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Abstract

The fitness value of a knowledge base (KB)
can be unknown and only some imprecise in-
formation about it can be obtained. In some
cases this information is given by means of
an interval where we know the fitness is con-
tained. Thus, the comparison of two ran-
domly distributed intervals is necessary in
this context in order to be able to determine
the preferences among individuals.
This contribution is a first approach to the
use of statistical preference as a tool to com-
pare this kind of intervals. We consider
the probabilistic relation associated to the
stochastic comparison of every pair of in-
tervals and we study the cycle-transitivity
of this relation. The defuzzification of this
probabilitic relation, that is, the statistical
preference relation, is studied and some prop-
erties are obtained. Our studies are particu-
lary detailed for the case of the uniform dis-
tribution.
Keywords: vague data, fitness value, prob-
abilistic relation, transitivity, statistical pref-
erence.

1 INTRODUCTION

Genetic algorithms are a powerful tool, capable of solv-
ing complex optimization tasks such as learning or tun-
ing fuzzy rule bases and their corresponding fuzzy par-
titions (see [1]). When a genetic algorithm is used to
generate or adapt a fuzzy system, the technique is re-
ferred to as a Genetic Fuzzy System (GFS) [2]. The
use of GFSs has widely accepted, given that these al-
gorithms are robust and can search efficiently large
solution spaces (see [18]).

Although in this context the linguistic granules or in-
formation are represented by fuzzy sets, the input data
and the output results are usually crisp [7]. However,
some recent papers (see [12, 13, 14, 15]) have dealt
with fuzzy-valued data to learn and evaluate GFS. In
that approach the function that quantifies the optimal-
ity of a solution in the genetic algorithm, that is, the
fitness function, is fuzzy-valued. In particular, in [15],
the authors have considered that the fitness values are
partly unknown, since there only exists interval valued
information about them. In this context some kind of
order between two fitness values is necessary for deter-
mining if one individual precedes the other. Since the
information about the fitness values is imprecise and
given by means of intervals, a procedure for compar-
ing two intervals is required. Initially, this procedure
was based on estimating and comparing two probabil-
ities [15]. In this work we will consider a more gen-
eral and flexible way to compare two intervals which
is based on a probabilistic relation [5, 6, 9]. When the
defuzzification is required, we will consider the statis-
tical preference [6, 10], which is obtained as a cut of
this relation.

In this contribution we study how these concepts are
applied to compare two intervals, which represent an
imprecise information about the fitness valued of two
KBs. In particular, we will not assume knowledge
of the joint distribution for the two fitness values
and then the uniform distribution is used. Not only
the independent, but also the countermonotone and
comonotone cases (see [4]) are considered for defining
the joint distribution. The assumption of a uniform
distribution is not an artificial requirement and it can
be considered in many situations as a consequence
of lack of information (see, for instance, [15, 17]).
When this distribution is considered, we will obtain
the specific expression of the associated probabilistic
and fuzzy relations. Since transitivity is a very sim-
ple, but also very important property when comparing
elements, we will study whether and how the transi-
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tivity propagates between these two types of relations.
Moreover, we will generalize the concept of statisti-
cal preference, as a defuzzification of the probabilistic
relation and we will study the general connection be-
tween this way to compare random elements and the
classical stochastic dominance. Finally we study in
detail the case of the uniform distribution.

The work is organized as follows: Section 2 collects
some definitions and notions involved in following sec-
tions. In Section 3 we include the results obtained
about the transitivity of the fuzzy and the probabilis-
tic relations associated to two imprecise fitness values.
In Section 4 we study the generalization of the concept
of statistical preference, its connections with stochas-
tic dominance and a particular analysis for the uniform
distribution. The last section contains some final re-
marks.

2 BASIC CONCEPTS

Let us consider two fitness values θ1 and θ2 of two
Fuzzy Systems in a regression problem. For instance,
θ1 and θ2 are the mean squared errors of two Fuzzy
Rule Based Systems (FRBS) on the same training set.
In many situations, these values θ1 and θ2 are un-
known, but we have some imprecise information about
them. Thus, we cannot know the value of θ1 and θ2,
but we know two intervals where each of them is con-
tained. These intervals can be obtained by means of
a fuzzy generalization of the mean squared errors (for
a more detailed explanation, see Sections 4 and 5 in
[15]) and they will be denoted by FMSE 1 and FMSE 2,
respectively.

If these two intervals are disjoint, then we have not
any problem for determining the preferred interval and
therefore the decision is trivial. The problem arises
when the intersection is non-empty. In that case, a
prior knowledge about the probability distribution of
the fitness P (θ1, θ2) can be considered. In that situ-
ation, a decision rule considered in [15] was to decide
that FMSE 1 � FMSE 2 if and only if

P ((θ1, θ2) : θ1 < θ2) > P ((θ1, θ2) : θ1 ≥ θ2).

However, in that approach we consider a crisp order
between the intervals, but if we are in a fuzzy context,
with imprecise data, some kind of gradual compari-
son could be more appropriate as the starting point
of the comparison. Thus, we will use multivalued
(also called fuzzy) relations to compare the intervals,
that is, binary relations whose image is the real in-
terval [0, 1]. These relations express the stochastic
dependence between the alternatives with any value
in that interval [0, 1]. The closer the value to 0, the

weaker the stochastic dependence between the alter-
natives. In [9] a fuzzy relation was considered and it
can be defined, by using the usual notation in this con-
text, by R(FMSE 1,FMSE 2) = 1 if P ((θ1, θ2) : θ1 >
θ2) ≥ P ((θ1, θ2) : θ1 < θ2) and R(FMSE 1,FMSE 2) =
1 + P ((θ1, θ2) : θ1 > θ2) − P ((θ1, θ2) : θ1 < θ2) other-
wise.

Let us remark that R is reflexive (for any
FMSE i we have that R(FMSE i,FMSE i) = 1)
and strongly complete (R(FMSE 1,FMSE 2) = 1 or
R(FMSE 2,FMSE 1) = 1), so that, any pair of fitnesses
can be compared.

A different way to obtain a gradual comparison be-
tween fitness values is by means of the probabilistic
relations. Let us recall that given a set of alterna-
tives A, a probabilistic relation in A is a mapping
Q : A × A → [0, 1] such that Q(a, b) + Q(b, a) = 1 for
every pair of alternatives a and b in A. These relations
are sometimes called reciprocal or ipsodual relations.
The interpretation of a probabilistic relation is quite
different from the interpretation of a fuzzy relation. If
Q is a probabilistic relation, Q(a, b) = 1 expresses that
alternative a is totally preferred to b. But the value
0 does not mean absence of connection. For a proba-
bilistic relation Q, Q(a, b) = 0 is identified with a clear
preference of b over a. It is equivalent to R(b, a) = 1
and R(a, b) = 0. It also holds that Q(a, b) = 1

2 , reflects
indifference between both alternatives.

De Schuymer et al. introduced in [6] the probabilistic
relation generated by a collection of dice. The col-
lection of dice is called a discrete dice model for the
probabilistic relation defined. The definition general-
ized to a set of random variables can be seen in [5]. In
our context it can be expressed as follows:

Q(FMSE 1,FMSE 2) =
P ((θ1, θ2) : θ1 > θ2) + 1

2P ((θ1, θ2) : θ1 = θ2).

From this probabilistic relation, we can obtain a way
to compare two fitness values (the general definition
was given in [5]). Thus, we say that FMSE 1 is statis-
tically preferred to FMSE 2 if Q(FMSE 1,FMSE 2) >
1
2 . We will denote it FMSE 1 >SP FMSE 2.
FMSE 1 and FMSE 2 are statistically indifferent if
Q(FMSE 1,FMSE 2) = 1

2 . We will denote FMSE 1 ≥SP

FMSE 2 if Q(FMSE 1,FMSE 2) ≥ 1
2 .

This way to compare two random elements can be seen
as an alternative to the classical stochastic dominance
[8]. Let us recall that stochastic dominance does not
take into account the possible relationship between the
random elements being compared, but statistical pref-
erence depends on the stochastic dependence between
the random elements. We recall that for every joint
distribution function F , there is a copula C that con-
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nects the marginal probability distribution functions
(F1 and F2): F (x, y) = C(F1(x), F1(y)). Therefore
statistical preference depends on the copula that con-
nects the random elements. We recall that a copula
(see for example [11]) is an operation C : [0, 1]2 → [0, 1]
satisfying
• C(x, 0) = C(0, x) = 0 for all x ∈ [0, 1],
• C(x, 1) = C(1, x) = x for all x ∈ [0, 1],
• the property of moderate growth:
C(x1, y1) + C(x2, y2) ≥ C(x1, y2) + C(x2, y1)
for every (x1, x2, y1, y2) ∈ [0, 1]4 such that x1 ≤ x2

and y1 ≤ y2.

If C is the minimum operator, the two elements are
said to be comonotonic and if C(x, y) = max(x+ y −
1, 0) they are countermonotonic. The case C is the
product is the usual case of independence.

In [9] it was proven that there is a one-to-one corre-
spondence between these fuzzy relations (R) and these
probabilistic relations (Q), but we should recall they
are considering two different ways to measure the re-
lationship degree. Thus, although an important prop-
erty to provide coherence to relations is the transitiv-
ity, the definition has to be totally different for prob-
abilistic and fuzzy relations.

For probabilistic relations, De Baets et al. [3] devel-
oped a general framework that includes as particular
cases several types of transitivity for probabilistic re-
lations. In [6] the same authors provide an example
based on a game with dices where no one “classical”
transitivity is satisfied, but a particular type of cycle-
transitivity holds. Analogously to FG-transitivity de-
veloped by Switalski [16], cycle-transitivity is based
on an upper and a lower bound function. But the
value bounded is not the usual Q(a, c), but the sum
Q(a, b) +Q(b, c) +Q(c, a).

Thus, in [3] they defined that a probabilistic relation
Q is cycle-transitive with respect to the upper bound
function U if for all a, b, c in the set of alternatives,

αabc + βabc + γabc − 1 ≤ U(αabc, βabc, γabc),

where

αabc = min(Q(a, b), Q(b, c), Q(c, a)),
βabc = median(Q(a, b), Q(b, c), Q(c, a)),
γabc = max(Q(a, b), Q(b, c), Q(c, a)).

and U is an upper bound function, that is, it fulfils

1 . U(0, 0, 1) ≥ 0,
2 . U(0, 1, 1) ≥ 1,
3 . U(α, β, γ) + U(1− γ, 1− β, 1− α) ≥ 1.

The most important upper bounds are:
• UM(α, β, γ) = β,

• UP(α, β, γ) = α+ β − αβ,

• UL(α, β, γ) = min(α+ β, 1).

The notation is derived from the associated t-norms
(see [3]). We briefly recall that a t-norm is a bi-
nary [0, 1]2 → [0, 1] operator such that it is commu-
tative, associative, non-decreasing in each argument
and has 1 as neutral element. The three most com-
mon t-norms are the minimum defined as: TM(x, y) =
min(x, y), ∀x, y ∈ [0, 1],, the product t-norm de-
fined as: TP(x, y) = x · y, ∀x, y ∈ [0, 1], and
the  Lukasiewicz t-norm: TL(x, y) = max(x + y −
1, 0), ∀x, y ∈ [0, 1].

This topic is essential in the most usual definition of
transitivity for a fuzzy relation: a fuzzy relation R is
transitive with respect to the t-norm T (T -transitive,
for short) if it holds that

T (R(a, b), R(b, c)) ≤ R(a, c)

for any three alternatives.

3 TRANSITIVITY

In this section we will obtain the type of cycle-
transitivity and the type of T -transitivity fulfilled byQ
and R, respectively, if we assume P (θ1, θ2) is obtained
by copulation of two uniform distributions (see, for
instance, [15, 17]). We will consider three different ap-
proaches to this problem: independence, comonotony
and countermonotony. Moreover, by coherence with
the studies developed in [4, 5], we will consider in this
section that the two random elements are uniformly
distributed in two intervals with the same width.

Thus, let FMSE 1 = [a1, a1+λ] and FMSE 2 = [a2, a2+
λ] be two intervals where we know the fitnesses θ1 and
θ2 of two KBs are content and let us consider a uniform
distribution on each of them. As we commented in
Section 2, the joint distribution is defined by means of
a copula. In this work we will consider the minimum,
product and  Lukasiewicz copulas (which is the same
of the minimum, product and  Lukasiewicz t-norms) in
order to define this joint distribution.

3.1 THE INDEPENDENT CASE

The case when the copula is the product was already
studied in [5], where they obtained the expression of
the probabilistic relation associated to this kind of ran-
dom variables. Thus, in our context,

QP (FMSE 1,FMSE 2) ={
0 if a2 > a1 + λ
(λ+a2−a1)

2

2λ2 if a1 < a2 < a1 + λ
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It also was proven in [5] that QP is cycle-transitive
with respect to the upper bound function

UP (α, β, γ) = β + γ − 1 + 1
2 (TL(

√
2(1− β),

√
2(1− γ)))2,

if β ≥ 1/2,
α+ β − 1

2 (TL(
√

2α,
√

2β))2, if β < 1/2.

In this case, by using [9], the expression of the associ-
ated fuzzy relation is:

RP (FMSE 1,FMSE 2) =
0 if a2 > a1 + λ

2(1− (λ+a1−a2)
2

2λ2 ) if a2 < a1 < a2 + λ
1 otherwise

3.2 THE COMONOTONIC CASE

In the case the joint distribution function is obtained
as the minimum between both marginal distribution
functions, the expression of the probabilistic relation
is crisp. In such situation, we can assure that it is al-
ways cycle-transitive with respect to any upper bound
function, since it is transitive in the classical sense.

PROPOSITION 3.1 Let FMSE 1 = [a1, a1 + λ] and
FMSE 2 = [a2, a2 + λ] be two intervals where we know
the fitnesses θ1 and θ2 of two KBs are content and let
us consider a uniform distribution on each of them. If
the joint distribution is obtained by means of the min-
imum copula, then the associated probabilistic relation
QM is crisp with

QM (FMSE 1,FMSE 2) =
{

0 if a1 ≤ a2,
1 if a1 > a2.

Moreover QM is transitive.

In this case, the associated fuzzy relation RM is also
crisp (see [9]) and it is transitive.

3.3 THE COUNTERMONOTONIC CASE

Let us now consider the case the joint distribution is
obtained by means of the  Lukasiewicz copula.

PROPOSITION 3.2 Let FMSE 1 = [a1, a1 + λ] and
FMSE 2 = [a2, a2 + λ] be two intervals where we know
the fitnesses θ1 and θ2 of two KBs are content and let
us consider a uniform distribution on each of them.
If the joint distribution is obtained by means of the
 Lukasiewicz copula, then the associated probabilistic
relation QL is

QL(FMSE 1,FMSE 2) =
{

a1−a2+λ
2λ if a2 < a1 + λ,

0 if a1 + λ ≤ a2.

Moreover, QL is cycle-transitive with respect to the up-
per bound function

UL(α, β, γ) = max(β, 1/2).

In [9] it was proven that the cycle-transitivity with
respect to UL is equivalent to the TL-transitivity of
the associated fuzzy relation RL. Thus,

COROLLARY 3.3 Let FMSE 1 = [a1, a1 + λ] and
FMSE 2 = [a2, a2 + λ] be two intervals where we know
the fitnesses θ1 and θ2 of two KBs are content and let
us consider a uniform distribution on each of them.
If the joint distribution is obtained by means of the
 Lukasiewicz copula, then the associated fuzzy relation
RL is TL-transitive.

4 STATISTICAL PREFERENCE

As we showed in Section 2, the classical statistical pref-
erence [5] is defined as the 0.5-cut of the probabilistic
relation Q. This defuzzification is very strict and we
could consider appropriate any other cut as the min-
imum level of relationship. Thus, we could generalize
this definition as follows.

DEFINITION 4.1 Let X and Y be two random vari-
ables and let Q be its associated probabilistic relation.
X is said to be α-statistical preferred or indifferent to
Y , X ≥αSP Y , if it holds that (X,Y ) ∈ Qα, where
Qα = {(X,Y ) : Q(X,Y ) ≥ α}.

It is immediate that α-statistical preference implies α′-
statistical preference if α ≥ α′, but the converse is not
true.

The relationship of this concept with the stochastic
dominance (see [8]) is developed in the following result.

PROPOSITION 4.2 If α ≤ 1/2, then

• the first degree stochastic dominance implies α-
statistical preference but the converse is not true;

• there is not any implication between the second
degree stochastic dominance and the α-statistical
preference.

In the case α > 1/2, even the first implication is not
fulfilled and any relationship can be established.

Although we have considered here a more general defi-
nition, the most usual case (see, for instance, [5, 6, 10])
is the case of the 1/2-cut, which is simply called sta-
tistical preference. In that case, the meaning of this
definition can be clarify by the following proposition.
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PROPOSITION 4.3 Let X and Y be two random vari-
ables. In general, it holds that

X ≥SP Y =⇒ P (X < Y ) ≤ 1
2
.

For continuous variables, the converse implication is
also fulfilled.

Let us now present two results which can be use as
a tool to manage statistical preference under transla-
tions and dilations. Both of them are natural proper-
ties for this relation.

PROPOSITION 4.4 Let X and Y be two random vari-
ables. It holds that

• X ≥SP Y ⇐⇒ X − Y ≥SP 0.

• X + Y ≥SP X ⇐⇒ Y ≥SP 0.

• λX ≥SP µ⇐⇒


X ≥SP µ/λ if λ > 0
µ/λ ≥SP X if λ < 0
µ ≤ 0 if λ = 0

As a consequence of this result, we have

COROLLARY 4.5 Let X be a random variable and let
α be a constant. It holds that

• X ≥SP X + α⇐⇒ α ≤ 0.

• λX ≥SP αX ⇐⇒
{

0 ≥SP X if α > 1
X ≥SP 0 if α < 1

In the following of the section, we will apply this defini-
tion in our context. Thus, we will consider two impre-
cise fitness values and we will obtain the requirement
to be able to assure one of them is statistical preferred
to the other. We will consider again a uniform dis-
tribution, that is, no any prior information about the
distribution over the observed interval, but in this case
we will not restrict our study to intervals with the same
width, but we will consider the most general case.

Thus, FMSE 1 = [a, b] and FMSE 2 = [c, d] will denote
now two intervals where we know the fitnesses θ1 and
θ2 of two KBs are content. Let us assume a uniform
distribution on each of them. We will consider again
three possible ways to obtain the joint distribution:
minimum, product and  Lukasiewicz copulas. In these
three cases we will obtain the condition over a, b, c
and d to assure the statistical preference of the inter-
val FMSE 1 to the interval FMSE 2. To do that, the
expression of QP , QM and QL obtained in the previous
section will be an essential part of the proof.

4.1 THE INDEPENDENT CASE

PROPOSITION 4.6 Let FMSE 1 = [a, b]
and FMSE 2 = [c, d] be two uniformly distributed in-
tervals which represent the information we have about
the fitnesses θ1 and θ2 of two KBs. If the joint dis-
tribution is obtained by means of the product copula,
then FMSE 1 ≥SP FMSE 2 if, and only if,

(b− c)2 ≥ (b− a)(d− c) if a ≤ c < b ≤ d,
a+ b ≥ c+ d if a ≤ c < d < b
a+ b ≥ c+ d if c < a < b ≤ d,
(d− c)(b− a) ≥ (d− a)2 if c < a < d ≤ b.

4.2 THE COMONOTONIC CASE

PROPOSITION 4.7 Let FMSE 1 = [a, b]
and FMSE 2 = [c, d] be two uniformly distributed in-
tervals which represent the information we have about
the fitnesses θ1 and θ2 of two KBs. If the joint distri-
bution is obtained by means of the minimum copula,
then

• If a ≤ c < b ≤ d, then FMSE 1 6≥SP FMSE 2.

• If a ≤ c < d < b, FMSE 1 ≥SP FMSE 2 if, and
only if, b(d− b+ c) ≥ a(c+ d− a).

• If c < a < d ≤ b, then FMSE1 ≥SP FMSE 2.

• If c < a < b ≤ d, FMSE 2 ≥SP FMSE 1 if, and
only if, 3ad+ (a− b)2 + 2c2 + bc ≥ 2cd+ 3ac+ bd.

4.3 THE COUNTERMONOTONIC CASE

PROPOSITION 4.8
Let FMSE 1 = [a, b] and FMSE 2 = [c, d] be two uni-
formly distributed intervals which represent the infor-
mation we have about the fitnesses θ1 and θ2 of two
KBs. If the joint distribution is obtained by means of
the  Lukasiewicz copula, then FMSE1 ≥SP FMSE 2 if,
and only if, c(c− b− a) ≥ d(d− a− b).

5 CONCLUDING REMARKS

In this work we have developed a complete study of a
method to compare two random intervals, which can
be applied in particular to compare the imprecise in-
formation about two fitness values of two KBs. This
comparison is fuzzy and it is established by means of
a probabilistic relation. When the appropriate cut is
considered, we obtain the statistical preference as a
defuzzification of this relation. In all our studies the
particular expressions and results for the usual case
of uniform distributions are obtained. Thus, for the
probabilistic and fuzzy relations associated to any set
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of interval (FMSE i) we have characterized the transi-
tivity fulfilled for these relations. For statistical pref-
erence, the requirements to be ordered two intervals
are totally detailed.

As a future work, we would like to extend our studies
in two different directions. The first one and simpler
is an extension to other families of distributions. The
second one would be to develop some parallel method
to compare other kind of imprecise information, which
could be determined by any fuzzy set instead of an
interval.
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