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Abstract

Two random variables are called comonotone when
there is an increasing relation between them, in the
sense that when one of them increases (decreases), the
other one also increases (decreases). This notion has
been widely investigated in probability theory, and
is related to the theory of copulas. This contribu-
tion studies the notion of comonotonicity in an im-
precise setting. We define comonotone lower proba-
bilities and investigate its characterizations. Also, we
provide some sufficient conditions allowing to define a
comonotone belief function with fixed marginals and
characterize comonotone bivariate p-boxes.

Keywords. Comonotonicity, copulas, lower proba-
bilities, belief functions, p-boxes.

1 Introduction

Random variables are usual tools in probability the-
ory when modeling uncertainty. When dealing with
two random variables, Sklar’s Theorem [10] tells us
that the joint distribution function can be expressed
in terms of the marginals by means of a function called
copula [7]. Thus, the copula gathers the informa-
tion concerning the possible dependence between the
random variables. When there is no dependence be-
tween them, we talk about independent random vari-
ables, and the copula associated with those variables
is the product. The extreme cases of dependence be-
tween variables are related to situations in which ei-
ther there is an increasing or decreasing relation be-
tween them. In the former case, this means that when
the value of one variable increases the other variable
also increases, while in the second scenario when the
value of one variable increases, the value of the other
variable decreases. They are referred as comonotone
and countermonotone random variables, respectively,
and the associated copulas are the minimum and the
 Lukasiewicz operator.

In this work we shall assume the existence of an im-
precisely known probability and we shall use coherent
lower probabilities to model it. Lower probabilities
are one of the models within the theory of Imprecise
Probabilities introduced by Walley [12], as well as be-
lief functions [9], possibilities [3, 13] or uni- and bi-
variate p-boxes [11, 8], all of them particular families
of coherent lower probabilities.

The aim of this paper is to extend the notion of
comonotonicity to coherent lower probabilities and
to investigate the particular cases in which the lower
probability is a belief function or is associated with a
bivariate p-box.

After introducing some preliminary notions related to
lower probabilities and copulas in Section 2, Section 3
investigates the definition and characterizations of
comonotonicity for coherent lower probabilities. We
shall see that, in contrast with the precise framework,
not any two marginal coherent lower probabilities al-
low us to define a joint comonotone coherent lower
probability. Thus, in Section 4 we investigate some
conditions under which this property is satisfied for
the particular case of belief functions. In Section 5
we consider bivariate p-boxes and we characterize the
conditions they must satisfy to ensure that its associ-
ated lower probability is comonotone.

2 Preliminaries

In this section we introduce some preliminary notions
that will be useful throughout the paper. First of
all we introduce lower probabilities [12], which are
very useful to model situations in which a probability
is imprecisely defined. Other model related to lower
probabilities is that of p-boxes [4], which are used to
model the imprecise knowledge to cumulative distri-
bution functions. Univariate p-boxes are connected
to belief functions, which play a key role in Shafer’s
Theory of Evidence [9]. Finally, we also introduce
possibility measures [3], which can be embedded both



into the Theory of Evidence and the Fuzzy Set The-
ory.

Secondly we introduce the main notions of the The-
ory of Copulas [7] and we explain the problem we are
dealing in this paper.

2.1 Lower probabilities

A lower probability [12] is a function P : K → [0, 1],
where K ⊆ P(Ω). P (A) can be interpreted as the
subject’s supremum acceptable buying price for the
bet A, in the sense that we obtain 1 if A happens
and 0 otherwise. Any lower probability defines, using
a conjugacy relation, an upper probability P : Kc →
[0, 1], where Kc = {Ac : A ∈ K}, by:

P (A) = 1− P (Ac) ∀A ∈ Kc.

Any lower probability defines a set of probabilities,
usually called credal set, given by:

M(P ) = {P prob. | P (A) ≤ P (A) ≤ P (A)}.

Some consistency requirements are usually imposed
on lower probabilities. The most usual one is coher-
ence: a lower probability P is coherent when

P (A) = min
P∈M(P )

P (A) ∀A ⊆ Ω,

It is well-known that any coherent lower probability
satisfies P (A) ≤ P (A) whenever A ∈ K ∩ Kc. Fur-
thermore, any coherent lower probability defined on
K can be extended to a greater domain K ⊆ K′ by
using the natural extension [12]:

E(A) = min{P (A) | P ∈M(P )}, ∀A ∈ K′.

In this work we consider lower probabilities defined
on finite and ordered possibility spaces, denoted by
X ,Y ⊂ R, called marginal lower probabilities, or de-
fined on the cartesian product of two finite and or-
dered sets, denoted by X ×Y ⊆ R2, called joint lower
probabilities, where both X and Y are finite. In par-
ticular, if PX,Y is a joint lower probability defined on
X × Y, it defines two marginals on X and Y by:

PX(A) = PX,Y(A× Y), ∀A ⊆ X .
PY(B) = PX,Y(X ×B), ∀B ⊆ Y.

Uni- and bivariate p-boxes are specific instances of
lower probabilities, defined as follows.

Definition 1. A discrete univariate p-box defined on
the ordered1 finite set X = {x1, . . . , xn} is a pair of
increasing functions F , F : X → [0, 1] such that F ≤
F and F (xn) = F (xn) = 1.

1We assume the elements in X are indexed according to this
order, that is, x1 < . . . < xn.

A discrete bivariate p-box defined on the cartesian
product of finite ordered2 sets X ×Y = {x1, . . . , xn}×
{y1, . . . , ym} is a pair of component-wise increasing
functions3 F , F : X ×Y → [0, 1] such that F ≤ F and
F (xn, ym) = F (xn, ym) = 1.

In what remains, and for the sake of simplicity, we
avoid the term “discrete” so we will speak about uni-
and bivariate p-boxes.

Remark 1. Note that in the definition of univari-
ate p-box we do not require F , F to satisfy F (x1) =
F (x1) = 0. The reason is that we interpret (F , F ) as
the imprecise observation of a cumulative distribution
function F . However, cumulative distribution func-
tions F defined on a finite space X = {x1, . . . , xn}
satisfy the properties: F is increasing and F (xn) = 1.
Nevertheless, as soon as x1 has strictly positive prob-
ability, F (x1) will be strictly positive. For this reason
the property F (x1) = F (x1) = 0 is not required for
univariate p-boxes.

With a similar reasoning we can justify why
F (x1, y1) = F (x1, y1) = 0 is not required for bivariate
p-boxes (F , F ).

Univariate [11] and bivariate [8] p-boxes can be used
to model the imprecise information about (univariate
or bivariate) cumulative distribution functions.

Definition 2. For any x ∈ X = {x1, . . . , xn} and y ∈
Y = {y1, . . . , ym}, consider the following notation:

Ax = [x1, x], and Ax,y = Ax ×Ay.

A univariate p-box defines a coherent lower probability
on the domain K1 = {Ax, A

c
x : x ∈ X} by:

P (Ax) = F (x) and P (Ac
x) = 1− F (x).

A bivariate p-box defines a lower probability on the
domain K2 = {Ax,y, A

c
x,y : (x, y) ∈ X × Y} by:

P (Ax,y) = F (x, y) and P (Ac
x,y) = 1− F (x, y). (1)

Belief functions are another particular case of lower
probabilities.

Definition 3. A lower probability P on P(Ω) is called
n-monotone if and only if:

P (∪pi=1Ai) ≥
∑

∅6=I⊆{1,...,p}

(−1)|I|+1P (∩i∈IAi)

2Again, we assume the elements in X and Y are indexed
according to this order: x1 < . . . < xn and y1 < . . . < ym.

3A function F : X × Y → R is component-wise increasing
when F (x, yi) ≤ F (x, yj) for any x ∈ X and i, j ∈ {1, . . . ,m}
such that i < j and F (xi, y) ≤ F (xj , y) for any y ∈ Y and
i, j ∈ {1, . . . , n} such that i < j.



for any 2 ≤ p ≤ n and any A1, . . . , Ap ⊆ Ω. A lower
probability that is n-monotone for any n is called com-
pletely monotone or belief function, and its upper
probability is called plausibility. Belief and plausibil-
ity functions are usually denoted by Bel and Pl, and
they are coherent lower and upper probabilities.

Using the so-called Möbius inverse, they define a mass
distribution [3] in the following way:

m(A) =
∑
E⊆A

(−1)|A\E|Bel(E) ∀A ⊆ Ω. (2)

A mass distribution m : P(Ω) → [0, 1] satisfies
m(∅) = 0 and

∑
E⊆Ωm(E) = 1. Conversely, any

mass function defines a belief and plausibility func-
tions

Bel(A) =
∑

E⊆A m(E) ∀A ⊆ Ω,

Pl(A) =
∑

E:E∩A6=∅m(E) ∀A ⊆ Ω.

The positivity of the mass m is characteristic of belief
functions, in the sense that Eq. (2) is positive if and
only if it is applied to a completely monotone lower
probability.

Definition 4. [9] Given a belief function Bel with
mass distribution m, the elements E ⊆ Ω with positive
mass, m(E) > 0, are called focal elements, and we
will denote by F the set of focal elements. The union
of all the focal sets is called the core of Bel, and it is
denoted by Core(Bel).

As for lower probabilities, we shall also use the termi-
nology of marginal and joint to refer to belief functions
defined on X ,Y and X × Y, respectively. Any joint
belief function Bel defined on X ×Y with mass distri-
bution m defines two marginal belief functions BelX
and BelY on X and Y, respectively, with associated
mass distributions mX and mY:

mX(A) =
∑

E:E↓X =A

m(E) and mY(B) =
∑

E:E↓Y=B

m(E)

for any A ⊆ X and B ⊆ Y, and where E↓X and E↓X

denote the projection of E on spaces X and Y. Two
important models to which we will devote particular
attention and that induce belief functions are univari-
ate p-boxes and possibility measures.

From now on, given E with a finite number of ele-
ments we will use the following notation:

e = minE, e = maxE. (3)

Kriegler and Held [5] showed that the lower probabil-
ity induced by a p-box in the following way:

P (A) = inf{P (A) : F ≤ FP ≤ F}, (4)

where FP is the cumulative distribution function as-
sociated with P , is indeed a belief function. Such
belief function can be computed as Figure 1 shows.
Thus, from now on we shall use the term focal ele-
ments of a p-box to refer to the focal elements of the
belief function associated with a p-box using Eq. (4).
According to [5], the focal elements of a p-box, named
E1, . . . , En, can be ordered such that ei ≤ ei+1 and
ei ≤ ei+1. When dealing with focal sets of p-boxes,
we will consider that they are indexed according to
this ordering. Furthermore, any joint belief function
Bel defines a bivariate p-box in the following way:

F (x, y) = inf{FP (x, y) : P ∈M(Bel)} = Bel(Ax,y);
F (x, y) = sup{FP (x, y) : P ∈M(BelY)} = Pl(Ax,y);

whereas any marginal belief function Bel defines an
univariate p-box:

FX(x) = inf{FP (x) : P ∈M(BelX)} = BelX(Ax);
FX(x) = sup{FP (x) : P ∈M(BelX)} = PlX(Ax).

A possibility measure constitutes another important
specific case of plausibility function.

Definition 5. A possibility measure Π : P(Ω) →
[0, 1] is a supremum-preserving map: Π(∪i∈IAi) =
supi∈I Π(Ai) for any I, Ai ⊆ Ω.

The conjugate of a possibility, N(A) = 1 − Π(Ac)
∀A ⊆ Ω, is a belief function. Its focal elements are
nested: if E1 and E2 are focal elements, then either
E1 ⊆ E2 or E2 ⊆ E1. Since we are dealing with finite
referentials, there are only a finite number of focal
sets E1, . . . , En, and for possibility measures we can
assume they are indexed such that E1 ⊆ . . . ⊆ En.

2.2 Sklar’s Theorem

Sklar’s Theorem is an important tool in probabil-
ity theory that allows a joint cumulative distribution
function (cdf for short) to be expressed in terms of
the marginals by means of a function called copula.

Definition 6. [7] A copula is a commutative binary
operator C : [0, 1]2 → [0, 1] satisfying:

1. C(x, 0) = 0, C(x, 1) = x ∀x ∈ [0, 1].

2. C(x1, y1) + C(x2, y2) ≥ C(x2, y1) + C(x1, y2)
∀x1, x2, y1, y2 ∈ [0, 1] such that x1 ≤ x2, y1 ≤ y2.

Some classical copulas are the product copula,
Π(x, y) = x · y, the minimum, M(x, y) = min(x, y),
and the  Lukasiewicz operator W (x, y) = max(x +
y − 1, 0). The minimum and  Lukasiewicz operators
are also called the Fréchet-Hoeffding bounds because
any copula satisfies the so-called Fréchet-Hoeffding in-
equality M(x, y) ≤ C(x, y) ≤ W (x, y). Copulas play
an important roll in the famous Sklar’s Theorem.
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Figure 1: P-box (left) and its associated belief function (right), with focal elements E1 = {x1, x2, x3}, E2 =
{x2, x3}, E3 = {x2, x3, x4, x5}, E4 = {x4, x5} and E5 = {x4, x5, x6}.

Theorem 1. [10][Sklar’s Theorem] Let FX,Y be a
joint cdf with marginals FX and FY. Then, there ex-
ists a copula C such that

FX,Y(x, y) = C(FX(x), FY(y)) ∀(x, y) ∈ [0, 1]2. (5)

Conversely, given two marginal cdfs FX and FY and
a copula C, they define a joint cdf FX,Y using Eq. (5).

Possibly the most usual application of Sklar’s The-
orem concerns independent random variables. Two
variables X and Y are independent if FX,Y(x, y) =
FX(x) · FY(y), that is, when the copula linking the
marginals is the product. Also very important are
the cases in which the random variables are coupled
by the Fréchet-Hoeffding bounds. Random variables
coupled by the minimum (resp.,  Lukasiewicz opera-
tor) are called comonotone (resp., countermonotone).
Comonotone random variables can be characterized in
many different ways. For this aim, we first introduce
the following notion.

Definition 7. A subset S of R2 is increasing when
for any (x, y), (u, v) ∈ S, x < u implies y ≤ v, and
y < v implies x ≤ u.

Then, a pair of random variables (X,Y ) is comono-
tone if it satisfies one, and therefore all, of the follow-
ing equivalent conditions:

• The copula that links the marginals is the mini-
mum: FX,Y(x, y) = min(FX(x), FY(y)) ∀(x, y).

• The support of (X,Y ) is an increasing set on R2.

• ∀(x, y) ∈ R2, either P (X ≤ x, Y > y) = 0 or
P (X > x, Y ≤ y) = 0.

Remark 2. The notion of comonotonicity can also
be defined for discrete probabilities PX,Y, just by sub-
stituting the support of (X,Y ) by the support of PX,Y.

For example, consider a finite Ω where all its elements
have positive probability. Consider the random vari-
ables X,Y defined by:

ω ∈ Ω1 ⊂ Ω ω ∈ Ωc
1 ⊂ Ω

X 1 2
Y 0 3

Then, the support of (X,Y ) is given by {(1, 0), (2, 3)},
which is an increasing subset of R2 and therefore
(X,Y ) is comonotone. In this case, we can also con-
sider the support of P(X,Y ), which are the elements
(x, y) with positive possibility. In this case, the sup-
port of P(X,Y ) coincides with the support of (X,Y )
and therefore P(X,Y ) is comonotone.

When we have imprecise information about the joint
or the marginal cdfs or about the copula, Sklar’s The-
orem cannot be applied. The next Theorem adapts
Sklar’s Theorem to the imprecise setting, using p-
boxes, both uni- and bivariate, and sets of copulas.

Theorem 2. [6][Imprecise Sklar’s Theorem]

1. Given two univariate p-boxes (FX, FX) and
(FY, FY) and a set of copulas C, consider:

F (x, y) = infC∈C C(FX(x), FY(y)) and
F (x, y) = supC∈C C(FX(x), FY(y)).

Then, they define a bivariate p-box (F , F ) whose
associated lower probability is coherent.

2. Given a bivariate p-box (F , F ), it could not be
possible to express it in terms of the univariate
p-boxes and a set of copulas, even when the lower
probability associated with (F , F ) is coherent.

In the framework of imprecise probabilities, the no-
tion of independence has been widely investigated
[1, 2]. However, those satisfying the factorizing prop-
erty have the same associated bivariate p-box, and
it is obtained by applying the product copula to the
marginals p-boxes [6, Prop. 6]:

F (x, y) = FX(x) ·FY(y) and F (x, y) = FX(x) ·FY(y)

for any x, y. The question now is: what is the mean-
ing of comonotonicity in the imprecise probability set-
ting? As far as we know, this remains unexplored.
Thus, the aim of this paper is to define the notion
of comonotonicity when dealing with coherent lower
probabilities.



3 Comonotone lower probabilities

We have seen that comonotonicity in the precise
framework can be expressed in three equivalent ways.
Now, we shall try to investigate to what extent these
conditions, or similar ones, also hold in the case of
coherent lower probabilities.

In our framework, we consider a coherent lower proba-
bility P defined on the power set of X×Y. We assume
that P models the imprecise information about a joint
probability PX,Y. The question is: how can we model
the additional information that PX,Y is comonotone?

Definition 8. A lower probability P defined on
P(X ×Y) is called comonotone when any P ∈M(P )
is comonotone.

This is a straightforward definition, since if P models
the imprecise information about a comonotone prob-
ability PX,Y, all the probabilities compatible with the
lower probability should be comonotone.

Example 1. Consider the lower probability P defined
on {0, 1} × {1, 2} such that:

P ({(1, 2)}) = α ∈ (0, 0′5), P ({(0, 1)}) = β ∈ (0, 0′5)
P ({(0, 1), (0, 2), (1, 2)}) = 1,
P ({(0, 1), (0, 2), (1, 2), (1, 1)}) = 1,
P (A) = 0 otherwise.

This lower probability is coherent and its credal set is
formed by all the convex combinations of the following
precise probabilities:

{(0, 1)} {(0, 2)} {(1, 2)}
P1 β 1− α− β α
P2 β 0 1− β
P3 1− α 0 α

Then, the support of any P ∈ M(P ) is included in
{(0, 1), (0, 2), (1, 2)}, that is an increasing set, and
therefore all the probabilities in M(P ) are comono-
tone, and then also is P .

We now investigate how comonotone coherent lower
probabilities can be equivalently expressed. We first
express it by means of sets {X > x, Y ≤ y} and {X ≤
x, Y > y}.
Theorem 3. A coherent lower probability P de-
fined on P(X × Y) is comonotone if and only if any
∀(x, y) ∈ X × Y either

P ({(u, v) : u ≤ x, v > y}) = 0 or
P ({(u, v) : u > x, v ≤ y}) = 0.

This theorem shows that the characterization of
comonotone random variables in terms of event prob-
abilities also holds in the imprecise case. Now, we are

going to see that, if we define the support supp(P ) of
a lower probability P by:

supp(P ) =
⋃

P∈M(P )

supp(P ),

its comonotonocity can also be equivalently expressed
in terms of the increasingness of supp(P ).

Theorem 4. A coherent lower probability P defined
on P(X ×Y) is comonotone if and only if its support
supp(P ) is an increasing set.

Therefore, this second equivalent expression also
holds for lower probabilities. Now, it only remains
to check whether or not the comonotonicity of lower
probabilities is related to the copula that links the
marginals. The next result shows one implication.

Theorem 5. Let P be a coherent comonotone lower
probability defined on P(X ×Y). If (F , F ), (FX, FX)
and (FY, FY) denote the bivariate and the marginal
univariate p-boxes, respectively, then for any (x, y):

F (x, y) = min(FX(x), FY(y)) and
F (x, y) = min(FX(x), FY(y)).

The next example shows that, unfortunately, the con-
verse implication does not hold in general.

Example 2. Consider the joint coherent lower prob-
ability P defined on {1, 2}2 by:

P ({(1, 1), (1, 2), (2, 2)}) = α > 0,
P ({(1, 1), (2, 1), (2, 2)}) = 1− α > 0,
P ({(1, 1), (1, 2), (2, 1), (2, 2)}) = 1,
P (A) = 0 otherwise.

Then, regardless of α, F = I{(x,y):x,y≥2} and F =
I{(x,y):x,y≥1}. Furthermore:

FX(x) = FY(x) = I{x≥2}(x) and
FX(x) = FY(x) = I{x≥1}(x).

Then:

F (x, y) = min(FX(x), FY(y)) and
F (x, y) = min(FX(x), FY(y)).

However, P is not comonotone because the support
of P contains the elements (1, 2) and (2, 1), and this
contradicts Theorem 4.

Thus, going from a precise to an imprecise setting,
comonotonicity can only be characterized by two
equivalent ways: by means of the increasingness of
the support or by means of the upper probability
of the adequate sets. Indeed, the bivariate p-box
of a comonotone lower probability is the minimum
of the marginals, but the minimum of two marginal
p-boxes will not necessarily generate a comonotone
lower probabilities. Figure 2 summarizes the condi-
tions we have seen along this section.



Comonotone lower probabilities

supp(P ) is an
increasing set

∀(x, y), either

P ({(u, v) : u > x, v ≤ y}) = 0 or

P ({(u, v) : u ≤ x, v > y}) = 0.

F (x, y) = min(FX(x), FY(y))

F (x, y) = min(FX(x), FY(y)).

Any P ∈ M(P )
is comonotone.
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Figure 2: Summary of the conditions for joint
comonotone lower probabilities.

4 Comonotone belief functions

We now focus on the comonotonicity of belief func-
tions. In this case we have to note that supp(Bel)
coincides with Core(Bel), and therefore Theorem 4
can be directly adapted.

Corollary 1. A belief function Bel defined on P(X ×
Y) is comonotone if and only if Core(Bel) is an in-
creasing set.

We may think that the converse of Theorem 5 could
hold when dealing with belief functions. However,
this is not the case, since the lower probability given
in Example 2 is in fact a belief function with fo-
cal elements E1 = {(1, 1), (1, 2), (2, 2)} and E2 =
{(1, 1), (2, 1), (2, 2)} with m(E1) = α and m(E2) =
1− α, respectively.

Although Section 3 characterized comonotone lower
probabilities, did not explore important questions:
when and how can we build a comonotone lower prob-
ability P from marginals PX, PX? These are the ques-
tions we address in this section, for the specific case
of belief functions.

Note that those questions can always be answered
positively in the precise framework, as it is always
possible to define a joint comonotone probability from
two marginal probabilities PX and PY, by simply
defining FX,Y as the minimum of the marginals and
then considering the associated probability. Unfortu-
nately, not every marginal lower probabilities allow
us to define a comonotone lower probability with the
given marginals, even when the lower probabilities are
belief functions, as the next example shows.

Example 3. Let BelX and BelY be the marginal belief
functions, defined over X = {1, 2, 3} and Y = {1, 2}

with mass distributions

mX({1, 2}) = 0.7, mX({1, 2, 3}) = 0.3;

mY({1}) = 0.3, mY({2}) = 0.7.

Let us assume that there is a comonotone joint belief
function Bel whose marginals are the belief functions
BelX,BelY induced by mX, mY. If this is the case,
using Theorem 5, the bivariate p-box induced by Bel is
the minimum of the marginals FX , FX and FY , FY .
Then:

F (1, 2) = min(FX(1), FY(2)) = 1.

This implies that any focal set E of Bel satis-
fies E ∩ {(1, 1), (1, 2)} 6= ∅ because F (1, 2) =
Pl({(1, 1), (1, 2)}). Furthermore, (1, 2) ∈ Core(Bel),
because:

Pl({(1, 1)}) = F (1, 1) = min(FX(1), FY(1))

= 0.3 < 1 = F (1, 2),

which means that there is a focal element E such that
(1, 2) ∈ E and (1, 1) /∈ E. Now, since Bel is comono-
tone, Core(Bel) is increasing by Corollary 1, and then
(2, 1) /∈ Core(Bel), hence there is no focal element E
such that (2, 1) ∈ E. Yet, we have

F (2, 1) = Bel({(1, 1), (2, 1)}) = 0.3,

which implies that there is a focal set E such that
E ⊆ {(1, 1), (2, 1)}. Since (2, 1) /∈ E, E = {(1, 1)},
what implies that Bel({(1, 1)}) > 0. However, if Bel
is comonotone, it follows that

Bel({(1, 1)}) = F(1, 1) = min(FX(1),FY(1)) = 0,

a contradiction showing that there are no comonotone
belief functions with marginals BelX,BelY.

This shows that our problem is trickier to answer in
the imprecise setting. Below we provide some situa-
tions under which a joint comonotone belief function
exists with given marginals.

The first case we investigate is when the marginals
are possibility measures. Before introducing the main
result, note that for any two possibilities having
A1, . . . , Am and B1, . . . , B` as focal elements, we can
always duplicate those elements to build an equiva-
lent mass function (in terms of induced belief func-
tion) with focal elements C1, . . . , Cn and D1, . . . , Dn

such that

• Ci ⊆ Ci+1 andDi ⊆ Di+1 for any i = 1, . . . , n−1.

• Ci ∈ {A1, . . . , Am} and Di ∈ {B1, . . . , Bl} for
any i ∈ {1, . . . , n}.



• mX(Ci) = mY(Di).

The next example illustrates this procedure.

Example 4. Consider the possibility measures with
the following focal sets:

A1 = {2}, A2 = {1, 2}, A3 = {1, 2, 3},
B1 = {1, 2}, B2 = {1, 2, 3, 4},

with the following masses:

mX(A1) = 0.3, mX(A2) = 0.5, mX(A3) = 0.2.
mY(B1) = 0.5, mY(B2) = 0.5.

Now, we rewrite the focal sets in the following way

A1 A2 A2 A3

B1 B1 B2 B2

C1 C2 C3 C4

D1 D2 D3 D4

m 0.3 0.2 0.3 0.2.

We can therefore assume, without loss of generality,
that any two possibilities have the same number of
focal sets and that their masses coincide.

Proposition 1. Given two marginal possibility mea-
sures, there exists a joint comonotone possibility
whose marginals are the original possibility measures.

This result gives a constructive method for building
the joint comonotone possibility. If A1 ⊆ . . . ⊆ An

and B1 ⊆ . . . ⊆ Bn denotes the focal elements of mX

and mY such that mX(Ai) = mY(Bi) for i = 1, . . . , n.
Using the notation of Eq. (3), Algorithm 1 shows how
to define the focal elements and mass function asso-
ciated with the joint comonotone possibility.

The next example shows how to apply this procedure.

Example 5. Consider the possibility measures of Ex-
ample 4. We define the following focal sets for the
joint comonotone possibility:

E1 = {(2, 1), (2, 2)}, E2 = {(1, 1), (2, 1), (2, 2)},
E3 = {(1, 1), (2, 1), (2, 2), (2, 3), (2, 4)},
E4 = {(1, 1), (2, 1), (2, 2), (2, 3), (2, 4), (3, 4)},

and the masses are:

E1 E2 E3 E4

m 0.3 0.2 0.3 0.2

Let us now look at the case where the focal ele-
ments A1, . . . , Am and B1, . . . , B` of the marginal be-
lief functions BelX and BelY can be ordered such that,
following notation of Eq. (3), ai ≤ ai+1, ai ≤ ai+1

and bj ≤ bj+1, bj ≤ bj+1 for any i = 1, . . . ,m − 1
and j = 1, . . . , ` and are intervals, in the sense that

Algorithm 1 Procedure defining focal elements of
the joint comonotone possibility

1: for i = 2, . . . , n do

Ii = {(x, bi) : x ∈ [ai, ai−1]} ∪ {(ai−1, y) : y ∈ [bi, bi−1}

∪{(c, bi−1) : x ∈ [ai−1, ai]} ∪ {(ai, y) : y ∈ [bi−1, bi]}

2: end for
3: Define

G1 = {(x, b1) : x ∈ [a1, a1]} ∪ {(a1, y) : y ∈ [b1, bi−1]}

4: for i=2,. . . ,n do

Gi = Ii ∪ Gi−1

5: end for
6: for i=1,. . . ,n do

Fi = Gi ∩ (Ai × R) ∩ (R×Bi)

m(Fi) = mX(Ai) = mY(Bi)

7: end for

any Ai, Bj contains all elements in X ,Y between ai, ai
and bj , bj , respectively. Similarly to focal elements of
possibility distributions, those focal elements can be
expressed as {C1, . . . , Cn} and {D1, . . . , Dn} simply
by duplicating elements. Then, they satisfy:

• ci ≤ ci+1, ci ≤ ci+1, di ≤ di+1 and di ≤ di+1 for
any i ∈ {1, . . . , n}.

• Ci ∈ {A1, . . . , Am} and Di ∈ {B1, . . . , B`} for
any i ∈ {1, . . . , n}.

• mX(Ci) = mY(Di) for any i = 1, . . . , n.

Example 6. Consider the belief functions BelX and
BelY whose focal elements are:

A1 = {0, 1}, A2 = {1, 2}, A3 = {2, 3} and
B1 = {0, 1}, B2 = {1, 2},

whose masses are:

mX(A1) = 0.4, mX(A2) = 0.3, mX(A3) = 0.3;
mY(B1) = 0.6, mY(B2) = 0.4.

We rewrite the focal elements in the following way:

A1 A2 A2 A3

B1 B1 B2 B2

C1 C2 C3 C4

D1 D2 D3 D4

m 0.4 0.2 0.1 0.3

Then, from now on we will assume that given two
marginal belief functions whose focal sets are intervals



ordered through the lattice ordering, both belief func-
tions have the same number of focal sets and their
masses coincide.

Proposition 2. Consider two marginal belief func-
tions BelX and BelY with mass distributions mX,
mY whose focal elements A = {A1, . . . , An}, B =
{B1, . . . , Bn} are such that Ai and Bi are intervals
and mX(Ai) = mY(Bi) for any i = 1, . . . , n. If A and
B satisfy the following constraints:

I) ai ≤ ai+1 and ai ≤ ai+1 for any i = 1, . . . , n.

II) bi ≤ bi+1 and bi ≤ bi+1 for any i = 1, . . . , n.

III) If ai < aj, then bi ≤ bj.

IV) If bi < bj, then ai ≤ aj

then, there exists a joint comonotone belief function
Bel such that its marginal masses coincide with mX

and mY.

Using the notation of Eq. (3), Algorithm 2 shows how
to build the focal elements and the mass of the joint
comonotone belief function.

Algorithm 2 Procedure defining focal elements of
the joint comonotone belief function

1: Define

G = {(ai, bi), (ai, bi) : i = 1, . . . , n}

2: Name the elements on G by:

G = {(c1, d1), . . . , (c2n, d2n)}
ci ≤ ci+1 and di ≤ di+1 for i = 1, . . . , 2n− 1

3: for i = 1, . . . , 2n-1 do

Ii = {(x, dk) : x ∈ [ck, ck+1]}
∪{ck+1, y) : y ∈ [dk, dk+1}

4: end for
5: for i=1,. . . ,n do

Ei = ∪(ai,bi)≤(ck,dk)<(ai,ai)Ik
m(Ei) = mX(Ai) = mY(Bi)

6: end for

The next example shows how this algorithm is ap-
plied.

Example 7. Let us continue Example 6. We build
the following focal sets for the joint belief function:

E1 = {(0, 0), (1, 0), (1, 1)}, E2 = {(1, 0), (1, 1), (2, 1)},
E3 = {(1, 1), (2, 1), (2, 2)}, E4 = {(2, 1), (2, 2), (2, 3)}.

Now, we assigns the following masses:

E1 E2 E3 E4

m 0.4 0.2 0.1 0.3

This joint belief function is comonotone and its
marginals coincide with BelX and BelY.

The condition in Proposition 2 that focal sets should
be intervals is essential, as the next example shows.

Example 8. Consider two mass functions mX and
mY with A = {A1, A2} and B = {B}, where:

A1 = {1, 3}, A2 = {2, 4}, B = {1, 1, . . . , n− 1, n}

for n > 3. A and B satisfy all the conditions of Propo-
sition 2, except for being intervals. However, there
is no joint comonotone belief functions having those
marginals. Indeed, following Algorithm 2, such a joint
would have two focal elements E1, E2 with projections
A1, B and A2, B, respectively, and such that E1 ∪ E2

is increasing. Now, for any x ∈ {1, 1, . . . , n − 1, n},
E1 ∪E2 must contain, at least for one x, any the fol-
lowing pair: (x, 1) and (x, 2), (x, 1) and (x, 4), (x, 3)
and (x, 2), or (x, 3) and (x, 4), for E1, E2 to have the
required projections. If we take any two of those pairs
for two different x ≤ y in {1, 1, . . . , n − 1, n}, then
they form a non-increasing set. For example, take
(x, 1), (x, 4) and (y, 3), (y, 4), we have (x, 4) 6≤ (y, 3).
Hence it is not possible to build a comonotone joint
belief from mX and mY.

We have seen conditions under which, given marginal
belief functions, it is possible to define a joint comono-
tone belief function. However, the next example
shows that this joint comonotone belief function is
not unique.

Example 9. Consider the marginal belief functions
BelX and BelY with mass distributions mX and mY,
given by:

mX({1, 2}) = mY({1, 2}) = 1.

In this case, we can define three joint belief functions
that are comonotone: if we denote their masses by m,
m′ and m′′, they are given by:

m({(1, 1), (2, 2)}) = m′({(1, 1), (2, 2), (1, 2)})
= m′′({(1, 1), (2, 2), (2, 1)}) = 1.

5 Comonotone p-boxes

Consider now a bivariate p-box (F , F ) defined on
X×Y, where X = {x1, . . . , xn} and Y = {y1, . . . , ym}.
We have already said that bivariate p-boxes define a
lower probability P on the set K2 following Eq. (1).



Consider the natural extension of P to P(X ×Y), and
we are going to investigate whether it is comonotone
or not. During this section, and for the sake of sim-
plicity, we shall assume that n,m > 1, P ({xi}) > 0
and P ({yj}) > 0 for any i = 1, . . . , n and j =
1, . . . ,m. This implies that FX(xi) > FX(xi−1) and
FY(yj) > FY(yj−1) for i = 2, . . . , n and j = 2, . . . ,m.

In [8] it is argued that some notions like “avoiding sure
loss”, “coherence” or “2-mononicity” of a bivariate p-
box is given in terms of its associated lower probability
(given in Eq. (1)).

Definition 9. A coherent bivariate p-box is comono-
tone when its associated lower probability is comono-
tone.

Next results give two characterizations of comonotone
bivariate p-boxes. The first one establishes the form
of the bivariate p-box.

Proposition 3. Let (F , F ) be a coherent bivariate p-
box defined on X × Y. Then, it is comonotone if and
only if there is an increasing set S ⊆ X × Y, named
S = {(u1, v1), . . . , (uk, vk)}, such that:

S.1 The X and Y projections of S are X and Y.

S.2 If (xi, yj) ∈ S and (xi+1, yj) /∈ S, then

F (xi, yj) = F (xi+1, yj) = · · · = F (xn, yj) =

F (xi, yj) = F (xi+1, yj) = · · · = F (xn, yj).

S.3 If (xi, yj) ∈ S and (xi, yj+1) /∈ S, then

F (xi, yj) = F (xi, yj+1) = · · · = F (xi, ym) =

F (xi, yj) = F (xi, yj+1) = · · · = F (xi, ym).

The second result characterizes comonotone coherent
bivariate p-boxes in terms of the belief functions as-
sociated with its marginal p-boxes.

Theorem 6. Let (F , F ) be a coherent bivariate p-box
defined on X ×Y. Denote by (FX, FX) and (FY, FY)
its marginal p-boxes, and by BelX and BelY the belief
functions associated with the marginal p-boxes. Then,
(F , F ) is comonotone if and only if one of the follow-
ing conditions are satisfied:

1. BelX is precise with positive probability in
{x1}, . . . , {xn}. BelX and BelY satisfy the fol-
lowing conditions:

• The focal elements of BelY are
{y1}, . . . , {yl−1}, where l ∈ {1, . . . ,m}, and
B1, . . . , Bs, where yl = mini=1,...,s minBi

and, ∪si=1Bi = {yl+1, . . . , ym}.
• mX({xn}) ≥

∑s
i=1mY(Bi)−mY({yl}).

Focal elements of BelX:

Focal elements of BelY:
y1 y2 y3 y4 y5 y6 y7

x1 x2 x3 x4 x5 x6 x7

Figure 3: Example of belief functions that allow to
build a comonotone bivariate p-box. According to
Theorem 6, mY({y5, y6, y7}) ≤ mX({x7}) must hold.

2. Condition 1 holds when we exchange the role of
BelX and BelY.

Using the previous theorem, we can state the following
corollary.

Corollary 2. If a bivariate p-box is comonotone, its
associated lower probability is a belief function.

From this result we know that any comonotone co-
herent bivariate p-box can be built with the adequate
belief functions. We can also deduce that most bivari-
ate p-boxes will not be comonotone. Thus, under the
interpretation of Definitions 8 and 9, bivariate p-boxes
do not seem to be adequate to model comonotonicity.

Example 10. Figure 3 shows an example of marginal
belief functions satisfying the conditions of Theo-
rem 6. Assume that the masses are the following:

{x1} {x2} {x3} {x4} {x5} {x6} {x7}
mX 0.12 0.15 0.22 0.13 0.1 0.08 0.2

{y1} {y2} {y3} {y4} {y5} {y5, y6, y7}
mY 0.17 0.15 0.15 0.18 0.2 0.15

Then, the comonotone bivariate p-box has the follow-
ing focal elements:

E1 = {(x1, y1)}, E2 = {(x2, y1)}, E3 = {(x2, y2)},
E4 = {(x3, y2)}, E5 = {(x3, y3)}, E6 = {(x3, y4)},
E7 = {(x4, y4)}, E8 = {(x5, y4)}, E9 = {(x5, y5)},
E10 = {(x6, y5)}, E11 = {(x7, y5)},
E12 = {x7} × {y5, y6, y7}.

Their masses are:

E1 E2 E3 E4 E5 E6

m 0.12 0.05 0.1 0.05 0.15 0.02

E7 E8 E9 E10 E11 E12

m 0.13 0.03 0.07 0.08 0.05 0.2

Note again that the set S of Proposition 3 is the core
of Bel. It can be seen in Figure 4.

6 Conclusions

This paper investigates the notion of comonotonicity
for coherent lower probabilities. We have seen that
the comonotonicity of a coherent lower probability can



y7

y6

y5

y4

y3

y2

y1

x7x6x5x4x3x2x1

Figure 4: Core of the belief function that defines a
comonotone bivariate p-box.

be expressed in two equivalent ways: by means of the
increasingness of its support or by means of the upper
probability of the sets {(u, v) : u > x, v ≤ y} and
{(u, v) : u ≤ x, v > y}. Furthermore, the bivariate
p-box associated with a comonotone coherent lower
probability can be expressed as the minimum of the
marginal p-boxes. However, in contrast to the precise
setting, the converse does not hold in general.

Another important difference between precise and im-
precise frameworks is that in the former any pair of
marginal probabilities admits the definition of a joint
comonotone probability with the fixed marginals.
This is not the case of lower probabilities, not even
when they are belief functions. Nevertheless, such a
property does hold for possibility measures and for
univariate p-boxes satisfying some additional restric-
tions.

Unfortunately, we have also seen that bivariate p-
boxes, except in very special cases, do not seem to
be adequate to model comonotonicity because they
impose very strong conditions, like for instance one
of the marginals must be precise. Then, in contrast
to the precise framework where bivariate distribution
functions express the information about comonotonic-
ity, this is not the case of bivariate p-boxes.

One interesting open problem is to investigate the
meaning of comonotonicity for a more general frame-
work, that of lower previsions. Although independent
products satisfying the factorizing property have the
same associated bivariate p-box, in the general frame-
work of lower prevision they are no longer equiva-
lent. It would not be surprisingly that comonotonicity
could be extended in many different ways.
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