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Abstract

This paper assesses the efficiency of rain-fed cereals crops grown in Southern Spain. The proposed approach uses a two-stage Data Envelopment Analysis (DEA) plus regression approach. In the first stage a Slacks-based Inefficiency (SBI) DEA model is used to project conventional and organic cropping systems onto the efficient frontier. The results of the efficiency analysis show that conventional production is more inefficient than organic production and that the main sources of inefficiency in the case of conventional production correspond to excessive input consumption and GHG emissions. In the case of organic production, the inefficiency comes from output shortfalls. It is shown that reducing inefficiency would reduce the amount of GHG emitted per unit of fresh matter yielded. This potential gain is more pronounced in the case of conventional production but also occurs for organic production. In the second stage, the crops efficiency scores are regressed against some exogenous variables using a fractional regression model. The regression results confirm that organic production significantly decreases inefficiency and they also indicate that the larger the farm, the larger the inefficiency and that growing barley is more inefficient than wheat.
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1. Introduction

Global agriculture faces multiple interconnected challenges in the 21st century, having to produce enough quality food for a growing population in a context of global change and resource depletion. This means that food production has to grow sustainably while the environmental footprint of agriculture has to be dramatically reduced (Foley et al. 2011). Human activity involves environment alterations at a global scale, some of them beyond the safety boundaries, including genetic diversity, climate change, phosphorus (P) and nitrogen (N) cycles, and land-system change (Steffen et al., 2015). Agriculture is a major driver of these changes, while being also severely threatened by them, calling for the need for adaptation. Agriculture is also heavily dependent on non-renewable resources which already show signs of depletion, including oil (Murray and King, 2012) used for the production of fuel used by farm machinery, natural gas (Mohr and Evans, 2011) used for N fertilizer production, phosphate rock (Cordell et al., 2009) used for P fertilizer production, and most energetic and non-energetic minerals (Valero and Valero, 2011) used for the production of farm inputs.
Cereals are still by far the world’s most important sources of food, both for direct human consumption and indirectly, as inputs to livestock production (FAO, 2002). Their relevance is reflected by their high use of land (721.4 Mha in 2014, 44% of global cropland surface) (FAO, 2016) and agricultural inputs. For example, Ladha and Chakraborty (2016) indicate that wheat, rice and maize cropping are responsible for the consumption of nearly half of synthetic N employed in global agriculture. In the context described in the previous paragraph, many research studies indicate a high potential for increasing the technical and environmental efficiency of cereal production in terms of N fertilizer consumption (e.g. Ladha and Chakraborty, 2016; Quemada and Gabriel, 2016) or greenhouse gas emissions (Linquist et al., 2012).
Rain-fed cereal agro-ecosystems are widespread in the Mediterranean basin and cultivated in 5.1 Mha in Spain, which represents 81% of cereal area, 33% of cropland area and 22% of Usable Agricultural Area (UAA) (MAGRAMA, 2015a). Also, in recent decades organic farming has grown strongly in the European Union and particularly in Spain. With 1.6 Mha, Spain is the country with the largest area under organic farming in the EU-27 (Willer and Lernoud, 2016). Cereal represents 9.3% of this area (MAGRAMA, 2015b). Given its territorial importance, it is relevant to know the impact of this change in management practices on the efficiency in resource use and environmental performance.
A priori, from an environmental perspective, organic cereal production seems to be advantageous in semi-arid climates such as the Mediterranean. This is due to the fact that, under water stress conditions, there is a low response to external inputs such as chemical fertilizers. For example, long-term trials (> 13 years) comparing cereal rotations under organic and conventional management in Spain do not show significant differences in yields, even when the conventional cereal is fertilized with 70 kg/ha synthetic N (Lacasta and Meco, 2011). As a consequence of the reduction in the use of synthetic fertilizers and pesticides, and the low impacts on crop yields, these agro-ecosystems under organic management usually provide a higher level of ecosystem services: biodiversity increase (Armengot et al., 2013), lower energy consumption (Alonso and Guzmán, 2010; Moreno et al., 2011) and lower GHG emissions per hectare and per unit product (Aguilera et al., 2015b), or better soil quality (Aguilera et al., 2013a, Lacasta and Meco, 2011). However, the available information is scarce and is mainly based on experimental farms which do not always reflect real farmers’ management. In addition, there is a lack of integrative studies incorporating agronomic and environmental variables into a unified efficiency assessment. This integrative approach is necessary in order to tackle the multiple challenges faced by global agriculture.
This paper aims to fill these gaps by assessing the efficiency of rain-fed cereals under real management conditions, integrating technical and environmental variables by means of a non-parametric frontier analysis technique, namely Data Envelopment Analysis (DEA) (Cooper et al., 2006). DEA only requires the inputs consumed and the outputs produced by the Operating Units (OUs) under assessment. From those observed data, and making some simple assumptions (such as, e.g., convexity) a Production Possibility Set (PPS, also known as technology) is inferred. The PPS contains all the feasible operating points. There is a subset of operating points within the PPS that are non-dominated, i.e. efficient. They constitute the Efficient Frontier (EF) and represent the best practices. Other operating points, on the other hand, are dominated and it is possible to produce more output and/or consume less input. The larger the potential improvements (i.e. input reduction and output increase) the larger the inefficiencies. DEA is able to compute a target efficient operating point for each OU as well as an efficiency score that measures its distance to the EF.
There are different DEA models, depending on the returns to scale considered (Constant Returns to Scale, CRS or Variable Returns to Scale, VRS) as well as on the metric used (radial, Slacks-based, directional distance function, etc). There are input-oriented DEA models (that give priority to reducing the inputs), output-oriented DEA models (that give priority to the increasing outputs) and non-oriented DEA models (that try to simultaneously reduce the inputs and increase the outputs). In general, DEA is a rather flexible methodology that can generally incorporate the specific features in the problem addressed. For example, some of the inputs or outputs may be non-discretionary, i.e. inputs that are beyond the control of the OU (Banker and Morey, 1986). Another important feature that has often to be taken into account in DEA is the fact that some outputs are undesirable, such as Greenhouse Gases (GHGs), sulphur dioxide, nitrogen oxide, particulate matter, etc. (e.g. Lozano, 2017). In addition, the efficiency scores provided by DEA can be related to exogenous variables in order to identify the explanatory variables that can have an influence on the efficiency of an OU; this is the so-called second stage DEA analysis.
In this paper, a non-oriented, VRS Slacks-based inefficiency (SBI) DEA model for rain-fed cereals efficiency assessment is formulated and applied to a sample of 50 rain-fed cereal crops grown in Spain. In the second stage, a Fractional Regression (FR) of the SBI scores is carried out. The structure of the paper is the following. In section #2 a review of DEA applications to rain-fed cereals, and particularly those comparing organic and conventional farming, is carried out. In Section #3 the proposed DEA model is presented. In section #4 the data used for the empirical analysis and results of efficiency analysis are described. Finally, in Section #5 we provide concluding remarks, discuss the limitations of the present study and suggest future research directions.

2. Literature review
A much more environmentally-friendly approach to products and processes design and operation is probably the biggest challenge faced by mankind in our times. There are many techniques and methodologies that have been specifically developed for that purpose, like, for example, Life Cycle Assessment (LCA). There are other, more general methods and tools (for example, multiobjective optimization) that can also be used to incorporate the environmental dimension in the decision making process. Another such tool is DEA, originally aimed at assessing production efficiency and productivity change along time by relating the outputs produced by an organizational unit (OU) with the inputs consumed and comparing the performance of different OUs. Gradually more and more DEA studies have considered not just the desirable outputs produced by the system but also the undesirable outputs (pollution, effluents, noise, etc) that are also often generated. This has allowed carrying out not just a technical but also an environmental efficiency assessment of the OUs under study. The literature on DEA models and applications that incorporate this type of undesirable outputs is very broad and keeps on growing.

Actually this paper follows that line of research of studying production processes (rain-fed cereals production, in our case) from an integral perspective that includes both desirable and undesirable outputs. Since crop and farm efficiency has attracted considerable interest in the agricultural sector, in this section we will review a number of papers that evaluate the performance of rain-fed cereals-producing farms. The majority of these studies consider either a stochastic parametric production function (Stochastic Frontier Analysis, SFA) or a deterministic non-parametric piecewise linear frontier (DEA). The following literature review consists of two parts, with the first part devoted to performance analysis of rain-fed cereals using DEA (Table 1), and the second part focused on a number of studies that compare organic farming versus conventional farming using DEA and SFA models (Table 2).

Existing rain-fed cereals’ DEA studies have mainly focused on production efficiency. We have identified in the literature of the last ten years forty six DEA papers dealing with rain-fed cereals, of which ten refer to barley, oats and/or wheat and thirty six refer to other crops. Table 1 reviews DEA studies that consider barley, oats and/or wheat. A more complete version of Table 1, including additional DEA analysis of other crops, is provided as online supplementary material, with papers classified based on the crop studied, the region and the dataset/DEA model characteristics. In some of the papers, a second stage regression analysis of DEA efficiency scores with explanatory factors was carried out.

The majority of the studies reviewed considers basic DEA models, without a clear preference as regards to the input or output orientation of the model. For example, the work of Malana and Malano (2006) assessed the performance of 25 irrigated areas in Pakistan and India using the so-called CCR and BCC models (Cooper et al., 2006) and the analysis considered three inputs: irrigation, seed, fertilizer, and one output: wheat yield per hectare.
Table 1. Related DEA efficiency studies on agricultural crops
	Crop
	Country/Region
	Dataset (year)
	Inputs
	Outputs
	DEA model (orientation)
	Reference

	Barley
	Australia (Wheatbelt)
	65 farms (1991-1995)
	fertilizers (nitrogen, phosphorus), pre-sowing rain, post-sowing rain
	grain yield
	CCR/BCC (Input/Output)

Random inputs
	Chambers et al. (2011)

	Barley
	Iran (Hamedan)
	67 farms (2010)
	Human labour, machinery, diesel fuel, chemical fertilizers, farmyard manure, biocide, electricity, seed
	barley
	CCR/BCC (Input)
	Mobtaker et al. (2013)

	Cereal
	Nepal
	2585 farms (2003)
	labour, irrigated land, rain-fed land, value of capital stock, cost of purchased inputs, other costs
	value of cereal crops, value of pulses, value of cash crops, value of other crops
	CCR/BCC (Output)

Second stage: Tobit regression (indep. var: owned land, value of land, extension, age, education, road, mountain, hill)
	Adhikari and Bjorndal (2012)

	Cereal, oilseed, protein crops (COP)
	France versus Hungary
	7481 (France, whole period)

4198 (Hungary, whole period)

(2001-2007)
	utilized land in hectares, labour, intermediate consumption, capital
	value of production, value of other output
	CCR/BCC (Output)

Bootstrapping

Malmquist indices

Metafrontier (Dairy farms versus COP)
	Latruffe et al. (2012)

	Crop
	US (Western Kansas)
	43 irrigators (1992-1999)
	irrigation water, labour, capital, seed, fertilizer, precipitation, available water supply
	wheat, corn, sorghum, soybeans, alfalfa hay, silage
	BCC (Input)
	Lilienfeld and Asmild (2007)

	Rain-fed agricultural system
	Spain (Central)
	171 farms (2008)
	seeds, nitrogen and phosphorous fertilizers, pesticides, energy
	sales, coupled subsidies, agri-environmental payments
	Eco-efficiency model (CRS)

Second stage: Simar and Wilson truncated regression and bootstrapping (indep. var: age, land, income coming from agriculture, Surface subjected to agri-environ. payments, education, agricultural training)
	Picazo-Tadeo et al. (2011)

	Wheat
	India/Pakistan
	19 areas (regional level)

25 areas (inter-reg. level)
	irrigation, seed, fertilizer use
	yield
	CCR/BCC (Input)
	Malana and Malano (2006)

	Wheat and other crops
	Turkey
	374 farms (2009)
	land, labour, crop production costs, capital expenditures
	production
	CRS model (output) with production trade-offs
	Atici and Podinovski (2015)

	Wheat
	Bangladesh (Northwestern)
	246 (Conservation tillage, CT)

86 (Traditional tillage) (2012)
	nitrogen, phosphorous, potassium, pesticides, irrigation, labour, fuel, seed
	wheat grain, straw
	SBM

Second stage: fractional regression (indep. var.: farming specific var., farmer-specific var. management-related var.)
	Aravindakshan et al. (2015)

	Wheat
	Japan

(Northern)
	1995-2011
	global warming potential,

aquatic eutrophication potential
	wheat yield
	Eco-efficiency SBM (Input)
	Masuda (2016)


Other studies consider more advanced DEA approaches, such as Slacks-Based Measure of efficiency (SBM, Tone 2001) and contemplate additional issues, such as the differences in crop management strategies in conservation tillage options. For example, Aravindakshan et al (2015) used SBM to gauge the technical efficiency of 246 conservation tillage wheat farmers and 86 traditional tillage wheat farmers in Bangladesh, with a regression analysis (a.k.a. second stage) to investigate the determinants of the computed efficiency scores.

Another methodological perspective considers an eco-efficiency DEA model. For example, Picazo-Tadeo et al. (2011) assessed the eco-efficiency of 171 farms in Spain focusing on environmental and economic factors in order to address polices based on agricultural sustainability.

Some studies aim at computing productivity growth. For example, Latruffe et al (2012) used the Malmquist index and a metafrontier perspective to investigate differences between French and Hungarian farms considering cereal, oilseed and protein crops. Other DEA approaches to crop efficiency assessment include Atici and Podinovski (2015), who use the specification of production trade-offs between outputs of 374 farms in Turkey. What does not seem to be frequent, as Table 1 shows, is to use DEA models that consider the undesirable outputs of the agricultural production process (e.g. CO2 emissions). Given the growing concern on environmental impact of farming it seems logical to include these variables in the analysis.
Another important research topic is whether or not conventional farming is more efficient than organic farming. Table 2 reviews the main references on the comparative analysis of the technical efficiency of organic and conventional farming using SFA and DEA approaches. The results reported in those studies are not conclusive. A study by Lansik et al. (2002) provided a comparison of the technical efficiency (TE) of conventional and organic crop and livestock farms in Finland over the period 1994-1997 and they found that organic crop farms outperform conventional crop farms in terms of technical efficiency (TE score 0.91 versus 0.67 in CRS DEA model; 0.96 versus 0.72 in VRS DEA model). The recent studies of Aldanondo-Ochoa et al. (2014) and Poudel et al. (2015) found empirical evidence supporting higher TE in organic farmers than conventional ones in the case of vineyard producers in Spain (TE: 0.78 versus 0.56 in VRS DEA model) and coffee producers in Nepal (TE score 0.89 versus 0.83 in CRS DEA model). This contrasts with the results of Dimara et al. (2005), Alkahtani and Elhendy (2012) and Beltrán-Esteve and Reig-Martínez (2014) who concluded that conventional farms, on average, are more efficient than organic farms. Moreover, the adoption of the SFA approach does not resolve the issue on which production approach provides superior efficiency. For example, Tzouvelekas et al (2001) used SFA to study the technical efficiency of olive groves in Greece and found that organic olive farms achieved higher technical efficiency than conventional olive farms (TE score 0.69 versus 0.58), which is consistent with the findings of Guesmi et al. (2012) and Marchand and Gao (2014). By contrast, Tiederman and Latacz-Lohmann (2013), who used SFA to assess the efficiency of 37 arable farms in Germany, concluded that on average, the conventional farms efficiency scores are slightly higher than those of organic farms (TE score 0.935 versus 0.928). These findings are in line with those of Madau (2007), Serra and Goodwin (2009) and Kramol et al. (2013).
Summarizing the conclusions of the above literature review it can be noted that: i) DEA has been shown to be a very useful approach to assess the technical efficiency of different types of crops and farms, ii) most of the rain-fed cereal DEA studies so far do not consider undesirable outputs, and iii) there is no consensus on whether or not organic farming is more efficient than conventional one.

In this paper we will gauge and compare the efficiency of different rain-fed cereals, both conventional and organic, in a specific region and, in order to account for the environmental impact dimension (namely, GHG emissions), an appropriate DEA model, capable of handling undesirable outputs, will be used. Specifically, the DEA model used in this study, explained in detail in the next section, is based on the Slacks-based inefficiency (SBI) measure proposed in Fukuyama and Weber (2009). The name comes from the fact that it measures the improvements along each input and output dimension. These improvements are termed slacks in the DEA terminology and are appropriately normalized so that they become dimensionless and can be aggregated into an efficiency or inefficiency measure. In particular, SBI uses a so-called direction vector which allows computing the projection of an OU using different orientations. This provides flexibility to the model in order to explore the potential improvements in each dimension. Last but not least, SBI is particularly apt when undesirable outputs are considered (Lozano 2016).


Table 2. Studies on conventional and organic farming efficiency

	Method
	Reference
	Crop

(Dataset)
	Country

(Year)
	Variables
	Results

	DEA
	Lansink et al. (2002)
	Crop and livestock

(1133 conv./82 org.)
	Finland

(1994-1997)
	Inputs: capital, land,  labour, energy, other inputs

Output: revenue
	Organic crop is more efficient than conventional farming

	DEA
	Dimara et al. (2005)
	Currants

(112 conv./86 org.)
	Greece


	Inputs: capital, labour, land, and intermediate (variable) inputs

Output: production
	Conventional crop is more efficient than organic farming

	DEA
	Alkahtani and Elhendy (2012)
	Date

(82 conv./49 org.)
	Saudi Arabia

(2010)
	Inputs: farm area, labour, water, organic and chemical fertilizers

Output: Total revenue
	Conventional crop is more efficient than organic farming

	DEA
	Aldanondo-Ochoa et al. (2014)
	Vineyard

(50 conv./33 org.)


	Spain

(2004)
	Inputs: land, labour and other costs

Undesirable

Nitrogen

Environmental impact

Quotient of farm

Output: total farm revenues
	Organic crop is more efficient than conventional farming

	DEA
	Beltrán-Esteve and Reig-Martínez (2014)
	Citrus

(105 conv./107 org.)
	Spain

(2009)
	Inputs: income, tillage, pruning, fertilization, phytosanitary, surface

Output: sales
	Conventional crop is more efficient than organic farming

	DEA
	Poudel et al. (2015)
	Coffee

(120 conv./120 org.)
	Nepal

(2011)
	Inputs: farm size, labour, fertilizer, capital, labour cost, plant protection

Outputs: production, inter/shade crops
	Organic crop is more efficient than conventional farming

	SFA
	Tzouvelekas et al. (2001)
	Olive

(84 conv./87 org.)
	Greece

(1995-1996)
	Explanatory var.: land, labour, chemical fertilizers and pesticides, other cost expenses

Dependent var.: Olive production
	Organic crop is more efficient than conventional farming

	SFA
	Madau (2007)
	Cereal

(138 conv./93 org.)
	Italy

(2001/2002)


	Explanatory var.: land, seeds expenditure, fertilizers, pesticides, machinery, buildings, labour, other expenditures

Dependent var.: revenue
	Conventional crop is more efficient than organic farming

	SFA
	Serra and Goodwin (2009)
	Cereals, oilseeds and protein

(87 conv./42 org.)
	Spain

(2002)
	Explanatory var.: land, labour, chemical inputs, other inputs

Dependent var.:production
	Conventional crop is more efficient than organic farming

	SFA
	Guesmi et al. (2012)
	Grape

(115 conv./26 org.)
	Spain

(2008)


	Explanatory var.: land, labour, capital, fertilizers and crop protection

Dependent var.:production
	Organic crop is more efficient than conventional farming

	SFA
	Kramol et al. (2013)
	Vegetable

(97conv./107 org.)
	Thailand

(2007-2008)
	Explanatory var.: area, seed, labour, fertilizer, crop protection

Dependent var.:revenue
	Conventional crop is more efficient than organic farming

	SFA
	Tiedemann and Latacz-Lohmann (2013)
	Arable farms

(37 conv./37 org.)
	Germany

(1999/2000-2006/2007)
	Explanatory var.: area, labour, capital, variable inputs

Dependent var.:revenue
	Conventional crop is more efficient than organic farming

	SFA
	Marchand and Guo (2014)
	Rice

(667 conv./345 org.)
	China

(2010)
	Explanatory var.: labour, N, Capital, water, type

Dependent var.:yield
	Organic crop is more efficient than conventional farming


Note: Conv. (Conventional); Org. (Organic); SFA (Stochastic Frontier Analysis)
3. Proposed SBI DEA model

A crucial point when using DEA to carry out an efficiency assessment is to determine the input and output variables to be included in the analysis. The selection of inputs and outputs is based on the literature review and on the data availability. Figure 1 shows the inputs, outputs and undesirable outputs considered in this study. The OU corresponds to 1 ha of the given crop. The inputs are Fuel consumption (measured in L/ha), Total C (kg C/ha), Total N (kg N/ha), Synthetic fertilizers (nitrogen, phosphorus and potassium, measured in kg nutrient/ha) and Synthetic pesticides (kg active matter/ha). One of them, namely Total C is considered non-discretionary and will be handled as per Banker and Morey (1986). The two normal (i.e. desirable) outputs are Fresh matter yield (Mg/ha) and Net Primary Production excluding Product biomass (NPP, Mg dry matter/ha). In addition, to gauge the environmental impact of the crop, the corresponding total area-based GHG emissions (kg CO2e/ha) are used.
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Figure 1. Inputs, outputs and undesirable outputs considered

Fuel consumption and synthetic fertilizers are relevant factors with regard to resource depletion and external energy dependence, due to their elevated use of non-renewable energy (Aguilera et al., 2015a). Moreover, fuel consumption is also related to soil disturbance, as in our sample it was mainly associated with tillage operations. Synthetic pesticides are also relevant for resource depletion, but their main impact is through chemical pollution, which impacts on natural ecosystems (Annett et al., 2014).  C and N inputs to the soil are the two key factors affecting soil quality and environmental impact. They have been calculated as described in Aguilera et al. (2015b). Excess N inputs in agriculture are responsible for severe environmental impacts (Sutton et al., 2013). C inputs to the soil are associated with carbon sequestration, with a strong response in Mediterranean systems (Aguilera et al., 2013a). Apart from its contribution to adaptation potential and climate change mitigation, carbon accumulation in soils also promotes soil quality (Moreno et al., 2009; Hoyle et al., 2011; Keesstra et al., 2016). This input has been considered non-discretionary. Fresh matter yield is the commercial output of the farm. NPP (excluding yield) was estimated following the methodology and coefficients in Guzmán et al. (2014). This biomass is particularly relevant for agro-ecosystem functioning. More non-yield biomass production implies that more biomass is available for wildlife, carbon sequestration, animal feed or energy production (Guzmán and González de Molina, 2015). Last, GHG emissions are an essential environmental indicator measuring the impact of agricultural management on climate change. GHG emissions have been calculated using a Life Cycle Assessment (LCA) approach. The GHG emission coefficients of industrial inputs were calculated based on embodied energy from Aguilera et al. (2015a), and carbon intensity of energy sources from Lal (2004). When energy sources were not available, the world average was taken, using the world energy mix from Koppelaar (2013). Nitrous oxide emissions were estimated using specific emission factors for Mediterranean crops under rain-fed conditions obtained from Aguilera et al. (2013b). Carbon sequestration was estimated using a simple balance model with humification coefficients of straw derived from Alvaro-Fuentes and Cantero-Martinez (2010) and of external organic amendments from Aguilera et al. (2013b). Initial SOC was obtained from Rodríguez-Martín et al. (2016). 

In order to formulate the mathematical model let
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The proposed SBI DEA model is the following:
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The above DEA model considers VRS and computes a target operating point (within the corresponding PPS) so as to maximize the potential normalized improvements along the seven improvable dimensions (four discretionary inputs, two desirable outputs and one undesirable output). Note that the slack of the undesirable output implies a reduction of that output, in much the same way as it is done much as it is done with the discretionary inputs. The difference is that the undesirable output is jointly weakly disposable with the desirable outputs. In particular, the formulation in Kuosmanen (2005) has been used since it leads to an easy-to-solve linear programming model. 
As regards the direction vector g, its components indicate the normalization constants along each improvable dimension and in some sense act as weights that reflect the emphasis placed on the improvement of the different variables. Generally, a non-oriented approach is used with the direction vector components equal to the observed inputs, outputs and undesirable outputs of the OU being assessed, i.e. 
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. However, oriented projections of OU J can also be made by just setting the components of the other dimensions to infinite, which is equivalent to not considering the corresponding slacks in the objective function. In particular, 
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 can be used for input, output and undesirable output orientations. Note that, in such cases, the average improvement computed by the objective function should use the ratios ¼, ½ and 1, to reflect the number of slack variables included in the objective function. Mathematically, using the asterisk to denote the optimal values of the variables, the corresponding oriented SBI scores would be
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4. Data and results

This section discusses the dataset used and the results obtained from the DEA analysis.

4.1. Dataset

In this section, the methodology proposed is applied to a rain-fed cereal dataset, which has been collected by trained technical interviewers in personal interviews with a representative sample composed of a total of 50 farmers in Spain: 24 applying conventional management and 26 applying organic management. The inventory data have been gathered partially from Alonso and Guzmán (2010) and Aguilera et al. (2015b) (eight conventional and eight organic farms), which has been complemented with additional interviews with farmers in La Janda region in Cádiz (Andalucía, Southern Spain), performed in 2012. The main geographical region considered (Andalucía, in Southern Spain) was consciously selected because it corresponds to the predominant areas where organic agriculture has been implemented in Spain, representing 51% of the total area surface under organic farming in Spain, and 29% of the area surface under organic cereal production (MAGRAMA, 2015b). This means that almost 1 in 3 ha. of organic cereals in Spain is located in Andalucía. The relative importance of this region is also underlined if we compare it to EU-27. Organic cereal represents 5.9% of the total organic cultivated area in Andalucía (MAGRAMA 2015a, b), versus 2.5% in the EU-27 (DG Agriculture and Rural Development, 2013). The average yields under conventional management in our sample, of 2.75 and 2.37 Mg ha-1 yr-1 for barley and wheat are comparable to the average yields of rain-fed cereal production in Spain in the 2006-2010 period, of 2.75 and 2.88 Mg ha-1 yr-1 for barley and wheat (own calculation with data from MAGRAMA, 2015a). Two types of crop management were selected for the study: conventional and organic production. In both types of management, wheat was the most common field crop cultivated by the farms surveyed (75% and 50% in conventional and organic crops), followed by barley (25% and 23% in conventional and organic crops) and oats (2% in organic crops). The farmers surveyed are pairs of organic and conventional, operating under similar agro-climatic and socio-economic characteristics.
Some summary statistics associated with the observed inputs, outputs and undesirable output variables under the conventional and organic production are presented in Table 3. Note that two of the inputs, namely SYNFER and SYNPEST, are not used at all in organic production. Note also that the input and output levels tend to be greater in conventional production than in organic production, except in the case Total carbon input (e.g. in organic production, the maximum Total C input is twice the maximum for conventional production). Generally, based on the relationship between the mean value and standard deviation, the different inputs and outputs of both conventional and organic rain-fed crops are characterized by having homogeneity. Higher variability is found in synthetic pesticides, for both cropping systems, as well as in Total C for conventional production.
Table 3. Summary statistics of variables considered in the SBI DEA model and equality test of conventional versus organic production

	Variable
	Units
	Conventional (N=24)
	Organic (N=26)
	Test for equality of population meansa

	
	
	Min.
	Max.
	Mean
	Std. Dev.
	Min.
	Max.
	Mean
	Std. Dev.
	

	Fuel consumption
	L/ha
	35.83
	77.21
	60.97
	9.76
	33.90
	56.52
	48
	5.73
	5.67c

	Total carbon inputs
	kg C/ha
	52.3
	599.1
	223.1
	143.3
	104.2
	1431.7
	514.2
	387.1
	438c

	Total nitrogen
	kg N/ha
	73.19
	201.75
	132.75
	33.01
	23.34
	94.23
	45.1
	14.93
	355c

	Synthetic fertilizers
	kg nutrient/ha
	0.0
	275.6
	179.9
	68.4
	-
	-
	-
	-
	-

	Synthetic pesticides
	kg active matter/ha
	0.0
	3.04
	0.927
	0.806
	-
	-
	-
	-
	-

	Yield fresh matter
	Mg/ha
	1400
	5500
	2435
	1017
	1000
	3000
	1853
	599
	722.5b

	NPP excl. yield
	Mg dry matter/ ha
	1669
	6775
	3066
	1112
	1900
	4442
	3047
	688
	577

	Total area-based emissions
	kg CO2e/ ha
	914.2
	2156.6
	1501.0
	345.8
	50.4
	
	387
	162.9
	924c


a Test for normality (Anderson-Darling test) and test for homoscedasticity (Barlett’s test/Levene test) are performed in a previous stage. Test equality test are performed (t-test and Mann-Whitney-Wilcoxon test - for departures from normality). b statistical significance at the 5% level. c statistical significance at the 1% level.

A comparative test has been carried out to detect significant differences in the magnitude of inputs, outputs and undesirable output for conventional versus organic production. The analysis reveals that there are significant differences in all inputs and outputs considered, except for NPP. This absence of differences in NPP minus yield occurs because higher weed production in organic systems compensates for lower straw production (due to lower yields). This suggests that both types of crop may use a different production technology and this is confirmed by a metafrontier DEA analysis (O’Donnell et al., 2008) which indicated that the efficient projections of both types of crop lie on different sections of the global EF. In other words, a crop is effectively benchmarked only against the observed operating points that correspond to the same production type – conventional or organic.

4.2. Efficiency analysis results

Tables 4 and 5 show the results of the proposed SBI DEA model (1)-(12). The slacks of all improvable inputs, outputs and undesirable output are shown, as well as the corresponding oriented and overall inefficiency scores. Note that for the organic production crops in Table 5 it is not possible to reduce their SYNFER and SYNPEST inputs because the amount consumed by those OUs is zero. For that reason, the average slack is computed by dividing by 2+2+1 for the SBI score (1) and dividing by 2 in the case of the input-oriented SBIX score (13). Note also that of the 24 conventional production OUs, six are efficient (namely, C7, C17, C20, C21, C22 and C24) while in the case of organic production there are more OUs that are efficient (specifically, 12 out of 26). The average inefficiency of conventional crops is larger than for organic crops. This is mainly due to a more efficient use of the inputs (i.e. lower SBIX) and a higher GHG emissions efficiency (i.e. lower SBIZ). For example, the average potential reduction of FUEL is 61.84 L/ha in the case of conventional crops while it is just 1.90 L/ha in the case of organic production. Similarly, the average potential reduction of GHG emissions of conventional crops is 570.9 kg CO2e/ha while it is much lower (12.4 kg CO2e/ha) in the case of organic production.
Table 4. Efficiency results (conventional production)
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	C1
	   0.562 
	   0.687 
	    0.314 
	    0.559 
	10.15
	102.46
	201.80
	1.911
	452.85
	894.78
	857.71

	C2
	   0.571 
	   0.769 
	    0.106 
	    0.710 
	21.72
	126.17
	227.00
	0.025
	15.08
	659.21
	1280.73

	C3
	   0.184 
	   0.255 
	    0.006 
	    0.258 
	0.54
	45.20
	33.28
	0.079
	0.00
	40.42
	281.84

	C4
	   0.608 
	   0.670 
	    0.502 
	    0.570 
	0.00
	72.42
	174.00
	0.530
	662.29
	1511.79
	658.48

	C5
	   0.529 
	  0.693 
	    0.157 
	    0.619 
	0.78
	111.04
	212.20
	1.743
	0.00
	819.18
	877.74

	C6
	   0.654 
	   0.634 
	    0.784 
	    0.472 
	6.36
	75.17
	164.65
	1.882
	1066.26
	1531.30
	639.21

	C7
	        -   
	          -   
	         -   
	         -   
	0.00
	0.00
	0.00
	0.000
	0.00
	0.00
	0.00

	C8
	   0.650 
	    0.555 
	    0.910 
	    0.512 
	12.41
	78.94
	197.80
	1.662
	2082.10
	2033.85
	1057.53

	C9
	   0.201 
	  0.218 
	0.029
	    0.477 
	4.91
	51.98
	27.04
	0.012
	0.00
	153.41
	734.54

	C10
	   0.730 
	    0.735 
	  0.769 
	  0.634 
	14.64
	110.79
	159.50
	1.500
	1200.00
	2068.90
	856.93

	C11
	   0.543 
	   0.681 
	    0.271 
	    0.538 
	2.96
	69.20
	174.00
	0.750
	366.49
	1077.28
	603.75

	C12
	   0.405 
	   0.569 
	    0.022 
	    0.518 
	18.79
	101.21
	107.60
	0.219
	0.00
	164.77
	800.24

	C13
	   0.460 
	   0.645 
	    0.039 
	    0.564 
	8.06
	92.16
	160.15
	1.293
	0.00
	298.80
	874.92

	C14
	   0.506 
	   0.692 
	    0.084 
	    0.610 
	5.75
	83.36
	145.20
	3.040
	0.00
	641.27
	774.89

	C15
	   0.314 
	   0.378 
	    0.078 
	    0.531 
	12.69
	92.95
	168.67
	0.071
	0.00
	358.31
	1056.07

	C16
	   0.861 
	   0.672 
	    1.347 
	    0.641 
	0.00
	94.02
	159.50
	1.500
	1560.56
	2636.36
	844.69

	C17
	        -   
	          -   
	         -   
	         -   
	0.00
	0.00
	0.00
	0.000
	0.00
	0.00
	0.00

	C18
	   0.376 
	   0.248 
	    0.594 
	    0.452 
	12.37
	163.05
	0.00
	0.000
	1086.74
	1586.98
	412.83

	C19
	   0.201 
	   0.225 
	    0.038 
	    0.427 
	11.61
	6.51
	175.72
	0.010
	0.00
	247.04
	748.02

	C20
	        -   
	          -   
	         -   
	         -   
	0.00
	0.00
	0.00
	0.000
	0.00
	0.00
	0.00

	C21
	        -   
	          -   
	         -   
	         -   
	0.00
	0.00
	0.00
	0.000
	0.00
	0.00
	0.00

	C22
	        -   
	          -   
	         -   
	         -   
	0.00
	0.00
	0.00
	0.000
	0.00
	0.00
	0.00

	C23
	   0.227 
	   0.327 
	    0.005 
	    0.271 
	7.80
	7.63
	75.71
	0.004
	0.00
	31.90
	341.40

	C24
	        -   
	          -   
	         -   
	         -   
	0.00
	0.00
	0.00
	0.000
	0.00
	0.00
	0.00

	Average
	   0.358 
	    0.402 
	    0.252 
	    0.390 
	        6.31 
	         61.84 
	        106.83 
	          0.676 
	    353.85 
	  698.15 
	   570.90 


Table 5. Efficiency results (organic production)
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	O1
	-
	-
	-
	-
	0.00
	0.00
	0.00
	0.00
	0.00

	O2
	0.117
	0.036
	0.256
	-
	2.19
	1.08
	558.38
	755.94
	0.00

	O3
	0.281
	0.003
	0.699
	-
	0.34
	0.00
	1198.17
	1376.24
	0.00

	O4
	0.289
	0.059
	0.664
	-
	5.59
	0.00
	1011.03
	1021.38
	0.00

	O5
	-
	-
	-
	-
	0.00
	0.00
	0.00
	0.00
	0.00

	O6
	-
	-
	-
	-
	0.00
	0.00
	0.00
	0.00
	0.00

	O7
	0.471
	-
	1.150
	0.053
	0.00
	0.00
	1497.15
	1655.77
	24.47

	O8
	0.127
	-
	0.284
	0.069
	0.00
	0.00
	766.63
	600.28
	30.74

	O9
	0.166
	-
	0.381
	0.068
	0.00
	0.00
	928.16
	832.35
	31.10

	O10
	-
	-
	-
	-
	0.00
	0.00
	0.00
	0.00
	0.00

	O11
	-
	-
	-
	-
	0.00
	0.00
	0.00
	0.00
	0.00

	O12
	-
	-
	-
	-
	0.00
	0.00
	0.00
	0.00
	0.00

	O13
	0.098
	0.003
	0.233
	0.020
	0.34
	0.00
	594.39
	583.72
	9.86

	O14
	0.420
	0.031
	1.020
	-
	2.96
	0.00
	1324.89
	1357.51
	0.00

	O15
	-
	-
	-
	-
	0.00
	0.00
	0.00
	0.00
	0.00

	O16
	0.114
	-
	0.243
	0.086
	0.00
	0.00
	749.29
	385.54
	39.00

	O17
	-
	-
	-
	-
	0.00
	0.00
	0.00
	0.00
	0.00

	O18
	0.121
	0.134
	0.021
	0.296
	15.06
	0.00
	0.00
	100.60
	45.74

	O19
	0.111
	0.182
	0.057
	0.078
	11.49
	8.81
	144.72
	196.40
	29.19

	O20
	-
	-
	-
	-
	0.00
	0.00
	0.00
	0.00
	0.00

	O21
	-
	-
	-
	-
	0.00
	0.00
	0.00
	0.00
	0.00

	O22
	-
	-
	-
	-
	0.00
	0.00
	0.00
	0.00
	0.00

	O23
	0.345
	0.118
	0.745
	-
	6.21
	4.32
	1036.35
	1259.11
	0.00

	O24
	0.066
	0.052
	0.016
	0.193
	1.90
	4.39
	0.00
	103.83
	15.07

	O25
	-
	-
	-
	-
	0.00
	0.00
	0.00
	0.00
	0.00

	O26
	0.147
	0.041
	0.060
	0.535
	3.41
	0.00
	143.34
	0.00
	87.99

	Average
	0.111
	0.025
	0.224
	0.054
	1.90
	0.72
	382.79
	393.41
	12.04


Figures 2 and 3 show the observed and target values for the different inputs and outputs, and for both conventional and organic crops. The points always lie on or below the bisector line in the case of the inputs and the undesirable output. That is because the model seeks to reduce them and, therefore, the target value is always less than or equal to the observed value. On the other hand, for the desirable outputs, the points must always lie on or above the bisector line as the target value is always greater than or equal to the observed value. For the efficient OUs, since no improvement is possible along any dimension, the target value is always equal to the observed value, i.e. the point always lies on the bisector line. It can also be noted how the FUEL and Total N inputs (both observed as well as target value) for organic OUs are lower than for conventional production. The same happens with GHG emissions. The opposite happens in the case of YIELD and NPP, with conventional OUs generally achieving higher levels than organic production. Note also that for SYNFER and SYNPEST inputs, only the conventional production OUs are shown.
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Figure 2. Target versus observed inputs
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Figure 3. Target versus observed outputs and undesirable output
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Figure 4. Yield versus GHG emissions (target and observed values)
Figure 4 plots the YIELD desirable output versus the undesirable GHG output for both conventional and organic crops. Both the observed and target values are shown. It can be seen here what was mentioned above, i.e. that for organic production both the YIELD, and especially the GHG emissions, are lower than for conventional production. A positive correlation can be seen between the two variables and, remarkably, the slope of the cloud of points increases for the target values with respect to the observed values, i.e. the GHG emissions per unit of YIELD obtained are lower for the target values. That happens because the proposed DEA methodology tries to simultaneously increase YIELD and reduce GHG emissions. Note that, in the case of organic production, the improvement in both variables is relatively low (since those OUs are more efficient) and, therefore, the slope of the observed and target clouds of points are more similar than in the case of conventional production, where more significant GHG emission reductions are computed.

Figures 5 and 6 show, for conventional and organic OUs, the oriented SBI scores associated with the optimal solution of model (1)-(12) versus the maximum values of those scores when the corresponding orientated direction vectors are used. For example, while SBIX is computed using (13) based on the optimal input slacks computed by model (1)-(12), Max SBIX corresponds to (13) when that expression is used as the objective function instead of (1). As indicated in section 3, this is equivalent to solving model (1)-(12) with the direction vector 
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. Since Max SBIX is obtained placing all the emphasis on reducing the inputs, it is always greater than (or at least equal to) SBIX, which is the input inefficiency score computed when the improvements in all dimensions are sought using the non-oriented direction vector 
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. Similarly, for the output and undesirable output oriented SBI scores it must happen that SBIY≥Max SBIY and SBIZ≥Max SBIZ and actually, for some OUs, the maximum potential improvement in a specific orientation is much larger than the corresponding SBIX, SBIY or SBIZ score. Note that the range of values of the scale of these oriented SBI scores is different, with higher values for the output orientation than for the input and undesirable output orientation. Note also that, for all orientations, the inefficiency is higher for conventional than for organic production.
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Figure 5. Max SBIX vs. SBIX, Max SBIY vs. SBIY and Max SBIZ vs. SBIZ (conventional production)
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Figure 6. Max SBIX vs. SBIX, Max SBIY vs. SBIY and MaxSBIZ vs. SBIZ (organic production)

Finally, Figure 7 shows the SBI score versus size of the cultivated area, for the 34 OUs for which the latter datum was available. It can be seen in this plot that, in the geographical area surveyed, organic production involves smaller farms and less inefficiency than conventional production. In both cases, but especially for organic production, there seems to be a positive correlation between inefficiency and size, with smaller farms being more efficient than larger ones. This observation suggests the use of the second stage DEA approach presented below.
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Figure 7. SBI versus crop area

4.3. Fractional regression estimates

This second stage involves modelling the DEA efficiency scores against contextual factors using univariate fractional regression models, in order to explain cereal crops’ performance. Although different second stage approaches have been proposed, according to Papke and Wooldridge (1996) and Ramalho et al. (2010) fractional regression models are the most appropriate methodology concerning i) hypotheses assumptions, ii) estimation of efficiency scores and iii) estimation of the effects of the exogenous factors. The fractional regression approach uses the quasi-maximum likelihood estimation method, is robust to the presence of cross-sectional correlations and the only assumption required is a functional form for the efficiency measure. Mathematically, fractional regression models only require the specification of the non-linear function on the conditional mean of the efficiency measure:
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where the dependent variable is the SBI score that measures the inefficiency of the OU (assumed to be  
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is a non-linear link function (typically logit, probit, loglog or complementary loglog).
The variables considered as potential explanatory factors include some farm characteristics, such as the crop management type (corresponding dummy variable coded 1 for conventional, dummy variable coded 0 for organic), the extension of the cultivated area (measured in ha), the crop type (coded using two dummy variables, with respective values (1,0) for barley, (0,1) for oats and (0,0) for wheat) and the presence of animals (coded as a dummy variable valued 1 if the crops have the presence of animals and 0 otherwise). Animals were ovine or bovine livestock that grazed crop residues, affecting biogeochemical processes in the soil. As indicated above, because the cultivated area in an OU was not known in all cases, the number of observations that could be used for this second stage was reduced to just 34 rain-fed cereals-producing farms (17 conventional and 17 organic).
Table 6 presents the estimates of the coefficients for the linear regression model and four alternative one-part fractional regression models. Parameters with a positive (negative) sign indicate a negative (positive) influence on the SBI scores. The coefficient of a given variable, when it is significant, has the same sign across all the models, suggesting consistency in the results. Accordingly, the results indicate that the extension of the cultivated area, as well as growing barley, significantly increases the crop inefficiency (i.e. efficiency decreases). On the other hand, higher efficiency levels are associated with organic production, which is related to lower input use due to the non-use of synthetic fertilizers and pesticides, lower fuel consumption and lower N inputs. The efficiency of organic farms is also enhanced by higher C inputs, which involve C sequestration that partially offsets GHG emissions. Significantly higher efficiency under organic farming was expected since, as shown in section 4.2, the SBI scores of organic production were much lower than those of conventional production.
For each model, a comparable coefficient of determination, R2, is calculated as a goodness of fit measure. It is noteworthy that the R2 values in the fractional models are higher than in the linear model and quite similar between the different fractional models. Additionally, the specification for the conditional mean of efficiency scores, using the RESET test (second order), reveals that the fractional models’ specifications do not differ greatly; any of them can be equally chosen to perform the second stage regression analysis (p-valueLogit=0.335;           p-valueProbit=0.287; p-value log-log=0.231; p-value clog-log=0. 445).
Table 6. Regression models estimates

	Model
	Ordinary Least Squares
	Fractional regression modele

	
	
	logit
	probit
	loglog
	cloglog

	Intercept
	0.367h

(0.071)
	-0.571

(0.367)
	-0.341

(0.197)
	0.011

(0.181)
	-0.758h

(0.310)

	Area 
	0.001g

(0.001)
	0.007g

(0.003)
	0.003g

(0.002)
	0.005f
(0.002)
	0.004g

(0.002)

	Barleya
	0.187

(0.099)
	1.157g

(0.506)
	0.693g

(0.294)
	0.612g

(0.291)
	1.031g
(0.428)

	Oatsb
	-0.002

(0.102)
	-0.420

(0.584)
	-0.164

(0.281)
	-0.051

(0.209)
	-0.535

(0.565)

	Animalsc
	-0.099

(0.076)
	-0.756

(0.559)
	-0.469

(0.361)
	-0.488

(0.276)
	-0.639

(0.480)

	Organicd
	-0.335h

(0.067)
	-2.002h

(0.395)
	-1.184h

(0.216)
	-1.139h

(0.192)
	-1.642h

(0.356)

	% of fitted values outside the range [0,1]
	9%
	-
	-
	-
	

	R2
	0.561
	0.618
	0.622
	0.634
	0.608


Notes: Dependent variable: SBI score. Sample: 34 cases (17 cases under conventional regimes and 17 cases under organic regimes).

Corresponding robust standard error is reported within parentheses.

a Dummy variable coded one for barley crops and zero for other types of crop.

b Dummy variable coded one for oats crops and zero for other types of crop.

c Dummy variable coded one indicates the presence of animals on the farm and zero otherwise.

d Dummy variable coded one for organic production and zero for conventional production.

e Standard one-part fractional regression model. Quasi-maximum likelihood estimation method.

f, g and h indicate statistical significance at the 10%, 5% and 1% level.
The coefficients of fractional models shown in Table 6 cannot be interpreted as partial effects and that is the reason why the estimates of partial average estimates for the fractional models are presented in Table 7. The partial effects estimated under the fractional specification are not very different from those estimated under the linear model. Linear and non-linear specification models indicate that an increase of 1 ha in the extension of the cultivated land increases the SBI score by approximately 0.001. Similarly, growing barley increases the inefficiency (with respect to wheat) by an amount that lies between the 0.166 estimated in the loglog model and the 0.188 estimated in the logit model. Last but not least, the largest absolute value of the average effects shown in Table 6 corresponds to the organic production factor, which decreases the crop inefficiency by an amount between the estimated 0.308 in the loglog model and the estimated 0.345 in the cloglog model.
Table 7. Average effects of fractional regression models

	Model
	logit
	probit
	loglog
	cloglog

	Area
	 0.001a
	 0.001 a
	 0.001 b
	 0.001 a

	Barley
	 0.188 a
	 0.189 a
	 0.166 a
	 0.217 a

	Oats
	-0.068
	-0.045
	-0.014
	-0.112

	Animals
	-0.122
	-0.128
	-0.132
	-0.134

	Organic
	-0.324 b
	-0.323 b
	-0.308 b
	-0.345 b


Note: a and b indicate statistical significance at the 5% and 1% level.
4.4. Discussion

The results presented in the previous sections show that for both conventional and organic farming there are always some farms (somewhat more in the case of organic farming) that have the best practices and define the efficient frontier. For each inefficient farm the potential inputs and emissions reductions and output increases can be computed so that efficient targets can be provided for each variable. The results clearly show that, for the farms sampled and for the specific Southern Spain region considered, organic production is technically and environmentally more efficient than conventional farming (average SBI score 0.111 for organic crops versus 0.358 for conventional crops). Conventional farming is more intensive in inputs consumption and, although it also produces more output, the overall efficiency of the process, determined using a VRS DEA approach that accounts for scale size differences, is significantly lower than that of organic farming. In particular, the potential reductions of fuel consumption and GHG emissions per ha. are more than thirty times greater for conventional crops than for organic crops.
The observed better performance of Mediterranean organic cereal production in this study, which simultaneously considers the agronomic and environmental aspects of cereal cropping systems, are in line with those studies showing a better performance for organic cereal systems in terms of energy use (Alonso and Guzmán, 2010) or GHG emissions (Aguilera et al., 2015b). This contrasts, however, with some of the studies shown in Table 2 which, using a parametric approach (SFA), found lower efficiency for Mediterranean organic cereal farms. Those studies considered mainly economic parameters to measure efficiency, which might be the cause of the differences observed. It can be argued that considering environmental parameters is essential when measuring the efficiency of cropping systems from a sustainability perspective. Although more research should be carried out to confirm the findings reported in this study, we strongly believe that, when assessing the efficiency of crop production and comparing between conventional and organic production, environmental impact variables should be considered.
The results of the second stage regression analysis confirm the lower inefficiency of organic farming (estimated SBI score difference in the range between 0.308 and 0.345) and indicate that the size of the cultivated area has a small but significant influence. Note in this regard that the DEA efficiency assessment was carried out per ha. of cultivated land. The regression results suggest that larger plots are slightly more inefficient than smaller ones. They also suggest that growing barley in this specific region is more inefficient (SBI score increase in the range between 0.166 and 0.188) than growing wheat. This result was unexpected as this Mediterranean region is optimal for barley production. A sensible explanation for this may be that farmers usually crop lower quality soils to barley, and higher quality soils to wheat.
5. Conclusions

In this paper a two-stage DEA approach for quantifying and analysing the inefficiency of conventional and organic rain-fed cereals in Spain has been carried out. Using survey data and taking into account the relevant literature, a number of inputs, outputs and undesirable outputs have been considered. A VRS, non-oriented SBI DEA model is proposed to compute potential improvements along the different dimensions. The proposed approach also allows computing oriented inefficiency scores.

The data used corresponds to a survey of crops grown in Southern Spain. The results clearly show that conventional production is more inefficient than organic production (average SBI score 0.358 for conventional crops versus 0.111 for organic crops), also, that the main sources of inefficiency is excessive input consumption and GHG emissions in the case of conventional production and output shortfalls in the case of organic production. The proposed DEA model computes an efficient target for each crop, estimating inputs, outputs and undesirable output improvements. The results indicate (and quantitatively measure) that reducing inefficiency would reduce the amount of yield-scaled GHGs with an estimated average potential reduction of 570.9 kg CO2e/ha for conventional crops and much less (12.04 kg CO2e/ha) for organic crops.
The inefficiency scores computed have been subject to a second stage regression analysis using some explanatory factors. A fractional regression confirms that organic production significantly decreases inefficiency (decreasing SBI score by an amount of around 0.308) also showing that increasing the area of cultivated land (farm size), or growing barley instead of wheat, has the opposite effect. It has been estimated that each additional ha. of cultivated land leads to an SBI increase of 0.001 and that growing barley instead of wheat may increase SBI score by 0.166. This last finding may be specific to the data sample used. The presence of animals on the farms does not seem to have a significant effect on efficiency.

The main contributions of the study are several. One is the consideration of the GHG emissions as an undesirable output of the production process. This allows assessing both the technical and environmental efficiency of the crops. A second contribution is a consequence of the previous one and it is a more comprehensive comparison between conventional and organic crops. The results obtained clearly indicate that, all in all, organic crops outperform conventional crops in efficiency. Finally, a regression analysis of the efficiency scores with respect to different explanatory variables has been performed.
Although the study carried out shows the applicability and usefulness of DEA for assessing the technical and environmental efficiency of the crops under study, it must be borne in mind that DEA also has a number of limitations. DEA methodology is data-driven and some results may be dependent on the specific sample of observations considered. Also, the discriminant power of DEA generally increases with the number of observations. In this regard, obtaining empirical data in this type of studies is always difficult and time-consuming which means that large sample sizes can never be attained. Another issue is the sensitivity of DEA to outliers so that observations corresponding to uncommonly favourable conditions may be used by the methodology to set the best practices, leading to over-estimating the inefficiency scores.
Acknowledgements

This research was carried out with the financial support of the Spanish Ministry of Science and the European Regional Development Fund (ERDF), grant DPI2013-41469-P. Eduardo Aguilera and Gloria Guzmán were supported by the Social Sciences and Humanities Research Council of Canada through the research project "Sustainable farm systems: long-term socio-ecological metabolism in western agriculture", SSHRC 895-2011-1020. The authors are also thankful to the editor and two anonymous reviewers for their helpful comments and suggestions.
References
Adhikari, C.B., Bjorndal, T. (2012) Analyses of technical efficiency using SDF and DEA models: evidence from Nepalese agriculture, Applied Economics, 44, 3297-3308
Aguilera, E., Guzmán, G.I., Alonso, A.M. (2015a) Greenhouse gas emissions from conventional and organic cropping systems in Spain. I. Herbaceous crops, Agronomy for Sustainable Development, 35, 713-724

Aguilera, E., Guzmán, G.I., Infante-Amate, J., Soto, D., García-Ruiz, R., Herrera, A., Villa, I., Torremocha, E., Carranza, G., González de Molina, M. (2015b) Embodied energy in agricultural inputs. Incorporating a historical perspective, Spanish Society of Agrarian History, DT-SEHA 1507. www.econpapers.repec.org/paper/sehwpaper/1507.htm (last accessed on October 13th, 2016)
Aguilera, E., Lassaletta, L., Gattinger, A., Gimeno, B.S. (2013a). Managing soil carbon for climate change mitigation and adaptation in Mediterranean cropping systems. A meta-analysis, Agriculture, Ecosystems & Environment, 168, 25-36
Aguilera, E., Lassaletta, L., Sanz-Cobena, A., Garnier, J., Vallejo, A. (2013b). The potential of organic fertilizers and water management to reduce N2O emissions in Mediterranean climate cropping systems, Agriculture, Ecosystems & Environment 164, 32-52
Aldanondo-Ochoa, A., Casasnovas-Oliva, V.L., Arandia-Miura, A. (2014) Environmental efficiency and the impact of regulation in dryland organic vine production, Land Use Policy, 36, 275-28

Alkahtani, S.H., Elhendy, A.M. (2012) Organic and conventional date farm efficiency estimation, and its determents at Riyadh province, Kingdom of Arabia Saudi, WIT Transactions on Ecology and The Environment, 162, 219-230
Alonso, A.M., Guzmán, G.I. (2010). Comparison of the Efficiency and Use of Energy in Organic and Conventional Farming in Spanish Agricultural Systems, Journal of Sustainable Agriculture, 34, 312-338.

Alvaro-Fuentes, J., Cantero-Martinez, C. (2010). Short communication. Potential to mitigate anthropogenic CO2 emissions by tillage reduction in dryland soils of Spain, Spanish Journal of Agriculture Research, 8, 1271-1276
Annett, R., Habibi, H.R., Hontela, A. (2014). Impact of glyphosate and glyphosate-based herbicides on the freshwater environment, Journal of Applied Toxicology, 34, 458-479
Aravindakshan, S., Rossi, F.J., Krupnik, T.J. (2015) What does benchmarking of wheat farmers practicing conservation tillage in the eastern Indo-Gangetic Plains tell us about energy use efficiency? An application of slack-based data envelopment analysis, Energy, 90, 483-493

Armengot, L., José-María, L., Chamorro, L., Sans, F.X. (2013) Weed harrowing in organically grown cereal crops avoids yield losses without reducing weed diversity, Agronomy for Sustainable Development, 33, 405-411

Atici, K.B., Podinovski, V.V. (2015) Using data envelopment analysis for the assessment of technical efficiency of units with different specialisations: An application to agriculture, Omega, 54, 72-83

Banker, R.D., Morey, R. (1986). Efficiency analysis for exogenously fixed inputs and outputs, Operations Research, 34, 513-521

Beltrán-Esteve, M., Reig-Martínez, E. (2014) Comparing conventional and organic citrus grower efficiency in Spain, Agricultural Systems, 129, 115-123

Chambers, R.G., Hailu, A., Quiggin, J. (2011) Event-specific data envelopment models and efficiency analysis, The Australian Journal of Agricultural and Resource Economics, 55, 90-106

Cooper, W.W., Seiford, L.M., Tone, K. (2006) Data Envelopment Analysis: A Comprehensive Text with Models, Applications, References and DEA-Solver Software, 2nd edition, Springer, New York, USA
Cordell, D., Drangert, J.-O., White, S., (2009) The story of phosphorus: Global food security and food for thought, Global Environmental Change, 19, 292-305
Dimara, E., Pantzios, C.J., Skuras, D., Tsekouras, K. (2005) The impacts of regulated notions of quality on farm efficiency: A DEA application, European Journal of Operational Research, 161, 416-431

DG Agriculture and Rural Development (2013) Facts and figures on organic agriculture in the European Union. European Commission. www.ec.europa.eu/agriculture/markets-and-prices/more-reports/pdf/organic-2013_en.pdf (last accessed on October 13th, 2016)
FAO (2002) World agriculture: towards 2015/2030. Summary report, Food and Agriculture Organisation, Rome, Italy
FAO (2016) FAOSTAT—FAO database for food and agriculture, Food and Agriculture Organisation. www.fao.org/faostat/en/#data/QC. (last accessed on December 27, 2016)

Foley, J.A., Ramankutty, N., Brauman, K.A., Cassidy, E.S., Gerber, J.S., Johnston, M., Mueller, N.D., O'Connell, C., Ray, D.K., West, P.C., Balzer, C., Bennett, E.M., Carpenter, S.R., Hill, J., Monfreda, C., Polasky, S., Rockstrom, J., Sheehan, J., Siebert, S., Tilman, D., Zaks, D.P.M., (2011), Solutions for a cultivated planet, Nature, 478, 337-342
Fukuyama, H., Weber, W.L. (2009) A directional slacks-based measure of technical inefficiency, Socio-Economic Planning Sciences, 43, 4, 274-287

Gómez-Limón, J.A., Picazo-Tadeo, A.J., Reig-Martínez, E. (2012) Eco-efficiency assessment of olive farms in Andalusia, Land Use Policy, 29, 2, 395-406
Guesmi, B., Serra, T., Kallas, Z., Gil Roig, J.M. (2012) The productive efficiency of organic farming: the case of grape sector in Catalonia, Spanish Agricultural Research, 10, 552-566

Guzmán, G.I., Aguilera, E., Soto, D., Cid, A., Infante J., García Ruiz, R., Herrera, A., Villa, I., González de Molina, M. (2014) Methodology and conversion factors to estimate the net primary productivity of historical and contemporary agro-ecosystems (I). Spanish Society of Agrarian History, DT-SEHA 1407. www.econpapers.repec.org/paper/sehwpaper/1407.htm (last accessed on October 13th, 2016)
Guzmán, G.I., González de Molina, M. (2015). Energy efficiency in agrarian systems from an agro-ecological perspective, Agroecology and Sustainable Food Systems, 39, 924-952
Hoyle, F.C., Baldock, J.A., Murphy, D.V. (2011) Soil organic carbon—role in rainfed farming systems with particular reference to Australian conditions. In P. Tow, I. Cooper, I. Partridge, C. Birch (Eds.), Rainfed Farming Systems. Springer International, pp. 339-361

Keesstra, S., Pereira, P., Novara, A., Brevik, E.C., Azorin-Molina, C., Parras-Alcántara, L, Jordán, A., Cerdà, A. (2016) Effects of soil management techniques on soil water erosion in apricot orchards, Science of the Total Environment 551-552, 357-366

Kramol, P., Villano, R., Kristiansen, P., Fleming, E. (2013) Productivity differences between organic and other vegetable farming systems in northern Thailand, Renewable Agriculture and Food Systems, 30, (2), 154-169

Koppelaar, R. (2012). World Energy Consumption - Beyond 500 Exajoules, The Oil Drum, www.theoildrum.com/node/8936 (last accessed on October 13th, 2016)
Kuosmanen, T. (2005) Weak disposability in nonparametric production analysis with undesirable outputs, American Journal of Agricultural Economics, 87, 1077-1082

Lacasta, C., Meco, R. (2011) Herbaceous crop rotations under rainfed conditions. (in Spanish). Agricultura ecológica en secano, eds. R. Meco Murillo, C. Lacasta Dutoit, and M. M. Moreno Valencia. Madrid: Ministerio de Medio Ambiente, Rural y Marino and Mundi-Prensa 
Ladha, J.K., Chakraborty, D. (2016) Nitrogen and cereal production: Opportunities for enhanced efficiency and reduced N losses, Proceedings of the 2016 International Nitrogen Initiative Conference, Solutions to improve nitrogen use efficiency for the world, 4-8 December 2016, Melbourne, Australia. www.ini2016.com. (last accessed on January 3, 2017)

Lal, R. (2004) Carbon emission from farm operations, Environment International, 30, 981-990

Lansink, A.O., Pietola, K., Bäckman, S. (2002) Efficiency and productivity of conventional and organic farms in Finland 1994-1997, European Review of Agricultural Economics, 29, 51-65
Latruffe, L., Fogarasi, J., Desjeux, Y. (2012) Efficiency, productivity and technology comparison for farms in Central and Western Europe: The case of field crop and dairy farming in Hungary and France, Economic Systems, 36, 264–278

Lilienfeld, A., Asmild, M. (2007) Estimation of excess water use in irrigated agriculture: A Data Envelopment Analysis approach, Agricultural Water Management, 94, 73-82

Linquist, B., Van Groenigen, K.J, Adviento-Borbe, M.A., Pittelkow, C., Van Kessel, C. (2012) An agronomic assessment of greenhouse gas emissions from major cereal crops. Global Change Biology, 18, 194–209

Lozano, S. (2016) Slacks-based inefficiency approach for general networks with bad outputs: An application to the banking sector, Omega, 60, 73-84.

Lozano, S. (2017) Technical and environmental efficiency of a two-stage production and abatement system, Annals of Operations Research, (doi: 10.1007/s10479-015-1933-2)
Madau, F.A. (2007) Technical Efficiency in Organic and Conventional Farming: Evidence from Italian Cereal Farms, Agricultural Economics Review, 8, 5-21.

MAGRAMA (Spanish Ministry of Agriculture, Food and Environment) (2015a) Statistical Yearbook 2015. (in Spanish) (last accessed on October 13th, 2016) www.magrama.gob.es/es/estadistica/temas/publicaciones/anuario-de-estadistica/2015/
MAGRAMA (Spanish Ministry of Agriculture, Food and Environment) (2015b) Ecological Agriculture. Statistics 2014. (in Spanish) www.magrama.gob.es/es/alimentacion/temas/la-agricultura-ecologica/estadisticas_ae_2014_definitivopdf_tcm7-405122.pdf (last accessed on October 13th, 2016)
Malana, N., Malano, H.M. (2006) Benchmarking productive efficiency of selected wheat areas in Pakistan and India using Data Envelopment Analysis, Irrigation and Drainage, 55, 383-394

Marchand, S., Guo, H. (2014) The environmental efficiency of non-certified organic farming in China: A case study of paddy rice production, China Economic Review, 31, 201-216

Masuda, K. (2016) Measuring eco-efficiency of wheat production in Japan: a combined application of life cycle assessment and data envelopment analysis, Journal of Cleaner Production, 126, 373-31

Mobtaker, H.G., Taki, M., Salehi, M., Shahamat, E.Z. (2013) Application of nonparametric method to improve energy productivity and CO2 emission for barley production in Iran, Agricultural Engineering International, 15, 4, 84-93

Mohr, S.H., Evans, G.M., (2011) Long term forecasting of natural gas production, Energy Policy, 39, 5550-5560
Moreno, B., Garcia-Rodriguez, S., Canizares, R., Castro, J., Benitez, E. (2009) Rainfed olive farming in south-eastern Spain: Long-term effect of soil management on biological indicators of soil quality, Agriculture, Ecosystems and Environment, 131, 333-339
Moreno, M.M., Lacasta, C., Meco, R., Moreno, C. (2011) Rainfed crop energy balance of different farming systems and crop rotations in a semi-arid environment: Results of a long-term trial, Soil and Tillage Research, 114, 118-127

Murray, J., King, D., (2012) Climate policy: Oil's tipping point has passed, Nature, 481, 433-435.

O’Donnell, C.J., Rao, D.S.P., Battese, G.E. (2008) Metafrontier frameworks for the study of firm-level efficiencies and technology ratios, Empirical Economics 34, 231-255

Papke, L.E., Wooldridge, J.M. (1996) Econometric methods for fractional response variables with an application to 401(k) plan participation rates, Journal of Applied Econometrics, 11, 6, 619-632

Picazo-Tadeo, A.J., Gómez-Limón, J.A. Reig-Martínez, E. (2011) Assessing farming eco-efficiency: A Data Envelopment Analysis approach, Journal of Environmental Management, 92, 1154-1164

Poudel, K.L., Johnson, T.G., Yamamoto, N., Gautam, S., Mishra, B. (2015) Comparing technical efficiency of organic and conventional coffee farms in rural hill region of Nepal using data envelopment analysis (DEA) approach, Organic Agriculture, 5, 263-275

Quemada, M., Gabriel, J.L. (2016) Approaches for increasing nitrogen and water use efficiency simultaneously, Global Food Security, 9, 29–35

Ramalho, E.A., Ramalho, J.J.S., Henriques, P.D. (2010) Fractional regression models for second stage DEA efficiency analyses, Journal of Productivity Analysis, 34, 239-255

Rodríguez-Martín, J.A., Álvaro-Fuentes, J., Gonzalo, J., Gil de Carrasco, C., Ramos-Miras, J.J., Grau Corbí, J.M., Boluda, R. (2016) Assessment of the soil organic carbon stock in Spain, Geoderma, 264, 117-125
Serra, T., Goodwin, B.K. (2009) The efficiency of Spanish arable crop organic farms, a local maximum likelihood approach, Journal of Productivity Analysis, 31, 113-124

Steffen, W., Richardson, K., Rockstrom, J., Cornell, S.E., Fetzer, I., Bennett, E.M., Biggs, R., Carpenter, S.R., de Vries, W., de Wit, C.A., Folke, C., Gerten, D., Heinke, J., Mace, G.M., Persson, L.M., Ramanathan, V., Reyers, B., Sorlin, S. (2015) Planetary boundaries: Guiding human development on a changing planet, Science, 347, 1259855
Sutton, M.A., Bleeker, A., Howard, C.M., Bekunda, M., Grizzetti, B., de Vries, W., van Grinsven, H.J.M., Abrol, Y.P., Adhya, T.K., Billen, G., Davidson, E.A., Datta, A., Diaz, R., Erisman, J.W., Liu, X.J., Oenema, O., Palm, C., Raghuram, N., Reis, S., Scholz, R.W., Sims, T., Westhoek, H., Zhang, F.S., Global Partnership on Nutrient Management, International Nitrogen Initiative (2013) Our nutrient world: the challenge to produce more food and energy with less pollution. NERC/Centre for Ecology & Hydrology, Edinburgh, U.K. www.initrogen.org/sites/default/files/documents/files/ONW.pdf (last accessed on October 13th, 2016)
Tiedemann, T., Latacz-Lohmann, U. (2013) Production risk and technical efficiency in organic and conventional agriculture-the case of arable farms in Germany, Journal of Agriculture Economics, 64, 73-96
Tone, K. (2001) A slacks-based measure of efficiency in data envelopment analysis, European Journal of Operational Research, 130, 498-509

Tzouvelekas, V., Pantzios, C., Fotopoulos, C. (2001) Technical efficiency of alternative farming systems: the case of Greek organic and conventional olive-growing farms, Food Policy, 26, 549-569

Valero, Al., Valero, A. (2011) A prediction of the exergy loss of the world's mineral reserves in the 21st century. Energy, 36, 1848-1854
Willer, H., Lernoud, J. (eds.) (2016) The World of Organic Agriculture: Statistics and Emerging Trends 2016, Research Institute of Organic Agriculture FiBL and IFOAM – Organics International, www.organic-world.net/yearbook/yearbook-2016.html (last accessed on October 13th, 2016)
Two desirable outputs:


Yield fresh matter


NPP





Five inputs:


Fuel consumption


Total C inputs


Total N inputs


Synthetic fertilizers


Synthetic pesticides





Crop


 (1 ha.)





One undesirable output:


Total area-based emissions








PAGE  
8

_1514621164.unknown

_1514631254.unknown

_1514711605.unknown

_1514711646.unknown

_1514711678.unknown

_1514712229.unknown

_1514820826.unknown

_1514820827.unknown

_1514712237.unknown

_1514711699.unknown

_1514712169.unknown

_1514712207.unknown

_1514711698.unknown

_1514711697.unknown

_1514711661.unknown

_1514711677.unknown

_1514711654.unknown

_1514711629.unknown

_1514711637.unknown

_1514711619.unknown

_1514711518.unknown

_1514711532.unknown

_1514711588.unknown

_1514631326.unknown

_1514695292.unknown

_1514695570.unknown

_1514631305.unknown

_1514630872.unknown

_1514630953.unknown

_1514631236.unknown

_1514630901.unknown

_1514621516.unknown

_1514621517.unknown

_1514621175.unknown

_1514614341.unknown

_1514621114.unknown

_1514621145.unknown

_1514621155.unknown

_1514621132.unknown

_1514617164.unknown

_1514621104.unknown

_1514620036.unknown

_1514614399.unknown

_1514614131.unknown

_1514614250.unknown

_1514614292.unknown

_1514614171.unknown

_1514614069.unknown

_1514614095.unknown

_1466404088.unknown

_1514614011.unknown

_1514134898.unknown

_1466399381.unknown

