

On Lie rings of torsion groups

Consuelo Martínez¹ · Efim Zelmanov^{2,3}

Received: 16 April 2016 / Accepted: 23 May 2016 / Published online: 10 June 2016 © The Author(s) 2016. This article is published with open access at Springerlink.com

Abstract We prove that the Lie ring associated to the lower central series of a finitely generated residually-p torsion group is graded nil.

Keywords Torsion group · Nil Lie algebra

Mathematics Subject Classification 20F40 · 20F45 · 20F50

1 Introduction

Let *G* be a group. A descending sequence of normal subgroups $G = G_1 > G_2 > \cdots$ is called a central series if $[G_i, G_j] \subseteq G_{i+j}$ for all $i, j \ge 1$. The direct sum of abelian groups $L(G) = \bigoplus_{i\ge 1} G_i/G_{i+1}$ is a graded Lie ring with Lie bracket $[a_iG_{i+1}, b_jG_{j+1}] = [a_i, b_j]G_{i+j+1}; a_i \in G_i, b_j \in G_j.$

Of particular interest are the lower central series: $G_1 = G$, $G_{i+1} = [G_i, G]$, $i \ge 1$, and, for a fixed prime number p, the Zassenhaus series (see [7,8]).

Communicated by S. K. Jain.

Consuelo Martínez cmartinez@uniovi.es

² Department of Mathematics, UCSD, La Jolla, CA 92093-0112, USA

³ KAU, Jeddah, Saudi Arabia

The first author has been partially supported by MTM 2013-45588-C3-1-P and GRUPIN 14-142 and the second one by the NSF.

¹ Departamento de Matemáticas, Universidad de Oviedo, C/ Calvo Sotelo s/n, 33007 Oviedo, Spain

Let p be a prime number. We say that a group G is residually-p if the intersection of all normal subgroups of indices p^i , $i \ge 1$, is trivial.

A graded Lie ring $L = L_1 + L_2 + \cdots$ is called graded nil if for an arbitrary homogeneous element $a \in L_i$ the adjoint operator $ad(a) : x \to [a, x]$ is nilpotent.

The main instrument in the study of the Burnside problem in the class of residually p-groups is the connection between torsion in the group G and graded nilness in the Lie algebra L(G) of the Zassenhaus series (see [6–9]).

In this paper we prove this connection for the lower central series and for an arbitrary central series of *G*.

Theorem 1 Let Γ be a finitely generated residually-p torsion group. Let $\Gamma = \Gamma_1 > \Gamma_2 > \cdots$ be the lower central series of Γ . Then the Lie ring $L(\Gamma) = \bigoplus_{i \ge 1} \Gamma_i / \Gamma_{i+1}$ is graded nil.

Note that the known important classes of torsion groups: Golod–Shafarevich groups (see [2,3]), Grigorchuck groups [4] and Gupta–Sidki groups [5] are residually—p.

We say that a (possibly infinite) group Γ is a *p*-group if for an arbitrary element $g \in \Gamma$ there exists $k \ge 1$ such that $g^{p^k} = 1$. Clearly, for a residually *p*-group being torsion and being a *p*-group are equivalent.

Theorem 2 Let Γ be a p-group. Let $\Gamma = \Gamma_1 > \Gamma_2 > \cdots$ be a central series. Then the Lie ring $L(\Gamma) = \bigoplus_{i \ge 1} \Gamma_i / \Gamma_{i+1}$ is locally graded nil.

In other words, we claim that an arbitrary finitely generated graded subalgebra of $L(\Gamma)$ is graded nil.

2 Definitions and results

Let Γ be a residually-*p* group and let *G* be its pro-*p* completion (see [1]). For an element $y \in G$ let $\langle y^G \rangle$ denote the closed normal subgroup of *G* generated by *y*. Let $[y^G, y^G]$ denote the closed commutator subgroup of $\langle y^G \rangle$.

For elements $g_1, g_2, \ldots, g_n \in G$ let $[g_1, g_2, \ldots, g_n] = [g_1, [g_2, [\ldots, g_n]] \ldots]$ be their left-normed commutator.

We will need the following equalities which can be found in [1]:

(1) For an arbitrary integer $k \ge 1$ we have $[y, x]^k = [y^k, x] \mod [y^G, y^G]$;

(2)
$$[y, x^k] = [y, x]^{\binom{k}{1}}[y, x, x]^{\binom{k}{2}} \dots [y, \underbrace{x, \dots x}_{k}]^{\binom{k}{k}} \mod [y^G, y^G].$$

Let p be a prime number. The equalities (1) and (2) imply that

(3)
$$c = [y, x^p][y, \underbrace{x, \dots, x}_{p}]^{-1} = [y^{\binom{p}{1}}, x][y^{\binom{p}{2}}, x, x] \dots [y^{\binom{p}{p-1}}, \underbrace{x, \dots, x}_{p-1}] \mod [y^G, y^G].$$

Hence $[y^p, x] = c[[y^p, x], x]^{-\binom{p}{2}/p} \dots [[y^p, x], \underbrace{x, \dots x}_{p-2}]^{-\binom{p}{p-1}/p} \mod [y^G, y^G].$

Iterating this process and the use of equalities (1) and (2) we conclude that there exists an infinite sequence of nonnegative integers $k_i \ge 0$ such that

(4) $[y^p, x] = c[c, x]^{k_1}[c, x, x]^{k_2} \dots \text{mod } [y^G, y^G].$

Let ρ be a left-normed group commutator, $\rho = [g_1, \dots, g_m]$, where each element g_i is either equal to y or to x^{p^k} for some $k \ge 1$. Let $d_x(\rho)$ denote the sum of powers of x involved in ρ and $d_y(\rho)$ the number of times the element y occurs in ρ .

Lemma 1 Let $\rho = [y, x^{p^{i_1}}, x^{p^{i_2}}, \dots, x^{p^{i_k}}], d_y(\rho) = 1, 0 \le i_1, \dots, i_k \le l-1$. Then ρ is a converging product of commutators σ of types:

(i) $\sigma = [y, x^{p^{j_1}}, x^{p^{j_2}}, \dots, x^{p^{j_s}}]$, where $d_y(\sigma) = 1$, no more than one integer of j_1, \dots, j_s is different from 0 and $d_x(\sigma) \ge d_x(\rho)$;

(ii)
$$\sigma = [y, x^{p^{j_1}}, \dots, y, \dots]$$
, where $d_y(\sigma) \ge 2$ and $(d_y(\sigma) - 1)p^l + d_x(\sigma) \ge d_x(\rho)$.

Proof Suppose that $i_{\alpha}, i_{\beta} \ge 1, 1 \le \alpha \ne \beta \le k$. We will represent ρ as a product of commutators of types (i) and (ii) and of commutators of type

(iii) $\rho' = [y, x^{p^{j_1}}, x^{p^{j_2}}, \dots, x^{p^{j_s}}]$, where $0 \le j_1, \dots, j_s \le l - 1$ and $0 \le d_x(\rho') > d_x(\rho)$

and type

(iv)
$$\rho'' = [y, x^{p^{j_1}}, x^{p^{j_2}}, \dots, x^{p^{j_s}}]$$
, where $0 \le j_1, \dots, j_s \le l-1$ and $d_x(\rho'') = d_x(\rho)$,
 $s > k$.

Iterating we will get rid of commutators (iii) and (iv).

Without loss of generality we will assume that $\alpha = 1$, $\beta = 2$ and $1 \le i_1 \le i_2$. By (3) we have $\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n}$

$$[y, x^{p^{r_1}}] = [y^{\binom{r_1}{1}}, x^{p^{r_1-1}}] \dots [y^{\binom{p-1}{p-1}}, \underbrace{x^{p^{r_1-1}}, \dots, x^{p^{r_1-1}}}_{p-1}][y, \underbrace{x^{p^{r_1-1}}, \dots, x^{p^{r_1-1}}}_{p}]$$

 $mod [y^G, y^G].$

Now ρ is a product of commutators of the form

 $[y^{\binom{p}{t}}, \underbrace{x^{p^{i_1-1}}, \dots, x^{p^{i_1-1}}}_{t}, x^{p^{i_2}}, \dots, x^{p^{i_k}}], 1 \le t \le p-1;$ of the commutator

 $[y, \underbrace{x^{p^{i_1-1}}, \ldots, x^{p^{i_1-1}}}_{p}, x^{p^{i_2}}, \ldots, x^{p^{i_k}}]$ and of commutators that involve at least two

occurrences of y and the powers $x^{p^{i_1-1}}, x^{p^{i_2}}, \ldots, x^{p^{i_k}}$ (see [7]).

The latter commutators are commutators of type (ii). The commutator $[y, \underbrace{x^{p^{i_1-1}}, \ldots, x^{p^{i_1-1}}}_{n}, x^{p^{i_2}}, \ldots, x^{p^{i_k}}]$ satisfies condition (iv). Hence it remains to con-

sider commutators of the form $[y^{\binom{p}{t}}, \underbrace{x^{p^{i_1-1}}, \ldots, x^{p^{i_1-1}}}_{t}, x^{p^{i_2}}, \ldots, x^{p^{i_k}}].$

Since $p | \binom{p}{t}, 1 \le t \le p - 1$, we will consider the commutator

$$[y^p, \underbrace{x^{p^{i_1-1}}, \ldots, x^{p^{i_1-1}}}_t, x^{p^{i_2}}, \ldots, x^{p^{i_k}}].$$

Modulo longer commutators we can move the power $x^{p^{i_2}}$ to the left. By (4) we get

$$[y^p, x^{p^{l_2}}] = \sigma[\sigma, x]^{s_1}[\sigma, x, x]^{s_2} \dots$$

where $\sigma = [y, x^{p^{i_2+1}}][y, \underbrace{x^{p^{i_2}}, \dots, x^{p^{i_2}}}_{p}]^{-1} \mod [y^G, y^G].$ The commutators $[y, x^{p^{i_2+1}}, \underbrace{x^{p^{i_1-1}}, \dots, x^{p^{i_1-1}}}_{t}, \dots, x^{p^{i_k}}]$ and $[y, \underbrace{x^{p^{i_2}}, \dots, x^{p^{i_2}}}_{p}, \underbrace{x^{p^{i_1-1}}, \dots, x^{p^{i_1-1}}}_{t}, \dots x^{p^{i_k}}]$ are of type (iii) since $i_2 \ge i_1$ and

therefore $p^{i_2+1} + p^{i_1-1} > p^{i_2} + p^{i_1}$.

This finishes the proof of the lemma.

Consider again the commutator $\rho = [y, x^{p^{i_1}}, \dots, x^{p^{i_k}}]$. Suppose that $x^{p^l} = 1$. Consider the *l*-tuple $ind(\rho) = (k_{l-1}, \ldots, k_0), k_i \in \mathbb{Z}_{>0}$, where k_i is the number of times *i* occurs among i_1, \ldots, i_k . Clearly, $k_0 + k_1 + \cdots + k_{l-1} = k$.

Consider the length-lex order in $Z^{l} \ge 0$: $(\alpha_1, \ldots, \alpha_l) > (\beta_1, \ldots, \beta_l)$ if either $\sum \alpha_i > \sum \beta_i$ or $\sum \alpha_i = \sum \beta_i$ and $(\alpha_1, \dots, \alpha_l) > (\beta_1, \dots, \beta_l)$ lexicographically.

Lemma 2 Let $x, y \in G$, $x^{p^l} = 1$, $y^{p^s} = 1$. A commutator $\rho = [y, x^{p^{i_1}}, ..., x^{p^{i_k}}]$ such that $d_x(\rho) \ge (s+1)p^l$ can be represented as a product of commutators $\sigma =$ $[y, x^{p^{j_1}}, ..., y, ..., x^{p^{j_q}}]$, where $d_y(\sigma) \ge 2$ and $(d_y(\sigma) - 1)p^l + d_x(\sigma) \ge d_x(\rho)$.

Proof We will show that ρ is a (converging) product of commutators of the form σ_1 and σ_2 , where $d_{\gamma}(\sigma_1) \geq 2$, $(d_{\gamma}(\sigma_1) - 1)p^l + d_{\chi}(\sigma_1) \geq d_{\chi}(\rho)$ for commutators of the form σ_1 , whereas commutators of the form σ_2 look as $\sigma_2 = [y, x^{p^{j_1}}, \dots, x^{p^{j_t}}]$ with $d_x(\sigma_2) > d_x(\rho)$ or $d_x(\sigma_2) = d_x(\rho)$ and $ind(\sigma_2) > ind(\rho)$. Then, applying this assertion to commutators of the form σ_2 and iterating we will get rid of commutators σ_2 .

We claim that at least one $i, 0 \le i \le l - 1$, occurs in i_1, \ldots, i_k not less than p times. Indeed, otherwise $d_x(\rho) \le (p-1)(1+p+\cdots+p^{l-1})$, which contradicts our assumption that $d_x(\rho) \ge (s+1)p^l$.

Suppose that *i* occurs in i_1, \ldots, i_k not less than p times and *i* is the smallest in $\{i_1, \ldots, i_k\}$ with this property. Moving the occurrences of *i* to the left, modulo longer commutators, we assume $i_1 = \cdots = i_p = i$.

By (2) we have

$$[y, \underbrace{x^{p^{i}}, \dots, x^{p^{i}}}_{p}] = [y, x^{p^{i+1}}][y^{\binom{p}{1}}, x^{p^{i}}]^{-1} \dots [y^{\binom{p}{p-1}}, \underbrace{x^{p^{i}}, \dots, x^{p^{i}}}_{p-1}]^{-1}\tau_{1} \dots \tau_{q},$$

where τ_i are commutators that involve y at least twice.

The commutator $\sigma' = [y, x^{p^{i+1}}, x^{p^{i_{p+1}}}, \dots, x^{p^{i_k}}]$ has greater index than ρ . Indeed, $d_x(\sigma') = d_x(\rho)$, but $ind(\sigma')$ is lexicographically greater than $ind(\rho)$.

For a commutator $\tau'_j = [\tau_j, x^{p^{i_{p+1}}}, \dots, x^{p^{i_k}}]$, we have

$$d_x(\tau'_i) \ge d_x(\rho) - (p-1)p^i.$$

Hence, $p^{l}(d_{y}(\tau'_{j}) - 1) + d_{x}(\tau'_{j}) \ge p^{l} + d_{x}(\rho) - (p-1)p^{i} > d_{x}(\rho).$

Consider now the commutator $\rho' = [y^p, x^{p^i}, x^{p^{i_p+1}}, \dots, x^{p^{i_k}}].$

We claim that there exists $j \in \{i_{p+1}, \ldots, i_k\}$ such that $j \ge i$. Indeed, otherwise all integers in $\{i_{p+1}, \ldots, i_k\}$ are smaller than *i* and therefore occur $\le (p-1)$ times. Hence,

$$d_x(\rho) \le pp^i + (p-1)(1+p+\dots+p^{i-1}) = p^{i+1} + p^i - 1 < 2p^l \le (s+1)p^l,$$

which contradicts the assumption of the lemma.

Moving x^{p^j} to the right end in ρ' modulo longer commutators we will assume that $i_k = j \ge i$.

Consider the commutator $\rho'' = [y^p, x^{p^i}, x^{p^{i_{p+1}}}, \dots, x^{p^{i_{k+1}}}]$. We have $d_x(\rho'') = d_x(\rho) - (p-1)p^i - p^j \ge sp^l$. By the induction assumption on *s* the commutator ρ'' is a product of commutators *w* in y^p and *x*, each commutator involves $\mu = \mu(w) \ge 2$ elements y^p and $(\mu-1)p^l + d_x(w) \ge d_x(\rho'')$. We will assume that $w = [w_1, \dots, w_{\mu}]$, $w_j = [y^p, \dots], 1 \le j \le \mu$.

Remark Any commutator that has degree $\geq \mu + 1$ in y and degree $\geq d_x(w)$ in x fits the requirements of the lemma since $\mu p^l + d_x(w) \geq d_x(\rho'') + p^l \geq d_x(\rho)$.

The commutator $[w_1, \ldots, w_\mu, x^{p^j}]$ is equal to a product

$$[[w_1, x^{p^j}], w_2, \dots, w_{\mu}][w_1, [w_2, x^{p^j}], \dots] \dots [w_1, \dots, [w_{\mu}, x^{p^j}]]$$

modulo longer commutators (see the Remark above).

Consider $[w_1, ..., [w_{\nu}, x^{p^j}], ..., w_{\mu}].$

In $[w_v, x^{p^j}]$ move x^{p^j} to the left position next to y^p modulo longer commutators (see the Remark above).

By (4), $[y^p, x^{p^j}] = c[c, x]^{k_1}[c, x, x]^{k_2} \dots \tau_1 \dots \tau_q$, where $c = [y, x^{p^{j+1}}][y, \underbrace{x^{p^j}, \dots, x^{p^j}}_{p}]^{-1}; \tau_1, \dots \tau_q \in [y^G, y^G]; d_x(\tau_1), \dots, d_x(\tau_q) \ge p^j.$

If the commutator $[y^p, x^{p^j}]$ is replaced by one of τ_1, \ldots, τ_q then see the Remark. If $[y^p, x^{p^j}]$ is replaced by *c* then

$$d_x([w_1, \dots, w_{\nu-1}, c, w_{\nu+1}, \dots, w_{\mu}]) \ge d_x([w_1, \dots, w_{\mu}, x^{p^j}]) + (p-1)p^j d_x(w) + pj + 1.$$

Hence, $(\mu - 1)p^l + d_x([w_1, \dots, w_\mu, x^{p^j}]) \ge (\mu - 1)p^l + d_x(\mu) + pj + 1 \ge d_x(\rho'') + p^{j+1} = d_x(\rho) - (p-1)p^i - p^j + p^{j+1} = d_x(\rho) + (p-1)(p^j - p^i) \ge d_x(\rho).$

Springer

Since $d_y([w_1, \ldots, w_\mu, x^{p^j}]) \ge 2$, this commutator satisfies the requirements of the lemma. If the commutators $[y^p, x^{p^j}]$ is replaced by $[c, x, \ldots, x]^{k_t}$, then $(\mu -$

1)
$$p^{l} + d_{x}([w_{1}, \ldots, w_{\nu-1}, [c, \underbrace{x, \ldots, x}_{t}]^{k_{1}}, w_{\nu+1}, \ldots, w_{\mu}]) > d_{x}(\rho).$$

This finishes the proof of the lemma.

Lemma 3 Let $x \in G_i$, $x^{p^l} = 1$, $y \in G_j$, $y^{p^s} = 1$. Suppose that $j \ge 2ip^l$. Then $(yG_{j+1})ad(xG_{i+1})^{(s+1)p^l} = 0$ in the Lie algebra $L = \sum_{k=1}^{\infty} G_k/G_{k+1}$.

Proof By Lemma 2 the group commutator $\rho = [y, \underbrace{x, \dots, x}_{(s+1)p^l}]$ can be represented as a

product of commutators $w = [w_1, ..., w_{\mu}], \mu \ge 2$, where each w_k is a commutator of the type $w_k = [y, x^{p^{j_1}}, ..., x^{p^{j_r}}], (\mu - 1)p^l + d_x(w) \ge d_x(\rho) = (s+1)p^l$.

By Lemma 1 each w_k is a product of commutators of type (i) or (ii). A commutator of type (ii) just increases the degree in y. Let $[y, x^{p^{j_1}}, \ldots, x^{p^{j_r}}]$ be a commutator of type (i). So all j_1, \ldots, j_r , except possibly one, are equal to 0. This implies that

$$[y, x^{p^{j_1}}, \dots, x^{p^{j_r}}] \in G_{j+i(p^{j_1}+\dots+p^{j_r}-(p^{l-1}-1))}$$

Hence, $w \in G_d$, where $d = \mu j + id_x(w) - \mu i(p^{l-1} - 1) \ge j + (\mu - 1)ip^l + (\mu - 1)ip^l + id_x(w) - \mu i(p^{l-1} - 1) \ge j + id_x(\rho) + i[(\mu - 1)p^l - \mu(p^{l-1} - 1)].$

Now it remains to notice that $(\mu - 1)p^l - \mu(p^{l-1} - 1) > 0$. We showed that $d > j + id_x(\rho)$, which implies the lemma.

Lemma 4 The Lie ring $L(\Gamma)$ is weakly graded nil, i.e., for arbitrary homogeneous elements $a, b \in L(\Gamma)$ there exists $n(a, b) \ge 1$ such that $bad(a)^{n(a,b)} = 0$.

Proof Let $a \in \Gamma_i$, $a^{p^l} = 1$. Let $n(a) = 2ip^l$. By Lemma 3, for an arbitrary element $b \in \Gamma_j$, $j \ge n(a)$, there exists an integer $n(a, b) \ge 1$ such that $[b, \underbrace{a, a, \ldots, a}_{n(a, b)}] \in \mathbb{R}$

 $G_{j+in(a,b)+1}$.

Since Γ is a torsion group it follows that for an arbitrary $k \ge 1$ the subgroup Γ_k has finite index in Γ , hence Γ_k is open in Γ . The subgroup G_k is the completion of Γ_k . Hence $\Gamma \cap G_k = \Gamma_k$.

We proved that $bad(a)^{n(a,b)} = 0$ in $L(\Gamma)$. Now let *b* be an arbitrary homogeneous element from $L(\Gamma)$. Then the degree of the element $b' = bad(a)^{n(a)}$ is greater than n(a). Hence, $bad(a)^{n(a)+n(a,b')} = b'ad(a)^{n(a,b')} = 0$, which finishes the proof of the lemma.

Lemma 5 Let *L* be a Lie algebra over a field $\mathbb{Z}/p\mathbb{Z}$ generated by elements x_1, \ldots, x_m . Let $a \in L$ be an element such that $x_i ad(a)^{p^k} = 0, 1 \le i \le m$. Then $Lad(a)^{p^k} = (0)$.

Proof The algebra *L* is embeddable in its universal associative enveloping algebra U(L). Let a^{p^k} be the power of the element *a* in U(L). For an arbitrary element $b \in L$ we have $bad(a)^{p^k} = [b, a^{p^k}]$. If the element a^{p^k} commutes with all generators x_1, \ldots, x_m then $[L, a^{p^k}] = Lad(a)^{p^k} = (0)$, which finishes the proof of the lemma.

Lemma 6 Let *L* be a Lie ring generated by elements x_1, \ldots, x_m . Suppose that $p^l L = (0)$. Let $a \in L$ be an element such that $x_i ad(a)^{p^k} = 0$, $1 \le i \le m$. Then $Lad(a)^{p^{k_l}} = (0)$.

Proof By Lemma 5 we have $Lad(a)^{p^k} \subseteq pL$. Hence $L(ad(a)^{p^k})^l \subseteq p^l L = (0)$, which proves the lemma.

Proof of Theorem 1 Let x_1, \ldots, x_m be generators of the group Γ . Then the elements $x_i \Gamma_2$, $1 \le i \le m$, generate the Lie ring $L(\Gamma)$. Let p^l be the maximum of orders of the elements x_1, \ldots, x_m , so $x_i^{p^l} = 1$, $1 \le i \le m$. Then $p^l(x_i \Gamma_2) = 0$ in the Lie ring $L(\Gamma)$. Hence $p^l L(\Gamma) = (0)$.

Let *a* be a homogeneous element of $L(\Gamma)$. By Lemma 4 there exists $k \ge 1$ such that $(x_i \Gamma_2)ad(a)^{p^k} = 0$ for i = 1, ..., m. Now Lemma 6 implies that $L(\Gamma)ad(a)^{p^k \cdot l} = (0)$, which finishes the proof of Theorem 1.

Proof of Theorem 2 Without loss of generality we assume that $\cap_i \Gamma_i = (1)$. We view the subgroups $\{\Gamma_i | i \ge 1\}$ as a basis of neighborhoods of 1 thus making Γ a topological group. Let *G* be a completion of Γ in this topology. Let *G_i* be the closure of Γ_i in *G*. Then $G_i \cap \Gamma = \Gamma_i$ and $G = G_1 > G_2 > \cdots$ is a central series of the group *G*. Arguing as in Lemmas 3, 4 we conclude that the Lie ring $L(\Gamma) = \bigoplus_{i\ge 1}\Gamma_i/\Gamma_{i+1}$ is weakly graded nil. Choose homogeneous elements $a_1, \ldots, a_m \in L(\Gamma)$. Since Γ is a *p*-group it follows that there exists $l \ge 1$ such that $p^l a_i = 0, 1 \le i \le m$. Consider the subring L' of $L(\Gamma)$ generated by $a_1, \ldots, a_m, p^l L' = (0)$. If *a* is a homogeneous element from L' and $a_i ad(a)^{p^k} = 0, 1 \le i \le m$, then by Lemma 6 we have $L'ad(a)^{p^k \cdot l} = (0)$, which finishes the proof of Theorem 2.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

References

- Dixon, J.M., du Sautoy, M.P.F., Mann, A., Segal, D.: Analytic pro-p groups, London Math. Soc. Lecture Notes Series, vol. 157. Cambridge University Press, Cambridge (1991)
- Ershov, M.: Golod-Shafarevich groups: a survey. Int. J. Algebra Comput. 22, Article ID 1230001 (2012). doi:10.1142/S0218196712300010
- 3. Golod, E.S.: On nil algebras and residually finite p-groups. Izv. Akad. Nauk SSSR Ser. Mat. 28, 273–276 (1964)
- Grigorchuk, R.I.: Degrees of growth of finitely generated groups and the theory of invariant means. Izv. Akad. Nauk SSSR Ser. Mat. 48, 939–985 (1984)
- 5. Gupta, N., Sidki, N.: On the Burnside problem for periodic groups. Math. Z. 182, 385–386 (1983)
- Higman, G.: Lie ring methods in the theory of finite nilpotent groups. In: Proc. Internat. Congress Math. 1958, pp. 307–312. Cambridge Univ. Press, New York (1960)
- Vaughan-Lee, M.: The restricted Burnside problem, 2nd edn. London Mathematical Society Monographs, New Series 8. The Clarendon Press. Oxford University Presss, New York (1993)
- Zelmanov, E.: Nil rings and periodic groups, KMS Lecture Notes in Mathematics. Korean Mathematical Society, Seoul (1992)
- Zelmanov, E.: Lie ring methods in the theory of nilpotent groups, Groups 93 Galway/St. Andrews, v.2, London Math. Soc. Lecture Note Ser., vol. 212, pp. 567–585. Cambridge Univ. Press, Cambridge (1995)