30}$	120.02(13)
C10 - C9 - N2	113.69 (13)	$C_{34} = C_{29} = N_4$	124.37(13)
C14—C9—N2	124.07 (15)	C30—C29—N4	115.41 (16)
C9—C10—C11	119.84 (16)	C29—C30—C31	119.46 (18)
С9—С10—Н10	120.1	C29—C30—H30	120.3
C11—C10—H10	120.1	С31—С30—Н30	120.3
C10-C11-C12	121.69 (16)	C32—C31—C30	122.21 (18)
C10-C11-H11	119.2	C32—C31—H31	118.9
C12—C11—H11	119.2	С30—С31—Н31	118.9
C13—C12—C11	117.22 (14)	C31—C32—C33	116.73 (15)
C13—C12—Si2	121.58 (12)	C31—C32—Si4	120.74 (13)
C11—C12—Si2	121.15 (12)	C33—C32—Si4	122.53 (13)
C14—C13—C12	121.79 (16)	C34—C33—C32	121.88 (17)
C14—C13—H13	119.1	C34—C33—H33	119.1
C12—C13—H13	119.1	С32—С33—Н33	119 1
C9-C14-C13	119 39 (16)	C_{29} C_{34} C_{33}	119 67 (17)
$C_{0} C_{14} H_{14}$	120.3	$C_{20} C_{34} H_{34}$	120.2
$C_{2} = C_{14} = 114$	120.3	$C_{23} = C_{34} = 1134$	120.2
$C13 - C14 - \Pi14$	120.3	$C_{3} = C_{34} = \Pi_{34}$	120.2
02-512-015	106.97 (8)	04 - 814 - 0.35	110.22 (8)
$02 - S_{12} - C_{16}$	110.13 (8)	U4 - S14 - C36	110.10 (8)

C15—Si2—C16	109.57 (9)	C35—Si4—C36	110.14 (11)
O2—Si2—C12	109.08 (7)	O4—Si4—C32	105.83 (6)
C15—Si2—C12	109.64 (8)	C35—Si4—C32	109.69 (8)
C16—Si2—C12	111.35 (8)	C36—Si4—C32	110.79 (9)
Si2—O2—H2O	109.5	Si4—O4—H4O	109.5
Si2—C15—H15A	109.5	Si4—C35—H35A	109.5
Si2—C15—H15B	109.5	Si4—C35—H35B	109.5
H15A—C15—H15B	109.5	H35A—C35—H35B	109.5
Si2—C15—H15C	109.5	Si4—C35—H35C	109.5
H15A—C15—H15C	109.5	H35A—C35—H35C	109.5
H15B-C15-H15C	109.5	H35B-C35-H35C	109.5
Si2-C16-H16A	109.5	Si4—C36—H36A	109.5
Si2—C16—H16B	109.5	Si4—C36—H36B	109.5
H_{164} $-C_{16}$ $-H_{16B}$	109.5	$H_{364} - C_{36} - H_{36B}$	109.5
	109.5	Si4 C26 H26C	109.5
	109.5	$H_{26A} = C_{26} = H_{26C}$	109.5
H10A - C10 - H10C	109.5	$H_{2}(P_{1}, C_{2}) = H_{2}(C_{1}, C_{2})$	109.5
H16B-C16-H16C	109.5	H36B-C36-H36C	109.5
			0.0.(2)
C6-C1-C2-C3	-2.0(2)	$C_{26} = C_{21} = C_{22} = C_{23}$	0.0 (3)
NI-CI-C2-C3	1/6.33 (15)	N3—C21—C22—C23	-179.51 (16)
C1—C2—C3—C4	0.6 (2)	C21—C22—C23—C24	0.6 (3)
C2—C3—C4—C5	1.6 (2)	C22—C23—C24—C25	0.1 (3)
C2—C3—C4—Si1	-174.51 (12)	C22—C23—C24—Si3	-177.88 (14)
C3—C4—C5—C6	-2.5 (2)	C23—C24—C25—C26	-1.2 (3)
Si1—C4—C5—C6	173.69 (12)	Si3—C24—C25—C26	176.63 (14)
C2-C1-C6-C5	1.2 (2)	C22—C21—C26—C25	-1.1 (3)
N1-C1-C6-C5	-177.35 (15)	N3-C21-C26-C25	178.40 (16)
C4—C5—C6—C1	1.1 (2)	C24—C25—C26—C21	1.8 (3)
C5-C4-Si1-O1	131.37 (13)	C25—C24—Si3—O3	-112.31 (15)
C3-C4-Si1-O1	-52.65 (14)	C23—C24—Si3—O3	65.53 (15)
C5—C4—Si1—C8	10.19 (15)	C25—C24—Si3—C27	131.84 (15)
C3—C4—Si1—C8	-173.84 (13)	C23—C24—Si3—C27	-50.33 (16)
C5—C4—Si1—C7	-111.36 (14)	C25—C24—Si3—C28	8.75 (18)
C3—C4—Si1—C7	64.62 (15)	C23—C24—Si3—C28	-173.41 (14)
C6-C1-N1-N2	-170.00(15)	C26—C21—N3—N4	-173.24(16)
$C_2 - C_1 - N_1 - N_2$	11.6 (2)	C_{22} C_{21} N_{3} N_{4}	63(2)
C1 - N1 - N2 - C9	-177.93(14)	$C_{21} = N_{3} = N_{4} = C_{29}$	17847(14)
$N1_N2_C9_C10$	-165.08(17)	$N_3 N_4 C_{29} C_{34}$	104(3)
N1 - N2 - C9 - C14	160(3)	$N_3 - N_4 - C_{29} - C_{30}$	-169.46(18)
$C_{14} = C_{12} = C_{14} = C_{14}$	-24(3)	C_{24} C_{20} C_{30} C_{31}	-1.7(3)
C14 - C9 - C10 - C11	-2.4(3)	$C_{34} = C_{29} = C_{30} = C_{31}$	-1.7(3)
$N_2 = C_9 = C_{10} = C_{11}$	1/8.70(17)	N4 - C29 - C30 - C31	1/8.15 (19)
C9—C10—C11—C12	1.7 (3)	$C_{29} = C_{30} = C_{31} = C_{32}$	1.3 (4)
C10—C11—C12—C13	-0.2(3)	C30—C31—C32—C33	-0.3(3)
C10—C11—C12—S12	177.25 (15)	C30—C31—C32—S14	1/9.41 (18)
C11—C12—C13—C14	-0.6 (3)	C31—C32—C33—C34	-0.4 (3)
Si2—C12—C13—C14	-178.11 (16)	Si4—C32—C33—C34	179.90 (16)
C10—C9—C14—C13	1.5 (3)	C30—C29—C34—C33	1.0 (3)
N2-C9-C14-C13	-179.64 (18)	N4—C29—C34—C33	-178.80 (18)

C12—C13—C14—C9	0.0 (3)	C32—C33—C34—C29	0.0 (3)
C13—C12—Si2—O2	-168.44 (14)	C31—C32—Si4—O4	-70.12 (18)
C11—C12—Si2—O2	14.17 (16)	C33—C32—Si4—O4	109.57 (16)
C13—C12—Si2—C15	74.73 (17)	C31—C32—Si4—C35	48.75 (19)
C11-C12-Si2-C15	-102.66 (16)	C33—C32—Si4—C35	-131.55 (17)
C13-C12-Si2-C16	-46.69 (17)	C31—C32—Si4—C36	170.56 (17)
C11—C12—Si2—C16	135.93 (15)	C33—C32—Si4—C36	-9.75 (19)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D···· A	D—H···A
01—H1 <i>O</i> ···O3 ⁱ	0.84	1.86	2.6686 (15)	161
O2—H2 <i>O</i> ···O4 ⁱ	0.84	1.92	2.7297 (16)	160
O3—H3 <i>O</i> ···O2 ⁱⁱ	0.84	1.90	2.7010 (15)	160
O4—H4 <i>O</i> ···O1 ⁱⁱⁱ	0.84	1.87	2.7063 (14)	175

Symmetry codes: (i) *x*-1/2, -*y*+1/2, *z*+1/2; (ii) -*x*+1/2, *y*+1/2, -*z*+1/2; (iii) *x*-1/2, -*y*+1/2, *z*-1/2.