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Abstract 

Two independent enzymatic strategies have been developed toward the synthesis of enantioenriched 1-

2-bromo(het)aryloxypropan-2-amines. With that purpose a series of racemic amines and prochiral 

ketones have been synthesized from commercially available 2-bromophenols or brominated pyridine 

derivatives bearing different pattern substitutions in the aromatic ring. Biotransamination experiments 

have been studied using ketones as starting materials, yielding both the (R)- and (S)-amine enantiomers 

with high selectivity (91-99% ee) depending on the transaminase source. In a complementary approach, 

the classical kinetic resolutions of the racemic amines have been investigated using Candida antarctica 

lipase type B as biocatalyst. Ethyl methoxyacetate was found as a suitable acyl donor leading to the 

corresponding (S)-amines (90-99% ee) and (R)-amides (88-99% ee) with high selectivity in most of the 

cases. A preparative biotransamination process has been developed for the synthesis of (2S)-1-(6-

bromo-2,3-difluorophenoxy)propan-2-amine in 61% isolated yield after 24 h, a valuable precursor of the 

antimicrobial agent Levofloxacin. 

 

Keywords: Asymmetric synthesis/ Benzoxazine/ Biocatalysis/ Levofloxacin / Lipases / Transaminases 

 

Introduction 

Chiral amines are attractive building blocks for the synthesis of biologically active and high added-

value products with interest in different chemical industrial sectors.1 Remarkably, the use of 

biotransformations provides nowadays a plethora of possibilities for the design of stereoselective routes 

toward enantiopure amines and their derivatives.2 Optically active 1-aryloxy-propan-2-amines (Scheme 

1, R2= NH2) are particularly attractive nitrogenous compounds, the absolute configuration of their chiral 

center having a remarkable importance in their biological profiles.3 From this family, [1-(2,6-

dimethylphenoxy)propan-2-amine, also called as mexiletine, has attracted great attention for clinical 

purposes due to its properties as antiarrhythmic agent.4 In the last years, the versatility of biocatalytic 
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reactions have been demonstrated toward the asymmetric synthesis of the non substituted 1-phenoxy-

propan-2-amine by means of lipase-catalyzed resolutions,5 and more recently biotransamination 

reactions from the corresponding propanones.6 Remarkably, Turner and co-workers reported the 

conversion of racemic alcohols into enantiopure amines through a redox self-sufficient enzymatic 

cascade using an alcohol dehydrogenase and an amine dehydrogenase, yielding among other chiral 

amines, the enantiopure (R)-1-phenoxy-propan-2-amine in 84% conversion.7 

 

Scheme 1. Chemoenzymatic routes toward valuable benzoxazine precursors from 1-(2-nitrophenoxy)-

propan-2-ones (left) and 1-(2-bromophenoxy)-propan-2-ones (right). 

 

The introduction of additional functionalities provides new opportunities in medicinal and synthetic 

chemistry. In this context, we have recently described the versatility of 1-(2-nitroaryloxy)-propan-2-

ones for the synthesis of benzoxazine fragments (Scheme 1), including the preparation of (S)-(–)-7,8-

difluoro-3-methyl-3,4-dihydro-2H-benzob1,4oxazine, a key precursor of the antimicrobial agent 

Levofloxacin (Figure 1).8 On the one hand, lipase from Rhizomucor miehei was able to catalyze with 

excellent selectivity the resolution of racemic alcohols and acetates through acylation and hydrolysis 

reactions, respectively. On the other hand, various alcohol dehydrogenases (ADHs) led to the 

production of both (R) and (S)-1-(2-nitroaryloxy)-propan-2-ols with different pattern substitution in the 

aromatic ring using the evo-1.1.200 ADH and the ADH from Rhodococcus ruber (ADH-A), 

respectively. 
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Figure 1. Structures of (S)-(–)-7,8-difluoro-3-methyl-3,4-dihydro-2H-benzob1,4oxazine (left) and 

the antimicrobial agent Levofloxacin (right). 

 

Herein, we have carried out a chemoenzymatic route toward benzoxazine precursors, identifying 1-2-

bromo(het)aryloxy-propan-2-ones as key compounds. Firstly, biotransamination experiments have been 

investigated for the production of the corresponding amine enantiomers depending on the transaminase 

source. Alternatively, the reductive amination of the ketones can provide access to the corresponding 

racemic amines, which will be used as starting materials in lipase-catalyzed resolutions. The presence of 

the amino and bromo substitutions in the aromatic ring opens up the possibility of developing metal-

catalyzed intramolecular cyclization for the production of optically active benzoxazine derivatives such 

as (S)-(–)-7,8-difluoro-3-methyl-3,4-dihydro-2H-benzob1,4oxazine, a valuable precursor of 

Levofloxacin. 

 

Results and discussion 

Two independent strategies were undertaken for the production of enantiopure 1-2-

bromo(het)aryloxypropan-2-amines: (a) the transaminase-catalyzed amination of the corresponding 1-

2-nitro(het)aryloxy-propan-2-ones; and (b) the lipase-catalyzed resolution of the racemic amines. 

Bearing this in mind, a general and convergent route to prepare the prochiral ketones 3a-g and racemic 

amines 4a-g was performed starting from the corresponding commercially available 2-bromophenols 

1a-d and pyridinols 1f and 1g (Scheme 2), requiring a previous selective bromination of 3-

methoxyphenol at the C-2 position with N-bromosuccinimide in the case of the non commercially 

available methoxy derivative 1e.9 



 

5 

Substrates 1a-g were alkylated using an equimolecular amount of chloroacetone (2) in the presence of 

2 equiv of potassium carbonate and catalytic amounts of potassium iodide in refluxing acetone, 

obtaining after 2 h the ketones 3a-g in high to quantitative yields. Prochiral ketones 3a-g served as 

substrates for biotransamination reactions, but also as starting materials for the synthesis of the racemic 

amines through reductive amination using 2 equiv of sodium cyanoborohydride in combination with a 

large of excess of ammonium acetate in methanol. Thus, racemic amines 4a-g were obtained after 16 h 

at room temperature in low to moderate yields after purification by column chromatography on silica 

gel. The use of longer reaction times, or alternatively the palladium-catalyzed reductive aminations in 

the presence of ammonium formate did not provide better results. 

 

Scheme 2. Chemical synthesis of prochiral ketones 3a-g and racemic amines 4a-g. 

 

Biotransamination experiments were initially explored as they allow the synthesis of (S)- or (R)-

amines depending on the enzyme selectivity. In the last decades transaminases (TAs) have emerged as 

powerful enzymes for the synthesis of chiral amines starting from racemic amines, but more importantly 

from prochiral ketones as they provide access to a desired amine enantiomer in theoretically 100% 

yield.10 The most structurally simple ketone was selected as the model compound for an initial enzyme 

screening, this is 1-2-nitrophenoxy-propan-2-one (3a) using a 50 mM substrate concentration. 

Different amine donors (L/D-alanine or isopropylamine) and cofactor recycling systems were used 
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depending on the transaminase acceptance, which are described in the Experimental Section and 

Supporting Information. The temperature was kept at 30 ºC and the reactions were shaken at 250 rpm in 

a phosphate buffer 100 mM pH 7.5. Based on our previous experience with the commercially available 

transaminases,11 a 2.5% v/v of DMSO was added in the biotransaminations with these TAs to favor the 

solubility of the ketone 3a in the reaction medium. 

A set of 37 commercially available transaminases and 4 enzymes overexpressed in Escherichia coli 

were tested, including the (S)-selective Arthrobacter citreus12 and Chromobacterium violaceum TAs,13 

and the (R)-selective Arthrobacter species14 and Aspergillus terreus TAs.15 The best results are shown 

in Table 1, while the results with the total 41 transaminases appear in the Supporting Information (Table 

S1). From the entire transaminase set, only 12 displayed complete selectivity toward the formation of 

single enantiomers, 10 for the (S)-4a and 2 for its antipode (Table S1). From all these selective enzymes, 

10 of them led to the amine in more than 40% conversion (Table 1). Remarkably, the (S)-selective 

enzymes ATA-200 and ATA-256 gave the (S)-4a with excellent conversions (entries 2 and 5, >96% 

conversion), obtaining the maximum value in the (R)-4a formation with the TA from Aspergillus 

terreus (At, 70% conversion, entry 10). For the At TA, an optimization study of the reaction conditions 

was performed, which showed that the use of DMSO as cosolvent led to a slightly lower conversion 

(65%, entry 11), while a significant improvement was achieved when doubling the amount of enzyme 

(96%, entry 12). 

The scale-up of the process was performed for 100 mg of ketone 3a employing the enzyme ATA-256 

as biocatalyst, obtaining the enantiopure amine (S)-4a in 60% isolated yield after a purification by 

column chromatography (Scheme 3). The absolute configuration of the resulting enantiopure amine (S)-

4a was assigned by its transformation into the 3-methyl-3,4-dihydro-2H-benzo[b][1,4]oxazine using 

palladium(II) acetate and xantphos, yielding the benzoxazine (S)-5 in 66% isolated yield without loss of 

the optical purity. Its optical rotation value was compared with the one previously described in the 

literature,16 assigning the (S)-configuration for the amine 4a obtained through the ATA-256 
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biotransformation. 

Table 1. Biotransamination of ketone 3a in phosphate buffer 100 mM pH 7.5 after 24 h at 30 ºC. 

 

Entry TA Amine 

donora 

c 

(%)b 

ee 

(%)b 

1 TA-P1-G06c IPA 67 >99 (S) 

2 ATA-200c IPA 97 >99 (S) 

3 ATA-251c IPA 66 >99 (S) 

4 AT1-254c IPA 89 >99 (S) 

5 ATA-256c IPA 99 >99 (S) 

6 ATA-260c IPA 53 >99 (S) 

7 ATA-P1-B04c IPA 94 >99 (S) 

8 Cv L-Ala 77 >99 (S) 

9 ArR sp. D-Ala 45 >99 (R) 

10 At D-Ala 70 >99 (R) 

11 Atc D-Ala 65 >99 (R) 

12 Atd D-Ala 96 >99 (R) 

a Isopropylamine (IPA) or alanine (L- or D-Ala) 

was used as amine donors. 
b Conversion and enantiomeric excess values were 

calculated by GC analysis after derivatization of 

the amines in the reaction crude with Ac2O. 

Absolute configurations appear in parentheses. 
c DMSO was added as cosolvent (2.5% v/v). 
d Double amount of enzyme was used (see 

Experimental section). 

 

 

Scheme 3. Chemoenzymatic synthesis of (S)-3-methyl-3,4-dihydro-2H-benzo[b][1,4]oxazine (5) for the 

absolute configuration assignment of the amine 4a. 
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With these results in hand, the transaminase-catalyzed reactions were performed over the 

aryloxypropanones 3b-e and hetaryloxypropanones 3f and 3g (Table S2). It must be highlighted that a 

low reactivity was observed with all the TAs tested when ketones 3b bearing a cyano functionality in 

the C-4 position and the pyridine derivative 3e were tested as substrates (>45% conversion). In addition, 

the formation of side-reaction products was detected in some cases when performing the 

biotransamination over 3b. The non heteroaromatic ketones bearing the methyl and the fluoro 

substitutions on the C-4 position (3c and 3d) led to the best selectivities (Table 2, entries 1-10), 

obtaining both amine enantiomers depending on the transaminase source. From the set of commercially 

available transaminases the best results were found with the ATA-200, ATA-254, ATA-256 and ATA-

P1-B04, which led to the (S)-amines 4c and 4d, the fluoro substituted one leading in some cases to 

almost quantitative conversions (entries 8 and 9). In fact, the 100-mg preparative biotransamination of 

ketone 3d with the ATA-256 led to the enantiopure (S)-4d in 66% isolated yield and very high purity. 

For the 5-methoxy derivative 3e, good to quantitative conversions were achieved although none of the 

enzymes provided access to the (S)-4e in enantiopure form (entries 11-14). This amine was obtained in 

91% ee and 74% isolated yield in the preparative biotransformation when using the TA-P1-G06. 

Finally, the pyridine ketone 3f led to the (S)-4f in 95-97% ee and high to excellent conversion values 

(88-97%, entries 15-17). Unfortunately, none of the commercially available TAs gave good activities 

for the preparation of the (R)-amines, the synthesis of (R)-4c and (R)-4d in enantiopure form being 

achieved with 91% and 57% conversion, respectively, when using the At-TA (entries 5 and 10). 
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Table 2. Biotransamination of ketone 3c-e,g (50 mM) in phosphate buffer 100 mM pH 7.5 after 24 h at 

30 ºC.a 

 

Entry Substrate R X TA c (%)a ee (%)a 

1 3c 4-Me CH ATA-200b 77 >99 (S) 

2 3c 4-Me CH ATA-254b 77 >99 (S) 

3 3c 4-Me CH ATA-256b 68 >99 (S) 

4 3c 4-Me CH ATA-P1-B04b 64 >99 (S) 

5 3c 4-Me CH At 91 >99 (R) 

6 3d 4-F CH ATA-200b 76 >99 (S) 

7 3d 4-F CH ATA-254b 87 >99 (S) 

8 3d 4-F CH ATA-256b 98 >99 (S) 

9 3d 4-F CH ATA-P1-B04b 95 >99 (S) 

10 3d 4-F CH At 57 >99 (R) 

11 3e 5-OMe CH ATA-251b 97 93 (S) 

12 3e 5-OMe CH ATA-256b 87 93 (S) 

13 3e 5-OMe CH ATA-P1-B04b 72 89 (S) 

14 3e 5-OMe CH TA-P1-G06b >99 91 (S) 

15 3g H N ATA-251b 93 95 (S) 

16 3g H N ATA-254b 88 97 (S) 

17 3g H N TA-P1-G06b 97 97 (S) 

a Conversion and enantiomeric excess values were calculated by GC analysis after derivatization of the 

amines in the reaction crude with Ac2O. Absolute configurations appear in parentheses. 
b DMSO was added as cosolvent (2.5% v/v). 

 

In the search of an alternatively methodology for the synthesis of enantiopure amines, the hydrolase-

catalyzed kinetic resolution of the racemic amines 4a-g was attempted. Lipase-catalyzed acylation is a 

common strategy for the resolution of racemic amines and alcohols under mild reaction conditions,17 

mainly using esters as acyl donors.18 So at this point, an initial screening of the reaction conditions was 
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performed with the less hindered substrate, 1-(2-bromophenoxy)propan-2-amine (4a) as the model 

substrate (Table 3). Candida antarctica lipase type B (CAL-B)19 was the enzyme of choice based on its 

capability to selectively produce nitrogenous compounds, and tetrahydrofuran was used as solvent since 

it allows a complete solubility of the amine 4a in 100 mM concentration. Two non activated esters such 

as ethyl acetate (6a) and ethyl methoxyacetate (6b) were initially assayed as acyl donors, which resulted 

in a similar selectivity but higher reactivity for 6b after 5 h (entries 1 and 2). A notably decrease of the 

enantioselectivity was observed over the time when using 6b, so the biotransformations were carried out 

with lower amount of the ester (1 or 2 equiv, entries 3 and 4), which led to conversions close to the ideal 

50% and very high selectivity in short reaction times. Similarly, the reaction with methyl tert-butyl ether 

(MTBE) as solvent occurred very quickly but with less selectivity in comparison with THF. At this 

point, the reaction temperature was decreased, leading to both the (R)-amide and the (S)-amine with 

excellent selectivity at both 4 and 20 ºC (entries 6-8), while reducing the loading of the enzyme did not 

provide additional benefits (entries 9 and 10). The reaction at 20 ºC and 2 equiv. of 6b (entry 8) was 

performed at a 200 mg-scale, finding similar results in a highly stereoselective process that allowed the 

recovery of the (R)-amide 8a and the remaining amine (S)-4a in 49% and 47% isolated yield, 

respectively (see Experimental section). 

The assignments of the absolute configurations for the optically active amide 8a and the remaining 

amine 4a were performed by measuring the optical rotation of 4a, which was compared with the one 

obtained through transaminase-catalyzed reactions. It was concluded that the lipase-catalyzed reaction 

led to the (R)-8a and the (S)-4a, which is also in agreement with the expected configurations 

considering the Kazaluskas’ rule.20 
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Table 3. Lipase-catalyzed kinetic resolution of 1-(2-bromophenoxy)propan-2-amine (4a) using CAL-

B.a 

 

Entry CAL-Bb Solvent Esterc T (ºC) t (h) eep (%)d ees (%)d c (%)e Ef 

1 1:1 THF 6a (3 equiv) 30 5 95 38 28 57 

2 1:1 THF 6b (3 equiv) 30 5 83 99 54 56 

3 1:1 THF 6b (1 equiv) 30 2.5 95 95 50 154 

4 1:1 THF 6b (2 equiv) 30 1.5 93 >99 52 156 

5 1:1 MTBE 6b (2 equiv) 30 1.5 69 >99 59 72 

6 1:1 THF 6b (2 equiv) 4 1 97 92 49 >200 

7 1:1 THF 6b (2 equiv) 4 2 96 99 51 >200 

8 1:1 THF 6b (2 equiv) 20 1 95 99 51 >200 

9 0.5:1 THF 6b (2 equiv) 20 1 97 86 47 195 

10 0.5:1 THF 6b (2 equiv) 20 2 96 96 50 193 

a Reaction conditions: 4a (100 mM in THF or MTBE), CAL-B (ratio w/w), 6a-b (1-3 equiv), 4-30 

ºC, 1-5 h at 250 rpm. 
b Ratio amine 4a: CAL-B (w/w). 
c Equivalents of ester in parentheses. 
d Determined by HPLC. Isolated yields in parentheses. 
e c = ees/(ees + eep). 
f E= ln[(1-c)(1-eep)]/ln[(1-c)(1+eep)].

21 

 

Once that adequate reaction conditions were found for the resolution of the racemic amine 4a, these 

are 100 mM substrate concentration in THF, 2 equiv of 6b, CAL-B as enzyme in ratio 1:1 (w/w) with 

respect to the substrate and 20 ºC, the kinetic resolution was extended to a significant panel of amines 

bearing different pattern substitutions in the phenyl ring (4b-e) but also including pyridine derivatives 

such as 4f and 4g. The results are shown in Table 4 and in all cases close to 50% conversion values were 

reached (additional information is given in Table S4). The corresponding (R)-amides 8a-g and the 
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remaining amines (S)-amines 4a-g were isolated with very high to excellent selectivities in just 45 

minutes for the most reactive substrates such as the one with the methoxy substitution in the C-5 

position and the pyridine derivatives (entries 4-7). Interestingly, the lipase-catalyzed approach provide 

an efficient stereoselective access to all the tested amines, allowing the isolation of enantioenriched 4b 

and 4f that were not obtained through transaminase-catalyzed reactions. The optical rotation values for 

the remaining amines were measured and later compared with the ones obtained through 

biotransamination experiments with transaminases of known stereospecificity, concluding that the CAL-

B catalyzed acylations led to the (R)-methoxyacetamides 8a-g and the (S)-amines 4a-g. 

 

Table 4. Lipase-catalyzed kinetic resolution of 1-2-bromo(het)aryloxypropan-2-amines (4a-g) using 

CAL-B and ethyl methoxyacetate (6b) in dry THF.a 

 

Entry Amine R1 R2 X Y t (h) eep (%)b ees (%)b c (%)c Ed 

1 4a H H CH CH 1 95 99 51 >200 

2 4b CN H CH CH 1 93 90 50 91 

3 4c Me H CH CH 1 97 >99 51 >200 

4 4d F H CH CH 1 95 >99 51 >200 

5 4e H OMe CH CH 0.75 88 >99 53 115 

6 4f H H N CH 0.75 99 >99 50 >200 

7 4g H H CH N 0.75 98 >99 50 >200 

a Reaction conditions: 4a-g (100 mM in THF), CAL-B (ratio 1:1 in weight), 6b (2 equiv), 20 ºC, 

0.75-1 h at 250 rpm. 
b Determined by HPLC. Isolated yields in parentheses. 
c c = ees/(ees + eep). 
d E= ln[(1-c)(1-eep)]/ln[(1-c)(1+eep)].

21 
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Once that the versatility of CAL-B and transaminases was demonstrated in the synthesis of valuable 

optically active 1-2-bromo(het)aryloxypropan-2-amines, we expand the possibilities of this 

chemoenzymatic strategy toward the synthesis of (S)-4h. This amine can be effectively cyclized to the 

corresponding benzoxazine precursor,22 which is a valuable precursor of the antimicrobial agent 

Levofloxacin.23 The synthetic pathway is depicted in Scheme 4 starting from the commercially available 

2,3-difluorophenol (9). First, a selective bromination of the aromatic ring was performed using 2 equiv. 

of tert-butylamine and equimolecular amount of bromine in toluene at low temperature, yielding after 

column chromatography the 2-bromo-5,6-difluorophenol (1h) in 91% isolated yield.22a This procedure 

improves the results using NBS, which led to a mixture of polybrominated products. Next, the O-

alkylation proceeded smoothly after 4 h providing the ketone 3h in 90% yield, which was subjected to 

the reductive amination reaction with sodium cyanoborohydride and ammonium acetate to yield the 

racemic amine 4h. On the one hand, an initial attempt of the stereoselective lipase-catalyzed acylation 

was performed, but this amine resulted to be quite unstable in the reaction medium, both in the absence 

or presence of the enzyme. On the other hand, from a set of transaminases (see Table S3) the ATA-256 

provided the best results yielding the Levofloxacin precursor (S)-4h in 99% conversion and 61% 

isolated yield after purification by column chromatography on silica gel.  

 

Scheme 4. Chemoenzymatic synthetic of the Levofloxacin precursor (S)-4h. 
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Conclusions 

The chemoenzymatic synthesis of optically active 1-2-bromo(het)aryloxypropan-2-amines, which 

are valuable precursors of benzoxazine derivatives have been explored by using transaminases or 

Candida antarctica lipase type B for the stereoselective reaction step. Starting from commercially 

available 2-bromophenols or pyridine derivatives, prochiral ketones have been obtained through a 

simple alkylation reaction in good yields. The chemical reductive amination have provided access to the 

corresponding racemic amines, using both ketones and amines for extensive biocatalytic reaction 

studies. Transaminases have catalyzed the amination of ketones with especially good results in terms of 

conversion and selectivity when (S)-selective enzymes were considered. In a complementary approach 

starting from the corresponding racemic amines, their lipase-catalyzed resolution was studied, finding 

high to excellent selectivity values for the formation of the remaining (S)-amines and the (R)-

methoxyacetamides in close to 50% conversion value. 

The applicability of this synthetic strategy has been demonstrated in the production of a valuable 

precursor of the antimicrobial agent Levofloxacin. Therefore, the (S)-1-(6-bromo-2,3-

difluorophenoxy)propan-2-amine has been prepared with complete selectivity and a global 50% yield, 

starting from 2,3-difluorophenol through a three-step sequence that involves a selective bromination 

reaction, alkykation step and final biotransamination process using the commercially available ATA-

256 enzyme. 

 

Experimental section 

 

Synthesis of 2-bromo-5-methoxyphenol (1e).9 N-bromosuccinimide (811 mg, 4.55 mmol) was 

added in one portion to a solution of 3-methoxyphenol (500 μL, 4.55 mmol) in dry CH2Cl2 (90 mL) 

under inert atmosphere. The reaction mixture was stirred at room temperature for 2 h, and then washed 
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with water (30 mL). The organic layer was dried over Na2SO4, subjected to filtration, and concentrated 

in vacuo. The crude product was purified by column chromatography on silica gel (10% Et2O/hexane), 

to afford the bromophenol 1e as a colourless oil (693 mg, 75%). Physical and spectral data were found 

to be consistent with those previously reported in the literature.9 

General procedure for the synthesis of ketones 3a-g. Chloroacetone (2, 82 μL, 1.03 mmol) was 

added to a mixture of potassium carbonate (238 mg, 1.72 mmol), potassium iodide (41 mg, 0.25 mmol) 

and the corresponding bromophenol 1a-g (0.86 mmol) in acetone (3 mL) at room temperature, and the 

mixture was stirred and heated at 55 ºC for 2 h. After this time, the solution was added to water (5 mL) 

and the product was extracted with Et2O (4 × 10 mL). The organic layers were combined, washed with 

water (20 mL), dried over Na2SO4 and concentrated in vacuo, isolating the bromacetophenones 3a-g 

with high purity without further purification (90-99%). 

1-(2-Bromophenoxy)propan-2-one (3a). White solid (195 mg, 99% Yield). Rf (40% 

EtOAc/Hexane): 0.61. Mp: 67-68 ºC. IR (NaCl):  3450, 3066, 3007, 2919, 1732, 1586, 1575, 1478, 

1444, 1431, 1360, 969, 932, 863, 830 cm-1. 1H NMR (300.13 MHz, CDCl3):  2.37 (s, 3H), 4.54 (s, 2H), 

6.77 (dd, 3JHH = 8.2 Hz, 4JHH = 1.3 Hz, 1H), 6.89 (td, 3JHH = 7.9 Hz, 4JHH = 1.3 Hz, 1H), 7.25 (ddd, 3JHH 

= 8.4, 7.5 Hz, 4JHH = 1.6 Hz, 1H), 7.58 (dd, 3JHH = 7.9 Hz, 4JHH = 1.6 Hz, 1H) ppm. 13C NMR (75.5 

MHz, CDCl3):  27.0 (CH3), 73.8 (CH2), 112.1 (C), 113.1 (CH), 122.9 (CH), 128.6 (CH), 133.7 (CH), 

154.1 (C), 205.5 (C) ppm. HRMS (ESI+, m/z): calculated for (C9H9BrNaO2)
+ (M+Na)+ 250.9678; found 

250.9691. 

3-Bromo-4-(2-oxopropoxy)benzonitrile (3b). Yellowish solid (216 mg, 99% Yield). Rf (20% 

Et2O/Hexane): 0.33. Mp: 109-110 ºC. IR (KBr):  3364, 3054, 2987, 2306, 1731, 1601, 1440, 1377, 

1322, 923, 896 cm-1. 1H NMR (300.13 MHz, CDCl3):  2.39 (s, 3H), 4.66 (s, 2H), 6.81 (d, 3JHH = 8.5 

Hz, 1H), 7.60 (dd 3JHH = 8.5 Hz, 4JHH =2.0 Hz, 1H), 7.88 (d, 4JHH = 2.0 Hz, 1H) ppm. 13C NMR (75.5 

MHz, CDCl3):  26.9 (CH3), 73.4 (CH2), 106.4 (C), 112.7 (CH), 112.8 (C), 117.4 (C), 133.1 (CH), 

137.1 (CH), 157.6 (C), 203.4 (C) ppm. HRMS (ESI+, m/z): calcd for (C10H8BrNNaO2)
+ (M+Na)+ 
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275.9631; found 275.9625; calculated for (C10H9BrNO2)
+ (M+H)+ 253.9811; found 253.9813. 

1-(2-Bromo-4-methylphenoxy)propan-2-one (3c). Yellowish solid (207 mg, 99% Yield). Rf (20% 

Et2O/Hexane): 0.26. Mp: 47-49 ºC. IR (KBr):  3055, 2925, 1724, 1606, 1496, 1359, 1290, 947, 882 

cm-1. 1H NMR (300.13 MHz, CDCl3):  2.28 (s, 3H), 2.36 (s, 3H), 4.51 (s, 2H), 6.66 (d, 3JHH = 8.3 Hz, 

1H), 7.03 (dd, 3JHH = 8.3 Hz, 4JHH = 2.0 Hz, 1H), 7.39 (d, 4JHH = 2.0 Hz, 1H) ppm. 13C NMR (75.5 

MHz, CDCl3):  20.3 (CH3), 27.1 (CH3), 74.1 (CH2), 112.0 (C), 113.2 (CH), 129.1 (CH), 132.9 (C), 

134.2 (CH), 152.2 (C), 206.1 (C) ppm. HRMS (ESI+, m/z): calcd for (C10H11BrNaO2)
+ (M+Na)+ 

264.9835; found 264.9827. 

1-(2-Bromo-4-fluorophenoxy)propan-2-one (3d). White solid (195 mg, 92% Yield). Rf (20% 

Et2O/Hexane): 0.26. Mp: 67-68 ºC. IR (KBr):  3401, 3055, 2306, 1730, 1722, 1594, 1489, 1361, 947, 

866 cm-1. 1H NMR (300.13 MHz, CDCl3):  2.36 (s, 3H), 4.52 (s, 2H), 6.75 (dd, 3JHH = 9.0 Hz, 4JFH = 

4.6 Hz, 1H), 6.98 (ddd, 3JHH = 9.0 Hz, 3JFH = 7.7 Hz, 4JHH = 3.0 Hz, 1H), 7.34 (dd, 3JFH = 7.7 Hz, 4JHH = 

3.0, 1H) ppm. 13C NMR (75.5 MHz, CDCl3):  27.0 (CH3), 74.5 (CH2), 112.6 (d, 3JFC = 9.9 Hz, C), 

114.2 (d, 3JFC = 8.6 Hz, CH), 115.0 (d, 2JFC = 22.9 Hz, CH), 121.0 (d, 2JFC = 25.8 Hz, CH), 151.0 (d, 

4JFC = 2.6 Hz, C), 157.4 (d, 1JFC = 244.5 Hz, C), 205.3 (C) ppm. HRMS (ESI+, m/z): calculated for 

(C9H8BrFNaO2)
+ (M+Na)+ 268.9584; found 268.9578. 

1-(2-Bromo-5-methoxyphenoxy)propan-2-one (3e). White solid (205 mg, 92% Yield). Rf (50% 

EtOAc/Hexane): 0.68.  Mp: 62-64 ºC. IR (KBr):  2840, 1734, 1722, 1586, 1488, 1421, 1360, 1307, 

1201, 1169, 1067, 1025 cm-1. 1H NMR (300.13 MHz, CDCl3):  2.32 (s, 3H), 3.73 (s, 3H), 4.47 (s, 2H), 

6.30 (d, 4JHH = 2.7 Hz, 1H), 6.41 (dd, 3JHH = 8.7 Hz, 4JHH = 2.7 Hz, 1H), 7.39 (d, 3JHH = 8.7 Hz, 1H) 

ppm. 13C NMR (75.5 MHz, CDCl3):  26.9 (CH3), 55.6 (CH3), 73.6 (CH2), 101.1 (CH), 102.7 (C), 107.2 

(CH), 133.5 (CH), 154.8 (C), 160.2 (C), 205.4 (C) ppm. HRMS (ESI+, m/z): calcd for (C10H11BrNaO3)
+ 

(M+Na)+ 280.9784, found: 280.9792. 

1-[(2-Bromopyridin-3-yl)oxy]propan-2-one (3f). White solid (178 mg, 90% Yield). Rf (20% 

Et2O/Hex): 0.38. Mp: 73-74 ºC. IR (KBr):  3054, 2986, 1738, 1565, 1415, 1362, 967, 896, 793, 749, 
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704 cm-1. 1H NMR (300.13 MHz, CDCl3):  2.40 (s, 3H), 4.60 (s, 2H), 7.05 (dd, 3JHH = 8.1 Hz, 4JHH = 

1.6 Hz, 1H), 7.23 (dd, 3JHH = 8.1 Hz, 3JHH = 4.7 Hz, 1H), 8.06 (dd, 3JHH = 4.7 Hz, 4JHH = 1.6 Hz, 1H) 

ppm. 13C NMR (75.5 MHz, CDCl3):  26.9 (CH3), 73.5 (CH2), 120.0 (CH), 123.4 (CH), 133.0 (C), 

142.4 (CH), 151.3 (C), 204.1 (C) ppm. HRMS (ESI+, m/z): calculated for (C8H9BrNO2)
+ (M+H)+ 

229.9811; found 229.9812; calculated for (C8H8BrNNaO2)
+ (M+Na)+ 251.9631; found 251.9624. 

1-[(3-Bromopyridin-2-yl)oxy]propan-2-one (3g). Brown solid (192 mg, 97% Yield). Rf (20% 

Et2O/Hex): 0.20. Mp: 101-103 ºC. IR (KBr):  3055, 2987, 1738, 1656, 1603, 1527, 1422, 1406, 1371, 

970, 856 cm-1. 1H NMR (300.13 MHz, CDCl3):  2.31 (s, 3H), 4.76 (s, 2H), 6.14 (t, 3JHH = 7.0 Hz, 1H), 

7.18 (dd, 3JHH = 7.0, 4JHH = 1.9 Hz, 1H), 7.78 (dd, 3JHH = 7.0, 4JHH = 1.9 Hz, 1H) ppm. 13C NMR (75.5 

MHz, CDCl3):  27.7 (CH3), 58.9 (CH2), 106.1 (CH), 116.4 (C), 137.6 (CH), 142.2 (CH), 158.8 (C), 

200.1 (C) ppm. HRMS (ESI+, m/z): calculated for (C8H8BrNNaO2)
+ (M+Na)+ 251.9631; found 

251.9630. 

General procedure for the synthesis of racemic 1-2-bromo(het)aryloxypropan-2-amines 4a-g. 

To a solution of the corresponding ketone 3a-g (0.43 mmol) in dry MeOH (1.4 mL), ammonium acetate 

(335 mg, 4.34 mmol) and sodium cyanoborohydride (55 mg, 0.87 mmol) were successively added under 

inert atmosphere. The mixture was stirred at room temperature during 16 h y, and after this time H2O 

(15 mL) was stopped to quench the reaction. The solution was acidified with a few drops of 

concentrated aqueous HCl and extracted with Et2O (3 × 15 mL). The organic layers were discarded and 

the aqueous phase basified with 2-3 pellets of NaOH, and extracted with Et2O (3 × 20 mL). The organic 

layers were combined, dried over Na2SO4 and concentrated in vacuo. The reaction crude was purified 

by column chromatography on silica gel (10% MeOH/CH2Cl2), to afford the racemic amines (31-68%). 

1-(2-Bromophenoxy)propan-2-amine (4a). Yellowish oil (36 mg, 36% Yield). Rf (10% 

MeOH/CH2Cl2): 0.28. IR (NaCl):  3356, 2965, 2929, 2227, 1658, 1614, 1597, 1487, 1369, 1295, 975, 

855, 730 cm-1. 1H NMR (300.13 MHz, CDCl3):  1.22 (d, 3JHH = 6.6 Hz, 3H), 2.25 (brs, 2H), 3.22-3.57 

(m, 1H), 3.74 (dd, 2JHH = 8.9 Hz, 3JHH = 7.4 Hz, 1H), 3.96 (dd, 2JHH = 8.9 Hz, 3JHH = 4.0 Hz, 1H), 6.75-
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6.92 (m, 2H), 7.24 (td, 3JHH = 8.3 Hz, 4JHH = 1.6 Hz, 1H), 7.53 (dd, 3JHH = 7.9 Hz, 4JHH = 1.6 Hz, 1H) 

ppm. 13C NMR (75.5 MHz, CDCl3):  19.4 (CH3), 46.5 (CH), 75.2 (CH2), 112.3 (C), 113.4 (CH), 122.1 

(CH), 128.5 (CH), 133.3 (CH), 155.1 (C) ppm. HRMS (ESI+, m/z): calculated for (C9H13BrNO)+ 

(M+H)+ 230.0175; found 230.0178. 

4-(2-Aminopropoxy)-3-bromobenzonitrile (4b). Yellowish oil (44 mg, 40% Yield). Rf (10% 

MeOH/CH2Cl2): 0.33. IR (NaCl):  3364, 3358, 3104, 2227, 1750, 1596, 1494, 1461, 1398, 1397, 886, 

816, 751, 715, 672 cm-1. 1H NMR (300.13 MHz, CDCl3):  1.24 (d, 2JHH = 6.6 Hz, 3H), 2.12 (brs, 2H), 

3.42-3.53 (m, 1H), 3.82 (dd, 2JHH = 8.8, 3JHH = 7.3 Hz, 1H), 4.01 (dd, 2JHH = 8.8, 3JHH = 4.1 Hz, 1H), 

6.93 (d, 3JHH = 8.6 Hz, 1H), 7.58 (dd, 3JHH = 8.5, 4JHH = 2.1 Hz, 1H), 7.83 (d, 4JHH = 2.1 Hz, 1H) ppm. 

13C NMR (75.5 MHz, CDCl3):  19.5 (CH3), 46.1 (CH), 75.5 (CH2), 105.3 (C), 112.7 (C), 112.8 (CH), 

117.7 (C), 133.1 (CH), 136.6 (CH), 158.6 (C) ppm. HRMS (ESI+, m/z): calculated for (C10H12BrN2O)+ 

(M+H)+ 255.0128; found 255.0139. 

1-(2-Bromo-4-methylphenoxy)propan-2-amine (4c). Yellowish oil (33 mg, 31% Yield). Rf (10% 

MeOH/CH2Cl2): 0.35. IR (NaCl):  3355, 2925, 2932, 1663, 1486, 1373, 1287, 933, 796, 782, 685 cm-1. 

1H NMR (300.13 MHz, CDCl3):  1.22 (d, 3JHH = 6.6 Hz, 3H), 2.27 (s, 3H), 2.60 (brs, 2H), 3.37-3.48 

(m, 1H), 3.72 (dd, 2JHH = 8.9, 3JHH = 7.4 Hz, 1H), 3.94 (dd, 2JHH = 8.9, 3JHH = 4.0 Hz, 1H), 6.78 (d, 3JHH 

= 8.4 Hz, 1H), 7.03 (dd, 3JHH = 8.4, 4JHH = 2.1 Hz, 1H), 7.35 (d, 4JHH = 2.1 Hz, 1H) ppm. 13C NMR 

(75.5 MHz, CDCl3):  19.3 (CH3), 20.2 (CH3), 46.4 (CH), 75.3 (CH2), 112.0 (C), 113.5 (CH), 128.9 

(CH), 131.8 (C), 133.6 (CH), 152.9 (C) ppm. HRMS (ESI+, m/z): calculated for (C10H15BrNO)+ (M+H)+ 

244.0332; found 244.0322. 

1-(2-Bromo-4-fluorophenoxy)propan-2-amine (4d). Yellowish oil (42 mg, 39% Yield). Rf (10% 

MeOH/CH2Cl2): 0.23. IR (NaCl):  3410, 3012, 2979, 1687, 1433, 1326, 1290, 947, 867, 753, 701 cm-1. 

1H NMR (300.13 MHz, CDCl3):  1.22 (d, 3JHH = 6.6 Hz, 3H), 2.43 (brs, 2H), 3.33-3.53 (m, 1H), 3.71 

(dd, 2JHH = 8.8, 3JHH = 7.4 Hz, 1H), 3.93 (dd, 2JHH = 8.8, 3JHH = 4.0 Hz, 1H), 6.83 (dd, 3JHH = 9.1, 4JHF = 

4.8 Hz, 1H), 6.93-7.00 (m, 1H), 7.28 (dd, 3JHF = 7.8, 4JHH = 3.0 Hz, 1H) ppm. 13C NMR (75.5 MHz, 
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CDCl3):  19.2 (CH3), 46.4 (CH), 75.8 (CH2), 112.4 (d, 3JFC = 9.9 Hz, C), 114.1 (d, 3JFC = 8.5 Hz, CH), 

114.8 (d, 2JFC = 22.6 Hz, CH), 120.3 (d, 2JFC = 25.8 Hz, CH), 151.7 (d, 4JFC = 2.4 Hz, C), 156.7 (d, 1JFC 

= 243.3 Hz, C) ppm. HRMS (ESI+, m/z): calculated for (C9H12BrFNO)+ (M+H)+ 248.0081; found 

248.0085. 

1-(2-Bromo-5-methoxyphenoxy)propan-2-amine (4e). Colourless oil (74 mg, 66% Yield). Rf (50% 

EtOAc/Hexane): 0.38. IR (NaCl):  3368, 2330, 2174, 1591, 1489, 1467, 1306, 1283, 1203, 1170, 1061, 

1023, 828 cm-1. 1H NMR (300.13 MHz, CDCl3):  1.24 (d, 3JHH = 6.6 Hz, 3H), 2.68 (brs, 2H), 3.39-3.52 

(m, 1H), 3.70-3.79 (m, 1H) overlapped signal with 3.77 (s, 3H), 3.95 (dd, 2JHH = 8.9 Hz, 3JHH = 4.0 Hz, 

1H), 6.39 (dd, 3JHH = 8.7 Hz, 4JHH = 2.7 Hz, 1H), 6.49 (d, 4JHH = 2.7 Hz, 1H), 7.38 (d, 3JHH = 8.7 Hz, 

1H) ppm. 13C NMR (75.5 MHz, CDCl3):  15.3 (CH3), 48.4 (CH), 55.9 (CH3), 69.9 (CH2), 102.1 (CH), 

103.1 (C), 108.8 (CH), 133.3 (CH), 154.5 (C), 160.3 (C) ppm. HRMS (ESI+, m/z): calculated for 

(C10H15BrNO2)
+ (M+H)+ 260.0281, found: 260.0275. 

1-[(2-Bromopyridin-3-yl)oxy]propan-2-amine (4f). Yellowish oil (32 mg, 32% Yield). Rf (10% 

MeOH/CH2Cl2): 0.28. IR (NaCl):  3330, 3321, 2960, 2929, 2227, 1645, 1596, 1563, 1538, 1494, 1447, 

1416, 849, 795, 726, 680 cm-1. 1H NMR (300.13 MHz, CDCl3):  1.19 (d, 3JHH = 6.5 Hz, 3H), 1.78 (brs, 

2H), 3.35-3.48 (m, 1H), 3.72 (dd, 2JHH = 8.6, 3JHH = 7.5 Hz, 1H), 3.93 (dd, 2JHH = 8.6, 3JHH = 4.1 Hz, 

1H), 7.11 (dd, 3JHH = 8.1, 4JHH = 1.6 Hz, 1H), 7.18 (dd, 3JHH = 8.1, 3JHH = 4.6 Hz, 1H), 7.96 (dd, 3JHH = 

4.6, 4JHH = 1.6 Hz, 1H) ppm. 13C NMR (75.5 MHz, CDCl3):  19.8 (CH3), 46.2 (CH), 75.7 (CH2), 119.9 

(CH), 123.5 (CH), 133.2 (C), 141.5 (CH), 152.3 (C) ppm. HRMS (ESI+, m/z): calculated for 

(C8H12BrN2O)+ (M+H)+ 231.0128; found 231.0123. 

1-[(3-Bromopyridin-2-yl)oxy]propan-2-amine (4g). Yellowish oil (67 mg, 68% Yield). Rf (10% 

MeOH/CH2Cl2): 0.21. IR (NaCl):  3419, 3093, 2345, 2177, 1706, 1648, 1583, 1530, 1427, 1396, 1327, 

976, 866, 855 cm-1. 1H NMR (300.13 MHz, CDCl3):  1.16 (d, 3JHH = 6.5 Hz, 3H), 2.15 (brs, 2H), 3.39-

3.52 (m, 1H), 3.70 (dd, 2JHH = 12.9 Hz, 3JHH = 8.1 Hz, 1H), 4.08 (dd, 2JHH = 12.9 Hz, 3JHH = 4.7 Hz, 

1H), 6.08 (t, 3JHH = 7.0 Hz, 1H), 7.37 (dd, 3JHH = 7.0 Hz, 4JHH = 1.9 Hz 1H), 7.74 (dd, 3JHH = 7.0 Hz, 
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4JHH = 1.9 Hz, 1H) ppm. 13C NMR (75.5 MHz, CDCl3):  20.9 (CH3), 45.8 (CH), 58.4 (CH2), 105.8 

(CH), 116.7 (C), 138.1 (CH), 141.7 (CH), 159.3 (C) ppm. HRMS (ESI+, m/z): calculated for 

(C8H11BrN2NaO)+ (M+Na)+ 252.9947; found 252.9945. 

Synthesis of racemic N-[1-(2-bromophenoxy)propan-2-yl]acetamide (7a). 4-

Dimethylaminopyridine (8.0 mg, 0.066 mmol), triethylamine (72.2 μL, 0.983 mmol) and acetic 

anhydride (72.2 μL, 0.655 mmol) were successively added to a solution of the racemic amine 4a (75 

mg, 0.328 mmol) in dry CH2Cl2 (2 mL). The reaction was stirred at room temperature for 1 hour and 

after this time the solvent removed by distillation under reduced pressure. The crude was purified by 

column chromatography on silica gel (5% MeOH/CH2Cl2), to afford the racemic acetamide 7a as a 

white solid (86 mg, 96%). Rf (10% MeOH/CH2Cl2): 0.65. Mp: 67-68 ºC. IR (KBr):  3053, 2987, 1768, 

1662, 1608, 1498, 1267, 914, 896, 761, 721 cm-1. 1H NMR (300.13 MHz, CDCl3):  1.37 (d, 3JHH = 6.9 

Hz, 3H), 2.01 (s, 3H), 3.97-4.07 (m, 2H), 4.35-4.47 (m, 1H), 6.13 (d, 1H, 3JHH = 7.7 Hz), 6.82-6.93 (m, 

2H), 7.26 (ddd, 3JHH = 8.2, 3JHH = 7.4, 4JHH = 1.6 Hz, 1H), 7.53 (dd, 3JHH = 7.8, 4JHH = 1.6 Hz, 1H) ppm. 

13C NMR (75.5 MHz, CDCl3):  18.0 (CH3), 23.8 (CH3), 45.0 (CH), 72.1 (CH2), 112.7 (C), 114.0 (CH), 

127.8 (CH), 129.1 (CH), 133.7 (CH), 155.3 (C), 170.4 (C) ppm. HRMS (ESI+, m/z): calcd for 

(C11H15BrNO2)
+ (M+H)+: 272.0281 found: 272.0287; calcd for (C11H14BrNNaO2)

+ (M+Na)+: 294.0100 

found: 294.0103. 

General procedure for the synthesis of racemic methoxyacetamides 8a-g. 4-

Dimethylaminopyridine (1.5 mg, 0.012 mmol), triethylamine (25 μL, 0.18 mmol) and methoxyacetyl 

chloride (11 μL, 0.12 mmol) were successively added to a solution of the corresponding racemic amine 

4a-g (0.06 mmoles) in dry CH2Cl2 (2.1 mL). The reaction was stirred at room temperature for 1 hour 

and after this time the solvent removed by distillation under reduced pressure. The crude was purified 

by column chromatography on silica gel (5% MeOH/CH2Cl2), to afford the corresponding 

methoxyacetamide 8a-g (85-99%). 
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N-[1-(2-bromophenoxy)propan-2-yl]-2-methoxyacetamide (8a). White solid (18 mg, 98% Yield). 

Rf (10% MeOH/CH2Cl2): 0.79. Mp: 52-53 ºC. IR (KBr):  3409, 3054, 2983, 2937, 2829, 1678, 1586, 

1574, 1483, 1266, 986, 932, 896, 738, 704, 555 cm-1. 1H NMR (300.13 MHz, CDCl3):  1.32-1.60 (m, 

3H), 3.42 (s, 3H), 3.89-3.92 (m, 2H), 4.03-4.05 (m, 2H), 4.43-4.51 (m, 1H), 6.77-6.93 (m, 3H), 7.18-

7.33 (m, 1H), 7.45-7.59 (m, 1H) ppm. 13C NMR (75.5 MHz, CDCl3):  18.1 (CH3), 44.4 (CH), 59.6 

(CH3), 72.0 (CH2), 72.3 (CH2), 112.8 (C), 113.8 (CH), 122.7 (CH), 129.0 (CH), 133.7 (CH), 155.2 (C), 

169.5 (C) ppm. HRMS (ESI+, m/z): calculated for (C12H17BrNO3)
+ (M+H)+ 302.0386; found 302.0381; 

calculated for (C12H16BrNNaO3)
+ (M+Na)+ 324.0206; found 324.0204. 

N-[1-(2-bromo-4-cyanophenoxy)propan-2-yl]-2-methoxyacetamide (8b). White solid (17 mg, 87% 

Yield). Rf (10% MeOH/CH2Cl2): 0.63. Mp: 102-103 ºC. IR (KBr):  3417, 3012, 2182, 1696, 1669, 

1605, 1510, 1456, 1298, 1267, 965, 868, 852 cm-1. 1H NMR (300.13 MHz, CDCl3):  1.42 (d, 3JHH = 

6.9 Hz, 3H), 3.43 (s, 3H), 3.85-3.97 (m, 2H), 4.07-4.16 (m, 2H), 4.45-4.53 (m, 1H), 6.75 (d, 1H, 3JHH = 

6.9 Hz), 6.97 (d, 3JHH = 8.5 Hz, 1H), 7.60 (dd, 3JHH = 8.5, 4JHH = 2.1 Hz, 1H), 7.85 (d, 4JHH = 2.1 Hz, 

1H) ppm. 13C NMR (75.5 MHz, CDCl3):  17.8 (CH3), 43.7 (CH), 59.2 (CH3), 71.7 (CH2), 71.8 (CH2), 

105.6 (C), 112.9 (C), 113.0 (CH), 117.7 (C), 133.2 (CH), 136.7 (CH), 158.4 (C), 169.3 (C) ppm. HRMS 

(ESI+, m/z): calculated for (C13H16BrN2O3)
+ (M+H)+ 327.0339; found 327.0335; calculated for 

(C13H15BrN2NaO3)
+ (M+Na)+ 349.0158; found 349.0164. 

N-[1-(2-bromo-4-methylphenoxy)propan-2-yl]-2-methoxyacetamide (8c). White solid (16 mg, 

85% Yield). Rf (10% MeOH/CH2Cl2): 0.67. Mp: 64-65 ºC. IR (KBr):  3419, 3093, 2345, 2177, 1698, 

1623, 1597, 1419, 1265, 896, 751, 706 cm-1. 1H NMR (300.13 MHz, CDCl3):  1.41 (d, 3JHH = 6.8 Hz, 

3H), 2.29 (s, 3H), 3.43 (s, 3H), 3.85-3.97 (m, 2H), 4.00-4.04 (m, 2H), 4.58-4.35 (m, 1H), 6.80 (d, 3JHH = 

8.3 Hz, 1H), 6.95 (d, 1H, 3JHH = 7.9 Hz), 7.00-7.13 (m, 1H), 7.37 (d, 4JHH = 2.0 Hz, 1H) ppm. 13C NMR 

(75.5 MHz, CDCl3):  17.7 (CH3), 20.2 (CH3), 44.0 (CH), 59.3 (CH3), 71.8 (CH2), 71.9 (CH2), 112.1 

(C), 113.5 (CH), 128.9 (CH), 132.1 (C), 133.7 (CH), 152.8 (C), 169.1 (C) ppm. HRMS (ESI+, m/z): 

calculated for (C13H19BrNO3)
+ (M+H)+ 316.0543, found: 316.0532; calculated for (C13H18BrNNaO3)

+ 
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(M+Na)+ 338.0362, found 338.0360. 

N-[1-(2-bromo-4-fluorophenoxy)propan-2-yl]-2-methoxyacetamide (8d). White solid (19 mg, 

99% Yield). Rf (10% MeOH/CH2Cl2): 0.64. Mp: 80-81 ºC. IR (KBr):  3409, 3054, 2986, 1733, 1678, 

1527, 1492, 1265, 985, 909, 896, 865, 748, 705 cm-1. 1H NMR (300.13 MHz, CDCl3):  1.41 (d, 3JHH = 

6.8 Hz, 3H), 3.43 (s, 3H), 3.91 (m, 2H), 4.01 (m, 2H), 4.38-4.54 (m, 1H), 6.86 (dd, 3JHH = 9.1, 4JHF = 

4.7 Hz, 1H), 6.99 (m, 3JHH = 9.1, 3JHF = 7.8, 4JHH = 3.0 Hz, 1H), 7.26-7.34 (m, 1H) ppm. 13C NMR (75.5 

MHz, CDCl3):  17.6 (CH3), 44.0 (CH), 59.2 (CH3), 71.9 (CH2), 72.4 (CH2), 112.5 (d, 3JFC = 9.5 Hz, C), 

114.0 (d, 3JFC  = 8.5 Hz, CH), 114.8 (d, 2JFC = 22.6 Hz, CH), 120.4 (d, 2JFC = 26.3 Hz, CH), 151.5 (C), 

156.8 (d, 1JFC = 243.8 Hz, C), 169.2 (C) ppm. HRMS (ESI+, m/z): calculated for (C12H16BrFNO3)
+ 

(M+H)+ 320.0292, found 320.0287; calculated for (C12H15BrFNNaO3)
+ (M+Na)+ 342.0112, found 

342.0117. 

N-[1-(2-bromo-5-methoxyphenoxy)propan-2-yl]-2-methoxyacetamide (8e). White solid (17 mg, 

87% Yield). Rf (10% MeOH/CH2Cl2): 0.71. Mp: 67-68 ºC. IR (KBr):  3420, 2934, 2401, 2111, 1670, 

1639, 1589, 1423, 1257, 1023, 934, 829 cm-1. 1H NMR (300.13 MHz, CDCl3):  1.41 (d, 3JHH= 6.8 Hz, 

3H), 3.43 (s, 3H), 3.79 (s, 3H), 3.91 (d, 3JHH = 5.6 Hz, 2H), 4.02-4.12 (m, 2H), 4.36-4.61 (m, 1H), 6.43 

(dd, 3JHH = 8.6 Hz, 4JHH = 2.7, 1H), 6.50 (d, 4JHH = 2.7 Hz, 1H), 6.91 (d, 1H, 3JHH = 7.3 Hz), 7.41 (d, 

4JHH = 8.6 Hz, 1H) ppm. 13C NMR (75.5 MHz, CDCl3):  17.7 (CH3), 43.9 (CH), 55.6 (CH3), 59.3 

(CH3), 71.8 (CH2), 71.9 (CH2), 100.9 (CH), 103.0 (C), 106.9 (CH), 133.1 (CH), 155.5 (C), 160.2 (C), 

169.2 (C) ppm. HRMS (ESI+, m/z): calculated for (C13H18BrNNaO4)
+ (M+Na)+ 354.0311, found 

354.0316. 

N-{1-[(2-bromopyridin-3-yl)oxy]propan-2-yl}-2-methoxyacetamide (8f). White solid (18 mg, 99% 

Yield). Rf (10% MeOH/CH2Cl2): 0.57. Mp: 70-80 ºC. IR (KBr):  3400, 2933, 1667, 1651, 1563, 1530, 

1447, 1418, 1294, 796, 727 cm-1. 1H NMR (300.13 MHz, CDCl3):  1.43 (d, 3JHH = 6.8 Hz, 3H), 3.44 (s, 

3H), 3.85-3.97 (m, 2H), 4.03-4.12 (m, 2H), 4.44-4.54 (m, 1H), 6.85 (d, 1H, 3JHH = 7.9 Hz), 7.17-7.25 

(m, 2H, H4), 8.02 (dd, 3JHH = 4.4, 4JHH = 1.8 Hz, 1H) ppm. 13C NMR (75.5 MHz, CDCl3):  17.6 (CH3), 
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43.7 (CH), 59.3 (CH3), 71.6 (CH2), 71.9 (CH2), 119.9 (CH), 123.5 (CH), 133.2 (C), 141.7 (CH), 152.0 

(C), 169.3 (C) ppm. HRMS (ESI+, m/z): calculated for (C11H15BrN2NaO3)
+ (M+Na)+ 325.0158, found: 

325.0145. 

N-{1-[(2-bromopyridin-3-yl)oxy]propan-2-yl}-2-methoxyacetamide (8g). White solid (16 mg, 89% 

Yield). Rf (10% MeOH/CH2Cl2): 0.65. Mp: 138-139 ºC. IR (KBr):  3478, 3319, 2922, 1649, 1596, 

1537, 1494, 1378, 1297, 975, 848, 760, 657 cm-1. 1H NMR (300.13 MHz, CDCl3):  1.30 (d, 3JHH = 6.2 

Hz, 3H), 3.39 (s, 3H), 3.86-3.96 (m, 2H), 3.97-4.08 (m, 2H), 4.21-4.39 (m, 1H), 6.10 (t, 3JHH = 7.2 Hz, 

1H), 6.95 (d, 1H, 3JHH = 6.9 Hz), 7.25-7.37 (m, 1H), 7.73 (dd, 3JHH = 7.2, 4JHH = 1.9 Hz, 1H) ppm. 13C 

NMR (75.5 MHz, CDCl3):  18.1 (CH3), 45.9 (CH), 53.9 (CH2), 59.4 (CH3), 71.8 (CH2), 106.2 (CH), 

116.6 (C), 137.3 (CH), 141.8 (CH), 159.6 (C), 169.9 (C) ppm. HRMS (ESI+, m/z): calculated for 

(C11H16BrN2O3)
+ (M+H)+ 303.0339, found 303.0342; calculated for (C11H15BrN2NaO3)

+ (M+Na)+ 

325.0158, found: 325.0165. 

General procedure for the enzymatic kinetic resolution by acylation of racemic amines 4a-g. Ethyl 

methoxyacetate (6b, 23.5 L, 0.20 mmol) and CAL-B (ratio 1:1 in weight amine/enzyme) were added 

to a suspension containing the corresponding racemic amine 4a-g (0.10 mmol) in dry THF (0.1 M, 1 

mL) under inert atmosphere. The reaction was shaken at 20 ºC and 250 rpm for the necessary time 

(0.75-1 h) to achieve a good kinetic resolution (see Tables 3 and 4). The reaction was followed by 

HPLC analysis until around 50% conversion was reached. The enzyme was filtered off, washed with 

CH2Cl2 (3 x 5 mL) and the solvent evaporated under reduced pressure. The crude reaction was purified 

by column chromatography on silica gel (eluent gradient 5-10% MeOH/CH2Cl2), to afford the 

corresponding optically active methoxyacetamides (R)-8a-g (88-99% ee) and amines (S)-4a-g (90->99% 

ee). 

Optical rotation values for the (R)-methoxyacetamides 8a-g: D
20 +35.4 (c 1, EtOH) for (R)-8a in 

93% ee; D
20 +36.4 (c 1, EtOH) for (R)-8b in 93% ee; D

20 +31.8 (c 1, EtOH) for (R)-8c in 96% ee; 

D
20 +25.3 (c 0.5, EtOH) for (R)-8d in 93% ee; D

20 +12.6 (c 1, EtOH) for (R)-8e in 88% ee; D
20 
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+19.8 (c 1, EtOH) for (R)-8f in 99% ee; D
20 –50.6 (c 1, EtOH) for (R)-8g in 83% ee. 

Optical rotation values for the (S)-amines 4a-g: D
20 +6.4 (c 0.5, EtOH) for (S)-4a in >99% ee; 

D
20 –30.5 (c 0.5, EtOH) for (S)-8b in 90% ee obtained by chemical derivatization of (S)-4b; D

20 

+6.4 (c 1, EtOH) for (S)-4c in >99% ee; D
20 + 2.5 (c 1, EtOH) for (S)-4d in >99% ee; D

20 +13.6 (c 

1, EtOH) for (S)-4e in 91% ee; D
20 +4.2 (c 1, EtOH) for (S)-4f in >99% ee; D

20 +31.3 (c 0.5, 

EtOH) for (S)-4g in >99% ee. 

Scale-up of the enzymatic kinetic resolution by acylation of racemic amine 4a. Ethyl 

methoxyacetate (6b, 204.0 L, 1.74 mmol) and CAL-B (200 mg, ratio 1:1 in weight amine/enzyme) 

were added to a suspension containing the corresponding racemic amine 4a (200 mg, 0.87 mmol) in dry 

THF (0.1 M, 8.7 mL) under inert atmosphere. The reaction was shaken at 20 ºC and 250 rpm for 45 

minutes to achieve a 51% conversion with excellent selectivity. The enzyme was filtered off, washed 

with CH2Cl2 (3 x 15 mL) and the solvent evaporated under reduced pressure. The crude reaction was 

purified by column chromatography on silica gel (eluent gradient 5-10% MeOH/CH2Cl2), to afford the 

corresponding optically active methoxyacetamide (R)-8a (93% ee, 49% isolated yield) and amine (S)-4a 

(>99% ee, 47% isolated yield). 

General procedure for the biotransamination of ketones 3a-h employing isopropylamine as 

amino donor. A solution of ketone 3a-h (0.025 mmol, 50 mM) in DMSO (12.5 µL) was added to a 

suspension of a commercial TA (2 mg) in phosphate buffer 100 mM pH 7.5 (500 µL) containing PLP (1 

mM) and isopropylamine (1 M). The mixture was shaken at 30 °C and 250 rpm for 24 h. Then, the 

reaction was quenched by adding an aqueous NaOH 4 M solution (400 µL) and extracted with EtOAc (3 

x 500 µL). The organic phases were combined and dried over Na2SO4. Reaction crude was analyzed 

through GC to determine conversion values, and later the enantiomeric excess after an in situ 

derivatization. For the methoxy derivative 4e, HPLC was employed to determine de ee value of the 

enantioenriched amine. 
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General procedure for the biotransamination of ketones 3a,c-d employing alanine as amino 

donor and alanine dehydrogenase as regeneration system. To a suspension of ketones 3a-d (0.05 

mmol, 50 mM) in a 100 mM phosphate buffer pH 7 (440 µL) were successively added ammonium 

formate (100 µL of 1.5 M solution in a 100 mM phosphate buffer pH 7; final concentration 150 mM), 

alanine (250 µL of 1 M solution in phosphate buffer 100 mM pH 7; final concentration 250 mM), NAD+ 

(100 µL of 10 mM solution in a 100 mM phosphate buffer pH 7; final concentration 1 mM), PLP (100 

µL of 10 mM solution in a 100 mM phosphate buffer pH 7; final concentration 1 mM), lyophilized cells 

of E. coli containing overexpressed transaminases (20 mg), formate dehydrogenase (FDH, 2.6 mg, 11 

U) and alanine dehydrogenase (AlaDH, 10 µL, 11 U). D- or L- alanine were used as amine donor 

depending on the (R) or (S)-transaminase selectivity, respectively. The resulting mixture was shaken at 

30 °C and 250 rpm for 24 h. After this time the reaction was quenched by adding aqueous NaOH 4 M 

(400 µL), extracted with ethyl acetate (3 x 500 µL), and organic phases were combined and dried with 

Na2SO4. Reaction crude was analyzed through GC to determine conversion values and, after an in situ 

derivatization the enantiomeric excess was calculated. 

Synthesis of 6-bromo-2,3-difluorophenol (1h).22a Bromine (119 μL, 2.31 mmol) was added 

dropwise over 3 minutes to a cooled (-30 ºC) solution of tBuNH2 (485 μL, 4.61 mmol) in dry toluene 

(5.8 mL) until formation of a yellow solution. The mixture was cooled to -78 ºC and after 10 minutes, a 

solution of 2,3-difluorophenol (9, 300 mg, 2.31 mmol) in dry CH2Cl2 (0.6 mL) was added dropwise 

over 5 minutes. The mixture was allowed to warm slowly to room temperature over 4 h, stirring the 

resulting mixture for additional 1.5 h at this temperature. The mixture was diluted with EtOAc (10 mL) 

and washed with an aqueous HCl 1 M solution (2 × 10 mL). The organic layer was dried over Na2SO4 

and concentrated in vacuo. The reaction crude was purified by column chromatography on silica gel 

(15% Et2O/hexane), to afford the bromophenol 1h as a colourless oil (439 mg, 91%). Physical and 

spectral data were found to be consistent with those previously reported in the literature.22a 

Synthesis of 1-(6-bromo-2,3-difluorophenoxy)propan-2-one (3h). Chloroacetone (82 μL, 1.03 
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mmol) was added to a mixture of potassium carbonate (238 mg, 1.72 mmol), potassium iodide (41 mg, 

0.25 mmol) and the bromophenol 1h (111.9 mg, 0.86 mmol) in acetone (3 mL) at room temperature, 

and the mixture was stirred and heated at 55 ºC for 2 h. After this time the solution was added to water 

(5 mL) and the product was extracted with Et2O (4 × 10 mL). The organic layers were combined, 

washed with water (20 mL), dried over Na2SO4 and concentrated in vacuo, isolating the 

bromacetophenone 3h as an orangish oil (205 mg, 90%). Rf (20% EtOAc/Hexane): 0.44. IR (NaCl):  

3461, 3094, 2921, 1741, 1724, 1612, 1588, 1485, 1462, 1429, 1360, 1297, 1208, 1179, 1058, 1019, 991, 

975, 881, 801 cm-1. 1H NMR (300.13 MHz, CDCl3):  2.35 (s, 3H), 4.64 (d, 5JFH = 0.9 Hz, 2H), 6.74-

6.92 (m, 1H), 7.26 (ddd, 3JHH = 9.2 Hz, 4JFH = 5.4, 5JFH = 2.4 Hz, 1H) ppm. 13C NMR (75.5 MHz, 

CDCl3):  26.7 (CH3), 77.5 (d, 4JFC = 4.8 Hz, CH2), 111.1 (d, 3JFC = 3.6 Hz, C), 112.9 (d, 2JFC = 18.4 

Hz, CH), 127.2 (dd, 3JFC = 7.4 Hz, 4JFC = 4.2 Hz, CH), 144.5 (dd, 1JFC = 251.8 Hz, 2JFC = 14.8 Hz, C), 

144.8 (d, 2JFC = 7.3 Hz, C), 150.8 (dd, 1JFC = 250.3 Hz, 2JFC = 11.5 Hz, C), 204.1 (C) ppm. HRMS 

(ESI+, m/z): calcd for (C9H7BrF2NaO2)
+ (M+Na)+ 286.9490, found: 286.9480. 

Synthesis of 1-(6-bromo-2,3-difluorophenoxy)propan-2-amine (4h). To a solution of the ketone 3h 

(80.0 mg, 0.43 mmol) in dry MeOH (1.4 mL), ammonium acetate (335 mg, 4.34 mmol) and sodium 

cyanoborohydride (55 mg, 0.87 mmol) were successively added under inert atmosphere. The mixture 

was stirred at room temperature during 14 h. The reaction crude was purified by column 

chromatography on silica gel (10% MeOH/CH2Cl2), to afford the racemic 4h as a colourless oil (63 mg, 

55%). Rf (10% MeOH/CH2Cl2): 0.41. IR (NaCl):  3243, 3091, 2335, 1613, 1489, 1457, 1294, 1209, 

1055 cm-1. 1H NMR (300.13 MHz, CDCl3):  1.26 (d, 3JHH = 6.6 Hz, 3H), 3.28 (brs, 2H), 3.42-3.57 (m, 

1H), 3.90-4.02 (m, 1H), 4.16 (ddd, 2JHH = 9.3 Hz, 3JHH = 3.9 Hz, 5JFH = 1.3 Hz, 1H), 6.82 (dt, 3JFH = 9.2 

Hz, 3JHH = 7.6, 4JFH = 7.6 Hz, 1H), 7.25 (ddd, 3JHH = 7.6 Hz, 4JFH = 4.9, 5JHF = 2.5 Hz, 1H) ppm. 13C 

NMR (75.5 MHz, CDCl3):  15.1 (CH3), 48.7 (CH), 74.3 (d, 4JFC = 4.6 Hz, CH2), 111.7 (d, 3JFC = 3.8 

Hz, C), 113.8 (d, 2JFC = 18.4 Hz, CH), 127.2 (dd, 3JFC = 7.4 Hz, 4JFC = 4.2 Hz, CH), 144.3 (dd, 2JFC = 

10.1 Hz, 3JFC = 1.8 Hz, C), 145.0 (dd, 1JFC = 252.5 Hz, 2JFC = 14.5 Hz, C), 150.7 (dd, 1JFC = 250.8 Hz, 
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2JFC = 11.3 Hz, C) ppm. HRMS (ESI+, m/z): calcd for (C9H11BrF2NO)+ (M+H)+ 265.9987, found: 

265.9989. 

Preparative biotransamination of ketones 3a,d,e,h. In a Falcon tube, the TA (35 mg, ATA-256 for 

ketones 3a,d,h and TA-P1-G06 for 3e) was suspended in a phosphate buffer 100 mM pH 7.5 (8.8 mL) 

containing PLP (1 mM) and isopropylamine (1 M). Then, a solution of ketones 3a, 3d, 3e or 3h (0.44 

mmol, 50 mM) in EtOH (220 µL) was added. The mixture was shaken at 30 °C and 250 rpm for 24 h. 

Then, the reaction was quenched by adding an aqueous NaOH 4 M solution until pH ≈ 10 (~2 mL) and 

extracted with EtOAc (3 x 15 mL). The organic phases were combined, dried over Na2SO4, filtered and 

the solvent was removed under reduced pressure. The reaction crude was purified by column 

chromatography (MeOH/CH2Cl2 mixtures), yielding the amines (S)-4a,d,e,h in moderate to good yields 

(60-74%) and good to excellent enantiomeric excess (91->99% ee). D
20= +4.8 (c 0.4, EtOH) [for (S)-

4h in >99% ee]. 
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