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Abstract We prove that the Lie ring associated to the lower central series of a finitely
generated residually-p torsion group is graded nil.
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1 Introduction

Let G be a group. A descending sequence of normal subgroups G = G1 > G2 > · · ·
is called a central series if [Gi ,G j ] ⊆ Gi+ j for all i, j ≥ 1. The direct sum
of abelian groups L(G) = ⊕i≥1Gi/Gi+1 is a graded Lie ring with Lie bracket
[aiGi+1, b jG j+1] = [ai , b j ]Gi+ j+1; ai ∈ Gi , b j ∈ G j .

Of particular interest are the lower central series: G1 = G, Gi+1 = [Gi ,G], i ≥ 1,
and, for a fixed prime number p, the Zassenhaus series (see [7,8]).
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Let p be a prime number. We say that a group G is residually-p if the intersection
of all normal subgroups of indices pi , i ≥ 1, is trivial.

A graded Lie ring L = L1 + L2 + · · · is called graded nil if for an arbitrary
homogeneous element a ∈ Li the adjoint operator ad(a) : x → [a, x] is nilpotent.

The main instrument in the study of the Burnside problem in the class of residually
p-groups is the connection between torsion in the group G and graded nilness in the
Lie algebra L(G) of the Zassenhaus series (see [6–9]).

In this paperwe prove this connection for the lower central series and for an arbitrary
central series of G.

Theorem 1 Let � be a finitely generated residually-p torsion group. Let � = �1 >

�2 > · · · be the lower central series of �. Then the Lie ring L(�) = ⊕i≥1�i/�i+1 is
graded nil.

Note that the known important classes of torsion groups:Golod–Shafarevich groups
(see [2,3]), Grigorchuck groups [4] and Gupta–Sidki groups [5] are residually—p.

We say that a (possibly infinite) group � is a p-group if for an arbitrary element
g ∈ � there exists k ≥ 1 such that gpk = 1. Clearly, for a residually p-group being
torsion and being a p-group are equivalent.

Theorem 2 Let � be a p-group. Let � = �1 > �2 > · · · be a central series. Then
the Lie ring L(�) = ⊕i≥1�i/�i+1 is locally graded nil.

In other words, we claim that an arbitrary finitely generated graded subalgebra of
L(�) is graded nil.

2 Definitions and results

Let � be a residually-p group and let G be its pro-p completion (see [1]). For an
element y ∈ G let 〈yG〉 denote the closed normal subgroup of G generated by y. Let
[yG , yG ] denote the closed commutator subgroup of 〈yG〉.

For elements g1, g2, . . . , gn ∈ G let [g1, g2, . . . , gn] = [g1, [g2, [. . . , gn]] . . .] be
their left-normed commutator.

We will need the following equalities which can be found in [1]:

(1) For an arbitrary integer k ≥ 1 we have [y, x]k = [yk, x] mod [yG, yG ];
(2) [y, xk] = [y, x](k1)[y, x, x](k2) . . . [y, x, . . . x

︸ ︷︷ ︸

k

](kk) mod [yG , yG ].

Let p be a prime number. The equalities (1) and (2) imply that

(3) c = [y, x p][y, x, . . . , x
︸ ︷︷ ︸

p

]−1 = [y(p1), x][y(p2), x, x] . . . [y( p
p−1), x, . . . x

︸ ︷︷ ︸

p−1

] mod

[yG , yG ].
Hence [y p, x] = c[[y p, x], x]−(p2)/p . . . [[y p, x], x, . . . x

︸ ︷︷ ︸

p−2

]−( p
p−1)/p mod [yG , yG ].

Iterating this process and the use of equalities (1) and (2) we conclude that there
exists an infinite sequence of nonnegative integers ki ≥ 0 such that
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(4) [y p, x] = c[c, x]k1 [c, x, x]k2 . . . mod [yG , yG ].
Let ρ be a left-normed group commutator, ρ = [g1, . . . gm], where each element gi is
either equal to y or to x pk for some k ≥ 1. Let dx (ρ) denote the sum of powers of x
involved in ρ and dy(ρ) the number of times the element y occurs in ρ.

Lemma 1 Let ρ = [y, x pi1 , x pi2 , . . . , x pik ], dy(ρ) = 1, 0 ≤ i1, . . . , ik ≤ l−1. Then
ρ is a converging product of commutators σ of types:

(i) σ = [y, x p j1
, x p j2

, . . . , x p js ], where dy(σ ) = 1, no more than one integer of
j1, . . . , js is different from 0 and dx (σ ) ≥ dx (ρ);

(ii) σ = [y, x p j1
, . . . , y, . . .], where dy(σ ) ≥ 2 and (dy(σ ) − 1)pl + dx (σ ) ≥ dx (ρ).

Proof Suppose that iα, iβ ≥ 1, 1 ≤ α 
= β ≤ k. We will represent ρ as a product of
commutators of types (i) and (ii) and of commutators of type

(iii) ρ′ = [y, x p j1
, x p j2

, . . . , x p js ], where 0 ≤ j1, . . . , js ≤ l − 1 and 0 ≤ dx (ρ′) >

dx (ρ)

and type

(iv) ρ′′ = [y, x p j1
, x p j2

, . . . , x p js ],where 0 ≤ j1, . . . , js ≤ l−1 anddx (ρ′′) = dx (ρ),
s > k.

Iterating we will get rid of commutators (iii) and (iv).
Without loss of generality we will assume that α = 1, β = 2 and 1 ≤ i1 ≤ i2.
By (3) we have

[y, x pi1 ] = [y(p1), x pi1−1 ] . . . [y( p
p−1), x pi1−1

, . . . , x pi1−1

︸ ︷︷ ︸

p−1

][y, x pi1−1
, . . . , x pi1−1

︸ ︷︷ ︸

p

]

mod [yG , yG ].
Now ρ is a product of commutators of the form

[y(pt ), x pi1−1
, . . . , x pi1−1

︸ ︷︷ ︸

t

, x pi2 , . . . , x pik ], 1 ≤ t ≤ p − 1; of the commutator

[y, x pi1−1
, . . . , x pi1−1

︸ ︷︷ ︸

p

, x pi2 , . . . , x pik ] and of commutators that involve at least two

occurrences of y and the powers x pi1−1
, x pi2 , . . . , x pik (see [7]).

The latter commutators are commutators of type (ii). The commutator

[y, x pi1−1
, . . . , x pi1−1

︸ ︷︷ ︸

p

, x pi2 , . . . , x pik ] satisfies condition (iv). Hence it remains to con-

sider commutators of the form [y(pt ), x pi1−1
, . . . , x pi1−1

︸ ︷︷ ︸

t

, x pi2 , . . . , x pik ].

Since p|(pt
)

, 1 ≤ t ≤ p − 1, we will consider the commutator

[y p, x pi1−1
, . . . , x pi1−1

︸ ︷︷ ︸

t

, x pi2 , . . . , x pik ].

123
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Modulo longer commutators we can move the power x pi2 to the left. By (4) we get

[y p, x pi2 ] = σ [σ, x]s1 [σ, x, x]s2 . . .

where σ = [y, x pi2+1 ][y, x pi2 , . . . , x pi2

︸ ︷︷ ︸

p

]−1 mod [yG , yG ].

The commutators [y, x pi2+1
, x pi1−1

, . . . , x pi1−1

︸ ︷︷ ︸

t

, . . . x pik ] and

[y, x pi2 , . . . , x pi2

︸ ︷︷ ︸

p

, x pi1−1
, . . . , x pi1−1

︸ ︷︷ ︸

t

, . . . x pik ] are of type (iii) since i2 ≥ i1 and

therefore pi2+1 + pi1−1 > pi2 + pi1 .
This finishes the proof of the lemma.
Consider again the commutator ρ = [y, x pi1 , . . . , x pik ]. Suppose that x pl = 1.

Consider the l-tuple ind(ρ) = (kl−1, . . . , k0), ki ∈ Z≥0, where ki is the number of
times i occurs among i1, . . . , ik . Clearly, k0 + k1 + · · · kl−1 = k.

Consider the length-lex order in Zl≥0: (α1, . . . , αl) > (β1, . . . , βl) if either
∑

αi >
∑

βi or
∑

αi = ∑

βi and (α1, . . . , αl) > (β1, . . . , βl) lexicographically.

Lemma 2 Let x, y ∈ G, x pl = 1, y p
s = 1. A commutator ρ = [y, x pi1 , . . . , x pik ]

such that dx (ρ) ≥ (s + 1)pl can be represented as a product of commutators σ =
[y, x p j1

, . . . , y, . . . , x p jq ], where dy(σ ) ≥ 2 and (dy(σ ) − 1)pl + dx (σ ) ≥ dx (ρ).

Proof We will show that ρ is a (converging) product of commutators of the form σ1
and σ2, where dy(σ1) ≥ 2, (dy(σ1) − 1)pl + dx (σ1) ≥ dx (ρ) for commutators of

the form σ1, whereas commutators of the form σ2 look as σ2 = [y, x p j1
, . . . , x p jt ]

with dx (σ2) > dx (ρ) or dx (σ2) = dx (ρ) and ind(σ2) > ind(ρ). Then, applying this
assertion to commutators of the form σ2 and iterating we will get rid of commutators
σ2.

We claim that at least one i , 0 ≤ i ≤ l − 1, occurs in i1, . . . , ik not less than p
times. Indeed, otherwise dx (ρ) ≤ (p− 1)(1+ p+· · ·+ pl−1), which contradicts our
assumption that dx (ρ) ≥ (s + 1)pl .

Suppose that i occurs in i1, . . . , ik not less than p times and i is the smallest in
{i1, . . . , ik} with this property. Moving the occurrences of i to the left, modulo longer
commutators, we assume i1 = · · · = i p = i .

By (2) we have

[y, x pi , . . . , x pi

︸ ︷︷ ︸

p

] = [y, x pi+1 ][y(p1), x pi ]−1 . . . [y( p
p−1), x pi , . . . , x pi

︸ ︷︷ ︸

p−1

]−1τ1 . . . τq ,

where τ j are commutators that involve y at least twice.

The commutator σ ′ = [y, x pi+1
, x pi p+1

, . . . , x pik ] has greater index thanρ. Indeed,
dx (σ ′) = dx (ρ), but ind(σ ′) is lexicographically greater than ind(ρ).
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For a commutator τ ′
j = [τ j , x pi p+1

, . . . , x pik ], we have

dx (τ
′
j ) ≥ dx (ρ) − (p − 1)pi .

Hence, pl(dy(τ ′
j ) − 1) + dx (τ ′

j ) ≥ pl + dx (ρ) − (p − 1)pi > dx (ρ).

Consider now the commutator ρ′ = [y p, x pi , x pi p+1
, . . . , x pik ].

We claim that there exists j ∈ {i p+1, . . . , ik} such that j ≥ i . Indeed, otherwise
all integers in {i p+1, . . . , ik} are smaller than i and therefore occur ≤ (p − 1) times.
Hence,

dx (ρ) ≤ ppi + (p − 1)(1 + p + · · · + pi−1) = pi+1 + pi − 1 < 2pl ≤ (s + 1)pl ,

which contradicts the assumption of the lemma.
Moving x p j

to the right end in ρ′ modulo longer commutators we will assume that
ik = j ≥ i .

Consider the commutator ρ′′ = [y p, x pi , x pi p+1
, . . . , x pik+1 ]. We have dx (ρ′′) =

dx (ρ) − (p− 1)pi − p j ≥ spl . By the induction assumption on s the commutator ρ′′
is a product of commutators w in y p and x , each commutator involves μ = μ(w) ≥ 2
elements y p and (μ−1)pl+dx (w) ≥ dx (ρ′′).Wewill assume thatw = [w1, . . . , wμ],
w j = [y p, . . .], 1 ≤ j ≤ μ.

Remark Any commutator that has degree ≥ μ + 1 in y and degree ≥ dx (w) in x fits
the requirements of the lemma since μpl + dx (w) ≥ dx (ρ′′) + pl ≥ dx (ρ).

The commutator [w1, . . . , wμ, x p j ] is equal to a product

[[w1, x
p j ], w2, . . . , wμ][w1, [w2, x

p j ], . . .] . . . [w1, . . . , [wμ, x p j ]]

modulo longer commutators (see the Remark above).
Consider [w1, . . . , [wν, x p j ], . . . , wμ].
In [wν, x p j ] move x p j

to the left position next to y p modulo longer commutators
(see the Remark above).

By (4), [y p, x p j ] = c[c, x]k1 [c, x, x]k2 . . . τ1 . . . τq , where

c = [y, x p j+1 ][y, x p j
, . . . , x p j

︸ ︷︷ ︸

p

]−1; τ1, . . . τq ∈ [yG , yG ]; dx (τ1), . . . , dx (τq) ≥ p j .

If the commutator [y p, x p j ] is replaced by one of τ1, . . . , τq then see the Remark.

If [y p, x p j ] is replaced by c then

dx ([w1, . . . , wν−1, c, wν+1, . . . , wμ]) ≥
dx ([w1, . . . , wμ, x p j ]) + (p − 1)p jdx (w) + p j + 1.

Hence, (μ − 1)pl + dx ([w1, . . . , wμ, x p j ]) ≥ (μ − 1)pl + dx (μ) + p j + 1 ≥
dx (ρ′′)+ p j+1 = dx (ρ)−(p−1)pi− p j+ p j+1 = dx (ρ)+(p−1)(p j− pi ) ≥ dx (ρ).
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376 C. Martínez, E. Zelmanov

Since dy([w1, . . . , wμ, x p j ]) ≥ 2, this commutator satisfies the requirements of

the lemma. If the commutators [y p, x p j ] is replaced by [c, x, . . . , x
︸ ︷︷ ︸

t

]kt , then (μ −

1)pl + dx ([w1, . . . , wν−1, [c, x, . . . , x
︸ ︷︷ ︸

t

]k1 , wν+1, . . . , wμ]) > dx (ρ).

This finishes the proof of the lemma.

Lemma 3 Let x ∈ Gi , x pl = 1, y ∈ G j , y p
s = 1. Suppose that j ≥ 2i pl . Then

(yG j+1)ad(xGi+1)
(s+1)pl = 0 in the Lie algebra L = ∑∞

k=1 Gk/Gk+1.

Proof By Lemma 2 the group commutator ρ = [y, x, . . . , x
︸ ︷︷ ︸

(s+1)pl

] can be represented as a

product of commutators w = [w1, . . . , wμ], μ ≥ 2, where each wk is a commutator

of the type wk = [y, x p j1
, . . . , x p jr ], (μ − 1)pl + dx (w) ≥ dx (ρ) = (s + 1)pl .

By Lemma 1 each wk is a product of commutators of type (i) or (ii). A commutator
of type (ii) just increases the degree in y. Let [y, x p j1

, . . . , x p jr ] be a commutator of
type (i). So all j1, . . . , jr , except possibly one, are equal to 0. This implies that

[y, x p j1
, . . . , x p jr ] ∈ G j+i(p j1+···+p jr −(pl−1−1)).

Hence, w ∈ Gd , where d = μj + idx (w) − μi(pl−1 − 1) ≥ j + (μ − 1)i pl + (μ −
1)i pl + idx (w) − μi(pl−1 − 1) ≥ j + idx (ρ) + i[(μ − 1)pl − μ(pl−1 − 1)].

Now it remains to notice that (μ − 1)pl − μ(pl−1 − 1) > 0. We showed that
d > j + idx (ρ), which implies the lemma.

Lemma 4 The Lie ring L(�) is weakly graded nil, i.e., for arbitrary homogeneous
elements a, b ∈ L(�) there exists n(a, b) ≥ 1 such that bad(a)n(a,b) = 0.

Proof Let a ∈ �i , a pl = 1. Let n(a) = 2i pl . By Lemma 3, for an arbitrary element
b ∈ � j , j ≥ n(a), there exists an integer n(a, b) ≥ 1 such that [b, a, a, . . . , a

︸ ︷︷ ︸

n(a,b)

] ∈

G j+in(a,b)+1.
Since � is a torsion group it follows that for an arbitrary k ≥ 1 the subgroup �k

has finite index in �, hence �k is open in �. The subgroup Gk is the completion of
�k . Hence � ∩ Gk = �k .

We proved that bad(a)n(a,b) = 0 in L(�). Now let b be an arbitrary homogeneous
element from L(�). Then the degree of the element b′ = bad(a)n(a) is greater than
n(a). Hence, bad(a)n(a)+n(a,b′) = b′ad(a)n(a,b′) = 0, which finishes the proof of the
lemma.

Lemma 5 Let L be a Lie algebra over a fieldZ/pZ generated by elements x1, . . . , xm.
Let a ∈ L be an element such that xi ad(a)p

k = 0, 1 ≤ i ≤ m. Then Lad(a)p
k = (0).

Proof The algebra L is embeddable in its universal associative enveloping algebra
U (L). Let a pk be the power of the element a in U (L). For an arbitrary element
b ∈ L we have bad(a)p

k = [b, a pk ]. If the element a pk commutes with all generators
x1, . . . , xm then [L , a pk ] = Lad(a)p

k = (0), which finishes the proof of the lemma.
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Lemma 6 Let L be a Lie ring generated by elements x1, . . . , xm. Suppose that pl L=
(0). Let a ∈ L be an element such that xi ad(a)p

k = 0, 1 ≤ i ≤ m. Then Lad(a)p
kl =

(0).

Proof By Lemma 5 we have Lad(a)p
k ⊆ pL . Hence L(ad(a)p

k
)l ⊆ pl L = (0),

which proves the lemma.

Proof of Theorem 1 Let x1, . . . , xm be generators of the group �. Then the elements
xi�2, 1 ≤ i ≤ m, generate the Lie ring L(�). Let pl be the maximum of orders of

the elements x1, . . . , xm , so x pl

i = 1, 1 ≤ i ≤ m. Then pl(xi�2) = 0 in the Lie ring
L(�). Hence pl L(�) = (0).

Let a be a homogeneous element of L(�). By Lemma 4 there exists k ≥ 1 such that
(xi�2)ad(a)p

k = 0 for i = 1, . . . ,m. Now Lemma 6 implies that L(�)ad(a)p
k ·l =

(0), which finishes the proof of Theorem 1.

Proof of Theorem 2 Without loss of generality we assume that ∩i�i = (1). We view
the subgroups {�i |i ≥ 1} as a basis of neighborhoods of 1 thus making� a topological
group. Let G be a completion of � in this topology. Let Gi be the closure of �i in G.
ThenGi∩� = �i andG = G1 > G2 > · · · is a central series of the groupG. Arguing
as in Lemmas 3, 4 we conclude that the Lie ring L(�) = ⊕i≥1�i/�i+1 is weakly
graded nil. Choose homogeneous elements a1, . . . , am ∈ L(�). Since � is a p-group
it follows that there exists l ≥ 1 such that plai = 0, 1 ≤ i ≤ m. Consider the subring
L ′ of L(�) generated by a1, . . . , am , pl L ′ = (0). If a is a homogeneous element from
L ′ and aiad(a)p

k = 0, 1 ≤ i ≤ m, then by Lemma 6 we have L ′ad(a)p
k ·l = (0),

which finishes the proof of Theorem 2.
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