
1 

 

EFFECTS OF DYNAMIC PRICING OF PERISHABLE PRODUCTS ON 

REVENUE AND WASTE 

B. Adenso-Díaz
a

, S. Lozano
b
 and A. Palacio

a
 

a
 Escuela Politécnica Superior de Ingeniería, Universidad de Oviedo, 33204-Gijón, Spain, 

adenso@uniovi.es; palacioantonio.uo@uniovi.es 

b 
Department of Industrial Management, University of Seville, 41006-Seville, Spain, slozano@us.es 

 

 

Paper published by the journal: Applied Mathematical Modelling (2017), Vol. 45,  

pp: 148-164 (doi: 10.1016/j.apm.2016.12.0249) 

 

 

 Corresponding author: 

 

Postal address: Escuela Politécnica de Ingenieros, Edificio Energía, Campus de Viesques 

33204 Gijón, Spain 

E-mail: adenso@uniovi.es 

 

 

ABSTRACT  

This paper deals with dynamic price strategies to reduce food and other perishable products 

spoilage. A deterministic mathematical model is proposed to study the influence of a number of factors, 

such as price elasticity of demand, age-sensitivity of demand and age profile of initial inventory, on 

revenue and spoilage. A parametric, bi-objective approach is considered with the aim of estimating the 

existing trade-offs between revenues and spoilage. The effects of price discounting are different in each 

scenario and also depend on the speed at which the price is reduced as it ages. Although a dynamic 

price strategy helps reduce spoilage, its effect on total revenue depends heavily on the scenario. In 

some specific cases identified below in the paper, total revenue can slightly increase or, at least, 

maintain its level. In other scenarios, the spoilage reduction comes as a loss in total revenue that can go 

from small to significant, depending on the scenario and the speed of the price discounting strategy. 

The proposed approach allows the quantification of the available trade-offs for each scenario. It also 

allows the analysis of the age distribution of units sold and their respective revenue contribution. 
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1. INTRODUCTION AND MOTIVATION 

In order to attract customers, large retailers are offering on their shelves a greater number of fresh 

products, allowing them to compete against the more traditional channels that usually specialize in 

those items [39]. Li et al. [35] report that more than 81% of the sales of the grocery retailing industry in 

the US in 2009 corresponded to food and beverages, and 63% of those were products with a limited 

shelf life, i.e. more than 50% of this sales channel are perishable units. Standard commercial products 

can be found anywhere, but perishable products are required on a daily basis and appreciated by 

customers looking for quality. These products introduce an additional complexity in the management of 

the stock. Thus, very often they require careful handling, and above all, their limited shelf life requires 

the implementation of some sort of strategy that avoids the spoilage of outdated units. 

 

The problem of how to manage the inventory of perishable products has been extensively researched 

since the 1970s [43]. Depending on the lifetime of the products, models can be classified into three 

categories [45]: fixed lifetime, random lifetime, and models with a decaying lifetime. Everybody is 

accustomed to seeing on the shelves items marked with a fixed expiry date (“sell by” or “best before”), 

predetermined by the manufacturer to be valid under certain temperature, handling and storing 

conditions [33]. Theoretically a product is valid until that date, and many authors have considered this 

case in taking pricing decisions (see [38]). In spite of that, the customer often sees less utility in some 

products as they become aged. Goyal and Giri [24] review different decay distributions that have been 

considered in the literature (exponential, Gamma, Weibull, etc.). 

 

As periodic replenishment practices give rise to the presence on the shelves of units with different 

expiry dates but the same price, the customer prefers to select the fresher units which provide a higher 

perception of quality [15]. According to Chung and Li [16], 88% of consumers frequently check expiry 

dates when buying. It is clear that adjusting the price to the product characteristics, instead of adopting 
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a fixed price along its whole shelf life, could increase sales and as a consequence perhaps the revenues 

gained by the retailer. That is to say, instead of posting a fixed price for a long period, the seller can 

dynamically change the price, thus balancing supply and demand based on information such as 

inventory shelf life and price elasticity of demand. 

 

For instance, when the expiry date draws near, the retailer can post a lower price as, for the same price, 

the client may prefer a product with a longer shelf life because it is considered to be of higher quality 

[47]. In addition to reducing spoilage, this measure can produce a revenue loss, although not always 

because the price discount can be compensated for by an increase in sales. Note that in the case of food 

products (which are typically perishable items), they are price inelastic, with demand elasticities in the 

range 0.3~0.8 for common products [7]. It would therefore be interesting to explore how elasticity can 

influence demand so as to compensate for the suggested dynamic price reductions.  

 

From a historical point of view, the interest in revenue management started in the early 1970s, focusing 

on airline and hotel overbooking [12], industries in which capacity is difficult to change in the short 

term and variable costs are small. The interest was not initially in intervening in the prices by looking 

for higher revenues, but in the capacity, by opening or closing certain fare classes as demand evolved 

in a segmented market. It was in the 1990s that pricing policies became a hot research topic, with the 

publication of some seminal works in the field (e.g. [23]). Applications moved from the hotel and 

airline business to many other industries (retail, energy, etc.), also to perishable products, 

price-sensitive demand and finite horizons [12]. However, the quantification of the benefits of dynamic 

pricing over a fixed price strategy has not been extensively studied. This is mainly due, according to 

Sen [50], to the difficulty of efficiently calculating optimal policies, and the high operational cost of 

changing prices on the shelves. 
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In spite of that, according to Elmaghraby and Keskinocak [19], there are three main reasons for the 

increased interest in these policies that differentiate price by expiry date: a higher level of data 

availability by the retailers (evidently it is necessary to know your customers very well to make good 

decisions); better Decision Support Systems (DSSs) are available; and a better technology that makes 

changing prices on the shelves less cumbersome. Some authors [32, 39] have researched how 

traceability technology such as RFID can help to monitor and control time-sensitive perishables, 

providing data such as temperature, humidity, stock, expiry dates, or even demand trends, that help to 

make more founded decisions. Technology is, therefore, reducing operational costs and facilitating the 

implementation of this type of policy. 

 

All these studies consider the sellers as revenue maximizers [19]. However, an inefficient stock rotation 

causes spoilage of expired units representing, in addition to billions of dollars of cost, an important 

problem in the short shelf life supply chain, with tons of items taken out of the stream and discarded 

[32]. Ferguson and Ketzenberg [22] report that in retailing, in some cases, up to 15% of perishables are 

disposed of due to spoilage or damage. Some other studies show different spoilage rates depending on 

the country, the channel and the product (e.g. [5]).  

 

In any case, while the poverty rate in Europe is increasing due to the economic crisis and more people 

need to go to Food Banks to collect products for covering their daily necessities [49], at the same time 

millions of tons of edibles are landfilled in European countries every week [20, 6]. This is a concern for 

governments, NGOs and society at large. In fact many retail companies have included waste reduction 

as one of their operational targets and performance indicators [14]. Therefore, not only does a severe 

financial problem exist around perishable products management at the retailer level, but there also 

exists an environmental (and social) impact as well, which should be included in the decision 

framework. 
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Keeping this in mind, one main issue is considered in this research that has not previously been 

considered in detail. Here the spoilage of expired products is not to be considered as being included in 

part of the cost function, but as a goal in itself, given the environmental and social issues involved. 

Therefore, we are not using here a single, cost-based objective function, but a bi-objective approach 

that considers, as another objective in the decision making process, the reduction in the number of units 

that are discarded because they have reached their expiry date and can no longer be sold nor safely 

consumed. 

 

Thus, our goal is to gain insight and shed light on the relationship between revenue and wasted units 

when different dynamic pricing policies are implemented under different scenarios (i.e. products with 

different price elasticities and different aversions of customers to acquiring perishable products with 

shorter remaining shelf lives). By studying the effects of different parameters on the total revenue and 

total waste, we can better understand and quantify the overall effects of dynamic price-discount 

policies under different scenarios. 

 

The approach proposed in this paper is rather general and applies to any perishable product (food, 

magazines, season tickets, etc.) for which a price reduction can stimulate demand for the aged units and 

thus help reduce waste/spoilage/unsold units. The idea, however, is to do this without harming sales 

revenue. The experiments carried out are aimed at showing that, depending on the scenario considered, 

this can generally be achieved. 

 

Note that although we are considering a rather simplified model (e.g. we assume deterministic demand, 

continuous-time price markdown, etc.), it is still able to provide valuable insights into the relationship 

between dynamic pricing and revenue and waste, thus giving clues for managers to handle the day by 
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day running of this type of operation. Furthermore, differently from existing research which approaches 

the issue from a strictly economic viewpoint, we propose a bi-objective approach, thus placing 

emphasis on the environmental and social impacts of the problem, and looking for ways of harmonising 

profits and social responsibility. 

 

The structure of the paper is the following. In Section 2 we review some of the existing literature, 

which will give us clues as to the parameters and factors that must be taken into account in our study. 

In Section 3 we present a mathematical model that incorporates those factors and parameters, and in 

Section 4 some formal analytical results based on the previous modelling. Later, in Section 5, we 

present and discuss the results of a number of experiments that have been carried out and finally, in 

Section 6, we summarize the conclusions of our study. 

 

2. RELEVANT LITERATURE  

When modelling products which, by their nature, are bound to become outdated, demand is conditioned 

(among other factors, see [18]) by the remaining shelf life of the item. Two initial assumptions can be 

made regarding knowledge of the demand function: uncertain demand (see for instance [35] for some 

comments regarding models under this assumption, or [48]) for deterministic demand.  

 

Different models have been proposed considering the aging factor under deterministic demand. For 

instance, Rajan et al. [46] model this situation with a demand function which decreases as the price and 

age of the perishable units increase, deriving the optimal ordering cycle and price. Later Abad [3] 

extended this approach allowing backlogs. 

 

Although most studies consider homogeneous units as not depending on their ages (see, for instance, 

[21,44]), in order to compensate for the reduction in demand, a dynamic pricing strategy appears as an 
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interesting and cost-saving option [52]. Note that, although this is already quite a common practice in 

the retail industry, some stores are still reluctant to follow it as they are afraid that it could affect the 

company’s image [35]. In some cases, in addition to the reputational risk, there is also a risk of selling 

already obsolete or damaged products that may put lives at risk and would require further 

compensation [28]. 

 

Liu et al. [39] define dynamic pricing as the assignment of different prices to items of the same 

category, considering their individual characteristics and changes to their status. Elmaghraby and 

Keskinocak [19] identify three characteristics to categorize the literature dealing with dynamic pricing: 

replenishment vs. no replenishment of inventory; dependent vs. independent demand; myopic vs. 

strategic customers (i.e. whether the customer purchases immediately when the price is acceptable, or 

looks forward to evaluating the price changes). Note that when the customer knows that the price will 

be marked down later on, additional factors have an influence on the demand for the product [51], such 

as delay in the buying decision (with the risk of the product being sold out), or creating the image of a 

lower quality product after the price has been reduced. Besanko and Winston [11] show that, in the 

case of potential myopic customers, it is better to set an initially high price and define a deeper 

decreasing price, while in the case of strategic customers a less steep decrease of prices works better. 

 

In the literature discussions can be found about different factors affecting the modelling of the global 

demand and pricing alternatives [37]. As regards, for instance, the existence of salvage values, the 

presence of multiple liquidation channels where the seller can take a final decision on the remaining 

units (as well as the disposal costs in the case of many perishable products), makes it quite difficult to 

define a general framework for this variable. 
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Elmaghraby and Keskinocak [19] recognize the initial inventory decision as something very influential 

in the optimization of the pricing process. They mention especially questions such as how sensitive are 

the profits of optimal pricing policies to any deviation in the initial stock from optimal levels.  

 

Most dynamic pricing approaches model the demand uncertainty by assuming it follows a specific 

distribution – estimated using historical data. However, some authors claim there is a risk in trusting 

those estimations, considering the observed fast technological and cultural changes and volatile market 

conditions, which can introduce serious errors in the solution [36]. These authors propose a fuzzy 

demand model where demand at period t given a price pt is defined as a random fuzzy variable 
t tD (p ) . 

Three different fuzzy programming models were considered for determining the best prices for period 

t. 

 

Moreover, price markdown can be implemented in different ways depending on the moments in the 

product lifetime when the price is updated. Most of the models consider pricing policies with a 

continuous-time approach. However, from a realistic point of view it would be very difficult and costly 

to apply in practice, and periodic policies would be more convenient [13]. Chung and Li [16] consider 

two main procedures to put dynamic pricing into practice: a fixed-discount strategy, where the seller 

divides the product life into several stages and announces the initial and discounted prices at each 

moment; and a contingent strategy, which consists of fixing the initial price and defining a point in time 

at which the seller will announce the new price. According to Aviv and Pazgal [8], contingent 

strategies lead to lower expected revenues when dealing with strategic customers.  

 

Since the aim of this paper is to show the compatibility of reducing waste with maintaining (or 

increasing) revenue, the assumption of reducing the price continuously with age is not vital and could 

alternatively be substituted by two or any finite number of price reductions. The results for a stepwise 
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price reduction policy would be rather similar and, of course, would depend on the steepness of the 

price decreases. 

 

In this regard, deciding the rate at which the price should be reduced is not a trivial decision. Tsiros and 

Heilman [53] studied the willingness of customers to pay as time passes for six perishable food 

products, and they observed that, depending on the product, the shape of the function changed, being 

linear for four of them and non-linear in the other two cases (incidentally meat products). Chung and Li 

[14] studied the most basic case, by considering a constant reduction rate for each remaining shelf life 

day. There are two main advantages to their assumption: this linear pattern simplifies the approach, 

making it simpler to implement, and the procedure results are more transparent for customers, which 

would stimulate consumption patterns. Actually, the goal in Chung and Li [14] was to better 

understand how dynamic pricing strategies would influence consumer behaviour, after they observed 

that the usual policy of suddenly marking down the price when the expiry date was imminent was not 

appreciated by customers. According to a survey carried out by Chung and Li [16], a common practice 

in the Korean retail industry is to reduce the price of perishables by 30% when 30% of the product 

shelf life remains.  

 

However Wang and Li [55] acknowledge that there can be some criticism of the assumption of a 

strictly linear demand function of the price, even though its wide use is based on an acceptable 

approximation of real demand. To respond to that criticism, and when the customers are aware of some 

deterioration through the age of the product, measured by its quality q(t), they define the demand 

function as D(t)=D0- p(t)+ q(t), with  and  being two parameters measuring the influence on the 

demand of the price and the quality. All other factors such as competitors’ prices, customers’ 

perception, etc., are included in those parameters. This is the approach followed in the next section. 
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Throughout the research developed so far, the usual approach was to consider the spoilage as 

something undesirable due to its economic impact on the general cost function; however, we are 

considering a new point of view in which the spoilage is something to fight against independently of 

the cost. To reduce waste (mainly if we are talking about something so sensitive nowadays, such as 

food) is an objective in itself, when taking into account social and environmental factors. In this sense, 

this paper covers a new way of dealing with the problem, by acting on the demand via prices. 

 

3. MODELLING ASSUMPTIONS 

 

3.1. Demand and price functions  

Let us denote L as the maximum shelf life of a perishable product being studied, and let I(a,t) be the 

inventory of the product having an age a L, in an instant t L. In order to estimate the effects of a 

dynamic pricing policy as the product ages, let us suppose there is an initial fresh product stock, I(0,0), 

which, together with the rest of the stock at instant 0, I(a,0), defines the age profile of the initial stock 

of the product (see Figure 1). As mentioned above, this factor is considered to be relevant as it will 

have an influence both on sales and spoilage. 

 

We assume a continuous-time, deterministic demand and no replenishment during the horizon L. Of 

course, in the real world, each time period the inventory may be renewed with replenished, zero-age 

units, will modify the inventory age profile at time t. The proposed approach can be adapted to that 

replenishment scenario but, in this paper, we are concerned with studying the depletion of the given 

initial stock and how that process may be influenced by adopting a dynamic pricing policy.  

 

========== FIG 1 ========== 
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The evolution of the permanence in stock of the units available at instant 0 will depend on the scenario 

considered and on the dynamic pricing policy applied. Note that, at most, at time L, all the initial stock 

I(a,0) in the process would have been either sold or wasted. Those units that reach their maximum shelf 

life are retired and recorded as spoilage. The rest are sold units, but their contribution to revenue is not 

uniform since the sale price depends on the age of the product at the time of sale. The goal is to 

measure the effect on revenue and spoilage of a discount policy depending on the different factors 

considered. 

 

We assume there is a pool of buyers that define an aggregate continuous-time demand function. As it 

usually happens in the case of perishable products, demand depends not only on the retailer price but 

also on the age of the product [3, 55]. Thus, a product whose age is close to its maximum shelf life is 

not as appealing as a fresh one, and the customer prefers to pick up products with longer remaining 

shelf lives. The demand function considered takes into account this demand leakage. It is implicitly 

done through a demand function that jointly depends on price and product age. Let D(p,a) be the 

demand as a function of both variables, price (denoted p) and age (denoted a), with a L. As we are 

proposing to explore the effects of including that client perception about aging into the price scheme, 

we therefore consider that the price depends on age, p(a). As will be seen in the mathematical 

formulation, we consider three parameters in the model:  (for the price elasticity of demand),  (for 

the influence of aging on demand) and  (for the influence of aging on price). 

 

Regarding demand, we assume constant price elasticity of demand >0, and, for a given price, a 

decreasing demand as the product loses freshness, controlled by parameter >0: 

LaDapD
p

p 1),(
00

 

(1) 
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Note that when =1 the decrease in demand is linear with age, with demand for a product decreasing to 

zero as its age reaches the maximum shelf life. Demand decreases less than linearly for >1 (see Figure 

2), i.e. the demand reduction with age is lower at first (so demand is not much lower for relatively fresh 

units, and only falls as the age of the unit approaches the maximum shelf life). Note that we shall not 

consider  values lower than 1 because that would mean that the demand reduction with age would be 

steep at first, which is not generally the case in practice. 

 

========== FIG 2 ========== 

 

Regarding the price discount policy, we propose that the price reduction due to aging (in case it is 

considered) should follow a similar pattern to the demand reduction, using a parameter 0 to control 

the speed of the price reduction. Mathematically, 

L
apap o 1)(

 

(2) 

Note that the above equation assumes that for a=L the retail price would be zero. Note also that =0 

means that no dynamic pricing is applied, while higher  values accelerate the price reduction. The case 

with = =1 coincides with the basic linear markdown practice assumed by some authors [14]. 

 

Including in (1) the dependence of variable price with age, we arrive at the following demand function: 

1

1)(
L

aDaD o

 

(3) 

where the exponent of 1-  now has a special importance: when =1/ , demand is constant for any age 

(i.e. marking down the price for older units compensates for a reduction in demand); when <1/  
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demand still decreases with age; a scenario with >1/  means that demand increases as the product is 

older, an extreme-discount scenario which will not be considered. 

 

With respect to the justification of the functional forms assumed for the demand and the price discount 

policy considered, we should remember that in the classic economic theory, the simplest function 

relating demand and price is the linear approach, with many researches modelling the demand function 

in this way [17]; another very common approach is to assume a constant elasticity demand, already 

considered in classical texts such as Koutsoyiannis [34]. In fact many papers on supply chain 

management (including those dealing with perishable products) consider a constant price elasticity 

function of the type D=D0p
-  

(e.g., [1, 30, 4, 42, 41, 31]). In order to keep some optimization properties 

[2], some of those papers consider elasticities >1. However, in order to consider the most general case, 

as other authors do (e.g. [54]), we allow here the possibility of an inelastic demand. 

 

Time is another major factor that can have an influence on demand. In addition to the “best before” 

case we deal with in this paper, some products change the demand pattern as the season passes, with 

higher rates at the beginning or at the end. As regards the use of a demand function that jointly depends 

on price and product age we can mention, among others [52, 29, 40]. Regarding the influence of time 

over demand, many authors assume a linear relationship (e.g. [17]), although a more general 

polynomial formulation was proposed by Barbosa and Friedman [10], D=D0t
r
 with r>-2. In our case, 

demand decreases with time, which would correspond to the case r<0. However, as explained before, 

we are expecting a smaller decay rate at the beginning and a steeper one as time passes. Therefore the 

concave approach we have selected (with >1) was considered to be more appropriate. Researchers 

that have also considered a polynomial dependence of demand with age include [9, 25, 26, 27]. 

 

3.2. Calculation of revenue and spoilage   
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As we assume that the inventory is not replenished in the time horizon [0,L], at time t≤L, there cannot 

be any inventory having age a<t, and the current inventory of age a corresponds to units that had age 

(a-t) in the initial inventory. Of course, part of the inventory that initially had age (a-t) must have been 

sold during the interval [0,t]. The other fraction remains in inventory and has age a at time t, i.e.  

   
   }')'()0,(,0max{

                                                    0
),(

0

t

tadttaDtaI

ta
taI

 

(4) 

The wasted units are those units arriving at age L without being sold. Therefore, the waste generated at 

instant t is 

),()( tLItW

 
(5) 

and the total waste generated is 

L

dttWTW
0

)(

 

(6) 

Regarding the calculation of revenues, we need to calculate in advance the instant at which the 

inventory with age a runs out. Let us denote that instant as (a), i.e. 

}0),(:],0[min{)( taILta

 
(7) 

i.e., I(a, (a))=0, or, equivalently 

)(

0
')'()0),((

a

dttaDaaI

 

(8) 

As there is no more inventory of age a after instant (a), we can therefore calculate the number of units 

of age a sold at instant t as 
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(9) 

The number of units sold at time t is 

dataStS
L

t
),()(

 

(10) 

and the total sales is 

dttSdtdataSTS
LL L

t 00
)(),(

 

(11) 

In a similar way, the revenue from selling products of age a at instant t is 

   
)(                      0

)(        D(a)(a)
),(

at

atp
taR

 

(12) 

The revenue from units sold at time t is 

dataRtR
L

t
),()(

 

(13) 

and the total revenue is 

0 0

L L L

t
TR R( a,t )da dt R( t )dt

 
(14) 

The above mathematical expressions allow us to compute total revenue (TR), total sales (TS) and total 

waste (TW). By the way, TS and TW are related in the sense that their sum is equal to the total initial 

inventory, i.e. 
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daaITWTS
L

0
)0,(

 

(15) 

Moreover, we can calculate the number of units of each age sold in the time horizon [0,L] as 

)()()(

),(),()(ˆ

)(

0

)(

0

L

0

aaDdtaD

dttaSdttaSaS

a

a

 

(16) 

This leads to another way of computing total sales as 

daaaDdaaSTS
LL

00
)()()(ˆ

 

(17) 

Analogously, the amount of revenue obtained from the sale of units aged a along the horizon [0,L] can 

be computed as 

)()()()()(

),(),()(ˆ

)(

0

)(

00

aaDapdtaDap

dttaRdttaRaR

a

aa

 

(18) 

This allows an alternative expression for computing total revenue as 

daaaDapdaaRTR
LL

00
)()()()(ˆ  

(19) 

Note also that the ratio             represents the percentage of the total units sold that had age a. 

Similarly, the ratio             corresponds to the percentage of the total revenue that comes from 

units of age a.  

 

TSaS /)(ˆ

TRaR /)(ˆ
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4. SOME ANALYTICAL RESULTS 

Parameter  controls the steepness of the price reduction. In fact, this is the only parameter that can be 

controlled by the decision maker (the other two, price elasticity and age sensitivity of demand, depend 

on consumers and cannot be changed by a manager’s decision). Therefore it would be interesting for 

our analysis to know the relationship between  and the relevant model outputs.  

 

It is proven below that any price reduction policy will positively affect waste generation, reducing the 

number of spoiled units. In other words, there is an inverse relationship between the total waste 

generated TW, and the price reduction rate . Note that this means that when the price decreases at a 

faster rate, sales increase, thus reducing the number of units that reach their expiry dates. 

 

Given that according to equation (15) the value TS+TW is a constant, stating that TW decreases when  

increases is equivalent to saying that when  increases TS also increases. We should therefore prove 

that dTS( )/d( ) is non-negative. 

 

Proposition 1.  TS( )/ 0 

Proof. Following the definition of TS in equation (11), and the definition of S(t) in equation (10), it 

holds that 

 (20) 

 

Also, by equation (9), it holds that 

 (21) 

 

L L

t

L

dt
taS

dt
tSTS

00

),,(),()(

(a) tif                                                        0

(a) tif   ))/(1ln()/(1[),(
1]

0 LaLaDtaS



18 

 

Since the partial derivative in equation (21) has a non-negative value in any case, it holds by equation 

(20) that TS( )/ 0. 

 

This result thus indicates that for the dynamic price policies considered, increasing the intensity of the 

price reduction (i.e. increasing ) always leads to higher sales. Moreover, the positive effect of price 

reduction on waste reduction is higher the larger the price elasticity of demand, i.e., if > ’ then 

TS( , )/ ≥ TS( , ’)/ . 

 

Proposition 2. ( TS( )/ )/ 0 

Proof. According to (20) and (21) it follows that 

0 0

L L L L

t t

TS( ) S( a,t, ) S( a,t, )
da dt da dt

 

(22) 

 

i.e., 

12
0-D 1 1 1      if t (a)

0                                                            if t (a)

S( a,t , ) ln ( a / L ) ( a / L )

 

(23) 

 

And, again, this second partial derivative is non-negative in any case, which confirms the proposition. 

 

This result thus states that the sales increase effect of the price reduction policy is more intense the 

larger the value of the demand elasticity. This means that products with elastic demand are the best 

candidates, i.e. those that will benefit more from, for implementing this type of dynamic pricing policy. 
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5. EFFECTS OF DYNAMIC PRICING 

In order to study in more detail the effects of the proposed dynamic price strategy both on total revenue 

and total waste, a series of experiments considering different combinations of parameters α, β and γ 

were carried out. The software used for all the calculations was MATLAB
®
, a well-known scientific 

computing environment. Seven different values ( {1/3; 1/2; 2/3; 1; 3/2; 2; 3}) were considered for 

the price elasticity of demand. Note that these values consider different inelastic, unitarily elastic and 

elastic demand scenarios. For each value of  we explored 20 different, equally-spaced values for the 

price discount speed parameter  varying from 0 to 1/ , allowing us to gauge in detail the effect of this 

influential parameter. The different  values go from no price reduction ( =0) to the maximum 

reasonable price reduction intensity. Thus we do not consider extreme-discount policies involving 

>1/ . We also use one of three possible values for parameter ={1; 2; 5}. These values have been 

chosen to represent three different levels for this factor: =1 represents a linear reduction in demand 

due to product aging, while the other two values represent a non-linear demand reduction, with the 

more significant effect occurring at a later date, the larger the value of  (see Figure 2). Note that, 

because it is less realistic, we do not consider β<1 which would correspond to a situation where the 

demand reduction with age would be steeper at first than later on.  

 

Regarding the age profile of the initial inventory, we have considered three scenarios (see Figure 3). 

The first one (labelled case I) implicitly assumes a random picking of units by customers, which can 

give rise to a uniform distribution of the number of units of each age kept in stock. The opposite case 

(labelled case III) corresponds to the more likely common situation in which the number of older units 

in inventory decreases with age (in our case, linearly). Case II is a mixture of the other two, with an 

initial random picking until instant L/2, and then a linear decrease. The three patterns can be seen as 

special cases of a single pattern with constant inventory until a certain age (0 for case I, L/2 for case II 
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and L for case III) and then a linear decreasing trend to reach zero stock at L. No convex pattern for 

initial product age is considered. In all three cases the total number of units in the initial inventory, i.e. 

the area below the corresponding age profile, was fixed at the same value, namely 300 units, for the 

sake of comparison.  

 

========== FIG 3 ========== 

 

These three initial inventory profiles are just examples considered to illustrate and assess the 

effectiveness of using price reductions to reduce waste without sacrificing revenue. The methodology 

used to assess the effectiveness works independently of a given initial inventory profile. Actually, the 

initial inventory profile would be different from one company to another and, even for a given 

company, it would be different in different time periods. Whatever the initial inventory profile, i.e. for 

any arbitrary initial inventory profile, the proposed approach can empirically/numerically compute the 

sales and revenue in each time period and for the whole time horizon. 

 

The specific values used for the parameters were L=10 t.u. and p0=5 m.u. In order to fix the value of 

the demand parameter D0 we carried out some preliminary experiments to assess the amount of 

spoilage generated in each case. Figure 4 shows the total waste and the total revenue for the 

no-discount scenario (i.e. γ=0) and for α=1 and β=2. Note that TW is highest for case I and lowest for 

case III (with case II in between). For TR the opposite occurs. 

 

Note that all the points plotted in Figure 4 lie on a straight line. That is not surprising, given that, 

according to (15), the sum of TW and TS is a constant, the same for all three initial inventory cases 

considered. And, since the results plotted in Figure 4 correspond to a no-discount policy =0, i.e. p=p0, 

the total revenue TR is proportional to TS. Hence 
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(25) 

 

With respect to the value of D0 chosen, in the end a value D0=15 was selected so that the spoilage that 

results after the initial experiments (around 5%-10% depending on the case) is similar to the levels 

observed in practice and reported in the literature. For example, Chung and Li [14] report that disposal 

rates are on average 2%, sometimes reaching 10% while Ferguson and Ketzenberg [22] mention that 

spoilage rates may reach 15%. 

 

Figure 4 also allows us to comment that an obvious way to reduce spoilage and, at the same time, 

increase revenue is by increasing the demand rate (e.g. through promotion). Doing so, however, has 

costs and also its effectiveness is marginally decreasing. Thus, it can be seen in Figure 4 that the effects 

of D0 increases are marginally decreasing. 

 

========== FIG 4 ========== 

 

Also, before we show the results obtained for the different scenarios, it is interesting to take a look at 

the type of information that can be derived from the proposed approach. Thus, for example, Figure 5 

shows, for α=2, β=1 and case I of the initial inventory age profile, the total sales and total revenue 

obtained with the different price discount policies from γ=0 (i.e. no discount) to γ=1/α (which is the 

maximum discount rate considered). For each value of γ, a different point is obtained. In this case, 

small values of γ slightly increase TR but those disappear as γ approaches 1/α. The effect on TW of 

varying γ is monotonic, i.e. TW always decreases as γ increases. This confirms the theoretical result 

presented in Section 4; that is because the price discounts offered to customers stimulate demand and 
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thus reduce spoilage. But what we would like to focus on is that the slope of the segment joining each 

of these points with the origin represents the average price charged. It can be seen that the higher the 

discount the lower the average price and, what is more interesting, higher revenue, lower spoilage and 

lower average prices can be obtained using the appropriate dynamic pricing policy.  

 

This gives the best of both worlds: profitability and corporate social responsibility. Unfortunately, as 

we will see, this situation, which benefits the company, consumers, the environment and society in 

general, does not always occur. For this to happen, certain factors must concur, among them that the 

price elasticity of demand is sufficiently large. It is clear that if demand is not sufficiently price elastic, 

then price discounts would not produce a demand increase large enough to compensate for the loss of 

revenue due to the price reduction. In other words, a dynamic price strategy increases its effectiveness 

and attractiveness as the price elasticity of demand increases. The other two factors, i.e. the age profile 

of the initial inventory and the sensitivity of demand to age, also have an influence, but not as 

significant as that of the demand elasticity. 

 

========== FIG 5 ========== 

5.1. Revenue loss vs. spoilage reduction 

From the above discussion it follows that, although spoilage reductions are warranted with a dynamic 

price strategy, the total revenue may fall. In that case, the proposed approach allows us to see the 

trade-offs between both magnitudes. Thus, for example, Figure 6 shows, for α=β=2, the reduction in 

total revenue versus the reduction in total waste that occurs as the discount speed parameter γ increases. 

The slope of the curve represents the marginal loss of revenue for a unit waste reduction. Note that the 

curves are not generally monotonic. Parts of the curves have a positive slope, meaning that the 

reduction in waste brings about revenue losses but, also, in some parts, the slope is negative indicating 
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increases in total revenue compatible with waste reduction. Thus, in the case of initial inventory age 

profile I, total revenue first slightly increases (w.r.t. the γ=0 no-discount benchmark) but, after reaching 

a maximum, decreases if higher price discounts are made. This type of trade-off analysis is different 

from the one carried out in the simulation study of Chung and Li [14], which reaches the conclusion 

that an additional 2% augmentation in sales is required to compensate for every 5% increase in 

markdown. 

 

========== FIG 6 ========== 

 

Figures 7 and 8 show the effects on TR and TW of changing the discount speed factor γ for varying 

values of parameters α and β, and for the three initial inventory age profile cases. Note that the scale of 

the TW axis indicates that, as mentioned above, case I is the one that generates the largest spoilage 

while case III generates the least. The decrease in spoilage as γ increases is significant, reaching zero 

total waste in the cases of initial inventory age profiles II and III. Since in age profile I there exists 

initially an inventory with a close to zero remaining shelf life, it is not possible to reduce TW to zero. 

As regards the total revenue, it can be seen that because of the high price elasticity of this scenario α=3, 

it increases (or at least does not decrease) for small γ, although when one TW reaches zero further γ 

increases are unnecessary and only lead to a reduction in TR. TR increases are more significant in cases 

I and II because they involve more spoilage than in case III. 

 

========== FIG 7 ========== 

 

Almost the same effects can be observed in Figure 8. Thus, again, cases I and II lead to larger spoilage 

in the no-discount γ=0 scenario. However, independently of the scenario, TW is always reduced when γ 

increases. As regards TR, although, as we mentioned above, for high price elasticities TR can be 
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increased, for lower price elasticities TR decreases as γ increases, because the increases in demand 

induced by the price discounts are not large enough to compensate for the lower unit price. It is also 

evident that faster price discounts (i.e. larger γ values) than the one required to reduce TW to a small 

value (close to zero) are not recommended since they only contribute to further reduce TR. 

 

========== FIG 8 ========== 

 

Note that the proposed approach can be related to a single-variable bi-objective optimization problem 

since we consider two objective functions, namely total revenue and total sales volume (or equivalently, 

total waste) as well as a single decision variable, namely the discount intensity . Thus, when plotting 

the value of the two objective functions for different values of  (as in Figures 5, 7 and 8) we can 

visualize the corresponding Pareto Front, i.e. the non-dominated section of the plot. We have labelled 

the above proposed approach a “parametric, bi-objective approach” rather than a bi-objective 

optimization approach because we are not trying to optimize the objective function in the sense of 

computing the best value of parameter . What the proposed approach does is to assess, by evaluating 

the two objective functions for different values of , what the effects on the two objective functions are. 

These are related to the shape of the corresponding Pareto Front and, as the results show, generally 

depend on the scenario considered, i.e. on the price elasticity, the age sensitivity of demand and the 

profile of the initial inventory. 

 

5.2. Sales and revenue as a function of age and time 

Figure 9 shows the detailed results on the time and age distribution of the number of sold units 

(respectively, S(t) and     ) and their corresponding revenue R(t) and     . Although only the results 

of a sample scenario are shown, the proposed approach allows us to study the distribution patterns for 

any dynamic pricing scenario. For the scenario shown in Figure 9, corresponding to α=1, β=2 and 

)(ˆ aS )(ˆ aR
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γ=0.5, although there is little difference in the average age of units sold between the three cases (5.09, 

5.16 and 4.79 for cases I, II and III, respectively), it can be seen that there are differences in their 

respective shapes, with cases I and II involving a larger share of aged units and a smaller share of 

fresher units than case III. The area below each of these curves represents the TS of these scenarios, 

which are, respectively, 234.6 p.u., 290.2 p.u. and 297.7 p.u. As regards the revenue contribution of 

units of different ages, the distribution has a similar shape to that for the units sold, except that the 

curves reflect that, slightly at the beginning but more pronounced with age, the more aged units are 

sold at a lower price and therefore their relative revenue contribution is decreasing with age. Similarly, 

the area below each of these curves represents the TR of these scenarios, which are, respectively, 940.7 

u.m., 1136.2 u.m. and 1246.4 u.m. 

 

========== FIG 9 ========== 

 

As regards the evolution of sales and revenue with time, it can be noted that the sales and revenue at 

time zero, i.e. S(0) and R(0), are the same for the three initial inventory profiles. This is due to the fact 

that those two values do not depend on the initial inventory profile. Thus, according to (9), (10) and 

(13), 

 

 (26) 

For the α=1, β=2 and γ=0.5 scenario considered in Figure 9, this leads to 

 (27) 

For the parameter values assumed to be D0=15 and L=10, a value of S(0)=117.81 units sold results, 

which is the same for all three initial inventory cases considered. 
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Analogously, according to (12), (13), (2) and (3), 

 
(28) 

For the α=1, β=2 and γ=0.5 scenario considered in Figure 9, this leads to 

 (29) 

For the parameter values p0=5, D0=15 and L=10, this results in a value of R(0)=500 m.u., independent 

of the initial inventory case considered. 

 

Finally, note that if there is no price reduction, i.e. if =0, the shape of both functions S( t )  and R( t )  

is the same since they are proportional, i.e. oR( t ) p S( t ). The difference in shape that can be 

observed in Figure 9, however small, reflects the existence of price reductions in the =0.5 scenario 

considered. 

 

5.3. Effects of demand elasticity on total revenue 

In order to measure the effect of demand elasticity, the reduction in total revenue corresponding to a 

reduction of 50% in spoilage will be considered. Let γ50% be the smallest value of the discount speed 

factor γ that leads to a reduction larger than 50%. Such a value is variable and depends on the scenario 

considered. Figure 10 shows the loss in total revenue (w.r.t. the γ=0 no-discount scenario) that 

corresponds to the γ50% policy. 

 

========== FIG 10 ========== 

 

It can be seen that the loss of total revenue clearly depends on the demand elasticity α, although that 

dependence is smaller as β increases. Note also that, actually, total revenue losses generally exist for 

demand elasticities below 1.5. Above that threshold, total revenue is practically maintained or even 
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slightly increased. Interestingly, for high α values, the improvements in total revenue are higher as β 

decreases.  

 

The scenarios in which the (negative) economic impact of spoilage reduction is higher, correspond to 

an inelastic demand (i.e. α<1). This is not surprising since, when demand is price inelastic, the 

effectiveness of price discounts, as a means to achieve demand increases, is rather limited. Actually, as 

α decreases below the unity threshold, the loss in total revenue increases at an exponential rate. This 

behaviour occurs for the three initial inventory age profiles, although it is somewhat less acute for case 

III. As a rule of thumb, using the middle scenario (i.e. case II and β=2) as the reference, it can be 

estimated that the total revenue loss for a 50% reduction in spoilage can be around 20% for the worst 

case of a rather low demand elasticity (α<0.5). 

 

6. CONCLUSIONS 

In recent times the interest in reducing spoilage, especially of food products, has increased not only 

because of its economic significance but also because of its social and environmental impact. Dynamic 

price strategies, i.e. offering aged units at a lower price than fresh units, are an effective way of 

reducing spoilage since customers are thus encouraged to demand less fresh but cheaper units. There is 

the risk, however, that if the price reduction is too steep or the price elasticity of demand too low, the 

price dynamic strategy may lead to a lower total revenue.  

 

In order to measure and quantify the effects of these and other factors (such as the initial inventory age 

profile or the sensitivity of demand to the product age) on sales, revenue and spoilage, this paper 

proposes a continuous-time mathematical model that allows studying the depletion of a given initial 
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inventory. The aim of this model is to gain insight and learn about the interactions between the 

dynamic price strategy and different factors considered. 

 

In addition to the total sales and revenue, the corresponding age distribution can also be computed and 

analysed. And not only can the total sales and revenue for the whole horizon be computed but also the 

value of those magnitudes in each time period. It has also been proven that an age-dependent price 

discount policy, such as the one considered, always reduces the number of units spoiled/wasted so that 

the higher the discount rate, the fewer the number of units reaching their end of life. Moreover, this 

effect is more evident as the price elasticity of demand increases. 

 

A number of experiments have been carried out considering many different scenarios and the first 

remark to make here is that the behaviour is different, depending on the scenario considered. In all of 

them, however, it is confirmed that the dynamic price strategy can significantly reduce total waste, 

often theoretically to a value close to zero. However, the effect on total revenue is not always positive. 

In some scenarios with high price elasticity of demand and large potential spoilage, total revenue can 

be slightly increased if the price is discounted. In some other cases, total revenue may be kept more or 

less constant, provided the price-discount speed is not too high. And in some other cases, generally 

involving low price elasticity, an age-insensitive demand or a not too aged initial inventory, there can 

be a substantial revenue loss that increases as the price-discount is performed faster.  

 

The numerical results depend on the initial inventory profile and indicate, in some specific cases (e.g. 

those in which the price elasticity and/or the age sensitivity of the demand is small), that reducing the 

price reduces revenues without hardly increasing sales or reducing waste. In such cases the proposed 

approach would warn against (and discourage) the use of dynamic pricing. Thus, the advantage of the 
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proposed approach is its ability to assess and compute the effects of a given price reduction policy in 

any specific situation. 

 

Regarding the managerial consequences of the study carried out, we observed that the effects on 

revenue of marking down the products as they are approaching their expiry date, are very dependent on 

the demand elasticity, but, even when the product is very price inelastic, we have estimated that, in 

general, reducing the spoilage by 50% would have an impact on total revenue loss not exceeding 20%. 

In a more desirable scenario, if the demand elasticity is between 1 and 2, the loss in total revenue 

compatible with spoilage reduction is, in general, very small or non-existent. And, if the demand 

elasticity is above or equal to 2, it is possible to combine a significant reduction in spoilage with a 

small increase in revenue. As a conclusion, we can expect the dynamic price policy to be very effective 

in reducing spoilage without large reductions in total revenue (or even with small increases) for a large 

fraction of possible demand and consumer behaviour scenarios, excluding those cases of low to very 

low values of price elasticity, especially when combined with insensitivity of demand to product age. 

In those unfavourable cases, some other alternative, different from price discounts, should be sought. 

 

As regards limitations, there are some on which we would like to comment. Thus, for example, we 

have not considered the feasibility or the cost of implementing a continuous-time dynamic price 

strategy. Moreover, some researchers [35] argue that, in practice, prices are not generally changed 

smoothly, since only significant discounts will increase demand significantly. In addition, other issues 

that also affect demand and that can interact with the dynamic price strategy, such as displayed quantity 

effects, i.e. how the display of larger quantities of products can attract customers and increase demand, 

have not been considered. Also, although we have considered a deterministic scenario in our analysis, 

in principle, that price reduction can eliminate or reduce waste without hurting sales also applies to the 

case of stochastic demand. The experiments would have to be replicated a number of times to carry out 
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a Monte Carlo simulation of the effects on total revenue and on total waste of each discount intensity 

value . The fact that we would have confidence intervals would complicate the analysis but similar 

conclusions might be expected, i.e. that, depending on the scenario, it is feasible to achieve waste 

reduction and revenue increase/preservation. 

 

In any case, the present research can be considered as a first step, a proof of concept that the best of 

both worlds (more revenue and less spoilage) can be achieved through this type of dynamic pricing. 

The theoretical and empirical results obtained in this simplified approach are encouraging to further 

study more realistic and complex approaches. Thus, for example, it is possible to extend the analysis to 

an infinite horizon approach with successive cycles of a given length T (not necessarily equal to L) so 

that the initial inventory of each cycle is endogenously determined by the replenishment decisions and 

pricing policy used. Thus, for a given order size, at the beginning of each cycle (e.g. the first day of the 

week), the existing stock is replenished with fresh product, which ages along the week so that the 

inventory profile at the start of the following cycle depends on the order size and the dynamic pricing 

policy used (which determines the sales level). The decision problem is to determine the optimal values 

(in a Pareto sense) of the order size and the price reduction rate. Revenue and waste would be the two 

objective functions considered. 

 

The proposed approach can also be extended so as to consider a discrete-time finite horizon with 

replenishment in every period and with fixed initial and final inventory profiles. The idea is to compute 

the amount to order each period and the price reduction rate (which can be the same or different in each 

period) that are optimal, in the bi-objective sense of maximizing revenue and minimizing waste. 

Studying those more realistic scenarios is, however, left for further research, provided that the 

advantages of the dynamic pricing policies studied in this paper have been well established. 
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Finally, although the proposed approach adopts a simplified, aggregate perspective in which 

differences in customers’ behaviour are not distinguished, from a micro perspective these differences 

between customers can be essential and should be modelled. Other factors, such as operating costs 

(including ordering and holding costs), lead times and reliability of suppliers, etc., would also increase 

the realism and practicality of the approach, which in turn would contribute to its implementability.  
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Figure 1. Inventory evolution with time. As no replenishment is considered, I(a,t)=0 a<t. I(L,t) 

represents the product wasted at instant t L. 

 

 

 

 

 

 

 

 

 

 

Figure 2. Decreasing demand as the units age, depending on the  parameter  
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Figure 3. Age profile of the initial inventory I(a,0) in the three cases considered, all with the same total 

initial stock 

 

 

 

 

 

 

 

 

 

Figure 4. Change in total revenue and total waste, for a no-discount scenario ( =1, =2, =0), as D0 

increases 
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Figure 5. Change in total revenue and total sales, for a sample scenario (case I, =2, =1), as γ 

increases. Slope of segment represents resulting average price charged. 

 

 

 

 

 

 

 

 

 

 

Figure 6. Revenue loss (w.r.t. no-discount benchmark) versus total waste reduction ( =2, =2) 
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Figure 7. Change in total revenue and total waste, for α=3 and different β values, as γ increases 
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Figure 8. Change in total revenue and total waste, for β=2 and different α values, as γ increases 
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Figure 9. Age and time distribution of number of sold units and corresponding revenue for a sample scenario (α=1, β=2 and γ=0.5) 
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Figure 10. Loss in total revenue corresponding to a discount speed factor γ50% 

 

 

 

 


