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Abstract In a previous paper the fuzzy characterizing function of a ran-
dom fuzzy number was introduced as an extension of the moment generating
function of a real-valued random variable. Properties of the fuzzy charac-
terizing function have been examined, among them, the crucial one proving
that it unequivocally determines the distribution of a random fuzzy num-
ber in a neighborhood of 0. This property suggests to consider the empirical
fuzzy characterizing function as a tool to measure the dissimilarity between
the distributions of two random fuzzy numbers, and its expected descriptive
potentiality is illustrated by means of a real-life example.

1 Introduction

The formalization of random fuzzy numbers as Borel-measurable fuzzy num-
ber-valued mappings associated with a probability space, this one modeling
a random experiment, allows us to properly refer to its induced distribution
as well as to the independence of random fuzzy numbers. Nevertheless, al-
though the existence of such an induced distribution is clear (and it can be
easily determined in the sample case), there is not a sound general concept
which enables us to develop some probabilistic and statistical results we have
in the real-valued case, like the distribution function of a real-valued ran-
dom variable. Moreover, there are not exact or approximated models widely
applicable and realistic enough for the induced distribution.

In Sinova et al. [9] a function characterizing the induced distribution of
a random fuzzy number has been defined. This function aims to extend the
moment generating function of a real-valued random variable (and, there-

Departamento de Estad́ıstica e I.O. y D.M., Universidad de Oviedo, 33071 Oviedo
lubiano@uniovi.es,magil@uniovi.es,sinovabeatriz@uniovi.es,rmcasals@uniovi.es,

mtlopez@uniovi.es

1



2 Lubiano, Gil, Sinova, Casals, López

fore, there are just a few distributions for which it does not exist) and it is
based on the Aumann-type mean of a random fuzzy number. Since the exten-
sion preserves the convenient characterizing ability of the moment generating
function, one can think of using it to measure to some extent whether the
(induced) distributions of two random fuzzy numbers coincide or not. More
concretely, we can consider to state a measure of the dissimilarity of such
distributions.

This paper aims to empirically analyze the descriptive behaviour of this
measure by means of a real-life example. The derived descriptive conclusions
will be compared with some inferential ones which have been recently drawn.
Some open problems will be finally proposed.

2 Preliminaries

Fuzzy sets, and particularly fuzzy numbers, are very suitable to cope with
the imprecision of different real-life data, especially those coming from hu-
man thought and experience in variables like quality perception, satisfaction,
opinion, etc.

Definition 1. A mapping Ũ : R → [0, 1] is said to be a (bounded) fuzzy
number if its α-levels

Ũα =

{
{x ∈ R : Ũ(x) ≥ α} if α ∈ (0, 1]

cl{x ∈ R : Ũ(x) > 0} if α = 0

(with cl denoting the topological closure) are nonempty compact intervals
for all α ∈ [0, 1]. The class of (bounded) fuzzy numbers will be denoted by
F∗

c (R).

To deal with fuzzy numbers in this paper we should consider the extension
of the sum and product by a scalar as well as that for the exponential function,
which will be supposed to be based on Zadeh’s extension principle [10] and
coincides level-wise with the usual interval arithmetic and function image
(see Nguyen [7]).

Definition 2. Let Ũ , Ṽ ∈ F∗
c (R) and γ ∈ R. The sum of Ũ and Ṽ is the

fuzzy number Ũ + Ṽ such that

(Ũ+Ṽ )α = Minkowski sum of Ũα and Ṽα = [inf Ũα+inf Ṽα, sup Ũα+sup Ṽα].

The product of Ũ by the scalar γ is the fuzzy number γ · Ũ such that

(γ · Ũ)α = γ · Ũα =





[
γ inf Ũα, γ sup Ũα

]
if γ ∈ [0,∞)

[
γ sup Ũα, γ inf Ũα

]
otherwise.
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The (induced) image of Ũ through the exponential function is the fuzzy num-

ber eγ·Ũ such that

(eγ·Ũ )α =





[
eγ inf Ũα , eγ sup Ũα

]
if γ ∈ [0,∞)

[
eγ sup Ũα , eγ inf Ũα

]
otherwise.

If a random experiment leads to data which can be suitably modeled in
terms of fuzzy numbers, one should also properly model the random mech-
anism generating such data to analyze them in a rigorously established set-
ting. The concept of random fuzzy number (or one-dimensional fuzzy random
variable, as coined and introduced by Puri and Ralescu [8] is an appropriate
model to formalize a random mechanism associating with each experimental
outcome a fuzzy number. That is, random fuzzy numbers are mainly ad-
dressed to deal with the ‘ontic’ view of experimental fuzzy data (see Couso
and Dubois [1]).

Definition 3. Let Kc(R) be the space of nonempty compact intervals. Given
a probability space (Ω,A, P ), a random fuzzy number associated with it is
a mapping X : Ω → F∗

c (R) such that for each α ∈ [0, 1] the set-valued
mapping Xα : Ω → Kc(R) (with Xα(ω) =

(
X (ω)

)
α
) is a compact random

interval.
Equivalently, a random fuzzy number is a mapping X : Ω → F∗

c (R) such
that it is Borel-measurable w.r.t. the Borel σ-field generated on F∗

c (R) by
the topology induced by several different metrics, like the 2-norm distance

ρ2(Ũ , Ṽ ) =

√
1

2

∫

[0,1]

([
inf Ũα − inf Ṽα

]2
+
[
sup Ũα − sup Ṽα

]2)
dα

by Diamond and Kloeden [2].

As we have already pointed out, the assumed Borel-measurability of ran-
dom fuzzy numbers in the second equivalent definition allows us to trivially
induce the distribution (from P ) of a random fuzzy number.

A relevant measure in summarizing such an induced distribution is the
mean value, which has been defined by Puri and Ralescu [8]) as follows:

Definition 4. Given a probability space (Ω,A, P ) and a random fuzzy num-
ber X associated with it, the (population) Aumann-type mean value of X is

the fuzzy number Ẽ(X ), if it exists, such that for each α ∈ [0, 1]

(
Ẽ(X )

)
α
= [E(inf Xα), E(supXα)] .

In particular, if one deals with a finite sample of observations from a
random fuzzy number X , say x̃ = (x̃1, . . . , x̃n), the corresponding (sample)
Aumann-type mean value is the fuzzy number
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x̃ =
1

n
· (x̃1 + · · ·+ x̃n) .

On the basis of the Aumann-type mean value of a random fuzzy number,
one can formally extend the notion of moment generating function of a real-
valued random variable as follows (see Sinova et al. [9]):

Definition 5. Given a probability space (Ω,A, P ) and a random fuzzy num-
ber X associated with it, the (population) fuzzy characterizing function of X

is the mapping M̃X defined on a neighborhood of 0 that associates with each
t in the neighborhood the fuzzy number M̃X (t) = Ẽ

(
etX

)
, if it exists. That

is, for each α ∈ [0, 1]

(
M̃X (t)

)
α
=

{[
E(et inf Xα), E(et supXα)

]
if t ≥ 0

[
E(et supXα), E(et inf Xα)

]
otherwise.

In particular, if one deals with a finite sample of observations from a
random fuzzy number X , say x̃ = (x̃1, . . . , x̃n), the corresponding empirical

fuzzy characterizing function is the mapping
̂̃
Mx̃ associating with each t in a

neighborhood of 0 the fuzzy number

̂̃
Mx̃(t) =

1

n
·
(
etx̃1 + · · ·+ etx̃n

)
.

As shown in [9], the fuzzy characterizing function preserves most of the
properties of the moment generating one in the real-valued case, but the
one associated with the moment generation. However, it keeps the crucial
property of characterization of the induced distribution of the associated
random element, so that if X and Y are two random fuzzy numbers for which
the fuzzy characterizing functions exist and coincide in a neighborhood of 0,
then X and Y should be equally distributed.

In the next section, we are going to take advantage of this characterizing
skill to state a descriptive measure for the dissimilarity between the sample
distributions of two random fuzzy numbers.

3 A sample measure for the dissimilarity between the

distributions of two fuzzy datasets

This section aims to state an index for the dissimilarity between the distri-
butions of two fuzzy datasets. Due to the characterizing property, and being
inspired by ideas in some statistics for the homogeneity of distributions in the
real-valued case (see, for instance, Meintanis [5], Mora and Mora-López [6],
who also suggest the correction in contrast to the measure in Lubiano et
al. [3]), it seems plausible to consider in the current setting a statistic based



Dissimilarity between the distributions of two random fuzzy numbers 5

on distances between the sample fuzzy characterizing functions in a narrow
neighborhood of 0.

In this way, for an arbitrarily fixed ε > 0:

Definition 6. The ε-sample dissimilarity between the distributions of sam-
ples x̃ = (x̃1, . . . , x̃n) and ỹ = (ỹ1, . . . , ỹm) is given by the index

̺n,m,ε(x̃, ỹ) =
1

ε

√
nm

n+m
max

t∈[−ε,ε]
ρ2

(
̂̃
Mx̃(t),

̂̃
Mỹ(t)

)
.

In this section we are going to apply the preceding measure on a dataset
from a real-life situation.

Example. The nine items displayed in Table 1 have been drawn from the
TIMSS/PIRLS 2011 Student questionnaire. This questionnaire is conducted
in many countries and it is to be responded by fourth grade students (nine
to ten years old) in connection with some aspects about reading, math and
science.

Table 1 Items selected from the TIMSS-PIRLS 2011 Student Questionnaire

reading in school

R.1 I like to read things that make me think

R.2 I learn a lot from reading

R.3 Reading is harder for me than any other subject

mathematics in school

M.1 I like mathematics

M.2 My teacher is easy to understand

M.3 Mathematics is harder for me than any other subject

science in school

S.1 My teacher taught me to discover science in daily life

S.2 I read about in my spare time

S.3 Science is harder for me than any other subject

These nine items have been originally designed to be answered in accor-
dance with a 4-point Likert scale (disagree a lot, disagree a little,
agree a little, agree a lot).

Recently, the questionnaire form involving these nine items, along with a
few more ones about students’ support resources at home, has been adapted
to allow also a fuzzy rating scale-based one (see Figure 1 for Question M.2).
For the full paper-and-pencil and computerized versions of the questionnaire,
see http://bellman.ciencias.uniovi.es/SMIRE/FuzzyRatingScaleQuestionnaire-SanIgnacio.html.

The fuzzy rating scale (see, e.g., [3, 4]) has been designed with reference
interval [0, 10]. The adapted questionnaire has been conducted on 69 fourth
grade students from Colegio San Ignacio (Oviedo-Asturias, Spain). The com-
plete dataset can be found in the webpage containing the forms.

Now we are going to examine whether the fuzzy rating scale-based re-
sponses seem or not to be affected by respondents’ sex, filled form version
and the fact that respondents have or not an individual bedroom at home.
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M.2 My teacher is easy to understand

Fig. 1 Example of the double-response form to an item

For this purpose, and for each of the three variables, we have first consid-
ered the (descriptive) dissimilarity index with ε = .001, .01 and .1 (a deeper
and exhaustive discussion about the choice of ε should be developed in the
future). Secondly, as an alternative (albeit inferential) way to discuss such an
influence, we have considered tests in Lubiano et al. [4] for the two-sample
equality of independent means and compute the associated p-values when the
chosen metric is ρ2. Tables 2, 3 and 4 gather the outputs for the descriptive
and inferential analyses.

Table 2 ε-sample dissimilarity between the distributions of girls’ and boys’ samples for
ε = .001, .01, .1 and ρ2-based testing p-values for the equality of means

̺n,m,ε ̺n,m,ε ̺n,m,ε ρ2 two-sample
Item (ε = .001) (ε = .01) (ε = .1) test p-values

R.1 0.3874 0.4056 0.665 0.502

R.2 0.2397 0.2544 0.4759 0.702

R.3 0.6087 0.6416 1.1206 0.425

M.1 1.2692 1.3337 2.2487 0.049

M.2 0.3713 0.39 0.658 0.574

M.3 0.6207 0.6469 1.0211 0.49

S.1 0.6784 0.7145 1.2232 0.275

S.2 0.2754 0.2942 0.5738 0.687

S.3 0.4223 0.4394 0.6851 0.606

As an attempt to analyze the coherence between the descriptive dissimi-
larity and the inferential testing for the equality of means outputs, we have
computed Pearson’s correlation coefficient r between both series of outputs.
In connection with sex we have that r = −0.9567 (if ε = .001), r = −0.9574
(if ε = .01), and r = −0.9572 (if ε = .1).
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Table 3 ε-sample dissimilarity between the distributions of paper-and-pencil respondents’
sample and computerized respondents’ sample for ε = .001, .01, .1 and ρ2-based testing p-
values for the equality of means

̺n,m,ε ̺n,m,ε ̺n,m,ε ρ2 two-sample
Item (ε = .001) (ε = .01) (ε = .1) test p-values

R.1 1.0148 1.0606 1.678 0.065

R.2 1.1045 1.1724 2.1556 0.029

R.3 0.7244 0.7497 1.0904 0.366

M.1 0.8622 0.9008 1.4245 0.176

M.2 1.3347 1.4103 2.5025 0.01

M.3 1.5316 1.6148 2.8161 0.062

S.1 1.5403 1.6122 2.6124 0.016

S.2 0.6827 0.7058 0.9985 0.292

S.3 1.5221 1.5978 2.664 0.042

Table 4 ε-sample dissimilarity between the distributions of respondents’ sample with
individual bedroom and respondents’ sample with shared bedroom for ε = .001, .01, .1 and
ρ2-based testing p-values for the equality of means

̺n,m,ε ̺n,m,ε ̺n,m,ε ρ2 two-sample
Item (ε = .001) (ε = .01) (ε = .1) test p-values

R.1 0.5859 0.6277 1.2509 0.294

R.2 1.2238 1.3036 2.4909 0.013

R.3 0.4755 0.4983 0.8005 0.543

M.1 0.9392 0.9919 1.7486 0.188

M.2 0.3153 0.3365 0.6604 0.685

M.3 0.6548 0.6987 1.3606 0.46

S.1 0.2659 0.2746 0.394 0.772

S.2 0.5868 0.6063 0.8561 0.373

S.3 0.8058 0.859 1.6633 0.366

In connection with the filled format we have that r = −0.8269 (if ε= .001),
r = −0.8331 (if ε = .01), and r = −0.8664 (if ε = .1). In connection with
bedroom type for respondents we have that r = −0.9437 (if ε = .001), r =
−0.9426 (if ε = .01), and r = −0.9145 (if ε = .1).

Consequently, there is a high linear relationship between both tools. Notice
that the correlation coefficient is not expected to be exactly equal to −1,
not only because we are using samples and linearity could be a restrictive
assumption, but also because the dissimilarity index is related to the whole
distribution whereas p-values concern only their means.
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4 Conclusions and future directions

By looking at the outputs in Table 2, one can conclude both descriptively
(through the dissimilarity measure) and inferentially (through the p-value)
that sex affects the liking for mathematics (related to item M.1). Actually,
M.1 is the only item among the 9 in the adapted questionnaire for which
̺n,m,.001 > 1 and the p-value is lower than .05.

By looking at the outputs in Table 3, one can conclude that the version
form affects (to a rather great extent) the response to items R.1, R.2, M.2,
M.3, S.1 and S.3, for which ̺n,m,.001 > 1 and the p-value is always lower or
much lower than .07.

By looking at the outputs in Table 4, one can conclude that having or
not an individual bedroom at home affects students’ learning from reading
(related to item R.2), for which ̺n,m,.001 > 1 and the p-value is lower than
.02.

On the other hand, the measure in this paper has been simply applied
for descriptive purposes. Consequently, we cannot attempt to interpret the
significance of the dissimilarity measure. It would be desirable to consider this
measure in the near future to develop inferential methods (more concretely,
for testing hypothesis about the homogeneity of the population distributions
of two random fuzzy numbers).
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