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Abstract

Probabilistic and fuzzy choice theory are used to de-
scribe decision situations in which a certain degree
of imprecision is involved. In this work we propose
a correspondence between probabilistic and fuzzy
choice functions, based on implication operators.
Given a probabilistic choice function a fuzzy choice
function can be constructed and, furthermore, a
new set of rationality conditions is proposed. Fi-
nally, we prove that under those conditions, the as-
sociated fuzzy choice function fulfills desirable ra-
tionality properties.
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1. Introduction

Choice and preference are modelled in mathematics
using respectively a choice function and a preference
relation. If the (finite) universe of alternatives is
denoted with X, then a choice function (in the clas-
sical sense) is simply a function C that assigns to
any non-empty set of available alternatives S € B a
non-empty subset C(S) C S containing the alterna-
tives that are chosen from S (we denote with B the
power set of X without §)). A preference relation Q
instead, is a function defined on the Cartesian prod-
uct X x X that for any pair of alternatives x and
y can take values 0 or 1; if Q(x,y) = 1, then z is
considered at least as good as y, while if Q(z,y) =0
then z is not preferred to y. One drawback of classi-
cal choice theory is that it does not account for those
situations where choices or preferences are impre-
cise or ill-known. For example, experiments with re-
peated choices showed that an individual can choose
differently when faced with the same set of available
alternatives. In theory, it is a violation of rational-
ity, but we know that such situation is quite com-
mon. Nevertheless, it cannot be modelled by classi-
cal preference relations, where, for any pair of alter-
natives, either one is strictly preferred to the other
or they are indifferent (we intentionally exclude
those alternatives that are incomparable). Hence
the need of a more general framework in which sim-
ilar situations are not considered to be pathologi-
cal, but can at least be properly described. In this
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sense, we can mention at least two generalizations
of classical choice theory: probabilistic (or stochas-
tic) choice theory and the more recent fuzzy choice
theory. The former is based on the intuition that
the individual choice behaviour is probabilistic in
nature; based on this assumption, a large literature
has been developed, with contributions coming from
different disciplines, such as economics and psychol-
ogy [2,3,4,6,7,8 9,10, 11, 12, 14, 15, 22]. The
second approach exploits the fact that imprecise sit-
uations can be conveniently described by means of
fuzzy concepts, in which statements such as “x is
preferred to y” or “z is the chosen element from the
set of alternatives S” can be associated to a certain
degree of truth. Fuzzy choice theory [5, 13, 17],
contrary to probabilistic choice theory, does not as-
sumes that the behaviour of individuals is “fuzzy”
in nature, but simply profits the modelling power
of fuzzy set theory to accommodate for those sit-
uations in which choice and preference cannot be
described in the classical way.

In this work we propose a way of constructing
a fuzzy choice function from a given probabilistic
choice function by making use of implication oper-
ators. Our construction is inspired by a proposal
of Fishburn [11] and it allows to construct several
different fuzzy choice functions, according to the
implication operator of choice. This construction
proves to be consistent (the generated fuzzy choice
function is well-defined) and it is later used to pro-
pose new criteria for the rationality of probabilis-
tic choice functions. The new rationality conditions
are inspired by preceding proposals, such as the
Luce Axiom of Choice ([15]) or the Weak Axiom
of Stochastic Revealed Preference ([2]) and seems
to mimic the contraction/expansion conditions o
and  and the Weak Axiom of Congruence, three
milestones in classical choice theory (see for exam-
ple [23, 26]).

2. Preliminaries

The main concepts of probabilistic and fuzzy choice
functions and preference relations are introduced in
this section, together with a remainder on t-norms
and residual implication operators.



2.1. Probabilistic choice theory

A probabilistic choice function (also called stochas-
tic choice function) is a probabilistic version of a
classical choice function. It first appeared in [15] as
follows

Definition 1 Let X be a finite set of alternatives
and let B be the family of all subsets of X. A prob-
abilistic choice function P on B is a function that
for any T € B specifies exactly one finitely addi-
tive probability measure over the family of all sub-
sets of T. Given a pair of sets S and T, such that
S C T, we denote with P(S,T) the probability that
the choice from the set of alternatives T will lie in

S.

The probabilistic choice function P of a set S C T
is completely determined by its values P({z},T),
in the sense that P(S,T) = > s P({z},T). In
classical choice theory, from any choice function, a
binary preference relation can be revealed (called
revealed preference relation). The same occurs for
probabilistic choice theory: in fact, to any proba-
bilistic choice function P, we can associate a prob-
abilistic preference relation, i.e. a binary relation
p: X x X — [0,1] such that p(z,y) + p(y,z) = 1
for any pair of alternatives z and y in X. The value
taken by p(z,y) indicates: the probability that the
first alternative is preferred to the second one (if
p(x,y) > %), the probability that the second is pre-
ferred to the first one (if p(z,y) < %) or that there
is no preference between the two (if p(z,y) = 1).

The most known and intuitively most compelling
rationality condition for probabilistic choice func-
tion is usually called regularity condition RC (RG
in [8], NC in [7]), which simply postulates that the
probability of choosing S from a set of alternatives
T (S C T) cannot increase if the set T' is expanded
to a larger set Z D T.

Definition 2 ([8]) A probabilistic choice function
P on X satisfies the Regularity Condition (RC) if,
forany S, T, Z in B such that S CT C Z, it holds
that P(S,T) > P(S,Z).

Regularity Condition can be interpreted as an adap-
tation to the stochastic framework of Condition «
proposed by Sen in [26] (ifx € S C T and x € C(T),
then x € C(5)). Another well-known rationality
condition for probabilistic choice functions has been
proposed by Luce in [15] and is usually referred as
Luce’s Axiom of Choice. Formally, it is composed
of two parts:

Definition 3 ([15]) Let P be a probabilistic choice
function on X and p the associated probabilistic
relation. It is said that P satisfies Luce’s Axiom
of Choice if the following conditions hold: for any
SeBandzxz e S:

Part 1 If p(z,y) # 0, for any y € S, then
P({z}, X) = P({z},5)P(S, X).
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Part 2 If p(xz,y) = 0, for some y in S, then
P(S,X) = P(S\{z}, X \ {z}).

Part 2 is the least restrictive assumption: those al-
ternatives x € S that are not chosen in some pair-
wise comparison with other alternatives in S can be
deleted from S without affecting the choice prob-
abilities. Part 1 states that the probability of se-
lecting alternative x from the universe X is equal
to the probability of selecting x from a set S mul-
tiplied by the probability of selecting S from X.
One consequence of Luce’s Choice Axiom is that
the probabilistic choice function P satisfies the so-

called constant ratio rule: for any x,y in S, it holds
that 2Uz}S) _ P({z}.X)

P({y},5) — P({y},X)"

Another condition for the rationality of the prob-

abilistic choice function has been proposed by
Bandyopadhyay et al. in [2]. It is inspired by the
Weak Axiom of Revealed Preference (see Samuel-
son [24]) of classical choice theory.

Definition 4 A probabilistic choice function P on
X satisfies the Weak Axziom of Stochastic Revealed
Preference (WASRP, for short) if, for any S,T in
B and any A such that A C SN T, it holds that
P(A,T) - P(A,S)<P(S\T,S).

The intuition behind this condition is the following:
at the beginning S is the set of available alterna-
tives and A C S. The probability that the choice
from S will lie in A is P(A,S). Then the set of
available alternatives changes from S to T and A
is also contained in 7. If the new choice proba-
bility P(A,T) is greater than P(A,S), then it is
reasonable to argue that this increase occurs only
because the move eliminates some alternatives that
were present in S and are no longer available in 7.
But then the increase P(A,T)— P(A,S) should not
exceed the initial probability of choosing a subset in
S\T. Hence P(A,T) — P(A, S) cannot be greater
than P(S\T,5).

2.2. Fuzzy choice theory

Fuzzy choice theory has been proposed first by
Banerjee [5] and further corrected and extended by
Wang [28]. They develop a theory of choice where
both preferences and choice functions are allowed
to be fuzzy. Formally, a fuzzy choice function is a
function C' : B — F, where F is a family of non-
empty fuzzy subsets of X. For any S € B, C(9) is
a fuzzy set with non-empty support, where C'(S)(x)
represents the extent to which alternative x belongs
to the set of chosen alternatives from S. The fuzzy
set C(S) should always be included into the avail-
able set S, i.e. supp(C(S)) C S and there should
always exist an element x for any S € B, such that
C(S)(z) > 0. A more general definition can be
found in Georgescu [13], while a recent overview on
fuzzy choice theory can be found in [29]. From a



given fuzzy choice function C, a fuzzy preference
relation R¢o can be revealed using

Reo(z,y) = mar(g)z,yes1C(S)(z) .

A fuzzy preference relation R is called *-regular, if
it is reflexive (i.e. R(z,z) = 1, for any x € X),
strongly complete (i.e. R(z,y) V R(y,z) = 1, for
any z,y in X) and x-transitive (i.e. R(z,z) <
R(z,y) * R(y, z), for any z, y and z in X ), where x*
is a t-norm (see next Section 2.3). A crucial feature
for a fuzzy choice function is the fact that the infor-
mation contained in the fuzzy revealed preference
relation Rc and the fuzzy choice function C' itself
are equivalent. This property is usually referred as
normality:

Definition 5 A fuzzy choice function C with
fuzzy revealed preference relation Rc is normal if
C(S)(x) = NyesBc(z,y), for any S € B and
xeS.

2.3. Triangular norms and implication
operators

When working in the fuzzy framework it is essential
to define a set of operators that play the role of clas-
sical Boolean operators. In this paper, triangular
norms and residual implications are the operators
of choice. We will use the notation A and V for the
minimum and maximum operators, respectively.

Definition 6 A triangular norm (t-norm for
short) is a binary operation * on [0,1] such that for
any a,b,c € [0,1] the following properties are veri-
fied: i) commutativity: axb = bxa; i) associativity:
ax (bxc) = (axb)xc; iii) monotonicity: if a < b,
then a x ¢ < b*c; i) neutral element 1: ax1 = a.

The three most important t-norms are the mini-
mum, a*pn b = a A b, the product, a*p b =a-b and
the Lukasiewicz operator, a xr, b = (a+b—1) vV 0.
A t-norm is continuous if it is a continuous two-
place function. A t-norm is called left-continuous
if all partial mappings are left-continuous. To any
t-norm * we can associate another binary operator
called residuum or implication, denoted —, defined
by: a —. b = sup{c € [0,1] | a *c < b}, for any
a,b € [0,1]. Given a t-norm * and its residuum op-
erator —,, another operator called biresiduum can
be defined: a <. b = (@ =, b) A (b =« a). The
biresiduum operator between a and b is often inter-
preted as a measure of how equal a and b are. It
turns out that a <>, b = 1 if and only if a = b.
In Table 2.3 we list some well-known t-norms and
associated residuum and biresiduum operators.

In this work we are supposing that the t-norm is
chosen first and then residuum and biresiduum op-
erators are derived from it according to the previous
definitions. In no case we will work with one t-norm
%1 and a residuum operator derived from another t-
norm #o. For this reason, in some cases we will avoid
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axb a—b asb
cib 1 if a<b, 1 if a=b,
a*M b else aAb else
1 ifa<b, orb
axpb {b/a else avb
1 if a<b,
axpb {1—a+b else 1-]a=b]

Table 1: Three well-known t-norms and associated
residuum and biresiduum operators

the usual notation of residuum and biresiduum op-
erators (—, and <) in which the dependence on
the t-norm has to be made explicit.

3. A correspondence between probabilistic
and fuzzy choice functions

Fishburn already addressed in [11] the lack of results
on the connections between choice functions and
probabilistic choice functions and hence he proposed
a set of conditions that should be satisfied by the
probabilistic choice function in order for the associ-
ated choice function to be rational. The same situa-
tion appeared in the framework of fuzzy choice the-
ory and in the last years this gap has been filled with
comprehensive studies on the connections between
fuzzy and classical choice theory (see, amongst oth-
ers, [5, 13, 16, 17, 21, 28, 29]). Surprisingly, there
appears to be no literature on the comparison be-
tween fuzzy and probabilistic choice theory. We re-
cently approached this issue in [18, 19, 20], where
we proved some preliminary results. We followed an
intuition proposed by Fishburn in [11], i.e. to con-
struct a choice function from a given probabilistic
choice function and then to find suitable conditions
on the latter in order to ensure that the derived
choice function is rational. One of the constructions
proposed by Fishburn is the following:

Definition 7 ([11]) Given the probabilistic choice
function p, a fuzzy choice function Cp can be de-
fined as

P({z},5)

Cr(9)@) = s P(hS)

Observe that the equation in Definition 7 can also
be written using the implication operator derived
from the product t-norm (see Table 2.3):

P({z},5)
maxyes(P({y},5))
N (P({y},S) —p P({z}.5)).

yeS

Cr(S)({z}) =

Inspired by this observation, we propose a novel
construction of fuzzy choice functions from a given
probabilistic choice function:



Definition 8 ([18]) Let * be a left-continuous t-
norm and let P be a probabilistic choice function on
X. A fuzzy choice function Cp can be constructed
using the following formula, for any S € B and any

z e S, Cp(9)(x) = Ayes(P{y}, 5) = P({z},59)).

The fuzzy choice function Cp derived from P is al-
ways well-defined (independently from the chosen
t-norm) and, for any S € B, there exists an element
x such that Cp(S)(x) = 1 (in particular, x is the
alternative in S for which P({z}, S) is the greatest).

4. A new set of rationality conditions for
probabilistic choice functions

We turn now to the problem of finding suitable con-
ditions on P that can ensure that C'p satisfies some
good properties. In particular, we will find inspira-
tion by looking at the two conditions presented here
in Definitions 3 and 4: Luce’s Axiom of Choice and
WASRP. Let us start with Luce’s Axiom of Choice,
namely, its first part expressed for any S € B and
any ¢ € X as

P({x}vX) :P({x}vS)P(SvX)

This implies immediately that, for any S € B and
re X,

P({z},X) > P({z},S)P(S,X).

It is easy to prove that, for any S C T C Z € B,
this last inequality implies

P(S,Z)> P(S,T)P(T,Z) .

We can rewrite this equation using the t-norm of
the product *p:

P(S,Z) > P(S,T) xp P(T, Z)

or, equivalently, using the property of implication
operators axb < c< a<b—c, as

P(T,Z) —p P(S,Z) > P(S,T).

On the other hand, consider condition WASRP:
forany SCTNZ,S,T,Z in B it holds that:

P(S,T) - P(S,Z) < P(Z\T, Z).

In particular, if we choose S such that S CT C Z,
we can rewrite it as

P(S,T)—P(S,2)<P(Z\T,Z)=1-P(T,2).
Reordering this last equation as
P(S,T)<1+4+P(S,Z)—-P(T,2),

we notice that it can be stated using the implication
operator derived from the Lukasiewicz t-norm:

P(T,Z) =L P(S,Z) > P(S,T).
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Comparing the rewritings of Luce’s Axiom of
Choice and of WASRP, a clear pattern is visible: it
seems that a rationality condition can be proposed
using implication operators in such a way that, for
a given left-continuous t-norm * and associated im-
plication operator — and for any S C T C Z in B,
it holds that

P(S,T) < P(T,Z) — P(S, 7).

Unfortunately, it is quite hard to interpret this
equation, so we look for an equivalent statement
with a more appealing formulation. Recall that
Luce’s Axiom of Choice is equivalent to the con-
stant ratio rule. Hence we can rewrite Luce’s Ax-
iom using the biresiduum operator of the product
t-norm:

P({x},S) <p P({y},S) :P({x}7X) “<p P({y}7X)

and derive the following more general condition,
holding for any left-continuous t-norm:

P({z},5) © P({y},5) < P({z}, X) < P({y}, X).

In particular, since {z,y} is the smallest set in B
containing both = and y, we can say that, for any
S € B, it holds

p(x,y) < ply,z) < P({z},5) < P({y},S).

We can now state two new conditions for a proba-
bilistic choice function based on this last reasoning.

Definition 9 Let * be a left-continuous t-norm. A
probabilistic choice function P on X satisfies the
Weak Scalability Condition (WSC) if, for any S,T
in B such that S CT and z, y in S, it holds that

P({z},5) < P({y},5) < P({z},T) < P({y},T).

A probabilistic choice function p satisfies the Strong
Scalability Condition (SSC) if, for any S,T in B
such that S CT and x, y in S, it holds that

P({x},5) « P({y},5) = P({z},T) & P({y},T).

The interpretation of these conditions is quite sim-
ple: the degree to which two alternatives z and y
are equally probable to be chosen is minimal when
there are no more alternatives that can be chosen.
If more elements are added to the set of possible
choices, the probabilities of choosing = or y can
only become more similar. Observe that if regular-
ity condition RC of Definition 2 can be interpreted
as a probabilistic version of Condition « of Sen [26],
then the scalability conditions can play the role of
Condition S of Sen in the probabilistic setting (i.e.
if x,y € C(S) and S C T, then z € C(T) if and
only if y € C(T)).

We propose two last conditions inspired by the
Weak Congruence Axiom ([23]) of classical choice
theory (i.e. if x € S, y € C(S) and Re(x,y) = 1,
then z € C(9)).



Definition 10 A probabilistic choice function p on
X satisfies the Weak Stochastic Congruence Aziom
(WSCA) if for any S € B and x,y € S such that
P({z},S) > P({y},S), it holds that P({zx},T) >
P({y},T) for any other set T containing x and y.

It satisfies the Strong Stochastic Congruence Ax-
iom (SSCA) if for any S € B and z,y € S such
that P({z},S) > P({y},S), it holds that either
P({z},T) > P({y},T) or P({a},T) = P({y},T) =
0, for any other set T containing x and y.

The interpretation of these two conditions is the
following: for condition WSCA, if there is at least
one set S where an alternative x is strictly more
probable to be chosen than another alternative y,
then x has to be considered at least as good as y
in all other sets that contain both alternatives. In
other words, there cannot exist two sets S and T
such that x is strictly preferred to y in S and y is
strictly preferred to x in the other set T. Condi-
tion SSCA is more demanding: it establishes that
if there exists one set S where an alternative x
is strictly more probable to be chosen than an-
other alternative y, then z is always strictly pre-
ferred to y, for any T that contains both x and
y, unless both of them are unlikely to be chosen

(P({«},T) = P({y},T) = 0).
5. Main result and concluding remarks

We know that in classical choice theory Conditions
« and B are equivalent to the joint G-normality of
the choice function and regularity of the revealed
preference relation, that in turn is equivalent to the
Weak Congruence Axiom (WCA). In this conclud-
ing section we present a theorem that mimic the
classical result, for the case of a fuzzy choice func-
tion generated from a probabilistic choice function.

Theorem 11 Let * be a left-continuous t-norm and
P a probabilistic choice function on X. If one of the
following sets of hypotheses hold

Hypo. A P satisfies conditions SSC and WSCA;

Hypo. B P satisfies conditions WSC, SSCA, RC
and the t-norm % is the minimum,

then the fuzzy choice function Cp is G-normal
and its fuzzy revealed preference relation Rc, 1is
s-reqular. Furthermore, the fuzzy revealed prefer-
ence relation Re, can be written as Rep + (x,y) =

p(y, ) = p(x,y).

Let us stress the importance of the result proved
in this work. First of all, the possibility of construct-
ing a fuzzy choice function from a given probabilistic
choice function is fundamental, especially in a prac-
tical context. In fact, while fuzzy choice functions
have been widely studied, it is still not clear how
they can be observed in real situations. We agree
with Banerjee [5] when he says that “[...] there may
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be problems of estimation, but fuzzy choice func-
tions are, in theory, observable”. With the pro-
posed method we can rely on probabilistic choice
functions, which are much easier to observe: they
can be estimated by using the frequency of choice
of an element in a set of alternatives, in a data set
of repeated observations of choices on the same set
of alternatives. Then, a fuzzy choice can be con-
structed with the formula contained in Definition 8.
By using different t-norms, we can obtain different
fuzzy choice functions. Looking at the example in
Table 2, we can observe that bigger t-norms (e.g.
minimum t-norm), are quite conservative, in the
sense that alternatives that are unlikely to be chosen
according to p, are doomed to have small values in
the fuzzy choice function Cp, while smaller t-norms
(e.g. Lukasiewicz t-norm) are more optimistic, al-
lowing alternatives with small probabilities to have
decent degrees of choice.

P(,S5) | Cpt(9)() | Cp(9)() | Cp(9)()
z | 06 1 1 1
y| 03 0.3 0.5 0.7
2| 01 0.1 0.16 0.5

Table 2: Example on a set S = {z,y, z} of a prob-
abilistic choice function and its associated fuzzy
choice functions for three different t-norms: *pg, *p
and *j,

Furthermore, if the observed probabilistic choice
function satisfies certain conditions, then Theo-
rem 11 ensures that the associated fuzzy choice
function is G-normal and that its fuzzy revealed
preference relation is #-transitive.

Nevertheless, also the estimation of probabilistic
choice functions can be problematic. In fact, for
sets containing a great number of alternatives, the
number of subsets for which the probabilistic choice
function needs to be known is huge (21X —1). Sets
with more than 10 alternatives are already criti-
cal. Furthermore, the number of subsets S of X for
which the probabilistic choice function p is actually
observed, is usually reduced. Thus, in the worst
(and most probable) case, we can only observe the
probabilistic choice function P on a reduced number
of subsets of X. In such situations, the conditions
of scalability, regularity and stochastic congruence
proposed in this work can be used to reconstruct
artificially the missing information on the subsets
of X that are not directly observed. In this way,
we obtain a double benefit: on the one hand we can
complete the information on the non-observed sets
and on the other hand we are sure that the condi-
tions needed for Theorem 11 are trivially satisfied,
leading to a fuzzy choice function Cp with desirable
properties (G-normality and regularity of the fuzzy
revealed preference Re ).
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