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RESUMEN (en español) 
 

 
La globalización ha revolucionado el contexto empresarial. El incremento de la oferta en bienes 
y servicios, los constantes cambios en los gustos de los consumidores y la expansión 
geográfica de las redes de distribución, entre otros factores, han trazado un nuevo entorno 
competitivo marcado por la intensidad, la complejidad y el dinamismo. Éste ha enfatizado el 
concepto de cadena de suministro. En los procesos, en las relaciones y en las 
interdependencias de la cadena de suministro se esconde una fuente clave de ventajas 
competitivas para las organizaciones que, sin embargo, es muy compleja de captar. Una de las 
razones de ello es la generación del denominado Efecto Bullwhip, que ha de entenderse como 
una fuente clave de ineficiencias en la cadena de suministro. Este fenómeno se refiere a la 
amplificación de la variabilidad de las órdenes transmitidas a lo largo del sistema. 
 
Los capítulos 1 a 3 del presente trabajo exploran el papel de la inteligencia artificial en el 
desarrollo de mecanismos de previsión orientados a mejorar la gestión de la cadena de 
suministro. Se han utilizado redes neuronales artificiales (artificial neural networks, ANNs), bajo 
arquitecturas del tipo perceptron multi-capa (multi-layer perceptron, MLP) y funciones de base 
radial (RBF), junto a métodos estadístico dentro de una estructura multi-agente. Ante 
demandas con tendencia y estacionalidad, el sistema —que escoge en cada momento la 
previsión más adecuada— obtiene un gran rendimiento en la reducción del Efecto Bullwhip 
desde una perspectiva local. Asimismo, se muestra cómo este sistema se podría integrar con 
facilidad en un sistema de mayor alcance, lo cual representa una de las principales ventajas de 
esta aproximación. 
 
Los capítulos 4 a 6, que representan la principal línea de investigación dentro de este trabajo, 
tratan esta problemática desde una perspectiva sistémica. En este sentido, se pretende 
contribuir al despliegue de esta perspectiva dentro de las cadenas de suministro; el cual 
entendemos como el gran reto de las cadenas de suministro en el siglo XXI. Con este objetivo, 
se desarrolla un marco integrador para la gestión colaborativa de sistemas de producción y 
distribución basado en el Modelo de los Sistemas Viables de Beer (Viable System Model, VSM) 
y la Teoría de las Restricciones de Goldratt (Theory of Constraints, TOC). Sobre este marco, se 
explora la implementación de la solución mediante herramientas de modelado y simulación. 
Más en concreto, se utiliza la metodología Drum-Buffer-Rope (DBR) para proponer un motor 
operativo para la cadena de suministro y demuestra su eficacia, en comparación con 
alternativas tradicionales basadas en la producción en masa, tanto en términos operacionales 
(donde se engloba el Efecto Bullwhip) como en términos económicos. 
 



                                                                

 
 

 

 
No obstante, el trabajo subraya que la integración de procesos es sólo una de las áreas clave 
para el diseño de soluciones colaborativas. La transparencia en la información relevante, la 
sincronización y distribución en la toma de decisiones, y el diseño de un sistema de 
rendimiento global han de entenderse igualmente como condiciones sine qua non para la 
implementación exitosa de la colaboración en las cadenas de suministro. La alineación de 
incentivos también es esencial. Los riesgos y los beneficios han de ser compartidos 
adecuadamente con el objetivo de reducir la amenaza de comportamientos oportunistas. Los 
cinco campos mencionados se han considerado en la propuesta de una solución colaborativa 
viable y beneficiosa para todos los miembros; dado que este esquema nos permite comprender 
por qué solo un pequeño porcentaje de las cadenas de suministro reales son capaces de crear 
valor a través de la colaboración. 
 
Esta Tesis Doctoral también pretende resaltar las técnicas de modelado y simulación como 
poderosos laboratorios de ensayo para el estudio de grandes problemas organizacionales que 
serían complejos de estudiar de otra forma. Este hecho subraya el enorme potencial del 
desarrollo de prototipos como metodología para el apoyo a la toma de decisiones y la 
transformación empresarial, especialmente en torno al complejo proceso de transición de una 
aproximación reduccionista (basada en la optimización local) a una holista (basada en la 
optimización global) en la cadena de suministro. 
 

 
 
 

RESUMEN (en Inglés) 
 

 
Globalization has utterly changed the economic landscape. The increase in the supply of goods 
and services, the constant evolution in customer preferences, and the geographical expansion 
of distribution networks, among other factors, have set up a new competitive environment—
marked by intensity, complexity, and dynamism—that has put a greater emphasis on the 
concept of supply chain. Supply chain processes, relationships, and interdependencies can be 
a key source of competitive advantages. However, these advantages are difficult to capture. 
One of the reasons behind it is the generation of the so-called Bullwhip Effect, a major source of 
inefficiencies within supply chains. It refers to the amplification of the variability of orders 
throughout the system. 
 
Chapters 1 to 3 in the present dissertation explore the role of artificial intelligence in the 
development of forecasting mechanisms that improve the management of the supply chain. We 
employ artificial neural networks (ANNs), both under multi-layer perceptron (MLP) and radial 
basis function (RBF) architectures, together with statistical methods within a multi-agent 
structure. Facing demand series with trend and seasonality, the system—that selects the most 
suitable forecast for every moment—greatly mitigates the generation of the Bullwhip Effect from 
a local perspective. In addition, we show how this system could be easily integrated in a system 
with a larger scope, which represents one of the main benefits of this approach.  
 
Chapters 4 to 6, which represent the main research stream of this research work, analyze this 
issue from a systemic perspective. In this sense, we aim to add to the deployment of this view 
throughout supply chains; which we understand as a major challenge for 21st-century supply 
chains. To this end, we develop an integrative framework for the collaborative management of 
production and distribution systems based on the Beer’s Viable System Model (VMS) and on 
Goldratt’s Theory of Constraints (TOC). Building upon this framework, we investigate the 
implementation of this solution though modelling and simulation techniques. Specifically, we 
design a Drum-Buffer-Rope (DBR) mechanism to act as the operational engine for the supply 
chain. We show its effectiveness in comparison with traditional alternatives based on the mass 
production paradigm both in operational (including the Bullwhip Effect) and financial terms. 
 



                                                                

 
 

 

 
Notwithstanding the foregoing, the present dissertation also underscores that process 
integration is only one of the key fields within the development of collaborative solutions for 
supply chains. Transparency in the relevant information, synchronization and allocation in the 
decision making must also be understood as conditions sine qua non for the successful 
implementation of collaboration across the system. Aligning incentives is also essential. In this 
regard, risks and benefits must be shared appropriately to reduce the menace of opportunistic 
behaviors. We carefully take into consideration all these fields in order to make the collaborative 
solution viable and profitable for every node, since we believe that this five-edge scheme makes 
it easier to understand why only a small percentage of real supply chains are capable of adding 
value through collaboration.  
 
In this research, modelling and simulation techniques appear as powerful laboratories for the 
study of large organizational problems that would be difficult to study otherwise. This fact 
emphasizes the great potential of prototype development as a methodology for the support of 
decision making and business transformation, especially around the complex transition process 
from reductionism (based on local optimization) to holism (based on global optimization) in 
supply chains. 
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Globalization has utterly changed the economic landscape. The increase in the supply of 

goods and services, the constant evolution in customer preferences, and the geographical 

expansion of distribution networks, among other factors, have set up a new competitive 

environment—marked by intensity, complexity, and dynamism—that has put a greater 

emphasis on the concept of supply chain. Supply chain processes, relationships, and 

interdependencies can be a key source of competitive advantages. However, these 

advantages are difficult to capture. One of the reasons behind it is the generation of the 

so-called Bullwhip Effect, a major source of inefficiencies within supply chains. It refers 

to the amplification of the variability of orders throughout the system. 

Chapters 1 to 3 in the present dissertation explore the role of artificial intelligence in the 

development of forecasting mechanisms that improve the management of the supply 

chain. We employ artificial neural networks (ANNs), both under multi-layer perceptron 

(MLP) and radial basis function (RBF) architectures, together with statistical methods 

within a multi-agent structure. Facing demand series with trend and seasonality, the 

system—that selects the most suitable forecast for every moment—greatly mitigates the 

generation of the Bullwhip Effect from a local perspective. In addition, we show how this 

system could be easily integrated in a system with a larger scope, which represents one 

of the main benefits of this approach.  

Chapters 4 to 6, which represent the main research stream of this research work, analyze 

this issue from a systemic perspective. In this sense, we aim to add to the deployment of 

this view throughout supply chains; which we understand as a major challenge for 21st-

century supply chains. To this end, we develop an integrative framework for the 

collaborative management of production and distribution systems based on the Beer’s 

Viable System Model (VMS) and on Goldratt’s Theory of Constraints (TOC). Building 

upon this framework, we investigate the implementation of this solution though modelling 

and simulation techniques. Specifically, we design a Drum-Buffer-Rope (DBR) 

mechanism to act as the operational engine for the supply chain. We show its effectiveness 

in comparison with traditional alternatives based on the mass production paradigm both 

in operational (including the Bullwhip Effect) and financial terms. 

Notwithstanding the foregoing, the present dissertation also underscores that process 

integration is only one of the key fields within the development of collaborative solutions 

for supply chains. Transparency in the relevant information, synchronization and 
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allocation in the decision making must also be understood as conditions sine qua non for 

the successful implementation of collaboration across the system. Aligning incentives is 

also essential. In this regard, risks and benefits must be shared appropriately to reduce 

the menace of opportunistic behaviors. We carefully take into consideration all these 

fields in order to make the collaborative solution viable and profitable for every node, 

since we believe that this five-edge scheme makes it easier to understand why only a small 

percentage of real supply chains are capable of adding value through collaboration.  

In this research, modelling and simulation techniques appear as powerful laboratories 

for the study of large organizational problems that would be difficult to study otherwise. 

This fact emphasizes the great potential of prototype development as a methodology for 

the support of decision making and business transformation, especially around the 

complex transition process from reductionism (based on local optimization) to holism 

(based on global optimization) in supply chains.  
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La globalización ha revolucionado el contexto empresarial. El incremento de la oferta 

en bienes y servicios, los constantes cambios en los gustos de los consumidores y la 

expansión geográfica de las redes de distribución, entre otros factores, han trazado un 

nuevo entorno competitivo marcado por la intensidad, la complejidad y el dinamismo. 

Éste ha enfatizado el concepto de cadena de suministro. En los procesos, en las 

relaciones y en las interdependencias de la cadena de suministro se esconde una fuente 

clave de ventajas competitivas para las organizaciones que, sin embargo, es muy 

compleja de captar. Una de las razones de ello es la generación del denominado Efecto 

Bullwhip, que ha de entenderse como una fuente clave de ineficiencias en la cadena de 

suministro. Este fenómeno se refiere a la amplificación de la variabilidad de las órdenes 

transmitidas a lo largo del sistema. 

Los capítulos 1 a 3 del presente trabajo exploran el papel de la inteligencia artificial en 

el desarrollo de mecanismos de previsión orientados a mejorar la gestión de la cadena 

de suministro. Se han utilizado redes neuronales artificiales (artificial neural networks, 

ANNs), bajo arquitecturas del tipo perceptron multi-capa (multi-layer perceptron, MLP) 

y funciones de base radial (RBF), junto a métodos estadístico dentro de una estructura 

multi-agente. Ante demandas con tendencia y estacionalidad, el sistema —que escoge en 

cada momento la previsión más adecuada— obtiene un gran rendimiento en la reducción 

del Efecto Bullwhip desde una perspectiva local. Asimismo, se muestra cómo este sistema 

se podría integrar con facilidad en un sistema de mayor alcance, lo cual representa una 

de las principales ventajas de esta aproximación. 

Los capítulos 4 a 6, que representan la principal línea de investigación dentro de este 

trabajo, tratan esta problemática desde una perspectiva sistémica. En este sentido, se 

pretende contribuir al despliegue de esta perspectiva dentro de las cadenas de 

suministro; el cual entendemos como el gran reto de las cadenas de suministro en el siglo 

XXI. Con este objetivo, se desarrolla un marco integrador para la gestión colaborativa 

de sistemas de producción y distribución basado en el Modelo de los Sistemas Viables de 

Beer (Viable System Model, VSM) y la Teoría de las Restricciones de Goldratt (Theory 

of Constraints, TOC). Sobre este marco, se explora la implementación de la solución 

mediante herramientas de modelado y simulación. Más en concreto, se utiliza la 

metodología Drum-Buffer-Rope (DBR) para proponer un motor operativo para la cadena 

de suministro y demuestra su eficacia, en comparación con alternativas tradicionales 
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basadas en la producción en masa, tanto en términos operacionales (donde se engloba 

el Efecto Bullwhip) como en términos económicos. 

No obstante, el trabajo subraya que la integración de procesos es sólo una de las áreas 

clave para el diseño de soluciones colaborativas. La transparencia en la información 

relevante, la sincronización y distribución en la toma de decisiones, y el diseño de un 

sistema de rendimiento global han de entenderse igualmente como condiciones sine qua 

non para la implementación exitosa de la colaboración en las cadenas de suministro. La 

alineación de incentivos también es esencial. Los riesgos y los beneficios han de ser 

compartidos adecuadamente con el objetivo de reducir la amenaza de comportamientos 

oportunistas. Los cinco campos mencionados se han considerado en la propuesta de una 

solución colaborativa viable y beneficiosa para todos los miembros; dado que este 

esquema nos permite comprender por qué solo un pequeño porcentaje de las cadenas de 

suministro reales son capaces de crear valor a través de la colaboración. 

Esta Tesis Doctoral también pretende resaltar las técnicas de modelado y simulación 

como poderosos laboratorios de ensayo para el estudio de grandes problemas 

organizacionales que serían complejos de estudiar de otra forma. Este hecho subraya el 

enorme potencial del desarrollo de prototipos como metodología para el apoyo a la toma 

de decisiones y la transformación empresarial, especialmente en torno al complejo 

proceso de transición de una aproximación reduccionista (basada en la optimización 

local) a una holista (basada en la optimización global) en la cadena de suministro.   
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Context: The Bullwhip Effect in Supply Chains 

The organizational environment dramatically evolved in the 1990s. The geopolitical 

restructuring that took place after the Cold War, the revolution of information and 

communication technologies, the decrease of transportation costs, and the liberalization 

of capital markets —among other reasons— have set up a modern global business scene. 

Globalization has drawn a new scenario of opportunities and threats, where competition 

has not only increased substantially but also become more complex and dynamic. In this 

sense, competition currently surpasses the firm level, covering the overall concept of 

supply chain. Under these circumstances, a premium has been placed upon supply chain 

management as a key source of competitive advantages. 

This is a relatively new concept that encompasses managing all the relationships in the 

production and distribution system (Mentzer et al., 2001). Managers must now deal with 

distant —not only in geographical terms but also in cultural and administrative terms— 

suppliers, control convoluted worldwide supply networks with long and variable lead 

times, and be able to agilely react to the frequent changes in customer requirements. How 

they manage all these issues can, and does, make the difference. In this process, they will 

face a powerful enemy: the Bullwhip Effect.  

This term —first coined by Procter & Gamble in the 1990s after discovering that the firm 

was suffering from it (Lee et al., 1997)1— refers to a dynamical phenomenon in supply 

chains that results in the tendency of the variability of orders to increase as they pass 

through the various echelons of a production and distribution system towards raw material 

suppliers (Disney and Lambrecht, 2008). The Bullwhip Effect, which has been shown to 

usually occur in almost every sector, is commonly measured through the ratio between 

the variance of —either production or purchase— orders issued and the variance of orders 

—demand— received (Wang and Disney, 2016). This counterintuitive phenomenon is 

illustrated in figure 1 for four real supply chains of different industries. 

From that definition, it can be easily understood why the Bullwhip Effect has a strong 

negative impact on businesses (Towill et al., 2007). On the one hand, large swings in the 

                                                           

1 Nonetheless, it should be noted that the first documentation of this intriguing phenomenon date back to 

the 1910s, also between Procter & Gamble and its wholesalers (Schisgall, 1981).  
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orders received seriously threaten the firms’ ability to meet demand. Thus, companies 

have to invest in large safety stocks, which in turn amplifies other risks in the system, 

such as obsolescence. On the other hand, even larger swings in the orders issued create 

unstable production schedules, which trigger a wide range of unnecessary costs, such as 

extra capacity and overtime (labor) costs. Things are worse if we consider that Bullwhip 

also tends to increase lead times2 (Disney and Lambrecht, 2008). Hence, this phenomenon 

undoubtedly reduces the financial performance of companies —Metters (1997) estimated 

that it entails an avoidable reduction between 10% and 30% on business profitability.   

Under these circumstances, the strategic importance of the Bullwhip Effect has led to a 

large amount of research over the last two decades. However, this issue is still far from 

being solved. After analyzing a sample of 14,933 buyer-supplier dyad observations in 

different US industries, Isaksson and Seifert (2016) recently reported an average increase 

in the variability (measured through the coefficient of variation) of orders between 

echelons that equaled 90%, which illustrates the current prevalence of this phenomenon. 

 

Figure 1. Empirical evidence of the Bullwhip phenomenon. Source: Wang and Disney (2016). 

                                                           
2 It is widely accepted the injurious impact of long and variable lead times in organizations. Indeed, the 

innovative philosophy of Lean Production defines lean time reduction as one of the firms’ key objectives. 
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To tackle this issue, the key question is, of course, why it occurs. Lee et al. (1997) pointed 

out to the information distortion throughout the supply chain as the underlying root cause 

of the Bullwhip Effect3. From this point on, several operational causes —understood as 

sources of information distortion in the system— can be identified, such as the processing 

of the demand signal (Forrester Effect)4, order batching (Burbidge Effect)5, the rationing 

and shortage gaming (Houlihan Effect)6, and price fluctuations (Promotion Effect). It 

should be underlined that these operational causes interact with the so-called behavioral 

causes (Croson and Donohue, 2006), which also contribute to the information distortion. 

Decision makers repeatedly underweight the supply chain when making order decisions, 

which adds to the Bullwhip generation.  

Together with these operational and behavioral causes, there are a large number of 

contextual factors that may significantly foster the amplification of the variability of 

orders in the supply chain. They can therefore be understood as effective action points to 

mitigate the Bullwhip phenomenon. In this regard, how the lead time —both in mean and 

in variance— impacts the Bullwhip Effect has been largely discussed in the literature; 

e.g. see Chen et al. (2000) and Disney et al. (2016). The structure of the supply chain is 

another contextual factor that contributes to the generation of the Bullwhip Effect, e.g. 

see Dominguez et al. (2015), as well as the production and distribution capacities, e.g. see 

                                                           
3 Although the literature includes a number of works in the search of these causes—see Bhattacharya and 

Bandyopadhyay (2010) for a review—, we strongly concur with this view: the Bullwhip Effect can be 

(simply) understood as the consequence of the distortion on information transferred in the form of orders 

along the supply chain potentiated by the contextual factors mentioned below.  

4 This refers to the practice of decision makers adjusting the parameters of the replenishment rule, e.g. the 

demand forecasts and the target stocks levels. Forrester (1958) encountered this amplification in real-world 

supply chains and explored it via simulation. 

5 It involves the common practice of delivering purchase orders (or placing manufacturing orders) in batches 

with the aim of gaining economies of scale. Its negative impact on the supply chain was investigated by 

Burbidge (1994). 

6 Houlihan (1985) highlighted that, when shortages occur in supply chains, customers tend to over-load 

their orders. He noticed that it significantly contributed to the amplification of the variability of orders 

throughout the system.  
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Buchmeister et al. (2014). We could also cite several other factors that do not directly 

create this effect but can amplify or alleviate it, but we will focus on the most important 

one according to the huge amount of works involved around it. It is the attitude of the 

various supply chain nodes towards the management of the supply chain, defining two 

opposite approaches: local versus global optimization7.   

In the first scenario, the different members of the system aim to optimize their local 

performance, so the supply chain emerges as the result of the interaction of these 

individual strategies. On the contrary, the second context entails the search of the optimal 

strategy for the overall supply chain. In other words, the different supply chain nodes 

involve in a collaborative process aimed at designing an efficient, flexible, and robust 

system, from which companies can improve their individual performance (Simatupang 

and Sridharan, 2002). The nodes will then behave accordingly to the overall strategy, 

which come first. This distinction defines two different lenses from which analyzing the 

supply chain problem.  

Given that supply chains are increasingly built on interdependences, its management is 

undeniably a field where thinking globally makes a big difference. The improvement 

generated by collaboration has been widely demonstrated both in theoretical studies and 

in practice, which emphasizes the relevance of this approach built on looking the supply 

chain in its entirety. Sterman (1989) showed that the interaction of self-centered decisions 

within production and distribution systems acts as a major source of inefficiencies derived 

from augmenting the information distortion the systems and the lack of coordination 

between processes, which undesirably increases the Bullwhip Effect. In addition, 

collaborative supply chain practices like the Vendor Managed Inventory (VMI) (Waller 

et al., 1999) and the Collaboration Planning, Forecasting, and Replenishment (CPFR) 

(Fliedner, 2003) have proven to generate breakthrough improvements in dealing with 

traditional supply chain issues, like the Bullwhip Effect; see Sari (2008). 

However, this collaborative approach to supply chain management is still far from being 

widespread in practice. Meaningful barriers emerge, such as mistrust between partners, 

                                                           

7 In this work, we will recall them as holism and reductionism from the two diametrically opposed strategies 

for problem solving, see chapter 6. 
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deficiencies in shared vision, and misalignments in organizational compatibility (Mentzer 

et al., 2001), which may lead the collaborative process to failure (Fawcett et al., 2015). 

This situation —together with the intrinsic importance of analyzing systems by carefully 

studying the different parts that form them— makes the investigation of the role of the 

single echelon within the supply chain also essential in order to comprehend the dynamics 

of supply chains; which also is a fruitful research area in the literature.  

Objectives and Structure of this Research Project 

This Doctoral Thesis explores the supply chain management field by means of artificial 

intelligence (AI)-based techniques. In broad terms, we first aim to investigate how these 

modern approaches may contribute to the mitigation of the Bullwhip Effect phenomenon. 

From this point on, we use these techniques to design, develop and assess an integrative 

framework for managing the supply chain from a systemic perspective. Hence, two 

research lines (RL) can be clearly identified within this research project, which are also 

related to the aforementioned lenses for the analysis of the supply chain.  

On the one hand, we focus on the single echelon, understanding demand forecasting as a 

powerful mechanism for Bullwhip alleviation. Thus, our objective in RL1 has been to 

evaluate the potential of AI-based tools in terms of supply chain management.  

We first have developed an AI forecasting system based on artificial neural networks 

(ANNs) with the aim of demonstrating its strength in the reduction of Bullwhip Effect 

(chapter 1). Then, the forecasting system has been enhanced by adding other forecasting 

techniques under a global structure in the form of a multi-agent system. The additional 

intelligence added to the system allows it to select at each moment the best forecast, which 

increases its performance (chapter 2). Last, we have explored how these agent-based 

techniques can be used to build an intelligent decision support system for achieving an 

efficient, flexible, and robust management of the supply chain (chapter 3).  

It should be noted that these works have been carried out for a specific supply chain (i.e., 

water distribution). This results as a consequence of my engagement during the 

development of the present dissertation in the project “Distributed Artificial Intelligence 

for Managing Water Demand in the Municipality of Gijon”, which was carried out in 

2013 and 2014 together with the Municipal Water Company of Gijón (Empresa 

Municipal de Aguas) thanks to the funding that the Instituto Universitario de Tecnología 
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Industrial de Asturias (IUTA) awarded us. Nonetheless, the main conclusions derived 

from RL1 can be extrapolated to the generic field of supply chain management. 

On the other hand, we consider the implementation of collaborative solutions throughout 

production and distribution systems, understanding its deployment as a major challenge 

for 21st-century supply chains (Schweitzer et al., 2009). Thus, our objective in RL2 has 

been to propose an overall framework8 for the implementation of collaborative supply 

chains. 

In this research stream, we first have devised a conceptual framework for supply chain 

collaboration and discuss its application in real supply chains (chapter 4). This is based 

on the Simatupang and Sridharan’s (2005) integrative scheme and is built on the 

integration between the Viable System Model (VSM) (Beer, 1885) and the Theory of 

Constraints (TOC) (Goldratt, 1990). While the VSM orchestrates the collaboration 

(defines the systemic structure of the supply chain), TOC governs the material flow and 

defines the global performance metrics (implements and guides the systemic behavior). 

From this point on, we have deepened the implementation of the systemic behavior of the 

supply chain —which encompasses process integration and decision synchronization—

through the Drum-Buffer-Rope (DBR) methodology (Schragenheim and Ronen, 1990) 

(chapter 5). We have employed agent-based modeling and simulation techniques to 

explore its implementation in a serial four-echelon supply chain, and we have shown that 

it leads the system to a dramatic operational improvement, expressed in terms of Bullwhip 

Effect, in comparison with traditional (non-collaborative) alternatives.   

Finally, we have completed this study by translating the operational study into a financial 

analysis (chapter 6). We have also augmented the noise conditions9 of the supply chain 

in order to derive managerial implications in a wide range of scenario. In this sense, we 

have provided evidence of the superiority of the collaborative approach in financial terms. 

                                                           
8 With the phrase “overall framework”, we intend to highlight the importance of understanding “supply 

chain collaboration” in all its essential dimensions, which are detailed in chapter 4.  

9 We understand noise in experimental terms. Noise factors are parameters causing variation in the 

performance of the supply chain that are uncontrollable during the real operation of the system but can be 

controlled during the simulations. 
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This work has also shown how IA-based multi-agent techniques (Gilbert, 2008) allow 

practitioners to develop awareness of complex organizational problems, so these 

prototypes must be interpreted as powerful laboratories for business transformation. 

Finally, it should be acknowledged that this Doctoral Thesis is presented as a 

compendium of publications, since it comprises six articles (i.e., chapters 1 to 6) 

published in journals indexed within the Journal Citation Report (JCR). The reference to 

each one of the publications as well as the required mention to the impact factor of each 

journal have been included as a footnote in the first page of each chapter. Please note that 

this different journal publication styles justify some slight differences in the format 

among the six chapters.   
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Abstract 

The Bullwhip effect (BE) refers to the amplification of the variance of orders and 

inventories along the supply chain as they move away from the customer. This is 

considered as the main cause of inefficiencies in the management of a traditional supply 

chain. However, the BE is not relevant in the classic system of water distribution, based 

on long-term supply management. Nevertheless, current circumstances have drawn a new 

context, which has introduced the concept of water demand management, in which 

efficiency and sustainability are of great importance. Then, the time horizon of 

management has decreased enormously and the supply time takes on an important role. 

Therefore, the BE must be considered, as it significantly raises the costs of management. 

On the one hand, this paper brings evidence that the BE appears in a system of real-time 

management of water demand. On the other hand, it proposes the application of artificial 

intelligence techniques for its reduction. More specifically, an advanced forecasting 

system based on artificial neural networks has been used. The BE is heavily damped. 

Keywords 

Artificial Neural Networks; Bullwhip Effect; Water Demand Management. 
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1. Introduction 

The concept of Bullwhip Effect emerged in the early 90s in some large companies, when 

the new competitive context conceded strategic importance to Supply Chain Management 

(SCM). Some businesses began to understand SCM as a source of competitive advantages 

and studied it in detail, trying to optimize its performance. At that time, Procter & Gamble 

realized that the purchase orders received in one of its flagship products, Pampers diapers, 

fluctuated significantly, while the product demand in the retailer was almost constant. 

They also found out that the variability in orders transmitted to their suppliers were much 

higher. It was called the Bullwhip Effect (Lee et al., 1997). 

The growing importance of logistics in the doubtful environment currently faced by 

businesses has prompted the development of this concept, which is considered to be the 

main cause of inefficiencies in SCM (Disney et al., 2005). For this reason, lots of various 

supply chains have focused on reducing the Bullwhip Effect, with the aim of minimizing 

the derivatives overruns. By contrast, in some particular supply chains, this phenomenon 

has not been relevant and it has not been widely studied. The water supply system is one 

of them. 

Nevertheless, the perspective of municipal policies about water management has changed 

significantly over the last two decades, mainly due to the pressures generated by the 

population growth and the industrialization. Hence the concept of Water Demand 

Management (WDM) has developed significantly. Brooks (2006) proposed a current 

definition of WDM with five components: (1) reducing the quantity or quality of water 

required to accomplish a specific task; (2) adjusting the nature of the task so it can be 

accomplished with less water or lower quality water; (3) reducing losses in movement 

from source through use to disposal; (4) shifting time of use to off-peak periods; and (5) 

increasing the ability of the system to operate during droughts 

This burgeoning concern over efficiency and sustainability around WDM (Charlesworth 

and Adeyeye, 2013) has led to a reduction in the time horizon. Some years ago, long term 

forecasting was enough for the design of the system and the development of plans (among 

others, Willsie and Prat, 1974). However, nowadays, short term forecasts are required for 

attaining high efficiency in operation and management (among others, Gato et al., 2007). 

Herrera et al. (2010) defend that the ready availability of hourly predictions of water 

demand is crucial due to three main reasons: (1) it allows to determine the optimal 
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regulation and pumping systems to meet the predicted demand, which promotes energy 

efficiency (operative point of view); (2) it allows to combine water sources in the most 

appropriate way to achieve a preset standard in the supply water (quality point of view); 

and (3) it allows to detect failures and network losses through the comparison of the actual 

and expected flow (vulnerability point of view). It can be called real-time WDM. 

In a long term WDM system, the Bullwhip Effect does not arise. If the time horizon is 

very long, the supply time becomes trivial and does not determine the performance of the 

replenishment policy. However, reducing this time horizon introduces in the study the 

need to consider the supply time, and therefore the menace of Bullwhip Effect surges. It 

must be taken into account in order to avoid the negative consequences that it can have 

on the supply system. Thereby, one of the main objectives of this paper is to bring 

evidence via simulation of the appearance of the Bullwhip Effect in a real-time WDM. 

Furthermore, this work proposes a solution to the identified problem, based on the 

application of Artificial Intelligence techniques in forecasting the hourly water demand. 

More specifically, an advanced forecasting system, whose core are Artificial Neural 

Network (ANNs), has been developed. This methodology has been widely used in the 

forecasting of series of a similar nature, as the short-term electricity load (see Hippert et 

al., 2001, for a review). Herrera et al. (2010) showed that predictive models, among which 

ANNs are included, provide great performance in forecasting the hourly water 

consumption. This research has tried to reduce the error even further by developing a 

double-loop system that chooses at all times the optimal network structure (both input 

variables and hidden neurons). Therefore, the second goal of this paper is to demonstrate 

that these smart tools can cause a large decrease in the Bullwhip Effect generated in the 

water distribution system and, consequently, it can lead to improve the management. 

2. Background: The Bullwhip Effect in Supply Chains 

Although research on the Bullwhip Effect was strengthened two decades ago when large 

companies experimented the problem, Forrester (1961) long before noted the 

amplification of demand variability along a generic supply chain through a simulation 

model. Thereby, many authors express mathematically the Bullwhip Effect generated at 

level n of a linear supply chain (𝐵𝐸𝑛) as the quotient of the variance of the orders issued 

to the upper level supply chain (𝜎𝑃𝑂𝐸
2 𝑛

) and the orders received from the lower level of 
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the same (𝜎𝑃𝑂𝑅
2 𝑛

). As this metric only evaluates the output variance compared with the 

input variance, it should be supplemented by another one that provides the variation in 

the level of inventories (i.e., the structure that causes the above variation). Therefore, 

some authors (e.g., Disney and Towill, 2003) propose an alternative metric of the quotient 

of the variance of the stock (𝜎𝑆𝑇𝑂𝐶𝐾
2 𝑛

) and the variance of the demand (𝜎𝑃𝑂𝑅
2 𝑛

). It can be 

named Alternative Bullwhip Effect (𝐴𝐵𝐸𝑛) and is expressed by (2). 

𝐵𝐸𝑛 =
𝜎𝑃𝑂𝐸
2 𝑛

/𝜇𝑃𝑂𝐸
𝑛

𝜎𝑃𝑂𝑅
2 𝑛

/𝜇𝑃𝑂𝑅𝑛
=
𝜎𝑃𝑂𝐸
2 𝑛

𝜎𝑃𝑂𝑅
2 𝑛 (1) 

𝐴𝐵𝐸𝑛 =
𝜎𝑆𝑇𝑂𝐶𝐾
2 𝑛

𝜎𝑃𝑂𝑅
2 𝑛  (2) 

The Bullwhip Effect involves large economic losses in the supply chain, by increasing 

missing sales, obsolescence, and labor, transportation and storage costs, so it can be 

considered a major cause of inefficiencies within SCM (Disney et al., 2005). 

Lee et al. (1997) showed that there are five main causes that lead to this phenomenon: (1) 

errors in demand forecasting; (2) non-zero lead times; (3) order batching; (4) price 

fluctuations; and (5) supply shortages. The famous ‘Beer Game’ proposed by the MIT 

and analyzed by Sterman (1989) brings evidence that the Bullwhip Effect is generated 

along the supply chain even if the last three causes are not considered. Obviously, if lead 

time was null, the supply from the factory would instantly respond to customer 

requirements and the Bullwhip Effect would not appear. And if there were no errors in 

the forecasting, each level would know exactly what it needs, so the Bullwhip Effect 

would not surge either.  

SCM is a very complex problem, which is conditioned by the interaction of multiple 

agents, each one of which has to weight a large number of variables. Thus, modern 

Artificial Intelligence tools have been widely used in order to optimize the management 

and to buffer the Bullwhip Effect. Next, a brief literature review on this subject is shown. 

In the beginning, the Metamorph tool, based on multi-agent methodology and developed 

by Maturana et al. (1999), can be highlighted. In 2010, Hong et al. designed an ANNs 

based controller and using RFID technology. Jaipuria and Mahapatra (2014) developed 

an advanced forecasting system (ANNs and Wavelet Discrete Transform) to reduce the 
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Bullwhip Effect in a generic supply chain. Also, the recent and relevant works carried out 

by Bahroun et al. (2010), Saberi et al. (2012) and Zarandi et al. (2013) should be 

mentioned. 

3. The Bullwhip Effect in Real-Time Water Demand Management 

The main hypothesis of this work is that the Bullwhip Effect appears in real-time WDM 

systems, and therefore it must be controlled due to the consequences that it could bring 

to the system.  

Under these conditions, the Bullwhip Effect in a water supply network is the increasing 

variability of the demand transmitted along the same as it moves away from the final 

points of consumption. This phenomenon directly causes the increase of the variations in 

the water flow conveyed along the distribution network and also in the increase of the 

variations in the water stored in the supply tanks. Therefore, it tends to oversize the system 

(distribution network, supply tanks and treatment equipments), although the 

infrastructure oversize is more influenced by other reasons –reliability and security 

against unforeseen, but possible, events. Moreover, the Bullwhip Effect also generates 

cost overruns in the works of water pumping, collection and purification, as the contracted 

power is greater when the variability of the system requirements over time is large. Hence, 

taming the Bullwhip Effect leads to improvements of the management. 

3.1. Simulation model 

In order to demonstrate the generation of the Bullwhip Effect along a real-time WDM 

system, this research has considered a simple structure of a water supply network, which 

consists of three main levels interconnected by the distribution piping: (1) natural sources 

(catchment points), where water is collected; (2) points-of-use (POU), representing the 

distributed water demand; and (3) supply tanks (storage reservoirs), which receive water 

from the natural sources and send it to the POU. Then, a discrete simulation model has 

been developed in MATLAB R2014a of a supply system managed hourly, focused on the 

supply tanks.  

Other assumptions adopted to model the supply system are the following: (1) stochastic 

POU demand (see section of results, as the same time series has been used); (2) fixed 

supply time: 1 hour (on the one hand, from natural sources to supply tanks and, on the 

other, from supply tanks to POU); (3) unconstrained catchment, storage and 
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transportation system; (4) water is pumped to the supply tanks in order for them to store 

at the beginning of each hour—order-up-to point—the forecast plus a security level, with 

the aim of protecting against shortage; and (5) non negative condition of the order 

quantity (water cannot be returned to the previous level). Obviously, it is a simplified 

model of the reality, but it considers the main causes that surge the Bullwhip Effect in 

real-time WDM systems. 

Next, the mathematical formulation of the model is described. Water pumped at the end 

of each hour from natural sources to supply tanks (𝑊𝑃𝑡) can be expressed as the 

difference between the demand forecast for the next period (𝐷𝑡+1̂) and the water stored 

in the tanks at the end of that period (𝑊𝑇𝑡), also considering security level which must be 

kept in the tank (𝑆𝐿), by (3). Along the same line, the water stored in the tanks at the end 

of each period (𝑊𝑇𝑡) is the water stored in the tanks at the end of the previous period 

(𝑊𝑇𝑡−1), adjusted by the water pumped in the previous period from natural sources 

(𝑊𝑃𝑡−1)—as the lead time is 1 hour—and by the demand (𝐷𝑡), unless this difference is 

less than 0, according to (4). In that case, it is not possible to meet all the demand, and a 

deficit of unmet demand (𝑈𝑀𝐷𝑡) is generated, by (5). Furthermore, logically, the water 

sent from the supply tanks to the POU (𝑊𝑆𝑡) is the demand (𝐷𝑡), unless the water stored 

at the end of the previous period (𝑊𝑇𝑡−1) was lower, according to (6). 

𝑊𝑃𝑡 = max{𝐷𝑡+1̂ −𝑊𝑇𝑡 + 𝑆𝐿, 0} (3) 

𝑊𝑇𝑡 = max{𝑊𝑇𝑡−1 − 𝐷𝑡 +𝑊𝑃𝑡−1, 0} (4) 

𝑈𝑀𝐷𝑡 = max{−(𝑊𝑇𝑡−1 − 𝐷𝑡 +𝑊𝑃𝑡−1), 0} (5) 

𝑊𝑆𝑡 = min{𝐷𝑡,𝑊𝑡−1} (6) 

The operational logic of the simulation system is illustrated in figure 1. As above 

mentioned, it is based on the supply tanks—and the Bullwhip Effect can be observed 

when comparing the demand transmitted from POU to supply tanks and from supply tanks 

to natural sources. The system is controlled by the user through an interface, and it is 

connected to a database with the aim of storing and analyzing the results. It should be 

noted that there are two main flows: the water flow, from natural sources to POU and 

constrained by the lead time (supply time), and the order flow, in the opposite direction. 

The flow chart of the operations in the supply tanks corresponds to the previous equations. 
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Figure 1. Outline of the simulation system. 

3.2. Simulation results 

In order to calculate the forecast for the next time period (𝐷𝑡+1̂), moving averages (Holt, 

2004) of 3 and 6 periods and simple exponential smoothing (Gardner, 2006) with 

coefficients 0.5 and 0.9 have been used. Additionally, three different tests with each 

forecasting method have been carried out, as the value of the security level with which 

the tanks works has also been modified. Table 1 shows the results of the twelve 

simulations using in all cases the same week (randomly chosen) of the time series. 

Table 1 demonstrates the generation of Bullwhip Effect in the twelve tests (since the ratio 

is greater than 1 in all cases), in which different forecasting methods and security levels 

have been used. In the best situation (test 4), the amplification of the variance of the 

demand is 9%. Although not included for the sake of simplicity, tests carried out with 

changes in the supply time or the pumping policy also evidence the existence of this 

phenomenon. Thereby, in this real-time WDM system, there is amplification in the 

variability of the demand. 
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Table 1. Results of the simulation. 

Test FM SL BE ABE UMD 

1 MA3 200 1.19 0.18 5,730 

2 MA3 400 1.26 0.27 744 

3 MA3 600 1.27 0.29 0 

4 MA6 200 1.09 0.29 13,336 

5 MA6 400 1.19 0.45 4,656 

6 MA6 600 1.28 0.58 515 

7 ES0.5 200 1.17 0.16 4,439 

8 ES0.5 400 1.23 0.23 269 

9 ES0.5 600 1.23 0.24 0 

10 ES0.9 200 1.19 0.10 1,229 

11 ES0.9 400 1.20 0.11 0 

12 ES0.9 600 1.19 0.11 0 

Note: The columns refer to the number of the test (Test), the forecasting method (FM), the security level of 

the tanks in cubic meters (SL), the Bullwhip Effect (BE), the Alternative Bullwhip Effect (ABE), and the 

unmet demand in cubic meters (UMD). 

The results presented in table 1 show a straightforward (and easy to understand) 

relationship: the higher the security level, the lower the unmet demand. Furthermore, it 

brings evidence that the higher the security level, the higher the variations along the 

system, which typically results in an increase of the Bullwhip Effect. 

 

Figure 2. Water received and sent by the supply tanks for  

48 hours (corresponding to Friday and Saturday) in test 3. 
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The Bullwhip Effect generation on the water supply network, by way of example, can be 

seen graphically in figure 2, which represents the water conveyed between supply tanks 

and POU and between natural resources and supply tanks for two days of test 3. In it, the 

amplification of the variance is 27%. Figure 3 displays, for the same time period, the 

volume of water in the supply tanks in tests 1, 2 and 3. These variations produce the 

magnification of the Alternative Bullwhip Effect when the security level increases, 

although the unmet demand obviously decreases. Thereby, the consequences of the 

Bullwhip Effect in the WDM system are evidenced.  

 
Figure 3. Volume of water in the supply tanks for 48 hours  

(corresponding to Friday and Saturday) in tests 1, 2 y 3. 

4. Description of the Forecasting System 

The forecasting errors are the main cause of the Bullwhip Effect. Hence a system based 

on an Artificial Neural Networks (ANNs) structure has been developed to forecast the 

hourly demand with the aim of minimizing the errors. The results will be evaluated by 

comparing them with the ones provided by statistical methods, which will be detailed 

afterwards. 

4.1. ANNs Forecasting System 

ANNs are computational models inspired by an animal's central nervous system, which 

are capable of machine learning, as well as pattern recognition. They are systems of 

interconnected neurons, distributed in different layers, which can compute values from 
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inputs. Two characteristics of ANNs that make them particularly useful for forecasting 

time series are the ability to approximate practically any function (even non-linear ones) 

and the opportunity for “piece-wise” approximations of the functions. For a more detailed 

description of ANNs as a forecasting method and its contrast with other traditional tools, 

see Pino et al. (2008). 

In particular, the model used for this study is the nonlinear autoregressive network with 

exogenous inputs (NARX), where the next value of the dependent output signal is forecast 

(�̂�(𝑡) = 𝐷�̂�) as a regression on previous values of the output signal (𝑦(𝑡) = 𝐷𝑡) and 

previous values of an independent (exogenous) input signal (𝑥𝑡 = 𝑥(𝑡)). The NARX 

model is developed, among others, in the work of Piroddi and Spinelly (2003). The 

software that has been used is MATLAB R2014a.  

Figure 4 shows the architecture of the forecasting system—it is called Multi-Layer 

Perceptron (MLP). From a set of inputs, the system is capable of building a response. In 

particular, the program takes not only the previous demands, but also the hour (ranged 

from 00h to 23h), the week day (from 1, corresponding to Mondays, until 7, 

corresponding to Sundays) and an extra variable, related to the main feature of the day, 

which differences working days (1), Saturdays (2) and Sundays and holidays (3)—due to 

the nature of this time series: from Monday to Friday, consumption of water remains 

pretty similar, while it decreases on Saturday, and keeps falling on Sundays (holidays can 

be approximated to Sundays). 

MLP are networks that have more than one layer of adaptive weights (Bishop, 1995). It 

has three layers of units taking values in the range 0-1, and each layer is nourished with 

the previous ones. Any number of weighted connections can be used, but MLPs with two 

weighted connections are very much capable of approximation just about any functional 

mapping. The MLP can be mathematically represented by (7), where  yt represents the 

output (forecast), fouter represents de output layer, finner represents the input layer 

transfer function, 𝑤𝑥𝑦 represents the weights and biases (𝑖 ∈ [1, (3𝑚 + 3)] refers to the 

input neurons and 𝑗 ∈ [1, 𝑛] refers to the hidden neurons) and (z) represents the z-th layer. 

�̂�𝑡 = 𝑦𝑡 = 𝑓𝑜𝑢𝑡𝑒𝑟 [∑𝑤1𝑗
(2) ∙ 𝑓𝑖𝑛𝑛𝑒𝑟

𝑛

𝑗=1

( ∑ 𝑤𝑗𝑖
(1) ∙ 𝑥𝑖

3𝑚+3

𝑖=1

+ 𝑤𝑗0
(1)) + 𝑤10

(2)] (7) 
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Figure 4. ANNs architecture of the forecasting system. 

 

Figure 5. Flow chart followed by the Forecasting System to make the prediction. 
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Figure 5 points out a brief explanation of the structure and operation of the ANNs 

forecasting system.  It makes an hourly forecast, when it receives the last demand from 

the measurement equipment and the information is stored in the database. Then, it reads 

the database and selects the last 1,008 samples, which correspond to an entire period of 6 

weeks (the hourly demands of 42 days). Samples are randomly divided (except last 12) 

into three different groups: 70% of them are classified as training data, for adjusting the 

network according to its error; 15% as validation data, used to measure network 

performance and to halt training when it stops improving; and the remaining 15% as 

testing data, which provides an independent measure of network performance during and 

after training.  

The used training function updates weight and bias values according to Levenberg-

Marquardt optimization, which uses this approximation to the Hessian matrix in a 

Newton-like update (see Moré, 1978). In order to verify the training of the ANNs and to 

avoid overfitting, the early-stopping method (Sarle, 1995) has been used, as the number 

of training examples is sufficiently large. It presents interesting advantages in terms of 

speed and ease of application in comparison with cross-validation (Kohavi, 1995), which 

is much more suitable when the number of examples is low. Training stops when any of 

these conditions occurs: the maximum number of repetitions (100) is reached; the 

maximum amount of time is exceeded (10 minutes); the performance gradient falls below 

the value defined (10−10); validation performance has increased more than the times 

defined (6) since the last time it decreased; or the scalar value exceeds its maximum value 

(1010). 

In the search of the structure that fits best the time series, two things are varied by the 

control subsystem: the number of neurons in the hidden layer and the number of delays 

(hence the number of variables that are considered to forecast). Therefore, the system 

chooses at each time the optimal structure of the network, seeking for a better 

performance of the tool than if the same structure was always imposed. 

About the first loop, it should be kept in mind that the more number of hidden neurons 

(𝑛) are chosen, the more complexity the structure will have, and it requires a higher time 

of carrying out. However, this does not always translate into a better outcome of the 

system because overfitting problems are more prone to occur if there are too many 
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neurons in the hidden layer. The system builds a network for each one of the different 

values of the variable from 𝑛 = 2 to 𝑛 = 20, with jumps of 2 units. 

In addition, another loop is made in order to look for the combination of delays that best 

fits the input data. As the hourly consumption time series shows trend and double 

periodicity, the best way of defining a new value for the curve of water consumption is 

by choosing the demands of the previous hours (from 𝑦(𝑡 − 1) to 𝑦(𝑡 − 1 −𝑚)), the 

demands of the previous day at the same hour and the previous ones (from 𝑦(𝑡 − 24) to 

𝑦(𝑡 − 24 −𝑚)), and the demands of the previous week at the same day hour and the 

previous ones (from 𝑦(𝑡 − 168) to 𝑦(𝑡 − 168 −𝑚). The system evaluates alternatives 

from 𝑚 = 1 to 𝑚 = 8. 

To evaluate the performance of the forecasting system, the criterion of the mean absolute 

percentage error (MAPE), introduced by Makridakis (1993), is used. It can be expressed 

by (8), where p is the time horizon: 

𝑀𝐴𝑃𝐸 =
1

𝑝
∑|

𝐷𝑡 − �̂�𝑡
𝐷𝑡

|

𝑝

𝑡=1

 (8) 

The last twelve demands are saved as testing samples, in order to orientate the double-

loop to determine the optimal ANNs architecture at every moment. Therefore, after each 

iteration, the system calculates the MAPE of the last twelve demands as an indicator of 

network performance in recent hours (fitness MAPE). Once the double-loop process of 

building networks has ended, the system chooses the structure that has generated a 

minimum fitness MAPE and new predictions are made with this architecture. 

4.2. Statistical models 

Traditional methods are used to compare their results with the developed system, and to 

show the improvements on the Bullwhip Effect reduction. Three statistical techniques 

have been used. The system chooses the best of the three at any time using the same 

criterion (fitness MAPE minimization). 

First, an autoregressive model (AR) is used (Akaike, 1969). The algorithm for computing 

the least squares AR model is the forward-backward approach, which minimizes the sum 

of a least squares criterion for a time-reversed model. The second model corresponds to 
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IVAR, which estimates the AR model using the instrumental variable method (Arellano 

and Bover, 1995). Both algorithms treat noise differently. AR assumes white noise, while 

the IVAR is not sensitive to noise color. The third one corresponds to the ARMA model 

(Jones, 1980). It includes a moving average component to consider the relation of the 

series with past values of the errors. 

5. Results and Discussion 

In order to evaluate the effectiveness of the forecasting system in the Bullwhip Effect 

reduction, a simulated time series with the hourly water demand in 2009 and 2010 in 

Gijón (a municipality of 300,000 inhabitants in the north of Spain) has been used. 

Validated by the municipal water company—real data are not available as this company 

still do not carry out an hourly management—, this series was created through the 

monthly water demand of the city, a distribution model of hourly water demand for a city 

in south-eastern Spain (Herrera et al., 2010), and random parameters. The information 

obtained from the literature was used to create a consumption modulation curve 

describing the behavior of the hourly water demand along the different days of the week. 

To adjust properly the vertical scale (in cubic meters) —and hence including the long-

term trend of the series—, each month's water demand (known for 2009 and 2010) has 

been applied. This simulation was run for the above mentioned time horizon, adding 

random parameters with the aim of slightly modifying the curve at every moment and 

creating short-term trends in the series. Holidays have also been considered. 

This way, the time series replicates a real hourly water demand series, which is a complex 

series with double seasonality and trend. On the one hand, it has a daily periodicity, as 

every 24 hours the series shows a similar structure. On the other hand, the consumption 

significantly varies on Saturdays and Sundays (and on holidays if there are), hence there 

is a weekly periodicity (168 hours). Moreover, the time series does not remain in a 

constant range, but it exhibits the above mentioned trends both in mean and variance. 

In this study, different days and hours have been selected randomly with the aim of 

evaluating the performance of the system in different situations. Table 2 presents the 

different periods that have been chosen. In its last column, it differentiates between 

working days (1), Saturdays (2) and Sundays and holidays (3), according to the 

classification above mentioned. 
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Table 2. Training period (6 weeks) and testing periods (24 hours) 

of the eight tests that have been performed. 

Test 
Training period Testing period Testing day 

From To From To Kind 

1 24/01/09 06/03/09 0h 23h Saturday 

2 28/07/09 08/09/09 5h 4h Holiday 

3 17/12/09 28/01/10 17h 16h Working day 

4 30/12/09 10/02/10 12h 11h Working day 

5 10/01/10 21/02/10 4h 3h Holiday 

6 22/01/10 05/03/10 21h 20h Saturday 

7 12/03/10 23/04/10 5h 4h Working day 

8 28/07/10 08/09/10 14h 13h Holiday 

 

The discrete simulation model described in the third section has been used to calculate de 

Bullwhip Effect and the Alternative Bullwhip Effect with the ANNs forecasting system 

in the eight tests. The chosen security level in the supply tanks is 500 cubic meters—this 

value was selected because there would not be unmet demand in none of the eight cases.  

Table 3 depicts the final results obtained in this research. They point out, broadly 

speaking, the huge efficiency of the ANNs forecasting system versus the statistical 

methods in the reduction of the Bullwhip Effect. As expected, an improvement in the 

forecasting MAPE usually implies an improvement in both indicators of the Bullwhip 

Effect.  

The ANNs forecasting system leads to the achievement of minor errors. By selecting at 

each time the best architecture of the network, forecasting errors around 1% are obtained 

in the tests performed, below those achieved by the traditional statistical methods. Thus, 

the Bullwhip Effect—that is evident and a major threat to the WDM system with the 

statistical models (the amplification varies between the 11% in test 2 and the 53% in test 

5)—experiences a great reduction when using the ANNs system. In other words, this 

forecasting system makes the amplification of the variability of the demand along the 

supply network non-significant. Similarly, variations in the water volume at the supply 

tanks are largely reduced. This leads to conclude that the negative consequences of the 

Bullwhip Effect in the hourly-managed water distribution system are remarkably 

attenuated with the system that has been implemented. 
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Table 3. Results of the simulation. 

Test 
Artificial Neural Networks 

Structure MAPE BE 100ABE 

1 12-2-1 0.70% 0.98 0.59 

2 12-2-1 0.98% 1.03 0.86 

3 9-8-1 1.65% 1.00 6.71 

4 9-10-1 0.58% 1.02 0.57 

5 9-12-1 0.90% 1.00 0.99 

6 9-12-1 0.76% 0.95 0.92 

7 15-4-1 1.02% 1.00 0.76 

8 12-2-1 1.03% 1.00 0.83 

 

Test 
Statistical Methods Reduction 

MAPE BE 100ABE MAPE BE ABE 

1 2.64% 1.33 10.94 73.48% 26.32% 18.54 

2 1.58% 1.11 2.38 37.97% 7.21% 2.77 

3 2.09% 1.28 7.89 21.05% 21.88% 1.18 

4 1.86% 1.29 7.73 68.82% 20.93% 13.56 

5 3.38% 1.53 16.37 73.37% 34.64% 16.54 

6 2.65% 1.34 12.65 71.32% 29.10% 13.75 

7 2.73% 1.12 5.21 62.64% 10.71% 6.86 

8 2.64% 1.33 10.94 60.98% 24.81% 13.18 

Note: The columns contain: the MAPE of the forecasting (MAPE), the Bullwhip Effect generated in the 

distribution system (BE) and the Alternative Bullwhip Effect multiplied by 100 (ABE), both when the 

ANNs forecasting system is used and when the best statistical model is used to forecast. In addition, the 

comparison between both methodologies is displayed through the percentage reduction of MAPE and 

Bullwhip Effect and through the quotient between the Alternative Bullwhip Effect obtained in both cases. 

It also includes the ANNs structure used by the system to forecast the hourly demand in each test (Struct.).  

Regarding the system’s architecture, Table 3 brings evidence that there is not a direct 

relationship between the complexity of the network and the accuracy of their forecasts. 

For working days, in most cases, the system finds that the best architecture corresponds 

to the selection of the minimum value of 𝑚, so that the number of inputs is usually smaller 

(tests 3, 4 and 6) than in weekends and holidays. However, if the number of hidden 

neurons in each test is analyzed, it can be noted that weekends and holidays generally 

need fewer neurons in the hidden layer (tests 1, 2 and 8). 
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Figure 6. Differences between the demand and the two forecasts for test 1. 

 

Figure 7. Variations of the real and the transmitted demand for test 1. 

By way of example, test 1 is a clear example in which the results of the ANNs forecasting 

system significantly decreases the MAPE obtained with the statistical methods—and as 

a result the Bullwhip Effect is minimized. Figure 6 shows the real consumption and the 

two forecasts. The ANNs system (0.70% MAPE) offers better performance (2.64% 

MAPE of the best statistical model). The graph shows that it captures very accurately the 

periodicity and the trend of the consumption. Meanwhile, figure 7 displays the difference 

between the POU’s consumption (from supply tanks to POU) and the transmitted 

demands (from natural sources to supply tanks)—one when ANNs are used and the other 

with statistical methods. It shows that the distortion introduced to the WDM system is 

much smaller with the ANNs, so that the tank requirements vary much less. The figure 
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shows that the accuracy of the forecasting system causes that the water conveyed between 

natural resources and supply tanks approximates closely to the POU’s consumption, but 

displaced—the supply time is the time difference between them. Thus, the Bullwhip 

Effect is greatly reduced. 

6. Conclusions and Future Research Lines 

In this paper, the Bullwhip Effect is studied for the first time in the context of water supply 

networks.  Even though it was not a relevant concept in a traditional long term WDM 

system, the Bullwhip Effect is emphasized nowadays with new approaches based on 

hourly management, that look for efficiency optimization. Under these circumstances, 

demand forecasting is an essential practice and supply time must be taken into account. 

As a consequence of both, Bullwhip Effect comes out. Through a discrete simulation 

model, its generation has been showed, as well as the consequences it has on a real-time 

system: system’s oversize, risks of shortage, and energy expenditure increase. Therefore, 

the Bullwhip Effect should be considered as a head cause of inefficiencies in WDM. 

One way to reduce the Bullwhip Effect and to mitigate its damage is the use of advanced 

forecasting tools. Hence this research has developed a double-loop forecasting system 

which chooses at each time the most appropriate architecture of the network (both the 

inputs to be considered and the neurons in the hidden layer). With this ANNs-based 

system, very low errors in forecasting the hourly demands are achieved in comparison 

with traditional statistical methods. The tests performed at random moments of time point 

out that the mean absolute percentage error reduction leads to a large decrease of the 

Bullwhip Effect, Thereby, the use of the intelligent forecasting system reduces the 

distortion induced in the water supply network, so that the inefficiencies in WDM are 

significantly mollified. 

There are two main lines of future works that this research group is planning as next steps 

on this topic. The first one of them is to extend this model to a larger noise conditions 

scenario, as well as to use a more complex supply structure. Considering these new factors 

can provide insights to other relevant insights on this issue. More specifically, it is 

planned to study the Bullwhip Effect in WDM from a supply approach, as many real 

systems are greatly influenced by hydrological uncertainty (could a reverse Bullwhip 

Effect exist?). The second line is to integrate this forecasting system within a larger 

system aimed at optimizing the management.  
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Abstract 

Water policies have evolved enormously since the Rio Earth Summit (1992). These 

changes have led to the strategic importance of water demand management. The aim is 

to provide water where and when it is required using the fewest resources. A key variable 

in this process is the demand forecasting. It is not sufficient to have long term forecasts, 

as the current context requires the continuous availability of reliable hourly predictions. 

This paper incorporates artificial intelligence to the subject, through an agent-based 

system, whose basis are complex forecasting methods (Box-Jenkins, Holt-Winters, multi-

layer perceptron networks and radial basis function networks). The prediction system 

also includes data mining, oriented to the pre and post processing of data and to the 

knowledge discovery, and other agents. Thereby, the system is capable of choosing at 

every moment the most appropriate forecast, reaching very low errors. It significantly 

improves the results of the different methods separately. 

Keywords 

Agent-based architecture; Artificial Neural Networks; Box-Jenkins; Data Mining; 

Demand forecasting; Holt-Winters; Hourly forecasting; Multi-Layer Perceptron; Radial 

Basis Functions; Water Demand Management. 
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1. Introduction 

Water is a basic resource for human life and for the economic growth of any region. The 

traditional water management is based on extracting new water resources and making 

them serve human purposes. This way, large amounts of public money have been invested 

to finance water projects in order to stimulate the economic development. However, this 

approach, which is based on the supply increase, has barely taken into account that water 

is a finite and fragile resource, whose availability depends on the functioning of the 

hydrological cycle. For this reason, the concept of Water Demand Management has 

significantly evolved over the last years. Especially since the Earth Summit held in Rio 

de Janeiro (1992), due to the pressures generated by the population growth, the 

urbanization and the industrialization, the strategic importance of WDM is understood, 

as well as its relevance in the efficiency of municipal management (Mohamed and 

Savenije, 2000). Brooks (2006) proposes an operational definition of WDM with five 

components: (1) reducing the quantity or quality of water required to accomplish a 

specific task; (2) adjusting the nature of the task so it can be accomplished with less water 

or lower quality water; (3) reducing losses in movement from source through use to 

disposal; (4) shifting time of use to off-peak periods; and (5) increasing the ability of the 

system to operate during droughts.   

A key aspect in any water management plan is demand forecasting. An accurate forecast 

can minimize the water used to meet demand, but besides it also results in a reduction of 

the energy used in the process of catchment, purification and distribution of water and it 

also produces a saving in the resources spent on sizing the storage and distribution system. 

The traditional approach to water management required only long term forecasts 

expressed in annual demands or even decades (Willsie and Pratt, 1974). They were 

enough for the design of the system (capacity of the tanks, dimension of the pipes and 

connections between the various nodes) and for the development of plans for meeting the 

demand. Nevertheless, with the passing of time, this horizon has become shorter. In fact, 

for attaining high efficiency in the WDM, reliable short-term forecasts are required (Gato 

et al., 2007). Daily forecasts involve the implementation of supply plans, by setting the 

system to that effect. The next step is hourly water forecasting. According to Herrera et 

al. (2010), the ready availability of hourly predictions of water demand is crucial due to 

three main reasons: it allows to determine the optimal regulation and pumping systems to 

meet the predicted demand, which promotes energy efficiency (operative point of view); 
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it allows to combine water sources in the most appropriate way to achieve a preset 

standard in the supply water (quality point of view); and it allows to detect failures and 

network losses through the comparison of the actual and expected flow (vulnerability 

point of view). 

The literature on the subject contains several works of short term demand forecasting. 

The first one was written by Maidment et al. (1985), who used statistical models (in 

particular, ARIMA methodology) to express the daily water demand as a function of 

ambient temperature and volume of rain. In a later work, the same authors (Maidment 

and Miaou, 1986) proved its efficiency for nine American cities. Other authors (e.g., 

Shvarster et al., 1993; An et al., 1995) followed this line, using statistical methods and 

climatic factors in the prediction. Lertpalangsunti et al. (1999) were pioneers in the 

introduction of artificial intelligence (AI) in the study. They developed a complex 

forecasting system, which integrated fuzzy logic, artificial neural networks (ANNs) and 

case-based reasoning, which was tested with high efficiency to forecast the daily water 

demand in the city of Regina (Canada). Msiza et al. (2007) introduced support vector 

machines (SVM) in the subject, in order to compare its performance with ANNs, using 

two different structures: Multi - Layer Perceptron (MLP) and Radial Basis Function 

(RBF). They conducted the study on the daily demand of the province of Gauteng (South 

Africa) and the ANNs outperformed the SVM. Herrera et al. (2010) further reduced the 

time horizon and they evaluated six predictive models (ANNs, projection pursuit 

regression, multivariate adaptive regression splines, SVM, random forests and a weighted 

pattern-based models) in forecasting the hourly demand of the city of Valencia (Spain). 

The authors justify that in this modern environment the ready availability of hourly water 

demand predictions is crucial. Bio-inspired algorithms have also been used in other 

aspects around WDM –e.g. Liu and Lv (2009) used the particle swarm optimization 

algorithm to forecast the residual life of underground pipelines.  

On the one hand, one of the main conclusions of the literature review is that these 

advanced methodologies are proven to give a great performance in the forecasting of short 

term water demand, both daily and hourly. There are not big differences between their 

results, as the choice of the optimal one depends on the characteristics of the study period 

and its recent past. On the other hand, most of the authors use climatic factors in the 

predictions, as they lead to improve the results. However, the just-in-time availability of 

these climatic factors in order to perform the hourly forecasting could be a hurdle difficult 
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to overcome by a real-time WDM system. Therefore, considering those factors could be 

a constraint for the implementation. This way, Nasseri et al. (2011) developed a model 

based on AI techniques (genetic algorithms and Kalman filter) with excellent results, 

taking only in consideration data from previous demand. 

Under these circumstances, this paper shows the development of a system for the real-

time water demand forecasting based on AI techniques. More specifically, we use an 

agent-based architecture to construct the system, whose core are the advanced forecasting 

agents but it is also formed by other agents which carry out other important functions, 

which will be described next. The system continuously receives values from water hourly 

demand and it is capable of choosing the most reliable forecasting technique at each 

moment. This way, it could be implemented in different scenarios, as it has the ability of 

adapting to them. So, after the literature analysis, the idea of this article is to combine 

different tools in order to obtain a forecasting system with greater accuracy, even without 

the availability of real-time information about the climatic factors. The great advantage 

of using the agent-based architecture is that this forecasting system can be integrated into 

a larger management system built under the same principles. 

Our investigation line has been the following: (1) Problem world and problem statement; 

(2) Development of the conceptual model; (3) Implementation of the forecasting 

methods; (4) Construction of the real-time water demand forecasting system; (5) 

Experimentation and obtaining results; and (6) Problem analysis and deriving 

conclusions. Such work structure is spread across this paper, which is divided into four 

main sections, including this introduction. Section 2 describes the forecasting system that 

we have created, with the different agents that form it and their purpose, the structure that 

encompasses all and the relationships between them. Section 3 contains the numerical 

results after testing the system with hourly water demand time series and the discussion 

thereof. Finally, section 4 presents the main conclusions that we have obtained based on 

the stated objectives, as well as the future investigation lines. 

2. Description of the Real-Time Water Demand Forecasting System 

Figure 1 shows schematically the forecasting system that we have devised and 

implemented. It consists of nine different agents: the Interface Agent, the Storage Agent, 

the Data Mining Agent, the Fitness Agent and the five Forecasting Agents (Naïve Agent, 

Box-Jenkins Agent, Holt-Winters Agent, MLP-NN Agent and RBF-NN Agent). It should 
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be noted that we are using forecasting techniques of different nature. The system receives 

hourly data about the water demand from the measurement equipment and shows the real-

time forecast to the user, in order to the decision-making process. The agent-based 

approach also allows its connection to a larger management system. Below, we detail the 

functionality of each agent, and the relationships among them.  

 

Figure 1. General outline of the real-time water demand forecasting system, with the various 

agents that form it and the relationships among them (two main flows) and with the outside. 

2.1. Transmission Agents 

The Interface Agent connects the forecasting system with its environment. That is to say, 

it acts as the intermediary between the rest of the agents and the outside with the aim of 

reaching the homogeneity in the agent-based system. Thus, it works in a double way: (1) 

it transmits the demands received hourly from the measurement equipment to the data 

base; and (2) it transfer the best forecast at each hour to the outside.  

The Storage Agent manages a database attached to the system that saves hourly the values 

of both actual demands and the forecasts performed by the five agents. Besides, it also 

saves the best forecast performed at every hour. It is necessary to store all this information 

(not only the best forecast) because past forecasts will influence in the selection of the 

best forecast in future. Therefore, the Storage Agent is in permanent contact with the 

Interface Agent and the Data Mining Agent to store and move information from the 
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outside to the other forecasting agents (demand flow), and in the opposite direction 

(forecasting flow). 

The Data Mining Agent carries out the pre-processing of the information stored in the 

database and the post processing of the predictions. On the one hand, this involves 

extracting the last 1020 hourly demands (6 weeks + 12 hours, see section 2.9) from the 

database. It has proven to be a suitable time period, in terms of identifying the seasonality 

and trend of the series. On the other hand, with the aim of performing the neural networks 

forecasting, it involves the creation of thirteen time series with the demands displaced 

(displacement from 1 to 4, from 24 to 28 and from 168 to 172 hours, given the double 

periodicity of the series, and because the other values have not proved to be significant) 

to find inference rules and try to explain each demand based on past data. In addition, the 

Data Mining Agent is connected with the Forecasting Agent, to perform transformations 

on the variables (e.g., logarithmic, differentiation or quantification of non-numerical 

variables) when it is needed.  

2.2. Forecasting Agents 

These agents are the real core of the real-time water demand forecasting system. We are 

using naïve models, classical statistical methods and AI-based techniques, in order to try 

to combine the advantages of each alternative.  

The Naïve Agent performs the demand forecast using a naive method, which estimates 

the hourly demand (D̂t) as the demand in the previous hour (Dt−1), adjusted by the 

increase (or decrease) in the demand in the same time interval of the previous week 

(Dt−168 − Dt−169), by (1). This is a very simplified model –and hence it requires a 

insignificant calculation time– but it offers good performance in regular series, like the 

one we have. 

�̂�𝑡 = 𝑦𝑡 = 𝐷𝑡−1 + (𝐷𝑡−168 − 𝐷𝑡−169) (1) 

The Box–Jenkins Agent performs the forecast using the ARIMA methodology (Box and 

Jenkins, 1970). These models can be expressed by (p, d, q)(P, D, Q)n, where the 

parameters are the orders of autoregression (p, P), differentiation (d, D) and moving 

average (q, Q). Lowercase variables are not seasonal components, while the uppercase 

ones are seasonal, with periodicity n. In our case, n=168. These models consider that the 
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future value of the differentiated variable (∆dD̂t) can be expressed as a function of past 

observations (Dt−i, i ∈ [1, n]) and a random error (εt−j, i ∈ [1, q]). It is expressed in (2), 

where ∆ is the differentiation operator, γ is the constant model, φi are the parameters 

associated with autoregression, and θj are the parameters associated with the moving 

average. 

∆𝑑�̂�𝑡 = 𝑦𝑡 = 𝛾 +∑𝜑𝑖

𝑝

𝑖=1

∆𝑑𝐷𝑡−𝑖 +∑𝜑𝑘𝑛+𝑝

𝑃

𝑘=1

∆𝑑𝐷𝑡−(𝑘𝑛+𝑝) −∑𝜃𝑗

𝑞

𝑗=1

휀𝑡−𝑗

− ∑ 𝜃𝑚𝑛+𝑞

𝑄

𝑚=1

휀𝑡−(𝑚𝑛+𝑞) 

(2) 

The method of obtaining the statistical model (p, d, q)(P, D, Q)n associated with each time 

series is based on the sequential process of: (1) identifying the possible model; (2) 

parameter estimation; and (3) validation. It is repeated until the model is validated through 

their autocorrelation functions and until its forecasts are validated by a given error 

criterion. In our case, the Box–Jenkins Agent seeks the model that best fits the input time 

series, using the following statistics for the comparison of the different proposed models: 

goodness-of -fit according to the criteria of MAPE; residual simple autocorrelation 

function (ACF); and residual partial autocorrelation function (PACF). The method of 

obtaining the model and calculating the coefficients is described in more detail in Box 

and Jenkins (1970). 

The Holt–Winters Agent uses the Holt–Winters exponential smoothing method to 

forecast. Its base is a simple exponential smoothing, which express the demand as a 

weighted average between the demand and the forecast of the previous period. Holt 

(1957) modified this model so that it can be applied in trended series and Winters (1960) 

adapted it for series with seasonality. There are two main Holt-Winters models, 

depending of the type of seasonality: (1) Multiplicative; and (2) Additive. These models 

can be mathematically expressed by (3) and (4), in the previous order, where yt represents 

the forecast, Rt−1
̅̅ ̅̅ ̅̅  is the estimate of the deseasonalized level or overall smoothing in the 

previous period, Gt−1̅̅ ̅̅ ̅̅  is the estimate of the trend or smoothing of the trend factor in the 

previous period, and St−L̅̅ ̅̅ ̅ is the estimate of the seasonal component or smoothing of L 

(the seasonal index) periods ago. In our case, L=168. 
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�̂�𝑡 = 𝑦𝑡 = (𝑅𝑡−1̅̅ ̅̅ ̅̅ + 𝐺𝑡−1̅̅ ̅̅ ̅̅ ) ∙ 𝑆𝑡−𝐿̅̅ ̅̅ ̅̅  (3) 

�̂�𝑡 = 𝑦𝑡 = 𝑅𝑡−1̅̅ ̅̅ ̅̅ + 𝐺𝑡−1̅̅ ̅̅ ̅̅ + 𝑆𝑡−𝐿̅̅ ̅̅ ̅̅  (4) 

It should be noted that each one of the previous parameters depends on a different 

smoothing constant. The procedure for the estimates of model parameters is detailed, 

among others, in Kalekar (2004). In our case, the Holt–Winters Agent looks for the model 

that best fits the input time series using the same statistics for the comparison of three 

alternatives (the multiplicative model, the additive model, and the simple seasonal model, 

where there is no trend) as the one used in the Box-Jenkins Agent.  

The MLP–NN Agent and the RBF–NN Agent estimate the hourly demand through an 

Artificial Neural Network (ANN) with three levels: an input layer (predictor variables, 

which are obtained by means of the Data Mining Agent), a hidden layer (composed by 

nodes that, during optimization process, attempt to functionally map the model inputs to 

the model outputs) and an output neuron (variable to predict). Figure 2 shows 

schematically the general structure of the ANN that we have used. 

In both cases, the data available for each forecast (1008 hourly water demands) are 

randomly separated into two groups. 70% is oriented to the batch training of the network, 

by means of the back-propagation algorithm. The remaining 30% has been directed for 

verifying the network. We use different stopping criteria (maximum number of steps 

without reducing error: 1000; maximum workout time: 1 minute; minimal relative change 

in training error: 0.0001; minimal relative change in error rate training: 0.001). The steps 

for developing the ANNs are similar to those detailed in Pino et al. (2008).  

There are various ANN architectures. On the one hand, the MLP–NN Agent focus on the 

Multi-Layer Perceptron (MLP). These are networks that have more than one layer of 

adaptive weights. A MLP has three layers of units taking values in the range 0-1, and each 

layers is nourished with the previous ones. Any number of weighted connections can be 

used, but MLPs with two weighted connections are very much capable of approximation 

just about any functional mapping (Bishop, 1995). The MLP can be mathematically 

represented by (5), where  yt represents the output (forecast), fouter represents de output 

layer, finner represents the input layer transfer function, wxy represents the weights and 

biases (i ∈ [1,17] refers to the input neurons and j ∈ [1, n] refers to the hidden neurons) 

and (z) represents the z-th layer. 
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Figure 2. General structure of the ANN with its three layers 

 (input layer, hidden layer and output layer). 

Note: The 17 predictor variables are: the day and hour of the demand to forecast, a binary variable that 

differentiates holidays and working days, and 14 past values related to the seasonality of the time series 

(from y(t-1) to y(t-4), from y(t-24) to y(t-28), from y(t-168) to y(t-172)).  The number of neurons in the 

hidden layer depends on the time se-ries. The only output neuron is related to the variable to predict, so that 

it performs the forecast. 

�̂�𝑡 = 𝑦𝑡 = 𝑓𝑜𝑢𝑡𝑒𝑟 [∑𝑤1𝑗
(2) ∙ 𝑓𝑖𝑛𝑛𝑒𝑟

𝑛

𝑗=1

(∑𝑤𝑗𝑖
(1) ∙ 𝑥𝑖

17

𝑖=1

+ 𝑤𝑗0
(1)) + 𝑤10

(2)] (5) 

On the other hand, the RBF-Agent performs the forecast according to the Radial Basis 

Function (RBF) Architecture. In the RBF, the activation of the hidden unit is determined 

by the distance between the input vector and the prototype vector, leading to a two stage 

procedure (Bishop, 1995): (1) Determination of the centre of the network using 

unsupervised methods; and (2) Determination of the final-layer weights. Hence, the RBF 

networks provide an interpolation function –called basis functions–, which passes 

through each and every data point. It can be mathematically represented by (6), where yt 

represents the output (forecast),wxy represents the weights and biases (j ∈ [1, n] refers to 

the hidden neurons) and φj
 represents the activation function of the output layer.  
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�̂�𝑡 = 𝑦𝑡 =∑𝑤1𝑗 ∙ 𝜑𝑗

𝑛

𝑗=1

 (6) 

2.3. Fitness Agent 

The Fitness Agent selects the best forecast at each moment through the comparison of the 

last demands and the forecasts performed by the five Forecasting Agents. It uses the 

criterion of the minimum MAPE (mean absolute percentage error), introduced by 

Makridakis (1993). After evaluating different options, we have obtained the best results 

when the MAPE is calculated for the last 12 hours, so this agent uses this number for the 

selection. Figure 3 synthesizes the time horizon of the forecasting process, and the role 

of the Fitness Agent within the whole system. 

 

Figure 3. Time horizon of the forecasting process. 

Note: The last 12 hours (both the demands and the forecasts of the five agents) are used to determine the 

best forecasting method in each moment, while the previous 1008 hours (only the demands) are used for 

the training and validation of the different forecasting methods, in order to choose the most appropriate 

model in each case (except the case of the Naïve Agent, whose functioning is much more simple). 

3. Numerical Application and Discussion of the Results 

In order to test the forecasting system, we have used a simulated time series with over 

15,000 data points, which represents the hourly water demand in the city of Gijón (a 

municipality of 300,000 inhabitants in the north of Spain) during 21 months (years 2009 

and 2010). To obtain it, we have based on the monthly demand of the city, a distribution 
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model of hourly water demand for a city in south-eastern Spain (Herrera et al., 2010), and 

random parameters. It should be noted that in this city, 71% of invoiced water is oriented 

to domestic use, 23% of this water has an industrial use, and the remaining 6% is managed 

by the city council.  

The time series of the hourly water demand is a complex series with a double seasonality. 

On the one hand, it has a daily periodicity, namely every 24 hours the series has a similar 

structure. There is a sharp decrease from 19h until 02h, when demand stabilizes around a 

daily minimum, until 06h. Then, it grows until 11am, where it sets a first local maximum. 

From there, demand undergoes a slight decline to local minimum at 14h, at which time it 

surges to a second local maximum at 19h. The mentioned times are approximate and vary 

according to the season of the year. On the other hand, there is a weekly periodicity (168 

hours), as the structure is repeated every week, with a significantly lower consumption 

on Saturdays and even more on Sundays. Moreover, the time series does not remain in a 

constant range, but it exhibits different trends in both mean and variance, throughout the 

year. To illustrate the explanation, figure 4 represents two parts of the time series. 

 

Figure 4. Two extracts from the time series (values in cubic meters / hour). 

Note: The top graph (time horizon: seven weeks) brings evidence of the weekly periodicity and its trend, 

and the graph below (time horizon: one week) shows the daily periodicity of the time series. 
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Table 1. Results of the numerical test. 

Forecas. Period Forecas. Agent Features Fitness MAPE Forecas. MAPE 

Test I 

Thursday 

May 14, 2009 

04h 

(working day) 

Naive - 1.94% 1.60% 

Holt–Winters Simple seasonal 2.56% 1.17% 

Box–Jenkins (0,1,6)(0,1,1)168 2.26% 1.25% 

MLP–NN 17-8-1 1.27% 1.14% 

RBF–NN 17-10-1 1.48% 1.39% 

Test II 

Wednesday 

Sept. 8, 2010 

16h 

(working day) 

Naive - 1.74% 1.98% 

Holt–Winters Simple seasonal 1.76% 1.45% 

Box–Jenkins (0,1,3)(1,1,0)168 1.87% 2.21% 

MLP–NN 17-9-1 1.40% 1.52% 

RBF–NN 17-10-1 1.12% 1.53% 

Test III 

Sunday 

June 7, 2009 

12h 

(weekend) 

Naive - 3.59% 3.93% 

Holt–Winters Additive 4.34% 3.03% 

Box–Jenkins (0,1,3)(0,1,1)168 3.30% 3.22% 

MLP–NN 17-6-1 2.83% 2.91% 

RBF–NN 17-8-1 4.29% 3.85% 

Test IV 

Friday 

Feb. 5, 2010 

23h 

(weekend) 

Naive - 3.51% 2.50% 

Holt–Winters Multiplicative 3.69% 2.62% 

Box–Jenkins (1,1,5)(0,1,1)168 2.63% 8.04% 

MLP–NN 17-9-1 2.39% 2.48% 

RBF–NN 17-11-1 4.28% 1.82% 

Test V 

Tuesday 

Dec. 8, 2009 

18h 

(holiday) 

Naive - 5.38% 3.19% 

Holt–Winters Simple Seasonal 23.55% 6.09% 

Box–Jenkins (1,1,1)(1,1,0)168 24.44% 7.46% 

MLP–NN 17-4-1 3.74% 2.19% 

RBF–NN 17-8-1 6.20% 1.78% 

Test VI 

Wednesday 

Oct. 13, 2010 

04h 

(after holiday) 

Naive - 4.37% 3.22% 

Holt–Winters Additive 5.86% 8.65% 

Box–Jenkins (2,1,12)(0,1,1)168 8.04% 11.48% 

MLP–NN 17-11-1 2.98% 2.03% 

RBF–NN 17-7-1 3.79% 2.00% 

Note: This table contains the following five columns: (1) the beginning of the time period to predict 

(previous 1020 data are used by the system to forecast); (2) the forecasting method, by means of the Agent 

which performed the fore-cast; (3) its main feature chosen by the agent (that is to say, the Holt-Winters 

model chosen, the ARIMA Model, and the structure of the ANN); (4) the MAPE calculated by the Fitness 

Agent (12 previous demands) and which determines its selection; and (5) the MAPE obtained in the 

prediction made by each agent. In order to calculate the Forecasting MAPE, we use the following 12 

forecasts, with the aim of looking for consistency in our results. 
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Data of the hourly water demand time series can be divided into three groups: (1) working 

days; (2) weekend; and (3) holidays (and days around them, whose forecast could be 

crucially affected by holidays). After several tests, Table 1 presents the numerical results 

for two standard cases of each group. In every test, we stand out the MAPE of the forecast 

performed by the system in the last column (Forecasting MAPE), which is chosen 

between the various methods and corresponds to the Forecasting Agent with minimizes 

the MAPE (Fitness MAPE). This Forecasting Agent is stood out in the second column. 

In the forecasting of working days, all methods achieve low forecast errors (between 

1.12% and 2.56% for the two tests shown). Therefore, all of them are capable of 

understanding the running of the series quite accurately. Even the Naïve Agent, which 

adopts an oversimplification, provides good results given the regular nature of the series. 

The statistical models of Box-Jenkins (ARIMA) and Holt-Winters (exponential 

smoothing) generally improve the results. Nevertheless, as expected, the introduction of 

artificial intelligence in the model, through ANNs, causes a greater decrease in the 

MAPE. The results of the RBF and MLP structures have a similar goodness-of-fit –there 

is no significant difference in its performance. By way of example, Figure 5, which 

represents the forecasting time period for test I, shows what we have explained. 

 

Figure 5. Actual demand and various predictions for the 

 forecasting period in test I (values in cubic meters / hour).  

Note: The MLP–NN forecasts is the one provided by the system (Forecasting MAPE 1,14%), but the 

different among the various methodologies are much smaller than in the other cases studied. 
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On weekend forecasting, all methods increase substantially the error generated. This is 

easily understandable, since the influence of the working days on the model is much 

higher. Statistical models in this case are less robust, as they show high variability in the 

goodness of their results. In some tests, they achieve low forecast errors but in others they 

are not able to accurately grasp the series. The RBF structure in ANNs shows a similar 

effectiveness. However, the MLP–NN Agent offers the best performance, reaching a 

MAPE less than 3% in all cases analyzed. By way of illustration, Figure 6 shows the 

demand and the forecasts performed by the various agents in test III. 

The problems of statistical models are more evident on holidays and days around them. 

On the one hand, the system is not capable of adapting its structure in atypical days, while 

ANNs can manage it (see test V). On the other, the presence of a holiday in the days 

before the forecasting period introduces a distortion in the series model that deviates 

slightly the forecast (see test VI). Therefore, in this last group, the differences between 

the different methodologies are amplified and AI allows improving strongly the forecast. 

This can be shown in Figure 7, which displays the demand and the forecasts performed 

by the various agents in test VI. In holidays, again, the forecasting of ANN with MLP 

structure is more robust than the ANN with RBF structure.  

 
Figure 6. Actual demand and various predictions for the  

forecasting period in test III (values in cubic meters / hour).  

Note: The MLP–NN forecasts is the one provided by the system (Forecasting MAPE 2,95%). 
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Figure 7. Actual demand and various predictions for the 

 forecasting period in test VI (values in cubic meters / hour).  

Note: The statistical methods have big difficulties to forecast accurately. The MLP–NN forecast is the one 

provided by the system (Forecasting MAPE 2,98%), although the RBF-NN forecast is slightly better. 

4. Conclusions and Next Steps 

This paper presents an application of agent-based architecture in hourly demand 

forecasting, a key aspect in Water Demand Management (WDM). The cores of the system 

are advanced statistical models (ARIMA and Holt-Winters exponential smoothing) and 

artificial intelligence (AI) techniques, such as Multi-Layer Perceptron (MLP) and Radial 

Basis Functions (RBF) Artificial Neural Networks (ANNs). Tests that have been carried 

out demonstrate the effectiveness of the real-time forecasting system, which selects at 

each moment the best forecast. Obviously, there is no way to ensure that the system 

always selects the prediction that will generate the lower error in future, but tests show 

that if the forecasting method selected is not optimal, it is closer to the optimum. The 

goodness-of-fit of each technique depends on the characteristics of the forecasting period, 

although MLP is the most robust method.  

The multi-agent environment draws a very appropriate approach to tackle the problem, 

as the system provides at all times the forecast which it understands as the best. Under 

these circumstances, it allows the addition of new intelligent forecasting tools by means 

of new Forecasting Agents, without varying the rest of the system. In addition, this 
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approach has enormous potential in increasing its functionality, because it allows to 

complete the study by adding new agents. This way, this real-time water demand 

forecasting system will be integrated in a larger system aimed at optimizing the 

management. 
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Abstract 

Environmental and demographic pressures have led to the current importance of Water 

Demand Management (WDM), where the concepts of efficiency and sustainability now 

play a key role. Water must be conveyed to where it is needed, in the right quantity, at the 

required pressure, and at the right time using the fewest resources. This paper shows how 

modern Artificial Intelligence (AI) techniques can be applied on this issue from a holistic 

perspective. More specifically, the multi-agent methodology has been used in order to 

design an Intelligent Decision Support System (IDSS) for real-time WDM. It determines 

the optimal pumping quantity from the storage reservoirs to the points-of-consumption in 

an hourly basis. This application integrates advanced forecasting techniques, such as 

Artificial Neural Networks (ANNs), and other components within the overall aim of 

minimizing WDM costs. In the tests we have performed, the system achieves a large 

reduction in these costs. Moreover, the multi-agent environment has demonstrated to 

propose an appropriate framework to tackle this issue. 

Keywords 

Water Demand Management; Decision Support System; Multi-agent Systems; Neural 

Networks. 
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1. Introduction 

Water is considered to be the most important natural resource. This basic resource is 

essential for all kinds of social and economic activities, as well as for the life and the 

health of the mankind. From this perspective, it is easy to justify the great importance of 

water management. This fact has been accentuated in recent years, mainly since the Earth 

Summit held in Rio in 1992, due to pressures caused by population growth, urbanization 

and industrialization. That is, the scarcity of resources and the respect for the environment 

have drawn a new context that threatens both the quality and the availability of this 

resource.  

For the aforementioned reasons, policies regarding water have undergone major changes 

over the last two decades. Accordingly, the concept of Water Demand Management 

(WDM) has significantly evolved1. Its current definition encompasses five main goals2: 

(1) reducing the quantity and quality of water required to accomplish a specific task; (2) 

adjusting the nature of the task so it can be accomplished with less or lower quality water; 

(3) reducing losses in movement from source through use to disposal; (4) shifting time of 

use to off-peak periods; and (5) increasing the system ability to operate during droughts. 

In this context, the effectiveness of a WDM system heavily depends on demand 

forecasting. This is not only about minimizing the water used to meet demand, but 

accurate forecasts have associated other benefits, such as the reduction of energy 

consumption in water catchment, purification and distribution processes. This fact 

highlights the importance of water demand forecasting, which can be divided into: 

 Very long-term forecasting (decades)3, which crucially determines the design of 

the water supply system, e.g. tanks capacities and pipes dimensions. 

 Long-term forecasting (years)4, which allows managers to develop plans for 

managing water demand, as well as adjustments in the distribution system. 

 Mid-term forecasting (months)5, used to adjust previous planning, through 

comparing actual and planned data, as well as to determine water price. 

 Short-term forecasting (days)6, which involves the implementation of supply 

plans, by setting the necessary systems to that effect. 

 Very short-term forecasting (hours)7, which results in water conveyance from 

tanks to points-of-consumption when requited, in the right quantity and pressure. 
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Therefore, with the passing of time, smaller time horizon forecasts are demanded in order 

to meet the requirements of this new context. Long-term forecasts are not enough to reach 

a suitable water management, but in the current circumstances reliable short-term 

forecasts are essential8. Thus, to meet efficiently the demand, forecasts must be 

continuously available with the aim of9: 

 In terms of operation and energy efficiency, determining optimal regulation and 

pumping schemes to supply the predicted demand. 

 In terms of quality, combining water sources in the most appropriate way to 

achieve a given standard in the supplied water. 

 In terms of vulnerability, detecting network losses and failures through comparing 

actual and expected flows. 

From this perspective, this article proposes the application of modern Artificial 

Intelligence (AI) techniques to WDM. With the aim of drawing up a holistic approach to 

this issue, we have developed an Intelligent Decision Support System (IDDS). That is, 

we seek the system overall solution rather than tackling the different sub-problems 

separately. This is the main contribution of the paper in comparison to the existing 

literature, which includes several works focused on different aspects of the WDM system 

–mainly water demand forecasting. Since we aim to consider the overall problem in its 

entirety, the WDM system has been designed as a set of different kind of agents with 

complex interrelations among them. This Multi-Agent System (MAS), whose core is 

based on advanced forecasting techniques such as Artificial Neural Networks (ANNs), 

determines the optimal adjustment of pumping stations.  

This research has emerged from the interest of the Water Company of Gijón10, a 

municipality of 300,000 inhabitants in the north west of Spain, in these emerging 

management techniques. It should be highlighted that it is not a real application but it 

aims to show how AI techniques can be combined within a multi-agent framework in 

order to develop an IDDS for WDM. 

This article is structured in five sections, including this introduction. Section 2 reviews 

the most relevant and recent literature on AI applications to WDM. Section 3 describes 

the MAS, with the different agents that form it and their purpose, and the structure and 

relationships between them. Section 4 presents and discusses the numerical results 
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obtained after testing the system with water demand time series. Finally, section 5 

concludes according to the stated objectives and defines future work lines. 

2. Artificial Intelligence Applications for Water Demand Management 

One of the great challenges in WDM is, undoubtedly, water demand forecasting. During 

the last decades of the 20th century, some statistical models were applied in this field. For 

example, Maidment and Miaou11 used ARIMA methodology12 to express daily water 

demand as a function of rainfall and air temperature in nine US cities. Some years later, 

An et al.13 included other climatic factors within ARIMA models to forecast water 

demand. Shvartser et al.14 integrated this methodology in a pattern recognition approach, 

explaining in detail the development of the model and evaluating it for an water supply 

system in Israel. Other studies15 used these statistical methods on similar issues, such as 

power demand forecast. 

From the beginning of this century, AI has been incorporated in WDM, since it is a highly 

complex problem conditioned by the interaction of multiple variables and developed in 

uncertain environments. AI can be defined as the discipline that builds processes that, 

when run on a physical structure, produce results that respond to the perceived inputs 

based on the stored knowledge. These techniques were mainly used to forecast water 

demand. Lertpalangsunti et al.16 were pioneers and developed a forecasting system that 

used various classical AI tools. The study was conducted for the city of Regina (Canada) 

and achieved a great reduction in the forecasting error in comparison with statistical 

alternatives. 

2.1. Machine Learning applied to water demand forecasting 

In AI, Machine Learning is a subfield geared towards the creation of programs that 

generalize behaviors from unstructured information supplied as examples. The literature 

contains many Machine Learning applications to water demand forecasting. 

Jain and Ormsbee17 used ANNs to estimate the maximum weekly demand through 

information on some climatic factors (frequency and volume of rainfall and water 

temperature) and recent demand. Liu et al.18 used the same technique on Weinan City 

(China). Nasseri et al.19 developed a hybrid model of Genetic Algorithm and Kalman 

Filter for monthly water demand forecasting, with excellent results exclusively from 

previous demand data. Genetic Algorithms were also applied to other phenomena with 
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similar characteristics20. Solomatine and Shrestha21 incorporated Fuzzy Logic to the 

forecasting, while Tabesh and Dini22 relied on it to predict water consumption in Tehran 

(Iran). The application of Support Vector Machines to the matter was studied by Msiza 

et al.23, who compared its results with ANNs in different scenarios. Recently, Ponte et 

al.24 developed an ANN-based system that significantly outperformed statistical 

techniques in the hourly forecasting and water demand. This system was used to tackle a 

classical problem of distribution networks, the Bullwhip Effect25, which is not relevant in 

long-term management but was shown to act as a source of inefficiencies in real-time 

WDM. Other Machine Learning techniques that have been applied to water demand 

forecasting are Random Forest26 and Multivariate Adaptive Regression Splines27. 

2.2. Multi-agent Systems in Water Demand Management 

Distributed AI, another branch of AI, is oriented to the study of the necessary techniques 

for knowledge distribution and coordination, as well as the interactions between system 

and environment. In this sense, the system is designed as set of intelligent agents. An 

agent can be defined as a computer system capable of carrying out flexible and 

autonomous actions that affect their environment according to certain design goals. This 

multi-agent methodology allows one to tackle WDM from a new approach by integrating 

different breeds of agents in a more complex system, where to combine forecasting 

techniques with other elements. This way, the system can be directed towards another 

objective of greater amplitude. 

The literature contains some applications of MAS in WDM. Moss and Edmonds28 created 

an agent-based model, applied to the Thames basin, to analyze the effects on some social 

parameters on water demand. Athanasiadis et al.29 developed a MAS that simulated 

customers’ behavior to evaluate different pricing policies in Thessaloniki (Greece). Galán 

et al.30 integrated social, urban dynamics, geography, and consumption models under a 

multi-agent framework, where they simulated different water demand scenarios for 

Valladolid (Spain). Zechman31 used multi-agent modeling to evaluate different 

management strategies in water distribution systems. Giuliani and Castelletti32 evaluated 

the interest of cooperation in large water resource systems. Ni et al.33 first carried out a 

dynamic study of water quality based on a Q-Learning Algorithm, and subsequently34 

developed a MAS aimed at dynamic water quality assessment. Recently, Karavas et al.35 
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designed an energy management MAS for the design and control of autonomous 

polygeneration microgrids.   

2.3. Overview of the bibliographic analysis 

After the literature review, we summarize our main assessments: 

i. The extensive literature brings evidence that AI is a suitable approach to address 

the WDM issue given its complexity and scale.  

ii. Authors have used these methodologies (e.g. ANNs) mainly for consumption 

forecasting since it is one of the basic pillars in WDM. Small prediction errors can 

be reached without generalized differences among the various methods. The 

consideration of additional variables (e.g. climatic factors) improves the 

prediction but the need for the immediate availability of these data is a major 

limitation in real-time forecasting. 

iii. Multi-agent methodology allows managers to study WDM from a broader 

perspective. It is possible to combine forecasting techniques with other elements 

(e.g. economic and social) to focus on goals of different nature (e.g. improve water 

quality or optimize transportation system).  

Under these circumstances, this paper exhibits how AI techniques can be applied to 

WDM. Looking for the forecast that minimizes some error criterion can be understood as 

a partial solution for a larger identity problem. From a holistic approach, a MAS can be 

used in order to find the best overall solution. We have developed an IDSS aimed at 

optimizing real-time WDM, whose core are IA forecasting methods –recent demands are 

the only input, given the complexity of real-time availability of other data. 

 

Figure 1. Overview of a water supply network. 
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Figure 2. Basic structure of the water supply network of Gijón. 

3. Description of the Intelligent Decision Support System 

In order to design the MAS, we have considered a simple structure of a water supply 

network. In the upper level, there are various catchment points –usually natural sources, 

such as wellsprings and marshes fed into by rivers and groundwater. In the lower level, 

the points-of-consumption represent the distributed water demand. Between both levels, 

the supply tanks (storage reservoirs) are intermediate echelons that receive the water from 

the natural sources through the adduction lines and send it to the points-of-consumption 

through the conduction lines. The treatment station and the pumping station are also key 

elements. Figure 1 displays an overview of this water supply network. Figure 2 

summarizes the structure of the water supply network of Gijon, which will be used as a 

basis in the development of the system. 

Figure 3 shows an outline of the structure of the IDSS that has been designed, with its 

agents and the relationships between them and with the outside. Input data are the real-

time water demands (from the water demand measurement system in the points-of-

consumption) and the supply tanks level (from the measurement system in the supply 
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tanks). The output is the best adjustment of pumping systems, namely the optimum 

quantity of water to be pumped hourly from the supply tanks.  

Six breeds of agents can be identified in the MAS. The bidirectional relationships between 

them are represented in Figure 3. Below, we explain in detail the function of the different 

breeds of agents.  

i. the Communication Agent,  

ii. the Information Agent, 

iii. the Water Demand Forecasting Agent,  

iv. the Scenarios Simulator Agent,  

v. the Cost Evaluation Agent, 

vi. the Pumping Planning Agent.  

 

Figure 3. Outline of the IDSS that has been developed in this research work. 

3.1. Communication Agent 

The Communication Agent holds the interactions of the MAS with the outside. It operates 

in a quadruple way, as it communicates the MAS with: 



 

 
90 

 The water demand measurement system. Hence, hourly water demands are 

continuously stored in the database. This enables the development of reliable 

forecasts in real time. 

 The reservoirs level measurement system. Thereby, the current level of the 

different supply tanks is continuously known and stored in the database, which 

has influence on the water to be pumped. 

 The pumping stations, which operate according to the Pumping Planning Agent 

(it hourly determines the amount of water to be pumped).  

 The user through an interface. The interface allows the user to introduce 

information that could alter the ordinary system operation (e.g. changes in the cost 

model or in the system’s constraints), as well as to see the most relevant 

information (e.g. consumption, forecasts, and costs). 

3.2. Information Agent 

The database associated to the Information Agent stores hourly data related to the WDM 

system, so that it is available for the other agents. In particular, it saves information on: 

(1) hourly water demand to date; (2) the most reliable demand forecasts to date; (3) water 

stored in supply tanks to date; and (4) hourly water pumped to date. 

Thus, the main objective of the Information Agent is mediation between the database and 

the other agents, both storing data and responding to information requirements. Hence, 

the other agents do not see a database but another agent, and the MAS reaches the 

essential homogeneity. 

3.3. Water Demand Forecasting Agent 

The five forecasting agents are the real core of the MAS. Each one of them estimates the 

hourly water demand according to a predetermined method. Three simple forecasting 

methods (naive model, moving averages, and exponential smoothing), a complex 

statistical method (ARIMA models), and an AI-based tool (ANNs) are used. These 

calculate the forecasts using historical consumption stored in the database. 

Naïve Agent 

The Naive Agent performs the forecast using a naive model, which estimates the hourly 

demand (D^
t) as the demand in the previous hour (Dt-1) adjusted by the increase (or 



 

 
91 

decrease) in the demand in the same time interval of the previous week (Dt-168-Dt-169) by 

Eq. (1).  

�̂�𝑡 = 𝐷𝑡−1 + (𝐷𝑡−168 − 𝐷𝑡−169) (1) 

MA Agent 

The MA Agent forecasts using a n-order moving average. It estimates the hourly demand 

(D^t) as the arithmetic average of the last n demands (Dt-i, i∈[1,n]). Previously, a 2nd-

order differentiation (with the operator ∆) of the time series must be performed with the 

aim of eliminating trend and seasonality as the simple moving average method must not 

be applied for series with these features. The differentiation process is given by Eq. (2) 

and Eq. (3), while the forecast is based on Eq. (4) and requires undoing the differentiation 

process. The MA Agent calculates the forecast from n=1 (1 hour) to n=168 (1 week).  

∆𝐷𝑡 = 𝐷𝑡 − 𝐷𝑡−1 (2) 

∆2𝐷𝑡 = ∆𝐷𝑡 − ∆𝐷𝑡−1 (3) 

∆2�̂�𝑡 =
1

𝑛
∑∆2𝐷𝑡−𝑖

𝑛

𝑖=1

 (4) 

Among all forecasts, the MA Agent selects the optimal one according to the Mean 

Absolute Percentage Error (MAPE) criterion36, which is expressed by Eq. (5) where m 

is the time horizon. 

𝑀𝐴𝑃𝐸 =
1

𝑚
∑|

𝐷𝑡 − �̂�𝑡
𝐷𝑡

|

𝑚

𝑡=1

 (5) 

ES Agent 

The ES Agent forecasts according to a simple exponential smoothing with seasonality, 

i.e. a weighted average of the recent forecasts and the error in the same interval. 

Therefore, it estimates the hourly demand (D^
t) as the sum of a level function associated 

with the last hour (Lt-1) and a seasonal function associated with the demand on the same 

day and hour of the week before (St-168) by Eq. (6). The level function depends on the 

linear smoothing coefficient (α) while the seasonal function depends on the seasonality 

coefficient (δ), as it can be seen in Eq. (7) and (8). Hence, the ES Agent evaluates different 
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values of coefficients of linear smoothing and seasonality, seeking to minimize the 

MAPE. 

�̂�𝑡 = 𝐿𝑡−1 + 𝑆𝑡−168 (6) 

𝐿𝑡−1 = 𝛼(𝐷𝑡−1 − 𝑆𝑡−169) + (1 − 𝛼)𝐿𝑡−2 (7) 

𝑆𝑡−168 = 𝛿(𝐷𝑡−168 − 𝐿𝑡−168) + (1 − 𝛿)𝑆𝑡−169 (8) 

ARIMA Agent 

The ARIMA Agent estimates the hourly demand using an autoregressive integrated 

moving average model. These models can be synthesized according to [(p,d,q)(P,D,Q)n] 

where p (P) is the order of the autoregression, d (D) is the order of differentiation and q 

(Q) is the order of the moving average. The lowercase variables are not-seasonal 

components, while the uppercase ones are seasonal with periodicity n. These models 

consider that the future value of the differentiated variable (∆dD^
t) can be expressed as a 

function of past observations (Dt-i, i∈[1,n]) and a random error (εt-j, i∈[1,q]), by Eq. (9), 

where ∆ is the differentiation operator, γ is the constant model, φi are the parameters 

associated with autoregression, and θj are the parameters associated with the moving 

average. It should be noted that it is also necessary to eliminate the differentiation. 

∆𝑑�̂�𝑡 = 𝛾 +∑𝜑𝑖

𝑝

𝑖=1

∆𝑑𝐷𝑡−𝑖 +∑𝜑𝑘𝑛+𝑝

𝑃

𝑘=1

∆𝑑𝐷𝑡−(𝑘𝑛+𝑝) −∑𝜃𝑗

𝑞

𝑗=1

휀𝑡−𝑗

− ∑ 𝜃𝑚𝑛+𝑞

𝑄

𝑚=1

휀𝑡−(𝑚𝑛+𝑞) 

(9) 

The method of obtaining the statistical model [(p,d,q)(P,D,Q)n] associated with each time 

series is based on the sequential process of:  

i. identifying the possible model, 

ii. parameter estimation, 

iii. validation.  

It should be highlighted that data from the last six weeks (1,008 hourly demands) are used 

in the forecasting. This process12 is repeated until both the model is verified through their 

autocorrelation functions and its forecasts are validated by a given error criterion. In our 
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case, the ARIMA Agent seeks the model that best fits the input time series, using the 

following statistics for the comparison of the different proposed models:  

 goodness-of -fit according to the MAPE criterion, 

 residual simple autocorrelation function,  

 residual partial autocorrelation function. 

NN Agent 

The NN Agent performs forecasting through ANNs with three levels: an input layer 

(predictor variables), a hidden layer, and one output neuron (variable to predict). The 

basic elements are the neurons in the hidden layer. Each one of them receives a number 

of inputs via interconnections and emits an output, which can be identified by three 

functions:  

 a propagation or excitation function, which consists of the sum of each input by 

its interconnection weight, 

 an activation function, which modifies the former, 

 a transfer function, which is applied to the value returned by the above one and 

that limits the output.  

Mathematically, the hourly demand forecast at each period (D^
t) is expressed by Eq. (10), 

where yt represents the output (forecast), fouter represents de output layer, finner represents 

the input layer transfer function, wxy represents the weights and biases (i∈[1,17] refers to 

the input neurons and j∈[1,n] refers to the hidden neurons) and (z) represents the z-th layer. 

�̂�𝑡 = 𝑓𝑜𝑢𝑡𝑒𝑟 [∑𝑤1𝑗
(2) ∙ 𝑓𝑖𝑛𝑛𝑒𝑟

𝑛

𝑗=1

(∑𝑤𝑗𝑖
(1) ∙ 𝑥𝑖

17

𝑖=1

+ 𝑤𝑗0
(1)) + 𝑤10

(2)] (10) 

Figure 4 outlines the designed ANN. We introduced 17 predictor variables (input 

neurons) in the NN Agent as the time series (see section IV) shows double periodicity: 

daily and weekly. The variables are: the day of the week (Day); the hour of the day (Hour); 

the four immediately preceding hourly demands (t-1 to t-4); the hourly demand of the day 

before at the same hour and the four immediately preceding demands (t-24 to t-28); the 

hourly demand of the previous week on the same day and the same hour and the four 
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immediately preceding demands (t-168 to t-172); and an additional binary variable that 

differentiates holidays and working days (Holiday). The number of neurons in the hidden 

layer is a decision variable to optimize. The output neuron is related to the variable to 

predict: the hourly water demand. It should be clarified that we have looked for the best 

structure in terms of forecasting reliability, execution time (which is a significant 

limitation in a real-time system), and avoiding the common ‘overfitting’ problem (i.e. 

memorizing instead of learning). 

The steps for developing the ANN-based system are similar to those detailed in Ref. 37, 

which can be considered as the preliminary step to this research work. This article 

forecasts hourly water demand comparing two different ANN architectures: multi-layer 

perceptron and radial basis functions, and concluded that the first structure tends to offer 

better performance. For this reason, a multi-layer perceptron has been used. The data 

available for each forecast, i.e. the last 6 weeks (1,008 hourly demands), were separated 

randomly into two groups. The 70% was oriented to the batch training of the network 

through the back-propagation algorithm. The remaining 30% has been used to validate 

the network. The following stopping criteria were defined:  

 max number of steps without reducing error: 1000,  

 max workout time: 1 minute. 

 min relative change in training error: 0.0001, 

 min relative change in error rate training: 0.001. 

 

Figure 4. General outline of the ANN-based system. 
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Central Agent 

The optimal forecast selected hourly by each one of the five agents is sent to the Central 

Agent. These hourly demand forecasts are stored in the database through the Information 

Agent. Moreover, the Central Agent sends these forecasts to the Planning Pumping 

Agent. Therefore, the Central Agent only acts as interconnection between the Forecasting 

Agents and the other agents. 

3.4. Scenarios Simulator Agent 

 In WDM systems, water pumping is performed at specific times whose frequency varies 

greatly from one city to another. The new context stresses the importance of continuous 

pumping in order to reduce operating costs. The Scenarios Simulator Agent uses 

information stored in the database to perform a simulation of the last 24 hours in different 

scenarios defined by the forecasts transmitted by the Central Agent. These will be studied 

by the Cost Evaluation Agent that seeks the one that minimizes WDM costs. 

The assumptions that we have made in the development of this simulator are the 

following:  

 fixed supply time: 1 hour (both, on the one hand, from natural sources to supply 

tanks and, on the other hand, from these to points-of-consumption), 

 unconstrained catchment, storage and transportation systems, 

 water is pumped to the supply tanks in order to store at the beginning of each hour 

the quantity that has been forecast,  

 when there is risk of shortage, the pumping is carried out urgently at a higher cost, 

 water cannot be returned to the previous echelon.  

In order to determine the water stored at the beginning of each hour in Supply Tanks 

(IWt), this agent adds the water stored at the end of the last hour (FWt-1) and the water 

pumped during that time (WPt-1), by Eq. (11). The water stored at the end of each hour in 

Supply Tanks (FWt) is expressed as the difference between water stored at the beginning 

of this hour (IWt) and the hourly demand (Dt), except if this value is negative. In that case, 

the emergency water pumping (EWPt) would be carried out, and the water stored would 

be zero. It is expressed by Eq. (12) and (13). Finally, the water pumped in each period 

(WPt), a process that is supposed to be done at the end of it, is the difference between the 
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demand forecast for the next period (D^
t+1) and the final status of tank (FWt), if this value 

is greater than zero, according to Eq. (14). 

𝐼𝑊𝑡 = 𝐹𝑊𝑡−1 +𝑊𝑃𝑡−1 (11) 

𝐹𝑊𝑡 = max{𝐼𝑊𝑡 − 𝐷𝑡, 0} (12) 

𝐸𝑊𝑃𝑡 = max{𝐷𝑡 − 𝐼𝑊𝑡, 0} (13) 

𝑊𝑃𝑡 = max{�̂�𝑡+1 − 𝐹𝑊𝑡, 0} (14) 

The operational logic of the simulation system is illustrated in Figure 5. It should be noted 

that there are two main flows: the downstream water flow, from natural sources to points-

of-consumptions and constrained by the lead time (supply time), and the upstream 

demand flow, in the opposite direction. 

 

Figure 5. Overview of the simulation model, by means of a flow chart. 

3.5. Cost Evaluation Agent 

The Cost Evaluation Agent hourly decides which one of the five scenarios presented by 

the Scenarios Simulation Agent minimizes WDM costs and, therefore, it is optimal for 

managing the system at that time. In the simple structure previously defined and 
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according to the stated assumptions, we consider that there is a cost associated with 

pumping, treatment and storage of water, which depends entirely on demand. That is to 

soy, water must be transported to the demand points, which involves some costs that are 

independent of the planning. Moreover, there are two cost overruns (both can be 

expressed as a ratio of a unit of currency to a unit of volume of water), which are inputs 

for the system: 

 An additional cost associated with emergency water pumping (cewp), defined as 

the difference between the emergency water pumping cost and the scheduled 

water pumping cost.  

 An additional cost related to excessive storage of water in Supply Tanks (cfw), in 

relation to tanks capacity and supply problems resulting from excessive storage 

of water, i.e. an opportunity cost.  

Thus, the Cost Evaluation Agent determines in each scenario the WDM cost overrun 

(WMO), which arises from the errors in the forecast. It can be estimated as the sum of the 

cost overrun associated to the emergency water pumping (WMOewp) and the cost overrun 

associated to the excessive storage of water (WMOfw) throughout the simulation time 

interval (m). The first one is the product of emergency water pumped (EWPt) and its 

associated cost overrun (cewp). The second one is the product of the quantity of water 

stored at the end of each interval (FWt) and their additional costs associated storage (cfw). 

Hence, the fitness function to be minimized is expressed by Eq. (15) to (17).  

𝑊𝑀𝑂𝑒𝑤𝑝 =∑𝐸𝑊𝑃𝑡 ∙ 𝑐𝑒𝑤𝑝

𝑚

𝑡=1

 (15) 

𝑊𝑀𝑂𝑓𝑤 =∑𝐹𝑊𝑡 ∙ 𝑐𝑓𝑤

𝑚

𝑡=1

 (16) 

𝑊𝑀𝑂 = 𝑊𝑀𝑂𝑒𝑤𝑝 +𝑊𝑀𝑂𝑓𝑤 (17) 

3.6. Pumping Planning Agent 

The Pumping Planning Agent uses the optimal scenario selected by the Cost Evaluation 

Agent to choose the forecast which must be used to adjust the pumping system. Hence, it 

determines the water to be pumped hourly by Eq. (14), but considering the position level 
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of the supply tanks (instead of the simulation calculations) leading to real-time WDM. 

These data are stored in the database via the Information Agent, and they are carried to 

the Pumping Station through the Communication Agent. 

4. Results and Discussion 

In order to test the IDSS, twelve time series with 1,032 data (WD01 to WD12) have been 

used. Each one of them contains hourly water demands of 43 consecutive days in the city 

of Gijón (Spain).  

These time series have been created through simulation using the monthly water demand 

of this city, a distribution model of water demand along each week, and random 

parameters to introduce different sources of uncertainty. It should be clarified that the 

average hourly demand in the township in 2012 and 2013 was 2,455.44 m3/hour, while 

we have used the model that, according to Ref. 9, best fits the urban consumption in the 

city of Valencia (Spain). 

Within each series, we have used 97.7 % of the data (1,008 hourly demands corresponding 

to 6 weeks) for training of forecasting methods and determining the optimal alternative 

for the pumping systems adjustment through simulation scenarios, while the remaining 

2.3% (24 time demands, corresponding to 1 day) was used to test the system with the 

solution provided. From that point on, we have analyzed the reduction achieved in 

management costs.  

The time series we have chosen span training and testing periods of very different nature. 

Table 1 contains the relevant information about the training period (first and last day) and 

testing period (day and hour of beginning and end). Note that in all cases the testing period 

begins when the training period ends. Six series have been chosen as working days (see 

[1]), which would be the usual case in the practical implementation of the system. Three 

series correspond to weekend days (see [2]). The remaining three are related to holidays 

(i.e. holidays or days around them, see [3]), since we aim to evaluate the effectiveness of 

the developed application in these special cases.  

The twelve time series show a similar structure. These hourly time series displays double 

seasonality and trend. On the one hand, there is a daily frequency (each 24 hours). There 

is a night sharp decrease from 19h until 02h, when demand stabilizes around a daily 
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minimum until 06h. At that time, demand grows strongly until 11h, when it sets a first 

local maximum. From there, demand undergoes a slight decline to set a local minimum 

at 14h, and then it begins to increase until the establishment of a second local maximum 

at 19h. Note that the previously given hours are approximate and vary according to the 

season of the year. On the other hand, there is a weekly frequency, namely the structure 

is similar each 7 days (168 hours). During weekends, a significant decline in consumption 

can be observed –first on Saturdays, and even larger on Sundays, where the morning cycle 

is especially small compared to the afternoon one. In addition, these time series do not 

remain in a constant range, but they show a significant trend throughout the year, both in 

average and variance, which must be considered in the forecasting process.  

Figure 6, which has been included to illustrate the explanation, shows the training and 

testing periods for the time series WD03. Notice the decreasing trend from weeks 2 to 6, 

which seems to be reversed during the last week. Besides, the holidays in weeks 3 and 6, 

when demand drops considerably, greatly influence the forecast –especially the Friday of 

week 6, given the weekly frequency of the series, makes complicated the forecast. 

Table 1. Training and testing period for the time series. 

Test 
Training period Testing period Testing day 

From To From To Kind 

WD01 28/06/12 09/08/12 Thur 14 h Frid 13 h [1] 

WD02 08/02/13 19/03/13 Tues 03 h Wedn 02 h [1] 

WD03 28/09/13 09/11/13 Frid 11 h Satu 10 h [3] (*) 

WD04 18/02/212 30/03/12 Satu 21 h Sund 20 h [2] 

WD05 15/08/12 26/09/12 Wedn 16 h Thur 15 h [1] 

WD06 12/09/12 31/10/12 Mond 09 h Tues 08 h [1] 

WD07 09/11/12 22/12/12 Sund 00 h Sund 23 h [2] 

WD08 04/01/12 15/02/12 Wedn 04 h Thur 03 h [1] 

WD09 23/02/13 06/04/13 Satu 13 h Sund 12 h [2] 

WD10 02/04/12 14/05/12 Mond 22 h Tues 21 h [1] 

WD11 15/05/12 26/06/12 Tuesd 16 h Wedn 15 h [3] (**) 

WD12 24/10/12 06/12/12 Tues 06 h Wedn 05 h [3] 

Notes: (*) It corresponds to a week after a holiday on Friday; (**) It corresponds to a week after a holiday 

on Tuesday. 
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Figure 6. Training period and testing period for the time series WD03 (values in cubic meters). 

4.1. Time series forecasting 

The reduction in WDM costs is based on the accuracy of the system forecasts. Table 2 

shows for each series the best result of the five forecasting agent. It contains the following 

information: the name of the time series (Time series); the agent that forecasts 

(Forecasting); the optimal features of the method that minimize the MAPE during the 

training period, i.e. the time horizon if it is a moving average, the linear smoothing and 

seasonality coefficient in the case of exponential smoothing, the ARIMA model that best 

fits the input data for the Box Jenkins methodology, and the optimal structure of the ANN 

through the neurons in each layer (Features); and the MAPE of the forecast calculated on 

the 24 testing data (MAPE). We have stood out in bold the agent which achieves a 

minimum error for each series. 

Table 2 compares the results of the five agents with a base method, which distinguishes 

three kinds of days: regular working days (Monday to Friday except holidays and eve of 

holidays), holidays (including Sundays), and eve of holidays (including Saturdays). Thus, 

this base method estimates the hourly demand on any day as the demand in the previous 

day of the same kind. The results show that in most cases this method achieves small 

errors due to the regular nature of the studied time series. 

Table 2 highlights that the Naive Agent achieves in all cases forecast errors lower than 

5%. It is especially efficient in forecasting working days with an error lower than 2.5% 

in series of this type –and sometimes even below 1%. This model is fairly easy since it 

greatly simplifies the series operation; nonetheless its performance is positive in view of 

the results. Notice that in nine of the twelve cases, the Naive Agent provides better results 
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than the other two simple methods of forecasting (exponential smoothing and moving 

averages), although the theoretical foundation of these others is more complex. 

Table 2. Results of the time series forecasting. 

Time series Forecasting. Agent Features Fitness MAPE 

WD01 

Base Method - 1.11% 

Naive Agent - 1.25% 

MA Agent 5 2.81% 

ES Agent α=0,8 ; δ=2,8·10-5 3.72% 

ARIMA Agent (0,1,13)(1,1,0)168 1.53% 

NN Agent 17-6-1 0.92% 

WD2 

Base Method - 2.73% 

Naive Agent - 2.39% 

MA Agent 5 3.81% 

ES Agent α=0,7 ; δ=2,1·10-5 4.48% 

ARIMA Agent (0,1,14)(0,1,1)168 2.26% 

NN Agent 17-8-1 1.54% 

WD03 

Base Method - 10.08% 

Naive Agent - 3.00% 

MA Agent 5 3.07% 

ES Agent α=1 ; δ=3,3·10-5 4.92% 

ARIMA Agent (0,1,5)(0,1,1)168 5.34% 

NN Agent 17-7-1 2.44% 

WD04 

Base Method - 3.77% 

Naive Agent - 2.14% 

MA Agent 4 3.25% 

ES Agent α=0,6 ; δ=4,4·10-5 2.83% 

ARIMA Agent (0,1,14)(0,1,1)168 2.14% 

NN Agent 17-7-1 2.19% 

WD05 

Base Method - 1.69% 

Naive Agent - 1.77% 

MA Agent 5 3.63% 

ES Agent α=0,5 ; δ=6,0·10-6 1.87% 

ARIMA Agent (0,1,6)(0,1,1)168 1.77% 

NN Agent 17-9-1 1.21% 

WD06 

Base Method - 9.43% 

Naive Agent - 1.59% 

MA Agent 5 3.63% 

ES Agent α=0,8 ; δ=5,8·10-6 1.60% 
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ARIMA Agent (0,1,5)(0,1,0)168 2.00% 

NN Agent 16-9-1 1.91% 

WD07 

Base Method - 3.52% 

Naive Agent - 3.76% 

MA Agent 3 3.90% 

ES Agent α=0,6 ; δ=2,4·10-5 3.89% 

ARIMA Agent (0,1, 3)(0,1,1)168 3.26% 

NN Agent 17-6-1 2.87% 

WD08 

Base Method - 1.87% 

Naive Agent - 1.86% 

MA Agent 5 3.37% 

ES Agent α=0,6 ; δ=3,2·10-5 1.60% 

ARIMA Agent (0,1, 3)(1,1,0)168 2.04% 

NN Agent 17-6-1 1.43% 

WD09 

Base Method - 3.05% 

Naive Agent - 1.78% 

MA Agent 2 2.78% 

ES Agent α=0,8 ; δ=1,2·10-5 2.09% 

ARIMA Agent (1,1,0)(0,1,1)168 2.32% 

NN Agent 17-9-1 2.32% 

WD10 

Base Method - 3.43% 

Naive Agent - 0.82% 

MA Agent 5 3.18% 

ES Agent α=0,8 ; δ=3,7·10-6 1.87% 

ARIMA Agent (1,1,0)(0,1,1)168 1.96% 

NN Agent 17-5-1 0.72% 

WD11 

Base Method - 2.63% 

Naive Agent - 3.79% 

MA Agent 5 3.48% 

ES Agent α=0,8 ; δ=4,3·10-5 5.70% 

ARIMA Agent (2,1,12)(0,1,1)168 9.76% 

NN Agent 17-7-1 2.51% 

WD12 

Base Method - 8.31% 

Naive Agent - 4.28% 

MA Agent 4 2.67% 

ES Agent α=1 ; δ=0 14.82% 

ARIMA Agent (0,1,0)(1,1,0)168 16.04% 

NN Agent 17-6-1 2.96% 
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Moving averages generate errors between 2.5% and 4% in all series, showing a more 

robust performance as they are less sensitive to the type of day than other methods, which 

becomes an advantage when the forecast is complex. For this reason, it offers interesting 

solutions on holidays or days around them. For example, in WD12, the moving average 

achieves the lowest error, even better than ANNs. However, results obtained by this agent 

are greatly improved by other methods in working and weekend days.  

The ES Agent provides similar results to the Naive Agent, although slightly worse in most 

cases. It is capable of achieving good performance in forecasting working days (e.g. 

WD06, WD08 and WD10 with a MAPE lower than 2%), but it is not reliable in 

forecasting holidays (e.g. the MAPE is about 15% in WD12). In addition, it does not offer 

a good performance in days around holidays as these days significantly modify the model 

of the series, and hence decreasing the accuracy of forecasts. 

The ARIMA models have the same deficit as the exponential smoothing on holidays and 

days around them, which can be justified from the same perspective. However, the 

ARIMA Agent usually improves the results of the ES Agent on working days and 

weekends, being able to understand very precisely the trend and seasonality of the series, 

with errors less than 2.5%, except in the WD07 series in which its results are only 

enhanced by ANNs. In WD04, the ARIMA Agent achieves the lower forecast error. 

The results from the four methods analyzed so far are considerably outperformed by the 

NN Agent, which achieves the smallest error in 8 out of the 12 cases. The network built 

by this agent can explain very precisely the past of the series and makes very accuracy 

forecasts for the future. Even when forecasting the demand is difficult and the other agents 

do not offer precise results, the NN Agent responds with reliable forecasts. As expected, 

this fact brings evidence that the incorporation of AI to the model increases the confidence 

in forecasts, because they make the system trained for understanding unexpected changes 

in trends and they deal appropriately with the seasonality. 

By way of illustration, Figure 7 shows the testing period for the WD03 series, as well as 

the forecasts of the Naive (3.00% MAPE), ARIMA (5.44% MAPE) and NN Agents 

(2.44% MAPE). The ANNs generate the best approximation. Notice that the ARIMA 

method is not capable of accomplishing a good result, since the holiday just a week before 

the testing day acts as a source of error. Figure 8 shows the same information for the 
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WD05 series that corresponds to a working day (1.77% MAPE for the naive model and 

ARIMA techniques and 1.21% for the ANNs). It can be noted that in this case all forecasts 

are considerably more accurate. Again, the NN Agent offers the best performance. 

 

Figure 7. Testing period of the time series WD03: hourly 

 water demand and forecasts (values in cubic meters). 

 

Figure 8. Testing period of the time series WD05: hourly 

water demand and forecasts (values in cubic meters). 

4.2. Cost overrun reduction 

The developed IDSS requires the introduction as an input of the unit cost overruns related 

to excessive storage and emergency water pumping. However, the really significant in 

terms of the solution provided by the system is the relationship between both according 

to Eq. (17). For this reason, the study of each series has been divided into three scenarios:  
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i. Scenario 1: when both are equal (cewp=2 uc; cfw=2 uc), 

ii. Scenario 2: when the excessive storage overrun cost is three times the emergency 

water pumping overrun cost (cewp=1 uc; cfw=3 uc), 

iii. Scenario 3: when the relationship is the opposite (cewp=3 uc; cfw=1 uc).  

Tables 3, 4 and 5 comprise the economic results of the tests in the three scenarios. That 

is to say, for each series, the costs of the solution provided by the MAS are shown. In 

order to compare the results, we have taken as a reference the solution provided by the 

base method. This tables contains the following data: the name of the series (Time Series); 

the WDM Cost Overrun in the testing period if the pumping system adjustment is made 

according to the base method (Cost Overrun Base Method); the forecasting agent that 

minimizes the overrun cost with the training data (Forecasting Agent); the WDM cost 

overrun in the testing period with the solution provided by the MAS (Cost Overrun MAS); 

and the percentage reduction achieved in comparison with the base method (Reduction 

Over Base Method).  

Table 3. Results of the MAS oriented to minimizing costs (in units of currency) for Scenario 1. 

Time series 
Cost Overrun 

Base Method 

Forecasting 

Agent 

Cost Overrun 

MAS 

Reduction over 

Base Method 

WD01 1,094 NN 872 20.29% 

WD02 2,730 NN 1,730 36.63% 

WD03 10,022 NN 2,740 72.66% 

WD04 3,338 Naive 1,872 43.92% 

WD05 1,854 NN 1,416 23.62% 

WD06 10,912 Naive 1,688 84.53% 

WD07 2,906 NN 2,654 8.67% 

WD08 2,276 NN 1,548 31.99% 

WD09 2,844 Naive 1,718 39.59% 

WD10 3,816 NN 910 76.15% 

WD11 3,312 NN 3,230 2.48% 

WD12 9,122 MA 2,786 69.46% 

 

Results demonstrate the high efficiency of the system. The MAS for real-time WDM can 

achieve large reductions in cost overrun in comparison with the results obtained if the 

base method is used to adjust the pumping systems. In 32 of the 36 total tests, the system 
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achieves a reduction in costs, and only in the remaining 4, the solution provided by the 

system would cause a higher cost. The average reduction is 42.50% for the first scenario, 

37.53% for the second one, and 39.23% in the third scenario. 

Table 4. Results of the MAS oriented to minimizing costs (in units of currency) for Scenario 2. 

Time series 
Cost Overrun 

Base Method 

Forecasting 

Agent 

Cost Overrun 

MAS 

Reduction over 

Base Method 

WD01 989 NN  720 27.20% 

WD02 2,971 NN  1,967 33.79% 

WD03 5,017 NN  2,394 52.28% 

WD04 1,872 Naive  2,026 -8.23% 

WD05 2,577 NN  996 61.35% 

WD06 7,136 Naive  1,574 77.94% 

WD07 2,353 ARIMA  3,293 -39.95% 

WD08 3,036 ES  1,099 63.80% 

WD09 3,358 Naive  1,659 50.60% 

WD10 2,884 NN  767 73.40% 

WD11 3,008 NN  3,665 -21.84% 

WD12 13,386 MA  2,675 80.02% 

 

Table 5. Results of the MAS oriented to minimizing costs (in units of currency) for Scenario 3. 

Time series 
Cost Overrun 

Base Method 

Forecasting 

Agent 

Cost Overrun 

MAS 

Reduction over 

Base Method 

WD01 1,199 ARIMA  984 17.93% 

WD02 2,489 NN  1,493 40.02% 

WD03 15,027 ES  2,826 81.19% 

WD04 2,640 ARIMA  1,267 52.01% 

WD05 1,131 ARIMA  1,822 -61.10% 

WD06 14,688 ES  1,156 92.13% 

WD07 3,459 NN  1,925 44.35% 

WD08 1,516 NN  1,312 13.46% 

WD09 2,330 NN  1,415 39.27% 

WD10 4,748 Naive  819 82.75% 

WD11 3,616 NN  2.795 22.70% 

WD12 4,561 NN  2,460 46.07% 
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Moreover, these tables show that the choice of the forecasting method that results in the 

optimal alternative to adjust the pumping equipment varies according to the relationship 

between the cost overruns. For example, in WD03 series, ANN-based forecast generates 

the optimal setting in the first two cases, while in the latter the best forecast is provided 

by the ES Agent. Ten of the twelve series (all series except the WD02 and the WD11) 

clearly show this idea. Analyzing the previous tables in more detail (comparing it with 

Table 2), it can be observed that when the performance of a forecasting method is clearly 

superior to the others, the system tends to resort to it in order to minimize costs.  However, 

when the difference is not very significant, choosing the best alternative to adjust the 

pumping depends on the ratio of costs. In these ten cases, an intermediate ratio could be 

found that differentiate the case when some forecasting method is optimal and the case 

when another is more appropriate. 

These results confirm that limiting the study of WDM to the forecasting of this variable 

only implies finding a partial solution to the problem, which does not always lead to the 

best overall solution. It must be highlighted that WDM is a complex problem that should 

be understood as a whole and not as a collection of parts, and hence multi-agent 

techniques draw an appropriate framework to deal with it. 

 

Figure 9. Testing period of the WD03 time series:  

optimal adjustment of the pumping system (values in cubic meters). 
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4.3. Pumping systems adjustment. 

As previously mentioned, the main output of the IDSS for real-time WDM is the optimal 

adjustment of the pumping systems. The system determines hourly the quantity of water 

to be pumped in order to minimize costs. As an example, Figure 9, based on the testing 

period of WD03, represents the solution proposed by the MAS for optimal adjustment of 

the pumping equipment in two opposite scenarios: when the excessive storage overrun 

cost is three times higher the emergency water pumping overrun cost (ANNs are used to 

forecast) and when the ratio is inverse (exponential smoothing is applied to forecast). 

5. Conclusions and Future Work 

This paper aims to show how the multi-agent methodology can be applied to WDM, a 

concept that has gained great importance in recent years given the requirements imposed 

by the new context marked by the scarcity of resources and the respect to the environment. 

In order to do this, an IDSS has been designed and implemented. It integrates 

sophisticated forecasting methods and management components under a structure that 

simulates a municipal water distribution system, and determines in real time the optimum 

adjustment of the pumping systems in order to minimize WDM costs. 

Tests on time series with hourly water demand demonstrate the high efficiency of the 

developed system. They show that the introduction of AI techniques in the forecasting 

process, such as ANNs, can significantly decrease the error when compared with other 

traditional techniques, especially on holidays and days around them, because they have a 

greater capability of adapting to unexpected changes. This leads to a big reduction in 

WDM costs. However, the tests also show that the choice of the optimal alternative for 

adjusting the pumping systems depends on the input variables. Therefore, limiting the 

study to the search of the best forecasting method represents only a partial solution to the 

problem, which does not have to lead always to the best overall solution for the WDM 

system. 

Again, it should be highlighted that this is a preliminary work or pilot system, where some 

simplified assumptions have been adopted (e.g. regarding the distribution system or the 

cost model). Translating this model into a real system would require reformulating these 

assumptions, as well as covering other common problems in real water distribution 

systems, such as leakages. In this regard, the main contribution of this work is that multi-
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agent methodology has proven to be not only a suitable tool to address this issue but also 

a necessary approach to study it, as WDM must be analyzed in its entirety from an holistic 

approach. In addition, this approach has enormous potential in increasing its functionality, 

as it allows managers to complete the study by adding new agents with the aim of 

increasing the scope of the system. It would also be possible to integrate this system into 

a MAS of greater magnitude. 
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Abstract 

In today’s environment, Supply Chain Management (SCM) takes a key role in business 

strategy. A major challenge is achieving high customer service level under a reasonable 

operating expense and investment. The traditional approach to SCM, based on local 

optimisation, is a proven cause of meaningful inefficiencies – e.g. the Bullwhip Effect – 

that obstruct the throughput. The systemic (holistic) approach, based on global 

optimisation, has been shown to perform significantly better. Nevertheless, it is not widely 

expanded, since the implementation of an efficient solution requires a suitable scheme. 

Under these circumstances, this paper proposes an integrative framework for supply 

chain collaboration aimed at increasing its efficiency. This is based on the combined 

application of the Beer’s Viable System Model (VSM) and the Goldratt’s Theory of 

Constraints (TOC). VSM defines the systemic structure of the supply chain and 

orchestrates the collaboration, while TOC implements the systemic behaviour – i.e. 

integrate processes – and define performance measures. To support this proposal, we 

detail its application to the widely used Beer Game scenario. In addition, we discuss its 

implementation in real supply chains, highlighting the key points that must be considered. 

Keywords 

Supply Chain Management; Systems thinking; Viable System Model; Theory of 

Constraints; Supply chain collaboration. 
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1. Introduction 

The revolution of information and communications technologies, the decrease of 

transportation costs, the geopolitical restructuring that took place as a result of the Cold 

War, and the liberalization of capital markets have drawn a new competitive business 

context marked by its complexity and dynamism. Competition must manage efficiently 

convoluted worldwide networks being able to agilely react to the frequent changes in 

customer requirements. By way of illustration, Figure 1 shows the dramatic increase of 

the international trade of products in the Eurozone over the last decade (from 2003 to 

2014, exports and imports grew by 97.57% and 79.74% respectively), even in a recessive 

economic context. In this regard, competition between firms is no longer limited to the 

product itself, but goes much further. For this reason, the concept of Supply Chain 

Management (SCM) has gained strength to the point of having a strategic importance for 

companies, which has encouraged researchers to deepen its study and the development of 

proposals to increase the yield of companies involved. 

 

Figure 1. International trade in the Eurozone (in millions of euros). Data from Eurostat. 

One of the main challenges regarding SCM is to improve the customer service level 

without capital outlay (CGI Group, 2013). The delivery of products on the right time and 

lowest cost enables a company to differentiate from its counterparts and enhances future 

profitability (Chopra and Meindl, 2007). Given the current complexity and dynamism, 

real supply chains usually exploit the throughput inappropriately, which leads to poor 

service levels. This issue, which can be considered as the problem statement of this 

research work, is especially relevant when lead times are long or the product experiences 

short life cycles (De Treville, Shapiro, and Hameri, 2004). 
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Sterman (1989) concluded that large inefficiencies occur within supply chains due to the 

individual adoption of local optima solutions by the various participants. This reductionist 

approach to SCM (the overall strategy is obtained as a sum of individual strategies), based 

on mass production paradigm, leads to increasing storage, shortage, labor, obsolescence, 

and shipping costs through the well-known Bullwhip Effect10. That is, this reductionist 

approach has shown to present several problems in terms of throughput management.  

Thus, a premium has been placed on collaboration (Lehoux, D’Amours, and Langevin, 

2014) as a key source of competitive advantages. This holistic or systemic approach –the 

overall strategy determines the individual strategies– to SCM, has been shown to 

outperform the traditional reductionist alternative –the overall strategy is obtained as a 

sum of individual strategies– (e.g. Disney and Towill, 2003; Kollberg, Dahlgaard, and 

Brehmer, 2006; Costas et al., 2015). However, although the improvement in operational 

and (consequently) financial terms is widely accepted by academics and practitioners, 

supply chain collaboration faces high hurdles, such as the menace of opportunistic 

behaviors (Simatupang, Wright, and Sridharan, 2004), which stresses the importance of 

defining an appropriate framework. 

It should highlight that the recent economic crisis has been understood as a consequence 

of the fact that globalization still has not been able to develop systemic dynamic 

properties to deal with a growing variety of requirements (Schweitzer et al., 2009). This 

fact has increased the interest for new approaches to business based on holistic paradigms. 

Hence, supply chains must be underscored as boiling areas for innovation. 

The main contribution of this research article is the proposal of a systemic approach to 

SCM, where to take advantage of the benefits derived from collaboration. Within the 

framework proposed by Simatupang and Sridharan (2005), the Theory of Constraints 

(TOC) (Goldratt, 1990) is the mechanism used to improve supply chain efficiency, while 

the Viable System Model (VSM) (Beer, 1979; 1981; 1985) orchestrates the 

implementation of the collaborative solution. 

Our research method has followed guidelines from A3 Thinking (Sobek II et al., 2011). 

A3 Thinking provides researchers and practitioners with an efficient way of studying and 

                                                           

10 The Bullwhip Effect refers to the amplification of the variability of orders along the supply chain. 
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tackling business problems. Its effectiveness has been widely demonstrated within the 

TPS (Toyota Production System) paradigm. This Lean’s tool for problem solving allows 

us to provide a complete structure to implement successful moves toward organizational 

improvement through a deeper understanding of the issue. This structure can be observed 

along this article: (section 1) Problem statement, background and setting goals; (section 

2) Clarifying the problem after reviewing the literature; (section 3) Developing the 

conceptual model, through the proposal of an integrative framework for supply chain 

collaboration; (section 4) Detailing the application of the proposed model on the well-

known Beer Game scenario; and (section 5) Discussing its applicability in real supply 

chains. 

2. Literature review 

This section reviews the main collaborative approaches to SCM and introduces the two 

philosophies that are combined in this research work. 

2.1. Supply chain collaboration 

Supply chain collaboration can be easily defined as several companies creating 

competitive advantage, and hence obtaining higher profits, by working together in a 

production and distribution system (Simatupang and Sridharan, 2002). From that point 

on, collaboration has been understood in very different ways by researchers and 

managers. In this regard, Simatupang and Sridharan (2005) propose an outstanding 

framework, defined by five features: (1) Information sharing; (2) Collaborative 

performance system; (3) Decision synchronization; (4) Incentive alignment; and (5) 

Integrated processes. This integrative rather than sequential approach (the output of each 

feature acts as an input for the others) is supported by empirical evidence –if some of the 

features are ignored, intrinsic barriers could derail the collaborative process.  

Supply chain integration encompasses the coordination of resources, decisions and 

methods among the different stakeholders and is the skeleton of the overall process. 

Decision synchronization covers devising joint decision-making processes (includes re-

allocating decision rights) with the aim of synchronizing planning and execution levels. 

This includes forecasts, safety stocks, order placement, order delivery, target customer 

service level, and pricing. In this regard, a wide variety of solutions have been proposed 

in the last two decades to improve the performance of the supply chain, such as Vendor 
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Managed Inventory (Andel, 1996) and Collaborative Planning, Forecast and 

Replenishment (Ji and Yang, 2005). Moreover, some systemic philosophies like Lean 

Production (Womack and Jones, 1996) proposed methods to manage the production flow, 

e.g. Kanban and CONWIP control –see Takahashi and Nakamura (2002) for a 

comparison, and Jasti and Kodali (2015) for a review of existing Lean SCM frameworks. 

Information sharing, the main enabler of collaboration, refers to the access to private data 

of all members, which covers dissemination of demand conditions, inventory and order 

status (and locations), cost-related data, and performance indicators. With this goal, the 

use of information and communications technologies has shown to improve supply chain 

efficiency (Gunasekaran and Ngai, 2004). Measuring this efficiency through systemic 

performance metrics (which must be devised to guide the participants to improve overall 

performance) is another key feature of supply chain collaboration. Companies require 

different types of metrics that span the supply chain (Kaplan and Cooper, 1997). For 

example, Li and O’Brien (1999) use four main criteria to measure supply chain efficiency: 

profit, lead time performance, delivery promptness, and waste elimination. Najmi and 

Makui (2012) propose a conceptual model for evaluating supply chain performance that 

we recommend looking at. 

Lastly, incentive alignment requires to share costs, risks, and benefits among the 

participants. That is, aligning incentives aims to motivate them to act consistent with the 

overall strategy, and hence eliminating the incentives to deviate. Kaplan and Narayanan 

(2001) propose the use of expert systems, activity-based costing, and web-based 

technology to trace, calculate and display the incentive scores. To implement it, the use 

of linear contracts (e.g. pay-for-effort and pay-for-performance schemes) is common. 

2.2. Viable System Model (VSM) 

The VSM (Beer, 1979; 1981; 1985) offers the possibility to scientifically design an 

organization as a system with regulatory, learning and adaptive capabilities necessaries 

to ensure its survival (viability) when facing changes that may occur in its environment 

over time, even though they were not foreseen in its design. To achieve this viability, the 

VSM proposes an invariant systemic structure based on the definition of five functions, 
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called Systems One to Five, that are considered necessary and sufficient conditions to 

deal with the environment complexity11 in which the system operates. 

System One represents the operational (autonomous) units managing the different 

production elements. Since conflicts between processes and responsibilities of these 

operational units might appear, System Two –with an essential role in coordination– is 

essential. Controlling the performance level of the operational units is assumed by System 

Three, which is also responsible for defining directives, allocating resources and 

corresponding accountability to each operational unit, as well as identifying potential 

synergies that might arise. Next to System Three, System Three* is responsible for 

performing audit activities to operational units. Since System Three is unable to predict 

the future and recognize potential risks, a structural function is required to solve this 

problem. This function is represented by System Four. Changes in the environment are 

detected and analyzed with regard to the system’s main objectives, leading to possible 

recommendations for action. Finally, System Five formulates the principles and goals of 

the system, playing a key role in preserving its identity. 

Supplementing these five functions, the VSM is supported by instruments for unfolding 

variety both horizontally and vertically. The horizontal unfolding aims to balance variety 

through the design of mechanisms to reduce (attenuators) and amplify (amplifiers) it. 

Thus, each connection (with four components: transmitter, transducer, channel, and 

receiver), which represents communication relationships among the functions of the 

model and between them and the environment, considers variety attenuation and 

amplification mechanisms in both senses (from the environment to operations and from 

operations to management). On the other hand, the vertical unfolding supports the 

recursion of operational units to smaller subsystems. The purpose is to reduce the variety 

faced by each part of the system (complexity reduction). 

Although this socio-cybernetic theory has got increasingly greater recognition for their 

plausibility, Jackson and Flood (1988) criticized: (1) their purely theoretical design and 

abstract nature; (2) the questionable analogy between the human brain and other 

organizations; and (3) their hierarchical arrangement and lack of flexibility. Nonetheless, 

                                                           
11 The complexity is measured by the concept of variety, i.e. the number of possible states or behaviour 

modes that a system can adopt (Ashby, 1956). 
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different authors show concrete VSM applications to diagnose or design viable 

organizations in a multitude of sectors (Beer, 1981; Puche Regaliza, 2014; 2015). These 

resulted in the discovery of pathologies and, after their treatment, the VSM led to a 

tangible improvement in such organizations.  

Its systemic and multilevel nature, its ability to handle the dynamic complexity enclosed 

when managing an organization, and its interaction with the environment makes us 

consider the advantages offered by the VSM regarding SCM. In this subject, Chronéer 

and Mirijamdotter (2009) proposed its utilization for shortening a product development 

process by better connecting the information flows and Badillo et al. (2015) used VSM 

to better understand the supply chain of a telecommunications firm. 

2.3. Theory of Constraints (TOC)  

The TOC (Goldratt, 1990), a major innovation in the production field, is a management 

philosophy that views any system as being limited in reaching a higher performance level 

only by its bottleneck. Thus, it aims to achieve breakthrough improvements by only 

focusing on it12. The TOC encompasses three main areas: logical thinking, performance 

measurement, and operations management. 

Its logical thinking focuses on the bottleneck through a continuous improvement 

philosophy (Goldratt, 1992). In order to increase the overall performance, all efforts must 

be concentrated on the system’s constraint –that is, any improvement away from the 

bottleneck means a waste of resources. The cycle is split into five stages: (1) Identifying 

the bottleneck; (2) Deciding how to exploit it; (3) Subordinating everything else in the 

system to the previous decision; (4) Implementing measures to elevate the constraint; and 

(5) Assessing whether the bottleneck has been broken, and re-starting the cycle to avoid 

that inertia limits the system. 

The performance measurement is based on a simple idea: the only purpose of a business 

is to make money now and in the future. To quantify the success in achieving this goal, 

TOC uses three financial indicators: net income (absolute terms), return-on-investment 

(relative terms), and cash flow (survival terms). This theory highlights the simultaneous 

consideration of the three –it is not about increasing one at the expense of the others. To 

                                                           
12 Unlike Lean Production that shares the effort throughout the whole system. 
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determine these metrics, the Throughput Accounting (Goldratt, 1994) is proposed, which 

considers three operational indicators: throughput (how much money does the system 

generate?), investment (how much money does the system need to generate throughput?), 

and operating expenses (how much money is required to operate?). Unlike the traditional 

cost accounting (aimed at cost reduction), this accounting seeks to maximize the 

throughput, i.e. to optimize the efficiency of the value stream. Thus, it enables managers 

to analyze the link between process constraints and financial performance in decision 

making. Consequently, it allows them to determine the real impact of their decisions. 

The logistic function applies the Drum-Buffer-Rope (DBR) method (Goldratt, 1990), 

which aims to manage properly the bottleneck through suitable coordination (ensuring its 

steady supply). It is named for its three main components. The drum is a system 

pacemaker and is placed at the node that limits system performance. The other nodes 

follow its beat (production rate) so the drum is protected against variability by the buffer, 

whose size plays a key role (Ye and Han, 2008; Kuo-Jung, Sheng-Hung, and Rong-Kwei, 

2003) –the full capacity of the bottleneck must be exploited. The rope is the release 

mechanism, which subordinates the entire system (upstream and downstream) to the 

drum. That is, orders must be released according to the buffer time before they are due. 

The planning stage, or DBR configuration, is complemented with the monitoring stage, 

which implies managing the buffer along the different nodes to tune the system for peak 

performance. 

Although TOC was initially oriented to production systems, its application to other 

business areas has been further studied, such as Marketing (Goldratt, 1994) and Project 

Management (Goldratt, 1997). In SCM (Goldratt, Schragenheim, and Ptak, 2000), the 

early works deal with managing the system from a single company perspective (Cox and 

Spencer, 1998). Later studies used TOC to promote supply chain collaboration. 

Simatupang, Wright, and Sridharan (2004) provide a conceptual framework for using 

TOC in supply chains. Wu et al. (2010) developed a DBR-based replenishment model 

under capacity constraints. Costas et al. (2015) showed that the DBR method induces 

large operational improvements in the supply chain without any collateral damage. 

According to their practical experience, the TOC Center reports that firms adopting TOC 

typically gain 25-100% of additional output without significant increase in expenditure 

(Mabin and Balderstone, 2003). 
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3. Conceptual model: Integrative framework for supply chain collaboration 

The top performer paradigm for production systems is the well-known Lean Production. 

Thus, proposing the Lean implementation seems to be the natural step to tackle the 

problem that consists on closing the gap in terms of throughput in the supply chain. Lean 

is a brilliant systemic philosophy, and we have no doubts in recommending it in each 

supply chain member. Nonetheless, two key points in Lean are focusing on the flow of 

value to customers and, simultaneously, reducing the overall MUDA (Lean’s term for 

waste) in a systematic and continuous way. These points remain extremely important in 

supply chains, as these are multi-agent systems –and this makes a difference. 

In our proposal, VSM is used as a framework for system design and diagnosis. According 

to it, when the supply chain is considered as system-in-focus and apply recursion to the 

subsystems (organizations that belong to the supply chain), it becomes clear that most of 

the reported common issues in collaborative supply chains are linked to the alignment of 

System Five (values, culture, principles, rules, and the overall policy) for all nodes. 

Hence, by taking TOC as the general paradigm for the supply chain, we strongly attenuate 

the variety (simplify) such a big issue. The reason is that TOC works by putting the system 

bottleneck in the center of attention for everyone. By means of that, the system-in-focus 

has a natural representative node, which is the one where the bottleneck is placed –

nonetheless TOC also manages the change of the bottleneck. 

Applying TOC across the supply chain, through the DBR method, warranties to 

concentrate all agents to what matters for the system as a whole: the throughput, the 

operational expense, and the investment. These indicators act as a balance scorecard to 

monitor the system. However, the implementation of TOC in supply chains does not come 

without very important challenges. Watson, Blackstone, and Gardiner (2007) can be 

consulted for a review on the evolution of this management philosophy, including the 

problems impeding greater acceptance. Here the Simatupang and Sridharan’s schema is 

introduced.  

The center of this integrative schema underscores the information sharing. Poor 

information sharing is a general problem, but with TOC it becomes more harmful because 

of the fact of applying an inventory managed policy as a need to manage the rope –the 

key artefact used to manage the flow. VSM cares about potential issues of this type with 

System Three*, which is what we propose as an element to ensure that the adequate 
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degree of transparency and validity of the information (in terms of availability, 

opportunity, and cost) is surveilled. 

Like Lean, TOC requires the orchestration of all processes, namely core and enablers. 

Core process is anyone that delivers value to customers, while enabler processes are 

focused on providing services inside the system. Hence, the feature regarding integrated 

supply chain processes in Simatupang and Sridharan’s schema provide guidelines to 

address this issue. For core processes, TOC is self-sufficient, but not for enablers. Such 

orchestration is examined at the light of VSM. System Two provides the context to keep 

at the lowest possible place in the organization the everyday decisions to keep the system 

running smoothly.  

Every participant takes many decisions that have an impact across the whole supply chain. 

For instance, launching promotions may need most of the times coordination, approvals, 

and other activities that must be properly synchronized. Such decision-making with the 

focus on the whole system is shaped using Systems Three, Four and Five (the meta-

system) in order to early detect poorly structured constructions for the decision support 

system. 

Last but not least, the issue of redistributing the overall economic profit obtained by the 

system must be considered. Implementing TOC means that many decisions with strong 

economic impact must be done according to general rules and, consequently, this can (and 

does) generate conflicts for the agents if the system does not take care about it. Incentive 

alignment and overall performance metrics are a must. 

To sum up our approach, the key component to solve the problem regarding throughput 

in supply chains is TOC, which implements the most that system needs for the core 

processes through the DBR method and the Throughput Accounting. Then, once this 

necessity has been created, the Simatupang and Sridharan’s scheme provides an 

appropriate framework for collaboration based on five blocks. Finally, VSM acts as a 

guideline for initial and permanent regular design and diagnosis about structural 

weaknesses of the system, caring about the five VSM functions as well as the channels 

properties, and making judgements in terms of the laws of requisite variety. Figure 2 

highlights and summarizes the conceptual model proposed. In section 5, we introduce 

some of the challenges that must be taken into account so to prevent major errors. 
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Figure 2. Collaborative model for SCM based on VSM and TOC. 

4. Hypothetical case study 

The Beer Game is a role-playing exercise aimed at teaching the main SCM principles that 

has been used in countless management courses over the last 50 years. Its experimental 

and counterintuitive nature has proved to be very effective in helping managers to 

understand the causal relationships between decision-making and supply chain behavior 

(Goodwin and Franklin, 1994), showing the generation of large inefficiencies (Sterman, 

1989). This way, the Beer Game scenario, a single-product linear supply chain, composed 

of four echelons, has been widely used in literature to emphasize, investigate and analyze 

supply chain dynamics (Macdonald, Frommer, and Karaesmen, 2013). 

Under these circumstances, the Beer Game supply chain is a suitable fit to show how our 

proposal can be implemented, as it: (1) covers the two main flows of the system along a 

significant length; (2) incorporates all commonly available sources of information within 

supply chains; (3) brings a rich enough sequence of events so that the belief-desire-

intention of the participants can be analyzed in front of different event algebras; and (4) 

has widely shown in literature the problems of the reductionist approach, i.e. that the 

interaction of individual decisions produces a solution that is far from the optimal. 

In this section, we describe the application of our systemic proposal for SCM to the Beer 

Game scenario. We first define the system-in-focus. Subsequently, the five VSM 

functions are designed pointing out where each Simatupang and Sridharan’s feature must 

be considered. 
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Figure 3. Systemic approach to SCM. Adapted from Beer (1985). 

4.1. System-in-focus 

From a TOC-based perspective, only satisfying customer requirements generates 

throughput for the global supply chain. Therefore, the nodes (factory, wholesaler, 

distributor, retailer, using the common notation in the Beer Game) must be aimed at 

maximizing it. Taking the supply chain itself as system-in-focus, each node represents a 
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System One operational unit (see Figure 3). If we enter each one of them, we find a 

structural replica of VSM (structural invariant), i.e. a set of nodes representing the 

operational units. From that point on, the next level of recursion is represented for each 

(system-in-focus) operational unit. Likewise, in the previous level of recursion we find 

all the industry. Each supply chain of it is an operational unit –we focus on one of them. 

We can further define previous (countries, continents, etc.) and next (departments, 

production lines, etc.) levels of recursion (vertical variety unfolding). 

The supply chain overall function is threatened by a number of noise sources, which can 

be classified into four kinds13: (1) surrogate noise (geographical point of view, use of 

space, etc), (2) temporal noise (progressive deterioration, mutations in the environment, 

legislation, etc), (3) system noise (latencies, faults, defects, errors, etc), and (4) external 

noise (demand variability, raw materials, etc). The third kind is related to the System One 

typical functioning, while the others are related to the supply chain environment. Note 

that the last one refers to the upper and lower nodes of the system –retailer to customers 

(final product) and factory to suppliers (raw materials). 

4.2. System One 

Once reviewed the perspective of taking as system-in-focus the operational nodes, the 

systemic behaviour must be shaped according to TOC. The bottom right of Figure 3 

displays the four operational elements representing the four supply chain nodes. Each one 

is composed of: (1) a management unit (square shape); (2) operations (circular shape) 

responsible for interacting with the environment to offer their products and services (left 

amoeba); and (3) a system of local coordination (triangular shape).  

Since TOC is based on managing the supply chain through its bottleneck, the first step is 

to detect it. Where is the bottleneck in a supply chain? It is not a static but a continuous 

question. The factory could be the bottleneck if its production rate cannot cover customer 

demand. Intermediate echelons could be bottlenecks if their transport or storage capacities 

significantly limit the customer service level. Nonetheless, the supply chain bottleneck 

tends to be related to customer demand (Youngman, 2009). In order to maximize the flow, 

lost sales in the retailer must be minimized. Therefore, following the DBR method, the 

                                                           
13 According to the p-diagram classification, a widely-used technique in robust engineering. 
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drum should be placed on the retailer, see figure 3. Nonetheless, its allocation could be 

displaced to other node over time.  

In a supply chain, there are two main flows: the material flow (downstream product 

shipping) and the information flow (to monitor and control the system, and to coordinate 

actors for decision-making; e.g. upstream flow of orders and downstream flow of 

shipping notes). These flows are represented by the different connections between nodes, 

between them and the environment, between them and the VSM functions, between 

functions, and between functions and the environment. Each connection, simplified in 

Figure 3, represents an information or material exchange in both senses, serving also as 

variety amplifiers or attenuators (horizontal unfolding). The Simatupang and Sridharan’s 

feature related to information sharing through information and communication 

technologies is allocated in this point. Also, it can be extended to all other connections in 

the VSM.  

4.3. System Two 

In the upper right area of Figure 3, a triangle representing the global System Two can be 

observed. This is responsible for the coordination of the four operational elements 

through its interaction with their locals Systems Two. When the demand arrives at the 

system, the drum makes signals to the rest of operational units or supply chain nodes. 

They remain subordinated to the drum through a rope, so that the customer demand 

estimation is linked directly to the factory. Each node calculates the length of its rope 

until the drum position and orders material movements on the basis of its buffer 

downstream until reaching the bottleneck. The drum node issues orders directly to the 

factory. The buffer management consists of moving the flow so that arrivals occur in time 

in the bottleneck14. The buffer represents the material release duration while the rope 

corresponds to the release synchronization15. 

                                                           
14 Instead of a traditional safety stock based on material quantities, TOC-based buffers depend upon the 

lead time. 

15 To deepen into the TOC implementation, the exceptional guide developed by Youngman (2009) is highly 

recommended. 
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Figure 4. DBR method applied to the Beer Game scenario. Adapted from Youngman (2009). 

As mentioned, the factory uses customer demand (time slot defined by rope, which is the 

time slot to protect) to decide the production orders that must be placed in the channel. 

Manufacturing time is equal to the shipping lead time in the remaining levels. 

Subsequently, each node except the retailer (since there are no downstream nodes) 

manages the buffer, which represents both time and material flow. Managing it means to 

compensate the downstream dissipated flow after shipment in each slot. Orders are dosed 

in the buffer and, consequently, are dissipative. They have not lead time, since each node 

decides how much to dose subordinate to the bottleneck. In addition, backorders are not 

generated as the new dose also obey the bottleneck. The DBR method applied to the Beer 

Game scenario is schematically shown in Figure 4. Although the usual case is to place 

the bottleneck on the retailer, we have placed it on the distributor with the aim of 

illustrating a more complex example, where to observe two ropes and two buffers. It 

should be clarified that to plot the graph, we have considered the lead time to be 3 time 

units, hence the control point buffer is 9 time units and the shipping buffer is 3 time units. 

As previously mentioned, System One is represented by nodes that compose the supply 

chain, one of which is the drum. In System One, one part of the buffer can be observed, 
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namely the squiggly lines that link supply chain nodes and that represent the material flow 

among them. The rest of the buffer is represented by System Two, which enables the 

coordination between all operational units. Regarding Simatupang and Sridharan’s 

framework, the buffer (from the integrated supply chain processes feature) is allocated on 

these two points, while decision synchronization is located on the last point, see Figure 

3. Synchronization mechanisms, as those mentioned in section 3, must be used to force 

the nodes follow the downstream material flow and upstream orders flow sequences. 

Thus, purchase orders, sales orders and backorders of the all different nodes are 

coordinated. 

4.4. System Three 

In Figure 3, System Three is identified in a square next to global System Two. The rope 

is represented by System Three. It takes care of finding synergies between nodes, 

assigning appropriate resources to each one, accountability of using these resources 

(agreement contract), and transmitting the system-in-focus rules to each node. The 

incentive alignment feature (from Simatupang and Sridharan’s scheme), which can be 

implemented through linear contracts, is allocated on this point, see Figure 3. System 

Three* (inverted triangle) allows managers to audit the nodes performance without 

relying on the information they sent through System Two and central channels connecting 

with System Three (which forms the information flow). To deploy System Three*, audits 

are carried out, which enables monitoring and makes the information (shared through the 

overall framework) reliable. 

In this point, the collaborative performance system is allocated, see Figure 3. We propose 

its implementation through the Throughput Accounting that is based on three main 

operational indicators. Firstly, the throughput expresses the rate at which money is 

generated, and is obtained through the difference between the revenue (sales at the 

retailer) and variable costs related to purchases (raw materials at the factory). Note that 

internal sources damage the throughput, e.g. defective products. Secondly, the operating 

expense refers to all that costs spent in turning inventory into throughput. It is the sum of 

storage, transport, labor and order costs. It should be highlighted that system thinking 

requires considering only overall rather than local (per echelon) indicators. Hence in the 

holistic approach, it would have no sense to consider (the common in the Beer Game) 

backlog costs among the different participants, as it is not money entering or leaving the 
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system. Thirdly, the inventory is calculated by estimating the economic value of the 

products that are inventory in the system, both on-hand (net stock) and on-order (in 

transport), as well as all other invested money, e.g. equipment, machinery, and facilities. 

Through the concept of “cost bridge”, the improvement in the aforementioned metrics 

leads to an increase in the financial indicators, which can be easily obtained. The net profit 

is the difference between throughput and operating expense. The cash flow considers, 

besides the above difference, the change of investment in the time horizon to analysis. 

The return-on-investment is the ratio of the net profit to the inventory. Figure 5 outlines 

the implementation of the Throughput Accounting in the Beer Game scenario. By means 

of this collaborative accounting, we aim to quantify the impact of the decisions, through 

analyzing the relationship between process constraints and financial performance in 

decision making. We think the Throughput Accounting proposes a suitable structure 

where to tackle the problem of exploiting throughput within supply chains. 

 

Figure 5. Throughput Accounting in the Beer Game scenario. Adapted from Youngman (2009). 

4.5. System Four 

In Figure 3, System Four is represented by a square shape just above System Three. In 

addition, it can be observed the interaction between System Four and the environment 

(left amoeba), allowing its inspection. The arrows between System Three and System 

Four enable exchanging information on what is happening in the organization and in the 
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environment now and what will happen in the future. This last interaction is of special 

importance since, on the one hand, System Three adapts the organization based on the 

indications identified by System Four and, on the other hand, System Four inspects the 

environment based on what the organization is currently doing. System Four is 

responsible for preparing the supply chain against the possible changes that may arise in 

the future (prediction), providing the whole system with the necessary adaptability to 

maintain its viability over time. In this systemic approach, System Four is more relevant 

than in a reductionist approach in order to try to eliminate redundancies and minimize 

local Systems Four in favour of promoting the need for monitoring the environment of 

the supply chain as a whole. In addition, the bottleneck should acquire special importance, 

which can be manifested in managing demand and markets development of the supply 

chain and its competitors. 

4.6. System Five 

Finally, System Five can be identified in Figure 3 by a square shape above System Four. 

It is connected with the interaction between System Three and System Four interaction, 

which allows practitioners to solve the problems encountered when System Three and 

System Four do not agree on the basis of the principles defined by System Five. In 

addition, Figure 3 highlights the algedonic channel that connects directly (and 

unidirectionally) the operational elements with System Five, allowing them to alert 

System Five in case of serious risk. System Five defines the philosophy to be followed 

by the overall supply chain, which according to TOC principles is to make money now 

and in the future. In this case, the need for transparency of information (Simatupang and 

Sridharan’s framework for application of TOC) and the enforcement of the Goldratt’s 

principles as management principles for all nodes (everything is subordinated to the 

bottleneck) must be highlighted as key points. 

5. Implementation in real supply chains: discussion and future work 

One of the main challenges facing supply chains currently is to improve efficiency by 

increasing simultaneously the net profit, the return-on-investment and the cash flow. In 

other words, the throughput must be appropriately exploited along the system. Supply 

chain collaboration has shown to be effective to deal with this issue. Nonetheless, this 

systemic approach is not totally widespread within real supply chains, as some high 

barriers emerge. 
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Supply chain participants must understand that the implementation of compelling 

solutions based on collaboration is a complex process that requires an appropriate 

scheme, such as the one proposed by Simatupang and Sridharan (2005). Based on this, 

we propose an integrative framework to achieve an holistic SCM. The DBR method, from 

Goldratt’s TOC, is used to integrate processes –and hence to improve supply chain 

efficiency, measured through the systemic Throughput Accounting. The VSM also plays 

a crucial role in the overall process, as it orchestrates the framework so to define the 

systemic structure of the supply chain. In this reciprocal approach, the interaction of 

different connecting features of collaboration is being addressed. 

To support this proposal, we detail its application to the hypothetical and widely used 

Beer Game scenario, although it can be easily adapted to other supply chain topologies. 

This case study aims at providing managers with insight to evolve from a reductionist 

approach, where the global strategy is obtained as the sum of individual strategies, to a 

holistic approach, where the individual strategies arise from the global strategy. 

Concerning the application of this framework in real supply chains, the main catalyst is 

the overall improvement potential for the whole group of supply chain participants 

induced by TOC. Mabin and Balderstone (2003) reviewed several TOC applications in 

practice and calculated an average increase in the throughput by 63% without a significant 

increase in operational expense. On the other hand, the major hurdle to overcome is the 

dilemma of the predatory relationships among supply chain agents, since they are not 

expected to be in conflict in this new paradigm, but to behave as powerful partners –i.e. 

their incentives to deviate must be completely removed. 

According to the personal experience of the authors of this article, in order to implement 

the proposed framework, one relevant opportunity to capture is the central purchasing 

unit. If a central purchasing unit does exist in the supply chain, it can develop towards a 

kind of headquarter to host the VSM System Five, System Four, and System Three* –and 

will also play a big role in System Two. 

System Five, and its recursion to every node, can be fostered by a central unit by 

developing task force encounters and other group techniques, where the goodwill of the 

supply chain is worked by groups and activities. In addition, rules derived from the TOC 
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philosophy can be established so to reinforce the vision of the whole system and the way 

members are expected and required to contribute in specific manners. 

System Four will take a much more effective instantiation from the supply chain as a 

whole rather than the intelligence generated by each node. The reason is made evident at 

the light of the VSM; once the system-in-focus is the whole supply chain a new SWOT 

analysis16 starts. Thereby, the horizontal unfolding of variety enters to work, and 

generates huge value to the supply chain (applying the Forces of Porter, the Delta Hax 

analysis, etc). Actually, in supply chains in which there is a “lion”, this function is usually 

taken by this node, who forces the others to follow some roadmap; if the “lion” do not 

convince, activity is deployed by huge effort and energy rather than smoothly. 

System Three* takes place by Lean’s genchi genbutsu, i.e. going to the place and observe 

critically. Cross visits, blitz events (activities lasting a few consecutive days to produce a 

tangible alteration, generally deploying best demonstrated practices outside) and other 

activities are placed by the central unit after discussion to achieve nemawashi (i.e. 

consensus obtained by applying a scientist schema) in order to fuel continuous 

improvement to raise common standards shared in the system, namely to protect the 

image that the supply chain projects to the environ (customers, public, suppliers, etc). 

Regarding possible extensions of this research work, some areas require further 

investigation in the VSM application in supply chains, e.g. to detail how to shape all VSM 

components (functions, different recursion levels, etc) and variety amplifiers and 

attenuators. Moreover, we would like to research why the systemic approach is not widely 

used yet, being extensively verified that this mature theory outperforms classical 

approaches. We know that moving each node away from their selfish natural behaviour 

needs some education phases. For this reason, we also aim to focus on the transition 

process: from reductionism to holism in SCM. Nonetheless, and in conclusion, the good 

news is that a mature state for moving towards this direction is available, and as 

previously highlighted the literature brings evidences that expectations for success are 

quite high for most supply chains. 

                                                           
16 SWOT (Strengths, Weaknesses, Opportunities and Threats) analysis: a tool in risk analysis and business 

strategy. 
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Abstract 

In the current environment, Supply Chain Management (SCM) is a major concern for 

businesses. The Bullwhip Effect is a proven cause of significant inefficiencies in SCM. 

This paper applies Goldratt’s Theory of Constraints (TOC) to reduce it. KAOS 

methodology has been used to devise the conceptual model for a multi-agent system, 

which is used to experiment with the well-known ‘Beer Game’ supply chain exercise. Our 

work brings evidence that TOC, with its bottleneck management strategy through the 

Drum–Buffer– Rope (DBR) methodology, induces significant improvements. Opposed to 

traditional management policies, linked to the mass production paradigm, TOC systemic 

approach generates large operational and financial advantages for each node in the 

supply chain, without any undesirable collateral effect. 

Keywords 

Bullwhip Effect; Drum–Buffer–Rope; KAOS modeling; Multi-agent Systems; Supply 

Chain Management; Theory of Constraints. 
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1. Introduction 

The complexity and dynamism that characterize the context in which companies operate 

nowadays have drawn a new competitive environment. In it, the development of 

information technologies, the decrease in transport costs and the breaking down of 

barriers between markets, among other reasons, have led to the perception that 

competition between companies is no longer constrained to the product itself, but it goes 

much further. For this reason, the concept of Supply Chain Management (SCM) has 

gained a lot of strength to the point of having a strategic importance. The current global 

economic crisis, consequence of many relevant systemic factors due to the fact that 

globalization still has not been able to develop systemic dynamic properties to deal with 

a growing variety of requirements, is creating conditions which increase awareness to 

adopt new approaches to make business (among others, Schweitzer et al., 2009); hence, 

SCM is a boiling area for innovation. 

Analyzing the supply chain, Forrester (1961) noted that changes in demand are 

significantly amplified along the system, as orders move away from the client. It was 

called the Bullwhip Effect. He studied the problem from the perspective of system 

dynamics. This amplification is also evidenced in the famous ‘Beer Game’ (Sterman, 

1989), which shows the complexity of SCM. He concluded that the Bullwhip Effect is 

generated from local-optimal solutions adopted by supply chain members. This can be 

considered as a major cause of inefficiencies in the supply chain (Disney et al., 2005), 

because it tends to increase storage, labor, inventory, shortage and transport costs. Lee et 

al. (1997) identified four root causes in the generation of Bullwhip Effect in supply 

chains: (1) wrong demand forecasting; (2) grouping of orders into batches; (3) fluctuation 

in the products prices; and (4) corporate policies regarding shortage. The same idea 

underlies behind all of them: the transmission of faulty information to the supply chain. 

Therefore, the first approaches in the search for a solution to this problem were based on 

trying to coordinate the supply chain. Some practices that have been successfully 

implemented in companies are Vendor Managed Inventory (Andel, 1996), Efficient 

Consumer Response (McKinsey, 1992) and Collaborative Planning, Forecasting and 

Replenishment (DesMarteu, 1998). Nevertheless, the Bullwhip Effect is still a major 

concern around operations management in the supply chain. Chen and Lee (2012) 

discussed the linkage between the bullwhip measure and the supply chain cost 

performance, capturing the essence of most-real world scenarios. 
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The Theory of Constraints (TOC) was introduced by Goldratt (1984) in his best seller 

'The Goal', representing a major innovation in the production approach. The author 

alleges that the sole purpose of an organization is to make money now and in the future. 

Hereupon, the author defines six variables as organizational measures to approach that 

goal. Three of them are operational: throughput, inventory and operating expense. The 

other three are financial: net profit, return on investment and cash flow. All these metrics 

are bound together through relationships. According to TOC, the most important thing to 

improve the overall system performance is to concentrate the whole improvement effort 

on its bottleneck. Goldratt proposes the Drum-Buffer-Rope (DBR) methodology to 

manage the system. Once the bottleneck is identified, it becomes the drum of the system. 

A buffer is used to protect against variability in replenishment time, because we aim to 

exploit the full capacity in the bottleneck. A rope is used to subordinate the system to the 

bottleneck.  

The major contribution of this paper is to provide evidence via a multi-agent simulation 

model about the sound impact of TOC application to reduce the Bullwhip Effect in supply 

chains. TOC is compared against a traditional management alternative, typical in mass 

production paradigm: the order-up-to inventory policy. Our aim is to demonstrate that 

supply chains have plenty of reasons to operate according to the TOC systemic approach. 

Figure 1 depicts the structure of our work. 

The conceptual multi-agent model has been worked out using KAOS methodology. 

Robust SW engineering and test driven development techniques have been applied to 

build and verify the model. A multi-agent system (MAS) is an optimal environment to 

address this issue, as it is a physically distributed problem, where each node has only a 

partial knowledge about the problem-world.  

As shown in figure 1, our research method has been the following: 

i. Definition of problem world (‘Beer Game’ supply chain) and problem statement 

(Bullwhip Effect).  

ii. Clarification of the process. The ‘Beer Game’ is modeled as it is widely described 

in literature (among others, Kaminsky and Simchi-Levi, 1998): the unique source 

of noise is the variability in demand; the Bullwhip Effect emerges as a 

consequence of the agents’ behavior; the metrics considered are the shortage 
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penalties and the inventory costs. Once the material and the information flows are 

implemented, two engines are added: TOC and the order-up-to inventory policy. 

The experimenter chooses what engine the agents in the supply chain will use to 

make their purchasing decisions. 

iii. Devise the conceptual model using KAOS methodology. 

iv. ABMS development of the model using NetLogo, followed by verification using 

statistical tests. 

v. Exploitation of the model: experimentation of different treatments. 

vi. Problem analysis: descriptive and inferential statistics to derive conclusions. 

 

Figure 1. Structure of this work. 

2. Literature Review 

2.1. Theory of Constraints in Supply Chain Management 

Elihayu M. Goldratt described in his book ‘The Goal – A Process of Ongoing 

Improvement’ (1984) his view about the best way to manage a company. He did it through 

fiction, telling how a troubled company managed to get over this situation. In a 

subsequent scientific work, Goldratt (1990) presented the Theory of Constraints (TOC) 

in more detail. This theory comprises three interrelated areas (Simatupang et al., 1997): 

logistics, logical thinking and performance measurement. In logistics, the methodology 

is based on the DBR scheduling method (Goldratt and Cox, 1984). The logical thinking 
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is based on a continuous improvement cycle with five steps: (I) Identify the bottleneck; 

(II) Decide how to exploit the bottleneck; (III) Subordinate everything else in the system 

to the previous step; (IV) Elevate the bottleneck; and (V) Evaluate if the bottleneck has 

been broken, and return to the beginning. The performance measurement, which 

quantifies the application of this methodology, encompasses operational measures 

(throughput, inventory and operating expense) and financial measures (net profit, return 

on investment and cash flow), which obey to the same view: the only goal of the 

organization is to make money now and in the future. 

Although TOC was initially oriented on the production system of the company, its 

application to other areas of the business has been proposed, such as marketing and sales 

(Goldratt, 1994), project management (Goldratt, 1997) or SCM (Goldratt et al., 2000). In 

this latter area, several authors have researched the application of the TOC. As an 

example, Umble et al. (2001) described the application of TOC in the implementation of 

an ERP system to manage the supply chain. Cox and Spencer (1998) proposed a method 

for SCM through TOC, valid when one company directs the entire chain. However, when 

this assumption does not apply and there are different companies in the same supply 

chain, the implementation of TOC is more complex. A dilemma rises because each 

company has to decide between gearing to the interests of the supply chain as a whole 

and pursuing only their own interests. Simatupang et al. (2004) showed that collaboration 

between different independent firms, according to the TOC, generates a much larger 

benefits to participants than the consideration of individual interests of each company. 

Wu et al. (2010) developed an enhanced simulation replenishment model for TOC-SCRS 

(Theory of Constraints - Supply Chain Replenishment System) under capacity constraint 

in the different levels. The TOC-SCRS (Yuan et al., 2003) is a methodology widely used 

in businesses nowadays to improve the SCM and to reduce Bullwhip Effect. It is based 

on the use of two strategies (Cole and Jacob, 2002): (I) Each node holds enough stock to 

cover demand during the time it takes to replenish reliably; and (II) Each node orders only 

to replenish what was sold. The authors demonstrated the effectiveness of this system, in 

solving the conflict generated in determining the frequency and quantity of replenishment 

when the TOC- SCRS is applied in a plant or a central warehouse. In a later work (Wu et 

al., 2014), they proposed a two-level replenishment frequency model for the TOC-SCRS 

under the same constraints, which is especially suitable to a plan in which different 
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products have a large sales volume variation. This methodology facilitates a plant or a 

central warehouse the implementation of TOC-SCRS.  

2.2. Multi-Agent Systems in Bullwhip Effect reduction 

MASs is a branch of Artificial Intelligence that proposes a model to represent a system 

based on the interaction of multiple intelligent agents (Wooldridge, 2000). Each agent 

evaluates different alternatives and makes decisions, in a clearly defined context, through 

local and external constraints. De la Fuente and Lozano (2007) defend this methodology 

in the study of SCM, based on its own characteristics: it is a physically distributed 

problem; it can be described a general pattern in decision-making; each agent can consider 

both individual and chain interests; and it is a highly complex problem, which is 

influenced by the interaction of many variables. For this reason, since the work of Fox et 

al. (1993), who were pioneers in representing the supply chain as a network of intelligent 

agents, many studies have followed this line. 

Maturana et al. (1999) used the multi-agent architecture to create the Metamorph tool. It 

was aimed at facilitating the SCM in business through the introduction of intelligence in 

the design and manufacturing stage. Later Kimbrough et al. (2002) studied the agent’s 

capability of managing their own supply chain. The authors concluded that they can 

determine the most appropriate policy for each level, achieving a large reduction in the 

Bullwhip Effect generated along the system. Some years later, Mangina and Vlachos 

(2005) designed a smart supply chain in the food sector. They demonstrated that agents 

increase the supply cain’s flexibility, information access and efficiency. Liang and Huang 

(2006) developed a MAS to forecast the demand along a supply chain where each level 

has a different inventory policy. To calculate the forecast, they used a genetic algorithm. 

Fuzzy logic was introduced into the analysis by Zarandi et al. (2008). The authors 

constructed an agent-based system for SCM in dim environments. One of the latest 

studies on the subject is the one by Saberi et al. (2012), who analyzed the chain 

collaboration. In their work, the agents coordinate to make forecasts, to control the stock 

and to minimize total costs. Recently, Chatfield and Pritchard (2013) constructed a hybrid 

model of agents and discrete simulation in order to represent the supply chain. It was 

studied in several scenarios and they showed that returns of excess goods increase 

significantly the Bullwhip Effect. 
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The literature review leads us to conclude that multi-agent methodology is widely used 

to experiment around complex systems, such as supply chains. More specifically, it 

contains several works which apply these new technologies to analyze the well-known 

problem of the Bullwhip Effect. Likewise, the application of TOC has been studied to 

improve the management in complex systems, including supply chains. However, the 

authors are aware of multiple real supply chains and know it is not common to apply 

Goldratt's theory. The systemic thinking prompts the actors to solve a major dilemma, 

which consists on that the methods of measurement, linked to reward and punishment 

policies, in the supply chain are not usually defined from a systemic perspective, but from 

the relationships between each pair of nodes in the chain. Therefore, our aim is to compare 

the holistic TOC method against a traditional reductionist alternative –the ‘order-up-to’ 

inventory policy– from a multi-agent approach.  

3. Problem Formulation 

The Bullwhip Effect gained much importance when, in the early 90's, Procter & Gamble 

noticed that their demand for Pampers diapers suffered considerable variations 

throughout the year, which did not correspond to the relatively constant demands of its 

distributors –in addition, the swings of its suppliers were greater (Lee et al., 1997). Since 

then, this phenomenon has been a fruitful research area within logistics studies. 

Nevertheless, at present, it is one of the main concerns for business regarding to SCM. 

As way of example, Buchmeister et al. (2012) illustrate this phenomenon using real data 

in three simulation cases of a supply chain with different level constraints (production 

and inventory capacities). 

In our study, we have considered a traditional single-product supply chain with a linear 

structure, composed of five levels: client, shop retailer, retailer, wholesaler and factory, 

as the one used in the ‘Beer Game’. Among the levels, there are two main flows: the 

material flow (related to the shipping of the product) from the factory to the client, and 

the information flow (related to sending the orders) from the client to the factory. Thus, 

there are five main actors. Four of them (shop retailer, retailer, wholesaler and factory) 

are responsible for managing the supply chain, in order to meet the other’s (customer) 

needs. 

The only purpose of the supply chain is, according to TOC, to make money, now and in 

the future. To assess the approximation of a company to this goal, the author proposes 
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three financial metrics: net profit, return on investment (ROI) and cash flow. These 

metrics must be understood as complementary indicators. Thereby, improving the SCM 

requires the simultaneous increase of the three values. The next question is: how can the 

supply chain achieve it? Then, a second level of goals appears: (I) improve customer 

satisfaction; (II) improve the efficiency of the supply chain; and (III) improve the 

utilization of the capacity.  

Here, we can link our analysis with the TOC, considering three operational metrics: 

throughput (the rate at which system generates money through sales), inventory (money 

invested in purchasing items intended to be sold) and operating expense (money spent in 

order to turn inventory into throughput). Customer satisfaction is a big contributor to 

throughput; increased efficiency means a decrease in operating expense; and improving 

capacity usage implies achieving good results in the inventory. This operational metrics 

can also be used to quantify the results of the supply chain, as the financial ones can be 

understood as a direct consequence of these.  

How do we attain these three goals of the second level? To increase customer satisfaction, 

the key element is minimizing missing sales. Our model does not consider the effect of 

other factors, such as marketing. The client will be satisfied if he finds what he needs in 

the shop retailer when he needs. To improve supply efficiency and capacity utilization, 

the chain needs to reduce the Bullwhip Effect that causes an amplification of the demands 

variability of levels upstream, which hinders both transportation and inventory 

management. Thus, the decrease of the Bullwhip Effect brings the system to improve its 

operational, and consequently, financial metrics.  

Many authors quantify the Bullwhip Effect in a level n of the supply chain as the quotient 

between the variance of the purchase orders launched (𝜎𝑃𝑂𝐸
2 𝑛

) and the variance of the 

purchase orders received (𝜎𝑃𝑂𝑅
2 𝑛

), adjusted both the numerator and denominator by the 

mean value (𝜇𝑃𝑂𝐸
𝑛, 𝜇𝑃𝑂𝑅

𝑛), according to equation 1. For stationary random signal, in a 

linear supply chain, over longs periods of time, both means values are the same. It should 

be noted that the purchase orders received by the shop retailer are the sales orders, which 

meet the demand of the customer, and that purchase orders emitted by the upper level of 

the supply chain (factory) translate in their own production. As the purchase orders 

launched by each level are the sale orders received by the next one, the total Bullwhip 

Effect generated in the supply chain (𝐵𝐸𝑜𝑟𝑑𝑒𝑟𝑠
𝑠𝑐) can be expressed as the product of the 
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Bullwhip Effect in the four different levels, by equation 2. When this ratio is higher than 

1, there is Bullwhip Effect in the supply chain.  

𝐵𝐸𝑜𝑟𝑑𝑒𝑟𝑠
𝑛 =

𝜎𝑃𝑂𝐸
2 𝑛

/𝜇𝑃𝑂𝐸
𝑛

𝜎𝑃𝑂𝑅
2 𝑛

/𝜇𝑃𝑂𝑅
𝑛
=
𝜎𝑃𝑂𝐸
2 𝑛

𝜎𝑃𝑂𝑅
2 𝑛 (1) 

𝐵𝐸𝑜𝑟𝑑𝑒𝑟𝑠
𝑠𝑐 =∏𝐵𝐸𝑜𝑟𝑑𝑒𝑟𝑠

𝑛

4

𝑛=1

 (2) 

This is a useful measure to quantify the evolution of orders, but only compares output 

variance with input variance, and does not describe the structure that causes the variation 

increase. For this reason, some authors (among others, Disney and Towill, 2003) also 

recommend the use of an alternative measure of the Bullwhip Effect at each level n of the 

supply chain (𝐵𝐸𝑖𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦
𝑛), which quantifies fluctuations in actual inventory. It can be 

expressed as the quotient of the variance of the stock (𝜎𝑆𝑇𝑂𝐶𝐾
2 𝑛

) and the variance of the 

demand (𝜎𝑃𝑂𝑅
2 𝑛

), by means of equation 3. It is important to note that they are 

complementary measures. That is to say, to improve the SCM is necessary to reduce the 

two of them, and not just one at the expense of the other. 

𝐵𝐸𝑖𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦
𝑛 =

𝜎𝑆𝑇𝑂𝐶𝐾
2 𝑛

𝜎𝑃𝑂𝑅
2 𝑛  (3) 

The goals of this level face two major obstacles of the SCM: uncertainty in both demand 

and lead time. Uncertainty in the final customer demand is modeled through various 

statistical distributions. Lead time is modeled constant, as stated in the ‘Beer Game’. 

Obviously, if orders lead time and material lead time were both null, the supply from the 

factory would instantly respond to customer requirements and Bullwhip Effect would not 

rise. The only relevant controllable factor (parameter) in our model is the engine to be 

used by agents to make their purchasing decisions.  For the sake of simplicity, we have 

not considered other causes of the Bullwhip Effect, as the uncertainty in the lead time or 

variation in prices.  

Figure 2 points out the p-diagram (parameter diagram –a widely used tool in robust 

engineering) that we have used to establish the perimeter of our study. In it, we can see 

the overall supply chain function, the noise sources that threaten the system function, and 
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the parametric space, which are controllable factors either at engineering stage or 

manufacturing stage.  

 
Figure 2. P-diagram of the system that we have developed. 

4. Description of the Multi-Agent System 

We have used KAOS methodology (Dardenne et al., 1993) for the conceptual design. It 

is an engineering methodology that joins, in the development of a software application, 

the overall objective that should be met and the specific requirements that should be 

considered. This methodology relies on the construction of a requirement model, whose 

graphical part can be represented by means of the KAOS Goal Diagram. Figure 3 shows 

the KAOS Goal Diagram that we have created and used in the development of the system.  

TOC approach consists on managing the supply chain based on the bottleneck. This is 

one of the foundations of the TOC: any improvement that is deployed away from the 

bottleneck of a system represents a waste of resources. Therefore, this fact leads to a new 

question: Where is the bottleneck in this supply chain? The factory would be the 

bottleneck if its production rate cannot cover the customer demand. But the factory has 

not a capacity constraint in the ‘Beer Game’. The intermediate nodes, wholesaler and 

retailer, could be the bottleneck if its storage or transport capacity did not allow the supply 
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chain to meet the final demand, but this is not the situation that we have considered. So, 

the bottleneck is the final customer demand. To maximize the flow at the bottleneck 

means to have zero missing sales at the shop retailer. Therefore, the drum is placed at the 

shop retailer.  

 

Figure 3. KAOS Goal Diagram of our MAS. 

Each time that a demand event is triggered to the system, the drum makes all the agents 

react. Each agent (node) calculates its rope length to the drum position and makes the 

order decision based on its downstream buffer to the bottleneck. Instead of traditional 

safety stock based on material quantities, TOC-based buffers are a function of the lead 

time. Buffer management consists on moving the flow so that arrival happens on time at 

the bottleneck. Because the shop retailer is the drum, this agent looks for maximizing 

flow; which means preventing missing sales by linking the final customer demand 

forecast straight to the factory. All other nodes work subordinated to the drum with a 

shipping rope.  

Each node works using a finite state machine schema. The agent is idle until the drum 

triggers it. From the idle state it switches to serve backorders state. Then, it flows to the 

shipping orders state. Once the agent has moved material downstream, it moves to the 
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sourcing state (take care of information flow). Finally, the agent moves to the reporting 

state, when it cares about updating and exporting information. And then the agent 

switches now to the idle state to reiterate the loop. The state transition diagram is 

represented in figure 4. 

 

Figure 4. State transition diagram (local for each agent). 

Some details about our simulation engine should be commented. The simulation clock 

advances based on a FEL (future event list). Events are scheduled in the future and the 

clock advance will move to the event which is sooner due. Every takt (block of time 

between two consecutive arrivals of customers to the shop retailer) schedules the next 

one. Each customer arrival schedules new events in the FEL so to divide each time bucket 

into small time windows. Synchronizing mechanisms are used to force nodes to follow a 

downstream sequence for material flow and an upstream sequence for the orders flow.  

During these sequences agents transition their states to perform all the activities: move 

material downstream, move orders upstream, serve backorders just in case, serve the 

current order, place backorder if needed, place its purchase order upstream (according to 

the settings for the order policy), and report data into the export file. Of course the system 

behaves polymorphous depending on the setting of the experiment. This means that 

details of what each node does at each state follows the appropriate rules linked to the 

parameters given at the setup stage.  

We have used robust SW engineering techniques (Taguchi, 2000) to build the model and 

NetLogo 5.0.5 to implement it. Figure 5 shows a screenshot of the interface window of 

the implemented model. The interface window provides the experimenter with the 
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animation frame, the controls to setup parameters and to run each experiment, and the 

graphics and monitoring stuff to track what the system is doing. NetLogo provides two 

additional windows, one for the model documentation and another for the model code. 

In the next paragraphs we will clarify some relevant details about what the system does 

when operating under TOC parameters and when the order-up-to policy is the selection 

made by the experimenter. 

 

Figure 5. Screenshot of the system interface at one particular moment of the simulation. 

4.1. Order-up-to inventory policy 

This policy is implemented as follows: at the end of each period t, the shop retailer, 

retailer, wholesaler and factory update the forecast (𝐷�̂�) based on the demand or order 

received, by means of a moving average of the last three observations (𝐷𝑡−𝑖), according 

to equation 4.  

In this policy, under the assumption of normal demand, the order-up-to point (𝑦𝑡) is 

estimated as the product of the forecast and the lead time (𝐿), plus a term related to the 

safety stock (equation 5). It depends on a parameter (𝑍) that is a function of the security 

level and the standard deviation of the error (𝑆𝑡). We have used 𝑍 = 1.64 in order to work 

with a confidence level of 95%. The purchase order quantity for each period is the 

difference between the order-up-to point of this period and the previous one, plus the 
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demand of the previous period, by equation 6. Note that the purchase order arrives at the 

start of period t+L and sales orders are filled at the end of each period. More information 

about this management policy can be found in Chen et al. (2003). In our case, we have 

used a three period moving average to calculate the forecast.  

𝐷�̂� =
1

𝑛
∙∑𝐷𝑡−𝑖

𝑛

𝑖=1

 (4) 

𝑦𝑡 = 𝐿 ∙ 𝐷�̂� + 𝑍 ∙ √𝐿 ∙ 𝑆𝑡 = 𝐿 ∙ 𝐷�̂� + 𝑍 ∙ √𝐿 ∙ √
1

𝑛
∙∑(𝐷𝑡−𝑖 − 𝐷𝑡−𝑖̂ )2

𝑛

𝑖=1

 (5) 

𝑞𝑡 = 𝑦𝑡 − 𝑦𝑡−1 +𝐷𝑡−1 = (1 +
𝐿

𝑛
) ∙ 𝐷𝑡−1 − (

𝐿

𝑛
) ∙ 𝐷𝑡−(𝑛+1) + 𝑍 ∙ √𝐿 ∙ (𝑆𝑡 − 𝑆𝑡−1) (6) 

 

4.2. DBR methodology — Goldratt’s TOC policy 

The DBR methodology has been implemented according to the Goldratt’s TOC, 

summarized in section 2 and following to the meta-model explained above. We should 

remember that, in the context we are considering, the shop retailer is the constraint in the 

system, so it must be the drum. The aim of the solution is to protect it, and therefore the 

supply chain as a whole, against process dependency and variation, and thus to optimize 

the system. In these circumstances, the other levels must be subordinated to the shop 

retailer. The buffer is the material release duration and the rope is the release timing. 

Kelvyn Youngman (2009) has developed an outstanding guide for the implementation of 

the TOC in systems of very different kinds, which can be consulted to get further detail 

in the process described below.  

In the TOC mode, the system operates in two stages. In the first one, the systemic 

condition to tie the different levels of the supply chain through time (and not by product) 

is established. It is the planning stage and it is orientated to operate the system as a whole. 

In the second one, the buffer is administered along the intermediate stations, to guide the 

way in which the motor is tuned for peak performance. It is the control stage that allows 

us to keep a running check on the system performance. The idea is summarized in figure 

6. 
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Figure 6. Two-stage based operation system.  

With the previous objective, at each time unit, the factory uses the history of the demand 

in the shop retailer (the time interval defined by the rope, which is the period of time to 

protect), in order to decide the production orders that must be placed in the channel (the 

manufacturing time is equal to the lead time in the remaining levels: 3 periods). 

Subsequently, each node of the supply chain, except the shop retailer (as no other level 

can be found downstream) manages the buffer. The horizontal channels are the buffer of 

the model. The buffer is time and material flow, but not the order flow. Manage it means 

compensating in each takt the flow dissipated downstream after shipping. Therefore, for 

example, in the case of the factory, the buffer is 9 time units (lead time of 3 units in the 

previous three levels). Unlike classical policies, the TOC orders are dosage orders into 

the buffer and they are dissipative. They have no lead time, because each agent decides 

what to dose subordinated to the bottleneck. They do not generate backorders, as the next 

dosage again obey the bottleneck. Figure 7 graphically represents this idea, showing the 

drum, the buffer and the rope.  

 

Figure 7. Schematic representation of the MAS when it works according to the TOC. 
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5. Simulation Study and Conclusions 

As the equations related to the inventory policy that we have used to contrast the results 

are based on the assumption of normal demand, we have simulated the customer demand 

through a normal distribution with a mean of 12. We have performed treatments on three 

different scenarios: when the variability is low (standard deviation of 1; coefficient of 

variation 8.3%), when the variability is moderate (standard deviation of 3; coefficient of 

variation 25.0%), and when the variability is high (standard deviation of 5; coefficient of 

variation 41.7%), in order to extend the conclusions considering the effect of the demand 

variability in the SCM. Thus, our experimentation approach, can be written as shown in 

equation 7, where 𝑌 is a vector of the key performance indicators (in terms of Bullwhip 

Effect); 𝑋 is the policy management, which is a nominal attribute variable (order-up-to 

inventory policy or DBR methodology); 𝑍 is an external noise condition, which is 

characterized for de experiment as 𝑁(12, 𝜎), where 𝜎 is set to three different levels in 

order to represent different levels of variability with respect to the average demand; and 

𝜉  represents the residuals –the unexplained part of the system response.  

𝑌 = 𝑓(𝑋, 𝑍) + 𝜉 (7) 

So, it is a full DoE (Design of Experiments) with two factors. One factor (order policy) 

is controllable and is taken at two levels; while the other factor (demand law) is noise and 

enters the simulated experiment at three levels. This idea is shown in table 1. 

Table 1. DoE (Design of Experiments) table. 

Factor Level Treatment 
Demand Law 

(Z) 

Order Policy 

(X) 

Demand Law  Normal(12,1) 1 Normal(12,1) Order-up-to i. p. 

(Z) Normal(12,3) 2 Normal(12,3) Order-up-to i. p. 

 Normal(12,5) 3 Normal(12,5) Order-up-to i. p. 

Order Policy Order-up-to i. p. 4 Normal(12,1) DBR methodol. 

(X) DBR methodol. 5 Normal(12,3) DBR methodol. 

  6 Normal(12,5) DBR methodol. 

 

A time horizon of 330 periods was used for each treatment. The first 30 are discarded as 

warm-up period, so to avoid the initial transitory that can alter the results. On the other 
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hand, the 300 remainder periods is a large enough time interval to check stability 

according to the common practices.  

5.1. Model verification and validation 

A fundamental step in any modeling process is the verification of the model, with the aim 

of checking its cohesion and consistency; that is, to check that the development matches 

the logic of the conceptual design. This model was created following strict rules of clean 

code, test driven development focus, versioning for continuous functionality increments, 

and it uses failure modal analysis in order to prevent failures. Although these good 

practices of software engineering reduce the probability of error, they do not eliminate it 

completely. Therefore, we have complemented it with mechanics (exception handling, 

cross checking, police agents for system audits) for early detection of any system 

malfunction. 

Another essential step in simulation process is the validation phase. The experimenter 

wants model predictions to match reasonably well the reality, so that the simulation model 

is useful to devise changes and apply them to improve the real system. To validate our 

model, we have used factory acceptance test (FATs), so to confirm that the model exhibits 

a well-known behavior when exposed to controlled conditions. As an example, we 

include one this kind of tests that are implemented in the model. 

 Test conditions: (I) Constant demand in the shop retailer: 12 sku / period. 

   (II) Damaged equipment on the factory: zero production. 

Expected behavior: (I) It only serves customers until the initial stock is depleted. 

   (II) Cumulative backorders are generated at each node. 

Acceptance criteria: (I) Demand turns into missing sales (12 sku / period) in steady state.

   (II) Storage costs are zero in steady state. 

Once the FAT tests were satisfactory, the standard approach was used when comparing 

treatments under stochastic conditions: each treatment is replicated (it was run three 

times) so that the statistical analysis takes into account the experimental error. An overall 

stability study (run several trajectories –replicas– of each experimental treatment) about 

the key output metrics (lost sales, stocks) was also conducted. And, of course, we did care 

about the experimental error (using replicas and hypothesis testing).  
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The model statistically probed to be valid: matched expected outputs under controlled 

scenarios, reached stability and have repeatability. 

5.2. Analysis of the treatments 

Tables 2, 3, 4 and 5 report the final results of the treatments, both the outcomes exported 

from the simulation (process metrics) and the results of the simulations in terms of 

Bullwhip Effect and missing sales (performance metrics). 

Tables 2 and 3 demonstrate the huge generation of Bullwhip Effect along the supply chain 

when using the order-up-to inventory policy. Whilst the quantity order average remains 

constant along the supply chain nodes (it only varies slightly due to missing sales and 

inventory accumulation), the quantity order variance increases greatly as we move 

upstream. It is interesting to see that the average inventory increases dramatically 

upstream the chain. Nevertheless, the amount of missing sales is noteworthy. As a 

conclusion, with the order-up-to policy the service level to customers is not extremely 

bad (still, it is not excellent), and the weak point is that this bad service is obtained at a 

huge cost in terms of inventory. The lesson learnt, and it is very usual in the marketplace, 

is that the customer service is protected with huge inventory and this policy is not 

effective, because the root cause of the problems is not being considered. According to 

the industrial experience of the authors, this is a very common finding in ailing processes. 

Table 2. Results of the tests when the order-up-to inventory policy is used (I): Mean (left) and 

variance (right) of the consumer demand, purchase orders (PO), factory production and 

inventory in the different levels of the supply chain (without warm-up time). 

Process Metrics 

Scenario 1 

Low variability 

[Treatment 1] 

Scenario 2 

Mid variability 

[Treatment 2] 

Scenario 3 

High variability 

[Treatment 3] 

Consumer Demand 11.98 – 1.04 11.97 – 7.97 11.91 – 27.61 

Shop Retailer PO 11.47 – 98.39 11.49 – 133.53 11.64 – 232.13 

Retailer PO 12.04 – 380.20 11.79 – 715.74 12.50 – 1008.79 

Wholesaler PO 11.79 – 1405.58 13.17 – 1994.30 13.47 – 3304.94 

Factory Production 12.08 – 4247.31 14.15 – 4162.65 13.03 – 7228.66 

Shop Retailer Inv. 12.0 – 101.1 19.2 – 215.9 34.9 – 613.6 

Retailer Inv. 67.9 – 1011.38 105.1 – 4429.3 154.5 – 8362.3 

Wholesaler Inv. 218.9 – 13471.1 384.1 – 22900.2 559.9 – 51286.0 

Factory Inv. 577.7 – 32599.2 593.1 – 13674.0 1057.0 – 137635.3 
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Table 3. Results of the tests when the order-up-to inventory policy is used (II): Orders Bullwhip 

Effect (Bw_O) and Inventory Bullwhip Effect (Bw_I) generated along the different nodes, in 

addition to lost sales to evaluate the performance of the supply chain (without warm-up time). 

Process Metrics 

Scenario 1 

Low variability  

[Treatment 1] 

Scenario 2 

Mid variability 

[Treatment 2] 

Scenario 3 

High variability 

[Treatment 3]   

Shop Retailer Bw_O 99.13 17,47 8.60 

Retailer Bw_O 3.68 5,22 4.05 

Wholesaler Bw_O 3.78 2,49 3.04 

Factory Bw_O 2.95 1,94 2.26 

Supply Chain Bw_O 4063.14 442.07 239.33 

Supply Chain  

Lost Sales 
163 124 86 

Shop Retailer Bw_I 97.58 27,10 22.22 

Retailer Bw_I 10.28 33,17 36.02 

Wholesaler Bw_I 35.43 32,00 50.84 

Factory Bw_I 23.19 6,86 41.65 

 

Looking at these tables, it can be seen that the greatest Bullwhip Effect is generated, 

according to the classical formulation, in the scenario of low variability. Obviously, the 

greater the variability in consumer demand, the greater the variability in the rate of 

production of the factory. However, the relationship between the two variances is much 

larger when the variability in consumer demand is low. Moreover, this classic inventory 

management policy generates more missing sales when the variability of consumer 

demand is low. At first glance, this result might seem surprising, but it is not, as the 

explanation lies in the level of inventories: when the variability is very high, the levels of 

the supply chain tend to be overprotective. For this reason, the missing sales are reduced 

at the expense of increasing the inventory far from the customer.  

Tables 4 and 5 point out that the TOC also causes Bullwhip Effect in the supply system, 

since variability in purchase orders increases and both the mean and the variance of the 

inventory level increment as they move away from the consumer. However, a simple 

comparison of these tables with respect to tables 1 and 2 makes clear the enormous 

effectiveness of DBR methodology in managing the supply chain. The amplification of 

the variability of orders is much lower when the supply chain is managed according to 

the practices proposed by Goldratt. Likewise, the TOC gets to manage the supply chain 
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with minor inventories at all levels. Moreover, despite that, the amount of missing sales 

decreases meaningfully. Hence, the important findings using TOC approach is that both 

negative effects (Bullwhip Effect and missing sales) reduce at the same time when 

compared to the order-up-to policy.  

Table 4. Results of the tests when the DBR methodology is used (I): Mean (left) and variance 

(right) of the consumer demand, purchase orders (PO), factory production and inventory in the 

different levels of the supply chain (without warm-up time). 

Process Metrics 

Scenario 1 

Low variability  

[Treatment 4] 

Scenario 2 

Mid variability 

[Treatment 5] 

Scenario 3 

High variability 

[Treatment 6]   

Consumer Demand 12.07 – 1.13 12.47 – 11.03 11.79 – 24.43 

Shop Retailer PO 12.10 – 9.11 13.04 – 75.82 12.83 – 134.10 

Retailer PO 12.10 – 7.32 12.33 – 58.37 11.66 – 101.48 

Wholesaler PO 12.09 – 5.63 12.36 – 53.60 11.47 – 110.75 

Factory Production 12.09 – 7.98 12.47 – 76.48 11.39 – 145.03 

Shop Retailer Inv. 9.2 – 12.5 16.8 – 74.1 21.9 – 142.9 

Retailer Inv. 14.0 – 23.8 18.6 – 140.4 20.6 – 209.7 

Wholesaler Inv. 50.7 – 17.2 56.5 – 190.7 59.3 – 523.7 

Factory Inv. 97.1 – 18.0 113.6 – 162.0 121.0 – 441.1 

 

 

Table 5. Results of the tests when the DBR methodology is used (II): Orders Bullwhip Effect 

(Bw_O) and Inventory Bullwhip Effect (Bw_I) generated along the different nodes, in addition 

to lost sales to evaluate the performance of the supply chain (without warm-up time). 

Process Metrics 

Scenario 1 

Low variability  

[Treatment 1] 

Scenario 2 

Mid variability 

[Treatment 2] 

Scenario 3 

High variability 

[Treatment 3]   

Shop Retailer Bw_O 8.02 6.57 5.05 

Retailer Bw_O 0.80 0.81 0.83 

Wholesaler Bw_O 0.77 0.92 1.11 

Factory Bw_O 1.42 1.42 1.32 

Supply Chain Bw_O 7.03 6.94 6.15 

Supply Chain  

Lost Sales 
1 54 82 

Shop Retailer Bw_I 11.01 6.72 5.85 

Retailer Bw_I 2.61 1.85 1.56 

Wholesaler Bw_I 2.34 3.27 5.16 

Factory Bw_I 3.19 3.02 3.98 
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Figure 8. Factory production in the two tests (order-up-to inventory policy 

and DBR methodology) carried out with a N(12,3). 

The generation of the Bullwhip Effect in the supply chain and the improvements 

introduced by Goldratt’s practices in comparison with the traditional management 

policies can be shown graphically in many different ways. For example, figure 8 exhibits 

the production rate of the factory throughout the time horizon for the two tests assuming 

normal with mean 12 and standard deviation 3 in the final consumer. When the system 

works according to the order-up-to inventory policy, the factory production varies greatly: 

in most periods, it has no production needs while in some specific moments it must 

manufacture very high amounts of product. With the DBR methodology, however, 

variability in the factory production is much lower, which translates in cost savings from 

different perspective (among others, labor, inventory, and transportation costs). 

Why does such amplification occur? When the supply chain is managed according to the 

order-up-to inventory policy, the peaks in orders received for each level translate into an 

even bigger peak in orders placed by that level. The time difference is the lead time. That 

is to say, each level contributes increasing the distortion in the supply chain, and so 

decreasing the reliability of the transmitted information. When using TOC, the supply 

chain performs dramatically better. 

The other way to observe the Bullwhip Effect is through the inventory of the various 

levels. It is possible to see it, for example, by means of box plots. Figure 9 shows these 

graphs, with the average, the indicators of the first and third quartile and the upper and 
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lower limits, for the stock of the different members of the supply chain in tests with mean 

12 and standard deviation 5. It should be noted that the values lower than 0 are related to 

inventory backorders that will be met the following periods. It is enough to compare the 

vertical scale of the two graphs to observe the improvements introduced by TOC, both in 

mean and in variance. 

 

Figure 9. Box plots of the inventory level in the different members of the supply chain in the 

two tests (Order-up-to inventory policy and DBR methodology) carried out with a N(12,5). 

 

5.3. Statistical significance of results 

By looking at the plots shown above, we have visual evidence that the supply chain 

performs much better when using TOC, as commented. Nevertheless, it should be 

formally verified. The statistical tests were conducted for the different treatments, 

although they are only shown in one case, by way of example. 

First, we concentrate on missing sales at the shop retailer, which is the only point where 

the fact of missing sales is really a critical concern. When the standard deviation of the 

demand is 5, we have the distribution for the missing sales penalty in each time bucket 

(sample size N > 150, once excluded the warm-up period). We have tested the null 

hypothesis “H0: missing sales mean = 0”. For the order-up-to inventory policy, using 1-

sample t test has a pValue less than 5%, which rejects null hypothesis. So, the penalty for 

missing sales is significantly different from zero. On the other hand, running a same 

length trajectory with TOC, all time buckets, after the warm-up period, have zero lost 

sales. The conclusion is that TOC policy effectively protects the supply chain against 

losing sales, whilst this does not happen with the order-up-to policy. 
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Once we have got formal evidence that the supply chain performance significantly 

improves when applying TOC in terms of external customer satisfaction (here, 

maximizing sales by exploiting the bottleneck), we now take care of getting also formal 

evidence that this achievement is not at the expense of increasing inventory cost in the 

overall supply chain. The inventory total cost has been collected during a long (for 

example, 200 time buckets) period of time after the system warm-up, and proceed first to 

check is the variance of this metric is unequal when using TOC versus when using order-

up-to policy. We check, using a 2-variance test, the null hypothesis “H0: variance (total 

inventory cost in the supply chain) | policy = TOC) = variance (total inventory cost in 

the supply chain) | policy = order-up-to)”. Figure 10 shows that in the sample, the 

standard deviation statistic of the metric at TOC level is less than at order-up-to level; the 

Levene test shows a p-value lower than 5%; so we reject null hypothesis. Therefore, TOC 

policy induces less variance in the inventory cost (so, to the goal stock in the system). 

Figure 10 also displays the Welch’s test to compare the means. Again, we reject the null 

hypothesis “H0: mean (total inventory cost in the supply chain) | policy = TOC) = mean 

(total inventory cost in the supply chain) | policy = order-up-to)”. And, we take the 

alternative hypothesis: the total inventory cost in the supply chain is less when we use 

TOC policy. In conclusion, as expected, TOC not only gives a full protection against 

missing sales (while order-up-to does not), but besides, TOC achieve this result even 

reducing the total inventory cost (less variance and lower mean). 

 

Figure 10. Hypothesis contrast to the significant difference between  

the inventory costs and averages of both policies. 
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6. Findings, Recommendations, and Next Steps 

The new competitive environment has granted the Supply Chain Management a strategic 

role in the search for competitive advantage. For this reason, the orders variance 

amplification along the supply chain, known as the Bullwhip Effect, is an important 

concern for businesses, as it is a major cause of inefficiencies. Traditional management 

policies linked to the mass production paradigm, such as order-up-to inventory policy, 

are unsuccessful ‒as already shown in literature‒ in terms of fighting the Bullwhip Effect.  

KAOS methodology was used to devise the multi-agent simulation model carried out on 

this research. The Gall’s incremental principle (a complex system that works properly has 

evolved from a simple system which was effective) has been applied to end up with a 

highly reliable, self-controlled, tested and flexible model so to experiment TOC approach 

versus order-up-to policies for managing a multi-echelon supply chain and collect data 

evidence of system behavior. Statistical analysis has been applied to these data blocks 

taking into account the warm-up period, stability study and the final hypothesis testing to 

raise our conclusions. 

Our first finding was that the higher the final customer demand variability, the higher is 

the amplification upstream the supply chain, because each node tends to overprotect itself 

due to the fear of breaking stock. 

TOC philosophy has demonstrated in this work that is highly effective in remedying this 

issue. A dramatic improvement in the overall supply chain has been reached in several 

explored levels of external demand variability, but the more important point is that every 

level has improved its own performance by subordinating to the bottleneck. Hence, the 

best solution for the system is the best solution for each individual member. 

The major contribution of this work has been to demonstrate that considering only the 

main effects, there are enough reasons to manage the supply chain according to Goldratt's 

philosophy. 

There are plenty of model extensions and future works that this research group is 

planning as next steps on this fascinating topic.  

i. To analyze why, provided that TOC is a mature and validated theory, it is not yet 

widely used. We wonder that moving the agents away from their natural egoist 
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behavior needs some educational phases, and simulation can play an important 

role here.  

ii. To extend this model to a larger noise conditions scenario. Now the noise factors 

have been limited in the model to include only different levels of variability in the 

external demand and to keep constant the delays in the material and in the 

information flows. Of course, considering other disturbance factors like scrap, 

variability in transportation delays, errors in the information flow and other 

sources of waste in the supply chain, a comparison of system robustness using 

TOC versus other management policies can provide insights to other relevant 

findings.  

iii. To place SCM rules and controls to prevent selfish behavior of agents that could 

operate against the supply chain major interests. We also plan to explore to what 

extent agents applying fuzzy logic decision in their quest of local optima compares 

against applying holistic fuzzy logic decision making engines. Thereby, the 

concept of the Nash Equilibrium in supply chains must be introduced. 

iv. To model adaptive mechanisms on the supply chain in order to detect and react to 

bottleneck displacements; for instance, due to changes in the storage technology, 

storage policies, multimodal transportations costs and so forth.  

Even though the shift in our production and management systems was initiated after 

World War II, with lean manufacturing taking over the mass production paradigm, the 

systemic approach has spread in a very irregular way. Agent-based modeling and 

simulation is an important tool to educate people, and to contribute to create critical 

mass for a large deployment of the systemic approach, which in the end translates in a 

better skilled population to deal with complex systems like supply chains. 
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Abstract 

Since supply chains are increasingly built on complex interdependences, concerns to 

adopt new managerial approaches based on collaboration have surged. Nonetheless, 

implementing an efficient collaborative solution is a wide process where several 

obstacles must be faced. This work explores the key role of experimentation as a model-

driven decision support system for managers in the convoluted decision-making process 

required to evolve from a reductionist approach (where the overall strategy is the sum of 

individual strategies) to a holistic approach (where global optimization is sought through 

collaboration). We simulate a four-echelon supply chain within a large noise scenario, 

while a fractional factorial design of experiments (DoE) with eleven factors was used to 

explore cause-effect relationships. By providing evidence in a wide range of conditions 

of the superiority of the holistic approach, supply chain participants can be certain to 

move away from their natural reductionist behavior. Thereupon, practitioners focus on 

implementing the solution. The theory of constraints (TOC) defines an appropriate 

framework, where the Drum–Buffer–Rope (DBR) method integrates supply chain 

processes and synchronizes decisions. In addition, this work provides evidence of the 

need for aligning incentives in order to eliminate the risk to deviate. Modeling and 

simulation, especially agent-based techniques, allows practitioners to develop awareness 

of complex organizational problems. Hence, these prototypes can be interpreted as 

forceful laboratories for decision making and business transformation. 

Keywords 

Drum–Buffer–Rope; Model-driven decision support systems; OUT policy; Theory of 

constraints; Throughput accounting. 
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1. Introduction 

Reductionism and holism represent two opposite philosophical approaches to problem 

solving. While the former is based on the “divide and conquer” paradigm (breaking down 

the problem into simpler and smaller parts), the latter underscores the idea that systems 

must be viewed as a whole and not as collection of parts. In this sense, when reductionism 

is applied to Supply Chain Management (SCM), the overall strategy is obtained as a sum 

of the individual strategies of the companies that conform the supply chain (i.e. local 

optimization). On the contrary, in a holistic context, these individual strategies are the 

result of an overall strategy defined by collaboration (i.e. global optimization). Therefore, 

supply chain members must tackle a dilemma [1]: deciding between favoring decisions 

which go in their own interest and accommodating those that consider the interest of the 

system as a whole.  

Given that supply chains are growingly built on interrelationships, practitioners widely 

accept that holistic approaches play a crucial role in improving overall performance. 

Nevertheless, even though it might seem counterintuitive, reductionism is still widespread 

in real systems [2]. This approach results in a Nash equilibrium, which brings lower 

overall performance [3]. If each member ignores the impact of its actions on the other 

echelons, the maximization of individual metrics often occurs at the expense of the entire 

supply chain performance [4]. In this sense, local optimization has shown to be a major 

source of inefficiencies, such as the well-known Bullwhip Effect [5], that define a set of 

common issues faced by real supply chains –e.g. excessive inventories, low customer 

service level, and high production variability. 

Under these circumstances, collaboration stands out as a key source of competitive 

advantages. This research work explores the key role of experimentation through Agent-

Based Modeling (ABM) [6] as a powerful model-driven decision support system [7] for 

managers in the complex decision-making process of adopting a collaborative solution 

within the supply chain. These computer-based prototypes can be interpreted as forceful 

and risk-free laboratories for business transformation.  

Firstly, this article aims to provide evidence of the fact that holistic approaches clearly 

outperform reductionist ones from an economic perspective. In addition, it uses 

experimentation techniques to define the sources where the upgrade is based on. It is only 
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by understanding the improvement that supply chain actors can be certain when moving 

away from their natural reductionist behavior.  

Once developed the awareness of practitioners through the economic comparison, they 

focus on adopting holistic solutions. The implementation of efficient solutions is a wide 

process that requires an integrative schema, where information sharing must be 

understood as an enabler. In this sense, experimentation aims to motivate the confidence 

between supply chain echelons. It is relevant to underline that the efficiency of the 

collaborative solution depends not only on the technical component but also on the 

acceptance level of the decision makers. 

From that point on, adopting holistic approaches requires to integrate processes, 

synchronize decisions, and set up systemic performance indicators. This paper shows how 

to use the Theory of Constraints (TOC) [8] with that goal through modeling techniques, 

which has been compared to the inventory cost-optimal Order-Up-To (OUT) policy [9]. 

That is, TOC allows participants to define a systemic methodology to tackle the 

previously identified issues. This production paradigm manages the supply chain flows 

through the Drum-Buffer-Rope (DBR) method with a focus on the bottleneck and defines 

a systemic scorecard through the Throughput Accounting (TA).  

However, this is not enough. If there are huge differences in how the echelons benefit 

from collaboration, the holistic approach would not be viable. That is, collaboration must 

be aimed at achieving the optimal through a Nash equilibrium where the incentives to 

deviate are eliminated. For this reason, we last focus on the concept of “incentive 

alignment” [10]. The profit increase must reward the contribution of each node in order 

to avoid opportunistic behaviors. Agent-based prototypes can lead the supply chain to 

modify its costs structure with this aim.   

By way of summary, Figure 1 describes the decision map of this research and shows how 

experimentation conducts, in each step, the adoption of a holistic management. This 

graph, assuming the reductionist approach is the baseline, underscores the need for five 

connecting features in order to implement efficient collaborative solutions [10]. 
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Figure 1. Decision map of this research, which highlights the role of experimentation. 

2. Background: Literature Review 

Some key points of the research context are described below. We first present the main 

dilemma faced by supply chain members. Next, we introduce an integrative framework 

to take advantage of the collaborative approach. Lastly, the TOC is detailed as a systemic 

method to combat the issues derived from the reductionist approach.  

2.1. The dilemma of supply chain practitioners 

The main goal of companies is to make money now and in future [8]. To accomplish this 

objective, they can adopt two positions. This is the so-called dilemma [1]. This inherent 

decision for supply chain members can be expressed by Figure 2.  

The traditional approach to face this dilemma (to maximize individual performance) 

consists in seeking for protecting their individual profitability [4]. This reductionist 

behavior provokes win-lose games, in which each member looks for its own bargain at 

the expense of its partners [11]. Local optimization results in multiple forecasting, price 

fluctuations, and rationing games that (strengthened by order batching and lead times) 

translate into information distortion along the supply chain. This causes dramatic 

inefficiencies within the system, through the well-known Bullwhip Effect [12], e.g. low 

service levels and excessive fluctuations in inventories and orders.  

From a holistic perspective, the various supply chain echelons understand that the best 

solution for the whole system leads to the best solution for them. Therefore, in order to 

maximize profit, they make decisions considering the global profitability, namely they 

use systemic performance metrics [1]. In a collaborative way, supply chain participants 
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coordinate their processes and synchronize their decisions aimed at revenues from final 

customers instead of their own sales [4]. 

 

Figure 2. The dilemma of supply chain nodes through an evaporating cloud (adapted from [1]). 

2.2. An integrative framework for supply chain collaboration 

The literature on the subject mostly assumes holistic methods to outperform traditional 

management policies (based on reductionist principles) in terms of overall supply chain 

performance. However, practitioners find it difficult to address the issue of supply chain 

collaboration, which justifies why, even shown it superiority, it is not widespread in 

practice [13]. If a robust solution is not found, the menace of opportunistic behaviors 

arises, which creates an environment of uncertainty and complexity such that the cost of 

transacting under this context involves additional risk and expense [14]. Namely, the 

effectiveness of collaboration relies not only upon the integration of operations, but also 

upon the level to which efforts are aligned [13].  

This fact highlights the relevance of defining an appropriate framework for supply chain 

collaboration where to obtain competitive advantages by working together [4]. This must 

be integrative, i.e. connecting different features of collaboration, such as the one proposed 

by Simatupang and Sridharan [10], which considers five edges: 

i. Information sharing, defined as the access to private data in all members’ systems 

creating visibility at the different nodes on the overall system state.   

ii. Decision synchronization, which refers to the extent to which the various echelons 

can orchestrate critical decisions at planning and execution levels. 

iii. Incentive alignment, achieved through the process of sharing costs, risks, and 

benefits among the various participants in an equitable manner. 
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iv. Integrated processes, i.e. the design of the efficient supply chain flow that delivers 

products to end customers in a timely manner at lower costs. 

v. Systemic performance indicators, understood as the process of devising and 

implementing metrics that guide members to improve overall performance. 

2.3. The Theory of Constraints (TOC) in Supply Chain Management (SCM) 

The TOC, presented by E. M. Goldratt [8], meant a major innovation in the production 

field. This management philosophy views any system as being limited in reaching a 

higher performance only by its bottleneck. Although it was first oriented on the 

manufacturing system, further development incorporates solutions for other business 

areas, such as SCM [15]. The TOC holistic paradigm has been shown to achieve 

breakthrough improvements in comparison with mass production alternatives in terms of 

lead time reduction, customer service level increase, and throughput growth [16].  

For this reason, the TOC can be presented as the core of the collaborative solution, 

namely, it allows managers to integrate processes, synchronize decisions and set up a 

performance system [1]. Its logical thinking is expressed as a continuous improvement 

cycle with five steps [8]:  

i. To identify the bottleneck. 

ii. To decide how to exploit the bottleneck. 

iii. To subordinate everything else in the system to the previous step. 

iv. To elevate the bottleneck. 

v. To evaluate if the bottleneck has been broken, and return to the beginning. 

To manage the system, the TOC proposes the DBR methodology [8]. This pull-oriented 

strategy (i.e. replenishment is based on actual demand instead of on the forecast) aims to 

manage properly the bottleneck (ensuring its steady supply) through suitable 

coordination. It is named by its three main components. The drum, placed at the 

bottleneck, is a system pacemaker. The rest of the nodes follow its beat (production rate). 

The buffer protects the drum against variability, so that the full capacity in the bottleneck 

is exploited. The rope is the release mechanism that subordinates the entire system to the 

drum. The DBR configuration (planning state) is complemented with the buffer 

management (monitoring stage), which implies administrating the buffer along the 
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different nodes in order to guide how the system is tuned for peak performance. Applying 

this method along the supply chain warrants the concentration of all members to what 

matters for the system as a whole [2].  

In addition, the TOC defines a collaborative performance system to measure how the 

company performs. Unlike cost accounting (aimed at cost reduction), the TA [17] seeks 

to maximize the efficiency of the flow of value. Hence inventory is not considered as an 

asset, but a liability. The TA aims to enable managers to examine the link between process 

constraints and financial performance in decision making, i.e. to determine the real impact 

of their decisions. Three financial measures are proposed as complementary indicators: 

net profit (absolute terms), return on investment (relative terms), and cash flow (survival 

terms). The operational decisions are related to overall system success through the “cost 

bridge”, defined by three metrics [17]:  

i. Throughput: the rate at which the system generates money through sales, i.e. the 

difference between the revenue and the total variable costs.  

ii. Inventory: it includes not only raw material, work-in-progress, and finished goods 

stock but also all other invested money in the supply chain. 

iii. Operating Expense: all the money the system spends in order to turn inventory 

into throughput, e.g. transformation and shipping costs.  

3. Problem Formulation: Supply Chain Model 

This section is devoted to detail the conceptual model of the agent-based supply chain 

that has been developed in this research, as well as the wide context where to confirm 

economic robustness of the results.  

3.1. Supply chain scenario: Assumptions and scope 

In the same line as other relevant and recent studies [18], the supply chain has been 

analyzed under the Beer Game environment [19]. This is a traditional single-product 

supply chain with a serial structure formed by four echelons (factory, distributor, 

wholesaler, and retailer). With the aim of bringing it closer to reality, the noise sources 

have been expanded in order to consider common hurdles in real supply chains. It can be 

called the noise-extended Beer Game environment. The assumptions are as follows:  
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i. Stochastic customer demand. Specifically, a normal distribution simulates 

demand. Both mean and standard deviation are selected by the experimenter. 

ii. Stochastic lead time. Each node receives both product and orders within a time 

range (set by the user) after sent, defined by a continuous uniform distribution. 

iii. Stochastic failure of products. In each product’s action (including storage and 

transport) along the supply chain, there is a probability of failure, defined by the 

defective products rate, which is set by the experimenter. 

iv. Constrained production (factory) and transportation (between the various 

echelons) capacity. The user defines these quantity limitations. However, 

unconstrained storage capacity has been considered. 

v. Non-negative condition of the order quantity. Each member cannot return the 

product to its supplier. 

 

Figure 3. Scope of the research, by means of a parameter diagram. 

Figure 3 displays the parameter diagram that describes the scope of this study. In the 

center, it shows the overall system function responsible for transforming raw materials 

into finished products. Among the nodes, the material flow (from the factory to the 

retailer) refers to the shipping of the product, while the information flow (in the opposite 
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direction) represents the orders. At the top part, the noise sources (uncontrollable factors) 

that threaten the supply chain can be seen divided into internal (lead times, defective 

products, and storage) and external (demand variability, transport, and raw materials). At 

the bottom part, the parametric space (controllable factors) highlights the factors to be 

modified. The extensive costs scenario and the performance (both financial and 

operational) metrics explained below are also shown. 

3.2. Economic model and performance metrics 

The economic model seeks to imitate the main revenues and costs faced by real supply 

chain members. Income in the overall system is only generated through selling the 

product (to customer). In each node, money is made by sales to the next echelon. 

Expenditure is incurred in three ways: storage, transport, and provisioning. All of them 

have been considered to be proportional. Obviously, the provisioning cost of each echelon 

means the income for the previous one. Hence, a pricing system must be defined in the 

supply chain. All these economic parameters are set by the user.  

As explained, the TA is supported on three operational measures. According to TOC 

principles, the throughput is the difference between the revenue through sales (selling 

price times sales quantity) and the variable costs related to purchases (buying price times 

purchase quantity). Note that the gap between sales and purchase quantities is due to 

defective products and storage. The operating expense is calculated by adding storage and 

transport costs, as both are assumed to transform inventory into throughput. In the 

reductionist approach, this expense is adjusted by the difference between the money paid 

and received due to backorder penalty (as it is a usual practice in reductionist systems). 

Finally, the inventory in terms of TA is obtained by estimating the economic value of the 

products that are stored in each node.  

From that point on, the key financial indicators can be easily obtained [17]. The net profit 

is expressed as the difference between throughput and operating expense, the cash flow 

considers, besides the above difference, the change of investment in the same horizon, 

and the return on investment is the net profit divided by the inventory. These metrics can 

be obtained for the overall supply chain (in the holistic supply chain) or node by node (in 

the reductionist system).  
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Figure 4 outlines the economic model of the supply chain, including the three operating 

metrics and the main financial measure (net profit).  

 

Figure 4. Overview of the economic model of the supply chain, with the operating metrics.  

3.3. Reductionist approach: The Order-Up-To (OUT) inventory policy 

In the non-collaborative management, each supply chain echelon communicates only 

with the previous one (to receive an order and to send the product) and with the next one 

(to place an order and to receive the product). Therefore, customer demand is only known 

by the retailer. In this mode, orders not fulfilled in time are backlogged, as usual in these 

replenishment models [9]. In each node, these backorders (involving an economic 

penalty) are fulfilled as soon as on-hand inventory becomes available. 

This approach has been implemented through the OUT method. These policies are often 

used in the real world, given the usual practice in retailing to replenish very frequently 

[5] and because it is optimal in terms of inventory and shortage costs [20].  

 The classic OUT method is a periodic review system for issuing orders depending on 

demand forecasting and (both on-hand and on-order) inventory position, in order to bring 

the inventory position up to a defined level. That is, the order rate is the sum of the 

forecast, the gap between actual and target net stock (on-hand inventory), and the 

discrepancy between actual and target work-in-progress (on-order inventory). In this 

research, the demand has been forecast using a three-period moving average. 

Both the target work-in-progress and the target net stock (a safety stock) are considered 

to be variables. Its sum to the forecast defines the OUT point. The former aims to cover 

the lead time between nodes, so it is easily estimated as the forecast times the average 
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shipping lead time. The latter is aimed to protect supply chain nodes from demand 

variability and from internal noise sources (variability in lead times and defective in 

products).  It is proportional to the demand standard deviation, to the lead time range, and 

to the estimated defective products. Each term in multiplied by the parameter Z, set by 

the user and related to the desired service level.  

In the reductionist system, the discrete operation (sequence of events) of each node is 

summarized by Figure 5 for the distributor. At the beginning of each period, the product 

is received from the factory and it is stocked up. Then, the order is received from the 

wholesaler, and the net stock is checked in order to prepare the shipping. If the order can 

be fulfilled (besides considering previous backlog), the required quantity is sent; 

otherwise, backlog is generated and the available product is shipped. The next steps 

depend on the previously explained OUT policy. Notice both flows are delayed due to 

the lead time. The operation is similar for the other nodes.  

 

Figure 5. Sequence of events for the distributor when applying the OUT policy. 

3.4. Holistic approach: The Drum-Buffer-Rope (DBR) methodology 

Under the collaborative approach, the system is ruled by a kind of headquarters that 

accounts for the interest of the whole supply chain, taking decisions on the basis of greater 

visibility (supported by information sharing). Accordingly, the various nodes behave as 

required to protect the overall supply chain function.  
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From that point on, the holistic approach has been implemented through TOC principles, 

which are based on prioritizing the system bottleneck. In particular, the DBR method 

leads to both synchronize the entire sequence of integrated activities required to deliver 

products and to create effective processes aimed at achieving breakthrough improvements 

in system performance and reliability [21]. 

According to TOC logical thinking, the first step is to identify the bottleneck. In supply 

chains, the bottleneck tends to be the sales constraint as (production, transport, and 

storage) capacities are usually higher than demand [22]. Under this scenario, the demand 

is an external constraint beyond the supply chain sphere of influence. Hence, the 

bottleneck cannot be elevated or broken, and consequently the fourth and fifth steps of 

the improvement cycle are not required.  

That is, the key points are the second and third steps, which define the sequence of events 

through the DBR method. On the one hand, the supply chain must efficiently exploit the 

bottleneck. This means to sell the product at the retailer, i.e. to minimize lost sales. To 

this end, the drum is placed at the retailer. This must beat out (define) the production and 

distribution rate for the whole system according to the actual demand. On the other hand, 

the other nodes must be subordinated to the bottleneck. In this sense, the retailer is 

protected from shortages, and thus the supply chain as a whole, against variation.  

To subordinate the factory, the distributor, and the wholesaler to the bottleneck, we need 

the buffer and the rope [23]. The buffer is aimed at protecting the bottleneck through time. 

Uncertainty in the supply chain (demand, lead times, and defective products) must not 

increase lost sales. Thus, the buffer refers to the time period between releasing the 

material and the drum due date. For each node, the buffer considers the maximum lead 

time between itself and the customer. The rope is the release timing. It can be understood 

as a real-time feedback between the drum and the node operation. It should be noted that 

the rope length covers the same as the buffer duration. Tying the rope ensures that excess 

flow cannot be admitted. In this sense, the rope defines how much to order: the difference 

between the desired (considering the drum rate along the buffer time, and a safety stock 

to protect against demand variability and defective products) and the actual (sum of the 

net stock and shipping product) supply chain inventory. As the overall inventory is 

constrained, the Bullwhip Effect is dramatically reduced.  
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This DBR configuration, where the systemic condition to tie the different members 

through time (not by product) is established, is the planning stage. It is aimed to operate 

the system. Subsequently, a second stage is required each time period [2]. In the control 

stage (aimed at keeping a running check of the system efficiency), the buffer is managed 

along the intermediate members. Buffer management consists in moving the flow so that 

arrival happens on time at the bottleneck. 

 

Figure 6a. Overview of the supply chain, when working according to the OUT policy.  

 

 

Figure 6b. Overview of the supply chain, when working according to the DBR methodology.  
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The main ideas explained above are displayed in Figure 6b (it highlights the role of the 

three main components of the DBR method) in contrast to Figure 6a, which shows the 

basic ideas of the OUT policy. It should be noted that the factory decides the production 

orders that are placed based on the recent demand, while the rest of the nodes compensate 

the flow dissipated downstream after shipping. They calculate the rope length to the drum 

position, and make the order decision based on its downstream buffer to the bottleneck. 

This way, each supply chain member decides the quantity to dose subordinated to the 

bottleneck, so these dissipative orders do not have lead time nor generate backorders since 

the next dosage again obey the bottleneck [24]. On the contrary, note that in the 

reductionist system the nodes consider the upcoming demand and local inventories to 

order. Youngman [22] has developed an outstanding guide for TOC implementation in 

production and distribution systems, which can be consulted to get further detail.  

4. Agent-Based Development of the System 

In order to carry out the experimental approach aimed at comparing a supply chain 

managed using the OUT policy versus the same system ruled by TOC principles, the 

noise-extended Beer Game environment was required to be modeled. From the different 

available alternatives to create this model, we chose ABM [6].  

ABM is a decentralized approach to model design emerging analytical method for social 

sciences, aimed at simulating the actions and interactions of autonomous agents (between 

them and with the environment) with a view to assessing their effects on the system as a 

whole [6]. This modeling approach follows the underlying notion that complex systems 

are built bottom-up. ABM fits in computational science [25] and is a very suitable 

approach when the problem is intractable by analytical tools, when the theoretical 

approach might be not reliable, or the experimentation with a real system is unfeasible or 

costly; all of which apply in our case. Actually, ABM is largely used to analyze the 

complex behavior of supply chains [26].  

As ABM has its roots in Complex Adaptive Systems [27], we have extensively used these 

mechanisms to build our model: the agents are tagged (can be distinguished), they have 

internal and polymorphous rules to represent decision making, and the model is created 

by using building-blocks (aggregating simpler reusable components). The system has 

been implemented using NetLogo 5.1.0 [28]. NetLogo is a multi-agent programmable 
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modeling environment continuously developed by the Center for Connected Learning and 

Computer-Based Model (Northwestern University). 

We have used different breeds (types) of agents to represent the system, such as actors 

(supply chain echelons), events (that trigger the action), entities (representing material 

and orders), records (performance metrics), and police (for controlling and debugging). 

Each one has its own attributes and methods. Thus, agents are heterogeneous [29]. 

The engineering of the agent-based model consists in making the agents to follow 

discrete-event cues and make them behave as finite-state machines. For this reason, a 

Future Event List (FEL) artifact is a core feature in the model, as it cares about cueing 

future events to deploy action. In addition, the model is based on a finite-state engine, 

which makes actors roam through a cyclic map of states to perform the previously defined 

sequence of events (see Figures 5 and 6). At the beginning of each cycle (local for each 

agent), the agent is idle. At the end, it reports the main results. Therefore, agents are 

autonomous [30] in terms of their decision making. 

Two essential phases in modeling are verification (checking cohesion and consistency) 

and validation (predictions must match the reality). In this regard, the model was 

developed following strict rules of clean code, test-driven development, and robust 

engineering. We used anti-error mechanisms (e.g. cross checking) for early detection of 

system malfunctions. In addition, several acceptance tests have been used to confirm that 

the model exhibits a known behavior when exposed to controlled conditions.  

5. Simulation Study and Discussion of Results 

This section presents the Design of Experiments (DoE), shows the results obtained in this 

research work, and discusses them based on the stated objectives.  

5.1. Design of Experiments (DoE) 

This DoE aims to assess the impact of moving from the OUT policy to a DBR-managed 

supply chain in a wide variety of scenarios, both from an overall and a node-by-node 

perspective. Using Goldratt’s principles, results (Y) are expressed in terms of net profit 

(NP) in the entire supply chain (i=0) and in the four members (i=1,…,4). This larger-the-

better indicator represents the critical concern the various supply chain members. 
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The experimentation approach shown in Eq. (1) is defined as a function of eleven 

variables. In other words, treatments have been performed on different scenarios defined 

by the combination of eleven factors; see the parameter diagram in Figure 3. Four of them 

are controllable: management policy (X1), production capacity (X2), transport capacity 

(X3), and Z safety parameter (X4). The remaining seven factors are noise: standard 

deviation of the demand (Z5), transport cost (Z6), storage cost (Z7), defective product rate 

(Z8), gross margin of the supply chain echelons (Z9), range of the order lead time (Z10), 

and range of the product lead time (Z11). All of them are real factors except X1 that is a 

categorical variable. It should also be considered the unexplained part of the system 

response, i.e. the residuals (𝜉). Therefore, it is a fractional factorial DoE with eleven 

factors. 

𝑌 = [𝑁𝑃𝑖]𝑖=0
𝑖=4 = 𝑓(𝑋1, 𝑋2, 𝑋3, 𝑋4, 𝑍5, 𝑍6, 𝑍7, 𝑍8, 𝑍9, 𝑍10, 𝑍11) + 𝜉 (1) 

Each factor in the DoE has two levels. Table 1 outlines the levels that have been defined. 

We have sought for wide enough ranges in these variables where to derive conclusions 

with general implications for real supply chains. Note that we have selected as fixed those 

factors that act like an anchor for the others, see Table 1. 

We have employed 10 and 30 as values for the standard deviation of the demand, since 

the coefficient of variation (i.e. the ratio of the standard deviation to the mean of the 

demand, which is 100) of retail series is usually lower than 50% [5]. Regarding the 

capacities, the lower level introduces a significant constraint in the system (40% greater 

than the average demand, which reduces the supply chain ability to react when backlog 

occurs especially when suffering from the Bullwhip Effect), while the higher level creates 

an unconstrained environment. In terms of the safety stock, the use of 90% (it is 

considered that lower values provoke a high number of lost sales) and 99% (it is 

considered that greater values result in excessive storage costs) to define the interval of 

target customer service levels is common both in research studies and in practice [31].  

Although the range of the order lead time is usually considered as null (i.e. fixed lead 

time, level 1 in our DoE), we have also chosen a range of 1 (level 2) to analyze the impact 

of this variable. At the same time and since the minimum value is 4, the range of the 

product (shipping) lead time varies between 1 (low variability; lead time between 4 and 

5) and 4 (high variability; lead time between 4 and 8). These ranges can be understood as 



 

 
186 

common in practice; e.g. see [32]. In terms of the defective product rate per time unit, we 

have selected an interval from 500 to 6,000 parts per million, since the model have been 

designed to usually operate within the industry-average area in the six-sigma scale [33]. 

From this point on, the model may explore other points either in the best-in-class area or 

in the non-competitive area of the six-sigma scale. 

Regarding the economic factors, the unit material cost ($0.40) sets the economic scale. 

The unit gross margin per node has been decided to cover an interval from the 50% to the 

150% of the material cost, while the ratio of the transport and storage costs per period 

have been chosen to be between 0.5% and 2.5%. Nonetheless, the economic values are 

meaningless in their selves, but the relevant point is their financial implications on the 

supply chain. For example, the Return on Sales (ratio of the operating profit to the sales 

revenue) in the tests performed varies from -4% to 70%, which can be assume to largely 

cover the usual financial situation of real systems.  

Table 1. DoE: Definition of the factors and levels. 

Factor Role Level 1 (Low*) Level 2 (High*) 

Management policy (X1) Controllable Holism - DBR Reduct. - OUT 

Production capacity (X2) Controllable 140 u 9876 u  

Transport capacity (X3) Controllable 140 u 9876 u 

Z safety parameter (X4) Controllable 1.282 (90%) 2.326 (99%) 

St. Dev. of the demand (Z5) External Noise 10 u 30 u  

Transport cost (Z6) External Noise 0.002 $/u/period 0.01 $/u/period 

Storage cost (Z7) Internal Noise 0.002 $/u/period 0.01 $/u/period 

Defective products rate (Z8) Internal Noise 500 ppm  6000 ppm  

Gross margin (Z9) Internal Noise 0.20 $/u 0.60 $/u  

Order lead time: Range (Z10) Internal Noise 0 periods 1 period  

Product lead time: Range (Z11) Internal Noise 1 period 4 period 

Mean of the demand (Fixed) External Noise 100 u  

Material cost (Fixed) External Noise 0.40 $/u  

Order lead time: Min (Fixed) Internal Noise 1 period  

Product lead time: Min (Fixed) Internal Noise 4 periods**  

Backorder penalty (Fixed) Internal Noise 0.04 $/u/period  

Note: (*): “Low” and “high” refers only to the categorical variables; (**): Except in the factory, where the 

product lead time is 10; (1): The fractional factorial DoE requires the use of mid levels in numerical factors. 

According to the standard logic, we have chosen the following values: X2 - 180 u; X3 - 180 u; X4 - 1.64 

(95%); Z5 - 22 u; Z6 - 0.006 $/u/period; Z7 - 0.006 $/u/period; Z8 - 2000 ppm; Z9 - 0.60 $/u; Z10 - 0 

periods; Z11 - 2 periods. 
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5.2. Layout and results 

Following Fisher’s strategy [34], an 18-row orthogonal inner array (block 1) has been 

created. Each row represents a treatment defined by a different combination of factors. 

This technique allows one to draw conclusions from a broad design space exploring some 

strategic points. In addition, 6 additional runs have been carried out (block 2). These are 

the same intermediate treatment replicated three times for both management approaches, 

with the aim of checking consistency of results and system stability. The former was 

verified through a 2-variance Levene test, which showed that differences are not 

significant. Regarding the latter, we verified there is not lack-of-fit problem. A time 

horizon of 250 periods was used for each treatment. Table 2a displays the layout and 

Table 2b shows the results. These tables highlight the collaborative treatments. 

Table 2a. DoE: Inner array (orthogonal matrix). 

Run X1 X2 X3 X4 Z5 Z6 Z7 Z8 Z9 Z10 Z11 

1 OUT Low Mid Low Low High High Low High Low Low 

2 DBR High High Low Low High Low High High Low Low 

3 DBR Low High High Low High High Low Low High High 

4 DBR High Low Low Low Low High Low Low Low High 

5 OUT High Low High Low Low Low High High High High 

6 OUT Low Low High Low High Low High Mid Low Low 

7 DBR Low High High High Low High Low High High Low 

8 DBR Low Low Low Mid Low High High High High Low 

9 OUT High High High High High High High High Low High 

10 DBR Low Low High High High Mid High Low Low High 

11 OUT Low Low Low High High Low Low Low High Low 

12 OUT High High Low High High High High Low High Low 

13 DBR Low High Low High Low Low High Low Low Low 

14 OUT High Low High High Low High Low Low Low Low 

15 OUT Low High Low High Low Low Low High Low High 

16 DBR High Low Low High High Low Low High High High 

17 OUT Low High Low Low Low High High Low High High 

18 DBR High High High Low Low Low Low Low High Low 

19 OUT Mid Mid Mid Mid Mid Mid Mid Mid Mid Mid 

20 DBR Mid Mid Mid Mid Mid Mid Mid Mid Mid Mid 

21 OUT Mid Mid Mid Mid Mid Mid Mid Mid Mid Mid 

22 DBR Mid Mid Mid Mid Mid Mid Mid Mid Mid Mid 

23 OUT Mid Mid Mid Mid Mid Mid Mid Mid Mid Mid 

24 DBR Mid Mid Mid Mid Mid Mid Mid Mid Mid Mid 
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Table 2b. DoE: Results of the different treatments. 

Run X1 NP SC NP Fact NP Dist NP Whol NP Ret 

1 OUT $27,044.56 $5,718.33 $4,945.86 $7,264.44 $9,115.93 

2 DBR $43,686.43 $16,154.12 $8,339.36 $10,318.59 $8,874.36 

3 DBR $8,205.18 $3,536.14 $947.53 $2,390.29 $1,331.22 

4 DBR $11,757.21 $3,002.22 $2,859.05 $2,887.18 $3,008.76 

5 OUT $34,762.44 $8,875.50 $7,079.23 $9,812.19 $8,995.52 

6 OUT $16,271.97 $4,440.30 $1,683.10 $4,602.04 $5,546.53 

7 DBR $49,044.95 $13,823.97 $11,912.50 $11,968.64 $11,339.84 

8 DBR $46,234.37 $15,300.15 $11,221.03 $10,699.88 $9,013.31 

9 OUT $18,000.34 $287.99 $2,652.27 $7,475.88 $7,584.20 

10 DBR $2,299.29 $4,418.99 $-1,799.86 $1,037.15 $-1,356.99 

11 OUT $8,971.63 $1,816.87 $101.50 $3,565.77 $3,487.49 

12 OUT $-2,972.76 $-4,309.84 $-2,871.24 $1,921.81 $2,286.51 

13 DBR $11,144.96 $5,062.66 $1,577.08 $2,260.19 $2,245.03 

14 OUT $3,896.98 $-4,974.51 $1,606.11 $3,587.80 $3,677.58 

15 OUT $33,491.43 $7,596.18 $6,918.58 $9,335.48 $9,641.19 

16 DBR $45,336.74 $14,061.00 $9,395.73 $11,464.13 $10,415.88 

17 OUT $5,176.96 $-331.77 $-23.12 $2,230.43 $3,301.42 

18 DBR $15,503.55 $4,411.51 $3,628.99 $3,857.10 $3,605.95 

19 OUT $16,697.15 $2,800.37 $2,890.40 $5,280.46 $5,725.92 

20 DBR $28,205.50 $8,521.28 $6,279.26 $7,047.98 $6,357.07 

21 OUT $16,547.36 $2,215.26 $3,078.03 $5,515.68 $5,738.39 

22 DBR $27,655.38 $8,431.51 $5,798.61 $7,047.75 $6,377.51 

23 OUT $16,094.82 $1,977.17 $3,007.92 $5,249.42 $5,860.31 

24 DBR $27,032.78 $8,601.08 $5,571.46 $6,613.59 $6,246.65 

Note: “NP SC” represents the overall net profit of the supply chain, while the last four columns show the 

net profit of the four supply chain members. A more detailed version of the results is available upon request.  

5.3. Overall analysis of the results 

First, we focus on the results of the entire supply chain. Broadly speaking, this 

experimentation provides evidence about the sound impact of DBR application to 

improve supply chain profitability in comparison with the OUT inventory policy. While 

the average net profit is $26,342.20 when DBR manages the supply chain, it is $16,165.24 

when the OUT inventory policy is applied in each participant. This means an 

improvement of 63%. Nonetheless these impressions must be verified statistically. Due 

to this reason, Yates’ algorithm was applied to compute the estimates of main effects in 

this factorial experiment. JMP [35] statistical software has been used. 
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Figure 7. Summary of the Yates’ results that confirm the validity of the linear model obtained. 

Figure 7 shows that a linear model is enough to explain the results obtained. As the 

coefficient of determination (R2) is considerably high, the variability is more absorbed 

through the model than by the residual. Hence, there is a large capacity to explain system 

response between controllable and noise factors. The ANOVA study concludes that the 

model is relevant (p-value significantly lower than 5%). 

Table 3 displays the effect diagram, with the parameter estimates (and the standard error), 

the t-ratio (which tells about the relative importance of each factor), and the p-value. This 

shows six significant factors at the confidence level 95%. As expected, the management 

policy is one of them. This one and the gross margin are the more relevant factors. That 

is, the main hypothesis is confirmed: the holistic DBR method significantly outperforms 

the reductionist OUT. On the other hand, although both are relevant, transport cost has 

shown to be more important than storage cost, while the range of the order lead time has 

a higher impact than the one of the product lead time. 

Figure 8 exhibits the main effects plot. It graphically shows the influence of the various 

controllable and noise factors on supply chain net profit. It should be remarked that, 

according to the main goal of the paper, it represents the screening. Hence some of the 

effects that can be seen are negligible. Note that neither the production nor the 

transportation capacities have proven to be significant. Surprisingly, the Z safety 

parameter does not have a considerable impact on the net profit, while this metric does 

not have a significant relationship with the standard deviation of the demand. In addition, 

it is not possible to verify, at the confidence level 95%, a great negative effect caused by 

the defective product rate on the net profit. 
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Table 3. DoE screening: Effect analysis for the whole supply chain net profit. 

Factor Estimate  Std Error t-ratio p-value 

Intercept 4,864.30 3,535.65 1.38 0.1940 

Management policy (X1) (*) -5,190.72 574.69 -9.03 0.0000 

Production capacity (X2) -0.09 0.13 -0.70 0.4991 

Transport capacity (X3) -0.18 0.13 -1.35 0.2019 

Z safety parameter (X4) -1,911.71 1,273.53 -1.50 0.1592 

St. Dev. of the demand (Z5) -50.23 67.86 -0.74 0.4734 

Transport cost (Z6) -624,120.30 166,365.90 -3.75 0.0028 

Storage cost (Z7) -462,745.70 171,117.30 -2.70 0.0192 

Defective products rate (Z8) -0.50 0.24 -2.08 0.0596 

Gross margin (Z9) 77,435.22 3,413.62 22.68 0.0000 

Order lead time: Range (Z10) 4,743.19 1,241.29 3.82 0.0024 

Product lead time: Range (Z11) -1,035.85 442.83 -2.34 0.0374 

Note: (*): In this categorical variable, the results refer to OUT in comparison with DBR; (1): This table 

highlights the significant factors at the confidence level 95%. 

 

Figure 8. DoE screening: Main effects of the different factors on supply chain performance. 

5.4 Understanding the improvement 

The previous results demonstrate the improvement induced by the holistic management 

on the supply chain in economic terms, but how is this achieved? To answer this question, 

we focus on block 2 of the DoE: the central points. Table 4 shows the average and the 

standard deviation of the operational indicators in these tests when the system is managed 

through the OUT replenishment policy (runs 19, 21, and 23) and the DBR methodology 

(runs 20, 22, 24). 
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Table 4. Operational indicators in block 2: mean and standard deviation (in brackets). 

Management policy (X1) 
Throughput 

Operating 

Expense 
Inventory 

OUT inventory policy $24,249.30 

($328.35) 

$5,319.94 

($312.79) 

$2,830.00 

($428.00) 

DBR methodology $35,193.20 

($187.48) 

$4,579.09 

($71.29) 

$2,882.53 

($50.97) 

 

These results outline that the net profit grows due to two reasons: the throughput tends to 

increase, and the operating expense tends to decrease. Nonetheless, the contribution of 

the throughput has a greater significance. It is not a surprise: the TOC proposes an 

innovative management focused on increasing the throughput, whereas traditional 

practices are aimed at cutting costs. However, and paradoxically, the DBR method also 

leads to a cost reduction. Table 5 helps to interpret these results, displaying some key 

indicators that underline the differences between both approaches. 

The increase in the throughput comes mainly from the rise in the total sales in the system, 

i.e. the reduction in lost sales achieved by the DBR method. Note that the increase by 

25% in total sales translates into a higher increase (45%) in the throughput due to the 

operating leverage. The large amount of lost sales, even when working with high service 

levels, within the reductionist system is a direct consequence of the problems caused by 

the Bullwhip Effect (variability along the supply chain is significantly higher). Notice lost 

sales increase dramatically even though the inventory level is similar (see the inventory 

in Table 4, or the average time in the system in Table 5), since it is not appropriately 

distributed in the supply chain to protect the bottleneck. 

Table 5. Total sales, average time in the system (per unit), rolled throughput yield (RTY, or 

percentage of defect free units), and Bullwhip Effect (ratio between the variance of the overall 

inventory and the variance of the demand): mean and standard deviation (in brackets). 

Management policy (X1) 
Total sales 

Average time 

in the system 
RTY 

Bullwhip 

Effect 

OUT inventory policy 22,027.0 

(536.6) 

58.07 (10.12) 89.84% 

(0.82%) 

392.21 

(48.35) 

DBR methodology 27,552.7 

(90.0) 

34.16 (0.89) 93.37% 

(0.23%) 

127.48 

(49.36) 
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A growth in sales usually leads to an increase in operating expense. However, it does not 

occur in this case. The reason is the total time of the product in the supply chain. With the 

OUT policy, the product tends to be unnecessarily (far from the customer) stored, and 

consequently the percentage of defective products increases (i.e. the rolled throughput 

yield reduces). As a result of both effects, storage costs are dramatically higher in the 

reductionist approach. 

It can also be noticed from inspection of Tables 4 and 5 that variations in results are 

smaller with the DBR method. That is, the reductionist approach is more sensitive to the 

repetitiveness of the experiment. The holistic approach seems to be more robust.  

5.5. Analysis by nodes of the results 

Once TOC economic superiority in this noise-extended environment has been verified 

when compared to the classic OUT policy for the overall supply chain, this leads to an 

unavoidable key question: Do all supply chain members benefit in the same way from 

collaboration? Therefore, the research is moved towards the node-by-node analysis. We 

have carried out the same study for the net profit of each member.  

When results are observed in detail, it can be noticed that the wealth generated by the 

holistic approach is not equitably distributed along the various supply chain echelons. 

Table 6 exhibits the average net profit of the four nodes both when the DBR methodology 

and the OUT policy manage the supply chain. Figure 9 displays the main effects of the 

management policy factor in order to graphically show the significant difference in how 

members benefit from collaboration. 

When analyzing the reductionist approach, the dramatic economic consequences of the 

Bullwhip Effect within the supply chain arise. This phenomenon creates large differences 

in profits along the distribution system, although the gross margin is the same and the 

throughput only undergoes slight changes (due to defective products and storage). These 

variations lead to an increase in operating expense as it moves away from the customer. 

Nonetheless, there is not a great difference in factory and distributor. The reason could 

be the production limitation. This constraint is a good solution to tame the Bullwhip Effect 

at the factory [36], as prevents the factory from generating large variations, smoothing its 

behavior. This limitation tends to increase lost sales at the retailer, but in certain scenarios 

the cost reduction compensates it. 
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Table 6. Local results of the same treatment when both 

alternatives are used to manage the supply chain. 

Factor OUT _ Net profit DBR _ Net profit 
Percentage 

increase 

Supply Chain $16,165.24 $26,342.20 +62.96% 

Factory $2,175.99 $8,777.05  +303.36% 

Distributor $2,589.05 $5,477.56 +111.57% 

Wholesaler $5,486.78 $6,466.04  +17.85% 

Retailer $5,913.42 $5,621.55  -4.94% 

 

 

Figure 9. DoE screening: Main effects of the management policy factor on the various nodes. 

As seen, the great increase in overall profits induced by the holistic management comes 

both from the growth in throughput (Goldratt’s practices are aimed at protecting the 

bottleneck) and the decrease in operating expense (as the Bullwhip Effect is significantly 

reduced). Nevertheless, as TOC solution is based on keeping the inventory near to 

customer in order to minimize lost sales, the retailer will assume higher inventory costs. 

Thus, as shown in Table 6, cost distribution varies considerably. This causes that, when 

the DBR method is used, those members distant to customer obtain better results (in case 

of equality in margins), especially if unit costs are high. In the factory, storage costs are 

more relevant since the lead time is greater, while in the rest of the nodes, transport costs 

are more relevant. 
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In summary, although there is a dramatic improvement generated by the collaborative 

approach in the supply chain (overall profit is increased by 63%), this increase is much 

higher as the members move away from the customer. In fact, global optimization might 

lead to economic losses in some nodes –this could happen in the retailer in the case 

analyzed. In this context, the interest in adopting a collaborative policy will be very 

different at the various nodes. Therefore, if collaboration does not generate fair benefits 

in all echelons, some barriers to holism emerge in the supply chain, and the system would 

run into a non-optimal solution. 

This node-by-node study brings evidence of the need for the fifth feature according to the 

Simatupang and Sridharan’s framework [10]. Some kind of incentive alignment is 

required in order to achieve the system optimal solution through a Nash equilibrium, i.e. 

without incentives to deviate. That is, sharing costs, risks, and benefits among the various 

members is essential for taking the system from reductionism to holism. Thus, 

experimentation through simulation allows manager to anticipate to this problem by 

defining an appropriate cost structure within the supply chain. 

6. Main Conclusions and Future Research 

Although holistic supply chain solutions are considered to outperform traditional 

reductionist alternatives, they are not yet widespread since the adoption of an efficient 

collaborative solution requires a complex decision-making process to implement an 

appropriate framework [37]. This research focuses on this transition from local to global 

optimization understanding experimentation as a powerful engine for gaining knowledge. 

We employ an agent-based approach as a model-driven decision support system, where 

practitioners can explore a complex network of interdependences that would be 

unmanageable through other methodologies. 

There are some aspects that the authors (with practical experience in supply chains and 

change management) consider essential in this transition. One of them is the educational 

phase that is required to move supply chain participants away from their natural 

individualistic behavior. Simulation can lead them to gain confidence in collaborative 

practices [38], since motivation is crucial in this decision-making process. These studies 

can reproduce the known environment (which would be inconceivable through an 

analytical approach), and allow managers to explore complex cause-effect relationships 

within an inexpensive and risk-free context.  
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This work provides evidence of TOC economic robustness in comparison with the OUT 

inventory policy when managing a four-echelon supply chain with several noise sources. 

The overall improvement came mainly from the increase of the throughput, which is a 

strong argument against traditional cutting costs-based management. However, 

paradoxically, the operating expense is also reduced due to the taming in the Bullwhip 

Effect and hence the reduction in storage costs. Several experiments have been carried 

out to statistically confirm this hypothesis, and the average increase in the net profit of 

the whole supply chain has been 63%. 

Once the improvement is perceived, supply chain actors focus on the implementation. In 

the required integrative framework, information sharing acts as an (indispensable) 

enabler. This creates a visibility environment, which facilitates decision making to be 

carried out by a headquarter office that accounts for the interest of the whole system.  

To find an appropriate collaborative solution for the supply chain, it is essential to 

integrate processes, synchronize decisions, and define a systemic performance scorecard 

[10]. To solve these issues, a solution based on Goldratt’s TOC is proposed, in which the 

DBR method defines the collaborative behavior and the TA is used to determine the 

impact of the decisions on supply chain performance.  

We provide evidence of the fact that the net profit distribution significantly varies when 

adopting collaborative solutions. While the OUT tends to damage upstream echelons due 

to the Bullwhip Effect, the TOC approach usually favors these members. Under these 

circumstances, aligning incentives within the supply chain is required. In this sense, trust 

is essential, and risks and benefits must be shared in order to avoid opportunistic 

behaviors [39]. Computer-based prototypes can be used by managers as business 

laboratories to define an appropriate cost structure within the supply chain.  

Once studied the widely used Beer Game (serial) supply chain, future work is aimed at 

confirming the robustness of the holistic approach in divergent networks topologies.  

In addition, we intend to further explore the reductionism-to-holism transition in terms of 

incentive alignment. One simple way companies can define a robust adaptive mechanism 

(it must be able to function over time) is by altering contracts with the aim of fairly 

distributing the benefit induced by collaboration. It means establishing linear contracts so 

that each node is rewarded according to its contribution.  
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A third avenue for future work is to incorporate Lean Management mechanisms in the 

agent-based system. We aim to use simulation for contrasting the TOC with the most 

known holistic paradigm. Our preliminary research suggests that while there is not a 

significant difference between both methodologies in low-noise scenarios, the TOC 

makes a difference when the supply chain faces harmful noise conditions.  
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The specific conclusions of each one of the six studies that conform the present Doctoral 

Thesis have been discussed separately in the previous chapters. Therefore, we devote this 

last section to extract some overall conclusions by seeing the whole picture. We aim to 

synthetize the main ideas obtained from this research as well as reflect on them to derive 

managerial implications. Moreover, we delineate some possible future avenues of 

research stemming from the works included in this Doctoral Thesis.  

In general terms, this Doctoral Thesis highlights the imperative need to analyze the supply 

chain in its entirety. Through a simulation study carried out in a wide range of noise 

conditions, we have first observed that the interaction of individual strategies in supply 

chains (reductionism) creates a largely inefficient scenario, mainly as it fosters the 

Bullwhip phenomenon. This fact unquestionably damages the profit margin of the various 

nodes. Secondly, we have brought evidence of how managing globally the supply chain 

(holism) results in breakthrough improvements. In this sense, collaboration generates 

win-win solutions: the inventory (operating costs) may dramatically decrease while 

paradoxically the customer fill rate (sales revenue) surges. That is, supply chain managers 

can benefit from an enhanced financial statement by analyzing the interdependencies 

among processes and decisions across the supply chain.   

Under these circumstances, a key question lies in why, even when practitioners concede 

that supply chains are strongly built on interdependencies and the huge benefits derived 

from collaboration, these global optimization approaches are far from being widespread 

(Schneider, 2013) —in other words, why supply chain collaboration often fails in practice 

(Fawcett et al., 2015). To tackle this matter, we strongly concur with Simatupang and 

Sridharan’s (2005) view, who underscore five indispensable fields of collaboration: (1) 

information transparency; (2) overall performance system; (3) process integration; (4) 

decision synchronization; and (5) incentive alignment. All of them must be taken into 

consideration to ensure the viability and take full advantage of the collaborative solution. 

From this point on, we have designed a collaborative framework for supply chains built 

on the integration of the Viable System Model (VSM) (Beer, 1984) and the Theory of 

Constraints (TOC) (Goldratt, 1990). Both methodological notions perfectly fit together: 

the VSM defines the systemic structure of the supply chain (orchestrates the framework), 

while the TOC implements the systemic behavior of the supply chain (integrate processes 

around the main goal of the system).  
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The materialization of this framework has been investigated in detail by means of agent-

based techniques. In particular, we adopt a bottleneck orientation to design a Drum-

Buffer-Rope (DBR) mechanism for governing the material flow of the supply chain. We 

also define a suitable scorecard based on the Throughput Accounting (TA) to guide supply 

chains towards achieving their main financial goals. This approach has shown to increase 

enormously both the efficiency and the agility of the system in comparison with 

traditional alternatives based on the mass production paradigm. 

We have also explored the role of artificial intelligence-based techniques in forecasting 

customer demand. Artificial neural networks (ANNs) —both under multi-layer 

perceptron (MLP) and radial basis function (RBF) architectures— present a powerful 

model to deal with complex time series, as they are able to accurately capture its trend 

and its seasonality. Agent-based tools enabled us to create a forecasting mechanism that 

hourly selects the best forecasting method in function of recent demand, as well as to 

integrate the forecasting model in a system with a wider scope. The designed forecasting 

system provides great performance in terms of alleviating the generation of the Bullwhip 

phenomenon, which positively impacts the management of the supply chain.  

From this perspective, we forcefully stand up for artificial intelligence-based modeling 

techniques, such as the aforementioned agent-based systems, as powerful laboratories for 

business exploration and transformation. These prototypes —that can reproduce the 

known scenario and enable managers to study complex relationships within a cost-free 

and risk-free environment— may act as a catalyst to move supply chain participants away 

from their natural individualistic behavior. In addition, they can also be highly useful in 

the transition process from reductionism to holism in the supply chain. They allow 

managers to develop and implement an integrative framework for collaboration, being 

also useful in the essential phase of aligning incentives; i.e. the nodes’ motivations to 

deviate from the collaborative scheme must be completely removed.  

This approach to problem-solving and decision-making support, which is summarized in 

figure 1, consists of a three-step procedure: (1) modeling and implementation; (2) 

simulation and analysis; and (3) real-world development. It should be highlighted that a 

major advantage of the use of agents lie in the modular nature of this prototyping 

methodology. Agent-based modeling and simulation systems are highly flexibles: they 
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can be easily integrated in a system with a wider scope and/or they can be simply scaled 

to additional restrictions and properties.  

 

Figure 1. Prototyping for business decision-making.  

There are plenty of future research works that we wish to carry out as next steps on this 

intriguing topic.  

Incorporating Lean Management mechanisms in the collaborative framework will be a 

first avenue for future work. Lean is a brilliant systemic philosophy focused on 

minimizing sources of waste in the system, and we will use simulation tools to compare 

it versus the TOC-based framework developed. A preliminary analysis suggests that 

Lean, based on simple mechanisms, offers a great performance in moderately complex 

scenarios, but TOC can make a difference when facing harmful conditions.  

We also aim to explore the development a robust adaptive mechanism (it must function 

over time) for aligning incentives throughout the supply chain. We believe that game 

theory is a powerful approach to this issue. It would entail taking into account aspects 

such as the contribution made by each node to the collaborative solution and its 

bargaining power. Moreover, rules and controls must be placed to prevent opportunistic 

behaviors of the nodes against the supply chain major interests. 

The lack of considering the impact of the topology of the supply chain, as well as 

morphogenetic aspects, in the simulation study can be understood as a noticeable 

limitation. In this sense, we wish to investigate the effect of the horizontal structure of the 

supply chain on the results obtained. Furthermore, considering the dynamic behavior of 

the supply chain not only in steady state but also against ramp-up (an increase in firm 

production ahead of anticipated increases in product demand) and phase-out (the end of 

the life cycle of a product) scenarios represents an interesting field to explore.  
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Las conclusiones específicas de cada uno de los seis trabajos que componen esta Tesis 

Doctoral han sido presentadas por separado en los capítulos anteriores. Esta última 

sección observa el problema en su totalidad. Nuestra intención es sintetizar las principales 

ideas derivadas de este trabajo, así como discutir sus implicaciones prácticas en el campo 

de la gestión. Además, trazaremos posibles líneas de futura investigación en este campo.  

En términos generales, esta Tesis Doctoral subraya la imprescindibilidad de analizar la 

cadena de suministro desde una perspectiva sistémica. A través de un estudio de 

simulación llevado a cabo en un amplio rango de escenarios, hemos observado que la 

interacción de estrategias individuales en la cadena de suministro (reduccionismo) crea 

un escenario altamente ineficiente, ya que potencia la generación del Efecto Bullwhip. 

Este hecho empeora el resultado financiero de los distintos nodos que conforman la 

cadena de suministro. A partir de ahí, hemos demostrado cómo una gestión global del 

sistema (holismo) guía la cadena de suministro hacia una situación financiera mucho más 

favorable. La colaboración genera soluciones del tipo win-win: el inventario (y por lo 

tanto los costes operacionales) decrece enormemente a la vez que, paradójicamente, el 

nivel de servicio al consumidor (y por lo tanto los ingresos) aumenta. De esta forma, los 

gestores de cadenas de suministro pueden obtener grandes mejoras, tanto operacionales 

como financieras, si analizan las interdependencias entre los distintos procesos y 

decisiones a lo largo de toda la cadena de suministro. 

Bajo estas circunstancias, una cuestión clave reside en por qué —incluso cuando los 

profesionales reconocen las cadenas de suministro como un sistema construido sobre 

interdependencias y las ventajas derivadas de buscar la optimización global— las 

soluciones colaborativas no son habituales en las cadenas de suministro reales (Schneider, 

2013). En otras palabras, por qué la colaboración a veces falla en la práctica (Fawcett et 

al., 2015). Para estudiarlo, nos basamos en la visión de Simatupang y Sridharan (2005), 

quienes señalan cinco factores clave en la colaboración en cadenas de suministro: (1) 

transparencia de información; (2) uso de indicadores sistémicos; (3) integración de 

procesos; (4) sincronización en la toma de decisiones; y (5) alineamiento de incentivos. 

Todas ellas han de tenerse en cuenta con el objetivo de asegurar la viabilidad de la 

solución colaborativa y obtener el máximo rendimiento de ella.  

Desde esa base, hemos diseñado un marco colaborativo para cadenas de suministro 

basado en la integración del Modelo de los Sistemas Viables (Viable System Model, 



 

 
208 

VSM) (Beer, 1984) y la Teoría de las Restricciones (Theory of Constraints, TOC) 

(Goldratt, 1990). Ambas encajan a la perfección: el Modelo de los Sistemas Viables 

define la estructura sistémica de la cadena de suministro (orquesta la colaboración), 

mientras la Teoría de las Restricciones implementa el comportamiento colaborativo del 

sistema (integra los procesos en torno al objetivo principal del sistema). 

La materialización de este marco se ha explorado a través de técnicas basadas en agentes. 

En concreto, a través de un mecanismo Drum-Buffer-Rope (DBR) hemos adoptado una 

orientación basada en el cuello de botella del sistema para gestionar el flujo de materiales 

a lo largo del mismo. Además, se ha definido un cuadro de mando de acuerdo a la 

Contabilidad del Throughput (Throughput Accounting, TA) con el objetivo de guiar la 

cadena de suministro hacia sus objetivos financieros. Esta solución incrementa 

significativamente tanto la eficiencia como la agilidad del sistema en comparación con 

alternativas tradicionales basadas en el paradigma de la producción en masa. 

Por otro lado, hemos investigado la eficacia de las técnicas basadas en la inteligencia 

artificial en la previsión de la demanda del consumidor. En este sentido, las redes 

neuronales artificiales (artificial neural networks, ANNs) —tanto en arquitecturas del 

tipo perceptrón multicapa (multi-layer perceptron, MLP) como del tipo función de base 

radial (radial basis function, RBF)— permiten capturar tanto la tendencia como la 

estacionalidad de series temporales complejas. A través de herramientas basadas en 

agentes, hemos creado un mecanismo de previsión que selecciona en cada momento el 

mejor método de previsión, y hemos incorporado el sistema de previsión dentro de un 

sistema multi-agente con un objetivo más amplio. El mecanismo desarrollado ofrece un 

gran rendimiento en la reducción del Efecto Bullwhip, lo cual ha demostrado tener un 

impacto muy positivo sobre la gestión de la cadena de suministro. 

Así, esta Tesis Doctoral resalta el papel de las técnicas de modelado y simulación, como 

los mencionados sistemas basados en agentes, como poderosos laboratorios de ensayo 

para el análisis empresarial. En primer lugar, estos prototipos —que pueden reproducir 

con precisión un escenario conocido y habilitan a los managers para estudiar complejas 

relaciones en un escenario libre de riesgos y costes— pueden actuar como un catalizador 

para alejar a los miembros de la cadena de suministro de comportamientos basados en la 

optimización local. Además, pueden ser muy útiles en el proceso de transición desde 

soluciones reduccionistas hasta soluciones holistas en la cadena de suministro, facilitando 
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el desarrollo y la implementación de un marco integrador para la colaboración. También 

en la esencial fase del alineamiento de incentivos, orientada a eliminar los motivos de los 

distintos miembros para alejarse del comportamiento colaborativo. 

Esta aproximación a la resolución de problemas y al apoyo en la toma de decisiones 

empresariales, ilustrada en la figura 1, consiste en un procedimiento de tres pasos: (1) 

modelado e implementación; (2) simulación y análisis; y (3) desarrollo en el mundo real. 

Una ventaja significativa del uso de agentes en este proceso se encuentra en la naturaleza 

modular de esta metodología. Los sistemas basados en agentes son muy flexibles: pueden 

ser fácilmente integrados en sistemas con horizontes más amplios, así como simplemente 

adaptados a nuevos requisitos y propiedades en los distintos agentes que lo forman.  

 

Figura 1. Uso de prototipos en la toma de decisiones empresariales.  

Por último, trazamos distintas líneas de futura investigación como próximos pasos en este 

campo. 

Una primera línea para futuros trabajos se basa en la incorporación de mecanismos 

basados en Lean Management al marco colaborativo. Lean es una metodología sistémica 

focalizada en la reducción de las fuentes de desperdicios en el sistema. Tenemos la 

intención de utilizar el sistema basado en agentes para comparar éstos con los diseñados 

de acuerdo a la Teoría de las Restricciones. Un análisis preliminar nos ha sugerido que 

Lean, que se basa en mecanismos más simples, ofrece un gran rendimiento en entornos 

con una complejidad moderada, mientras que la Teoría de las Restricciones marca las 

diferencias cuando la cadena de suministro opera un escenario con muchas fuentes de 

incertidumbre. 

También pretendemos explorar el desarrollo de un mecanismo adaptativo robusto (ya que 

ha de ser capaz de funcionar a lo largo del tiempo) para el alineamiento de incentivos en 



 

 
210 

la cadena de suministro. La teoría de juegos ofrece una interesante aproximación a esta 

materia, ya que podríamos tener en cuenta aspectos como la contribución realizada por 

cada nodo y su poder de negociación. Además, algún tipo de control es necesario a lo 

largo de la cadena de suministro para evitar comportamientos oportunistas de los distintos 

nodos que la forman en contra del interés global del sistema. 

Nótese, además, que esta investigación no ha considerado aspectos topológicos ni 

morfogenéticos en la cadena de suministro, lo cual podría ser entendido como una 

limitación del mismo. En este sentido, tenemos la intención de investigar el impacto de 

la estructura horizontal de la cadena de suministro sobre los resultados obtenidos. 

Igualmente, queremos considerar el comportamiento dinámico de los agentes de la cadena 

de suministro no solo en régimen permanente, sino también en las distintas fases del ciclo 

de vida del producto.  
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