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Abstract: The main aim of this research is to analyze the differences between cellular manufacturing 

and cellular disassembly systems. While doing so, this paper makes a relevant contribution. It 

proposes a mathematical programming formulation for robust manufacturing and disassembly cell 

formation problems. A solution method based on the Tabu Search schema is adapted for both 

problems, and will be used for the comparison analysis. The fact that the Tabu Search algorithm has 

been effective in different cell formation approaches gives us confidence in its reliability, and 

although alternative metaheuristic approaches may be developed in the future, we opted for adapting 

this algorithm to the problem at hand, since our first aim is to obtain data to analyze the difference in 

the design of both types of production environments and not to develop new approaches to the cell 

formation problem. A full factorial design study is proposed in order to appraise the significance of 

controllable factors in cellular designs. Four dependent variables were considered in the 
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experiments: total cost, size of the cells, number of intercellular moves, and machine utilization. The 

issue here is to see what happens with the solutions for each production environment (manufacturing 

and disassembly) when varying factors, in order to analyze the differences and similarities between 

both. 

 

Keywords: cell formation problem; cellular manufacturing; disassembly; robust optimization; 

operational research. 

1. Introduction 

The cell formation problem (CFP) has been one of the most studied problems in manufacturing 

literature, and is the first technical problem faced in the design of a Cellular Manufacturing System. 

The CFP consists of grouping machines (and eventually tools, storages, operators, etc.) into 

manufacturing cells as independently as possible in order to satisfy a performance criterion, for 

example the inter-cell traffic or the number of inter-cell movements. To address this problem, several 

and diverse solution procedures have been developed and published over recent years. Wemmerlöv 

and Hyer [1], Singh [2], Selim et al. [3] and Papaioannou and Wilson [4] provide extensive reviews of 

prior research. Recently, the growing interest in Environmentally Conscious Manufacturing and 

reverse logistics has motivated a renewed attention to disassembly systems. Of particular interest to 

our research is the idea of extending the benefits of a cellular configuration into the disassembly 

process [5–6].  

There is a vast literature on disassembly systems [7–10], which can be widely classified into three 

major areas [10]: 1) modeling and representation of product disassembly sequences, 2) disassembly 

process planning, which includes the extent to which disassembly should be performed and how to 

decide the optimal disassembly sequence [11], and 3) disassembly system design and line balancing.  

The design of a cellular configuration for the disassembly process or the disassembly cell 

formation problem (DCFP) belongs to the third category. To the best of our knowledge, the first 

reference regarding the DCFP from an analytical point of view is found in Adenso-Díaz et al. [5], 

who present a mixed integer programming formulation that minimizes the total cost function of 
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machinery depreciation and intercellular movement of products. The proposed model seeks to group 

the disassembly tasks and assign them to cells together with their required resources so that total costs 

are minimized. Based on such formulation, Mar-Ortiz et al. [6] define a set of neighborhood 

structures for the problem, which are implemented in a Tabu Search schema to analyze their behavior 

in a real-world instance. Andrés et al. [12] propose a two-phase approach for determining the optimal 

disassembly sequence when the disassembly system has a cellular configuration. Finally, Mar-Ortiz 

et al. [13] propose a variable neighborhood search (VNS) algorithm to solve a disassembly cell 

formation problem with demand variability under a reconfigurable approach. The reconfigurable 

approach allows the cells to be rearranged periodically to deal with demand variability in a 

multi-period planning horizon.  

The main assumption of these papers is that the benefits of any type of layout are the same for 

similar production environments, independently of the operations to be performed. When only one 

type of product is to be processed and the volume is high, a dedicated disassembly line seems to be 

justified. However, disassembly systems are characterized by the arrival of several similar types of 

product to be dismantled, each one with a low-medium volume. Therefore, if we consider the use of a 

cellular configuration to take into account the similarities in the disassembly tasks, the disassembly 

operations may be improved, as happens with manufacturing processes that have the same 

characteristics.  

As regards the problem of selecting a suitable manufacturing layout for a given production system, 

Gamberi et al. [14] proposed an analytical model to evaluate the suitability of implementing a 

dedicated line, rather than a cellular configuration or a further kind of layout (i.e. job shop when 

variability of products is high and volumes per item low), considering frequent set-ups, such as those 

caused by batch switching, thus enabling the application of the Characteristic Curve [15] to 

manufacturing lines organized on a batch-production system. Even though no similar approaches are 

available for disassembly systems, their implementation is simply customizable for such 

environments. Thus, our study is located in a step following practical considerations executed by 
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decision makers, which have guided the selection of a cellular configuration as a suitable layout for 

disassembly tasks. So, the detailed design of a cellular configuration follows by implementing 

published approaches. 

Even though these assumptions seem appropriated, the underlying question is whether or not 

manufacturing and disassembly cells are different, from a cellular configuration point of view. If they 

are similar, solution approaches for the manufacturing cell formation problem may be efficiently 

applied to solve the disassembly cell formation problem. On the other hand, if they are different, a 

parallel theory must be built around this issue. 

It is well known that reverse logistics systems are characterized by the uncertainties of quantity 

(variability of input items), quality (variability of conditions of similar items) and time of parts 

arrivals, and disassembly systems are no exception. Quality uncertainty means that a given product 

may arrive at the disassembly floor without several of its components. This could be due to the same 

product could be damaged during transport or handling and then supplied damaged to the 

disassembly system, that should check its status. So, the design of a cellular disassembly 

configuration should also follow the design of external and internal logistics, that could increment or 

decrease activities required in the production plan (i.e. for checking products integrity). An example 

of solutions that improve the internal and external logistics in WEEE (Waste of Electrical and 

Electronic Equipment) treatment networks is reported in Gamberini et al. [16].  

This issue has been modeled as a relative frequency function (fpj) for which any operation j is 

required on a product p, and consequently, the probability of any operation sequence

'''́ 1
jlj plpjpjj ff  is computed. The former is possible, because of the formulations being 

based on the concept of dedicated cells [17], which assigns operation types (instead of part types) to 

the cells, so that all operations of the same type are carried out in the same cell with the clear benefits 

that this brings in terms of learning effect, better quality, etc. If all disassembly operations were 

required for every product (fpj = 1) we would face the typical case of assembly, which is a well-known 
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situation. Quantity uncertainty means that product demand varies on a random basis, i.e. stochastic 

demand of products. This issue may be approached by stochastic programming formulations [18], 

robust optimization models [19], or fuzzy systems [20–21], among others. 

It should be noted that the performance of a cellular manufacturing system, and particularly of a 

disassembly system, is highly dependent on the accuracy of the input data. It may rapidly deteriorate 

if demand and product quality changes. However, most of the current methods designed for the 

manufacturing cells formation problem have been developed for a single-period planning horizon. 

These models assume that problem data (e.g. product mix and demand) are constant for the entire 

planning horizon. We decided to use a robust approach because we elected to relax the assumptions of 

knowing the probability distribution of uncertain data. In the robust approach the product demand 

varies in a random manner. However, this variation can be described in a number of probabilistic 

scenarios with a given occurrence probability. The robustness of a layout is an indicator of its 

flexibility in handling demand variability. The aim of this approach is to obtain a cellular design in 

which the machines remain constant and do not move, only the flow of products changes once the 

demand has been observed.  

The main aim of this research is to analyze the differences between cellular manufacturing and 

cellular disassembly systems. While doing so, this paper makes two relevant contributions. First it 

proposes a mathematical programming formulation for both the robust manufacturing cell formation 

problem (MCFP), and the robust disassembly cell formation problem (DCFP). Second, a new 

solution method is developed for both problems in order to obtain data in order to analyze the 

difference in the design of both types of production environment. 

In the next section we propose robust optimization models for both problems to deal with demand 

uncertainty. In Section 3, we propose a metaheuristic approach to solve them. In Section 4, we 

describe the experimental design to evaluate the differences, identifying performance criteria to 

evaluate cellular configurations. Section 5 provides relevant conclusions.  
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2. Robust Optimization Models 

Robust optimization is a framework for modeling optimization problems that involve uncertainty. 

It has been applied to several areas of research and practice, such as production planning, machine 

programming, international supplies, and logistics. We refer to Cao and Chen [19] for an example in 

the manufacturing literature. The robust optimization methodology uses scenario-based approaches 

to deal with the uncertainty, where the scenarios correspond to the possible realizations of the 

uncertainty. The specification of a set of scenarios provides a way to incorporate different attitudes 

toward risk, relaxing the assumptions of knowing the probability distribution of uncertain data, 

thereby making a difference to stochastic programming. Defining the set of scenarios is a difficult 

task. It requires, for the decision maker, the dual mission of identifying the main factors causing 

uncertainty and describing the relationship between them. This process helps to reduce the number of 

scenarios, eliminating those that are unrealistic, and favoring its analysis. 

The aim of the robust optimization approach in our cell formation problems is to design a cellular 

configuration that performs well across several potential realizations of uncertainty over a specified 

planning horizon. Since the definition of good performance is context-dependent, there exist several 

definitions of robustness [22–24]. Particularly relevant to our study is that provided by Mulvey et al. 

[22], which defines the concept of robustness as “finding a solution that minimizes the largest 

deviation from optimality”. 

Let M and P be, respectively, the set of machine/tools and the set of products that need to be 

dismantled or produced. Let Q be the set of operations available for the respective process, and let 

Qp Q be the ordered set of operations required to dismantle or produce a product p. To this end, a 

product p and an operation q are not independent, and each pair {p, q} represents a task. Let N= 

p Pcard(Qp) be the total number of tasks, which have to be grouped into a subset of cells. We assume 

that the product demand (i.e. arrival of products to the disassembly floor or the orders of new products 

to be fulfilled by manufacturing, respectively) is not deterministic but can be described by several 

discrete scenarios with probabilities of their occurrences. For each product, the sequence in which the 
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operations need to be performed is known. Two cost elements are considered: machine/tools 

acquisition (i.e. amortization) costs and material handling costs. Assuming that cell sizes are not large 

and that inter-cell distances are small, intercellular transportation costs are considered as a surrogate 

for material handling costs. The notation used in the mathematical formulation is described in Table 

1. 

---- TABLE 1 HERE ---- 

To formulate a robust optimization model [22], we assume that the decision variables related to 

the formation of cells (yc) and the decision variables related to the number of machines allotted to 

cells (zmc) are the design variables valid for all scenarios, and we let the decision to allocate the j-th 

operation of product p to cell c (x
ω

pjc) form the control variables, which can be adjusted once the 

demand is observed. Thus, the cells are formed and the machines are assigned to them, and then 

decisions regarding task and flow patterns are made for each scenario realization. Consequently, we 

will have a variable number of tasks processed in each cell c, in relation to each scenario ω Ω. We 

introduce the error or recourse variable em
ω

c to indicate any workload surplus in the machines of cell 

c. We also introduce an extra parameter  that the decision maker can adjust to give varying 

importance to the function that penalizes infeasibility in machines’ capacity constraints. 

The robust optimization problem is to determine the best cellular configuration for a given set of 

potential scenarios by grouping machines and assigning them to cells, so that total costs are 

minimized, while allowing tasks’ and flow patterns’ reconfiguration for each scenario realization. 

The mathematical model for the robust MCFP is given by: 

Minimize
Mm Cc

mcmMFG zTC
Cc

cem  
(1) 

subject to: 

1
Cc

pjcx  ,, PQjPp  (2) 

c

Pp Qj

pjcc yUxyL
P

 
,Cc  (3) 
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mcmc

Pp Omj

pjcpjp zHemxD
p j:

 
,, CcMm  (4) 

x
ω

pjc {0,1}
 ,,, CcQjPp p

 (5) 

yc {0,1} 
 

Cc  (6) 

zmc  0 and integer CcMm ,  (7) 

0cem  ,Cc  (8) 

The objective function in Equation (1) minimizes the total cost. The first term represents the 

machine amortization cost. The second term measures the solution-robustness by minimizing the 

expected value of the intercellular material handling cost, where: 

Pp Qj jj Cc

cpjpjcpp

p

xxD
'

'1

 
(9) 

is the intercellular material handling cost for scenario ω. This is a nonlinear function which can be 

easily linearized according to [13]. Finally, the third term measures the model-robustness by 

minimizing the expected value of the associated error.  

The constraint in Equation (2) sets a feasibility condition. It ensures that in scenario ω, the j-th 

operation of product p, will be assigned to one, and only one, cell. The constraints in Equations (3) 

provide the lower and upper bound conditions of cells. Capacity conditions are given by Equation (4). 

This guarantees that machine capacities are not exceeded, while ensuring that all product demands are 

met. The parameter pj implies that during the time required by the j-th operation of product p, the 

machine/tool type m cannot be used in any other operation; all that time corresponds to the machine 

type m, regardless of whether the use of other machines was also considered in the total duration time 

of the operation. Finally, Equations (5) ~ (8) deal with the nature of the decision variables. It should 

be noted that although the recourse variables are declared as continuous, the formulation forces them 

to take integer values. 

Now, in order to formulate the robust DCFP, the following equation must be replaced in the 

objective function: 
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Pp Qj jj Cc

cpjpjcpjjpjpp

p

xxfD
'

'' 1

 
(9') 

As well as the constraint in equation (4): 

mcmc

Pp Omj

pjcpjpjp zHemxfD
p j:

 
,, CcMm  (4') 

The CFP is essentially an NP-hard problem, as it is a variation of the fixed charge problem with 

additional decision variables [25]. The robust optimization formulations proposed here, to capture the 

demand uncertainty in the manufacturing and disassembly systems, result in more complicated 

problems than the classical cell formation problem, with additional decision variables associated with 

a set of potential scenarios. Therefore it is usually inefficient to use an exact algorithm to solve the 

CFP for real-life instances. Actually, to solve practical problems, feasible integer solutions are 

obtained after a reasonable computational time in a commercial MIP solver. 

3. Solution Approach 

In order to analyze the results obtained with the above models, and given their complexity, a Tabu 

Search algorithm was used. Tabu Search is a traditional metaheuristic which has been proposed for 

solving different kinds of cell formation problems [4]. Our implementation is based on the design of 

Adenso-Díaz and Lozano [17], which is also similar to those proposed previously and later for a wide 

variety of problems of cellular design [13, 25–28], including robust designs [19]. The fact that this 

Tabu Search algorithm has been effective in different cell formation approaches gives us confidence 

in its reliability, and although alternative metaheuristic approaches may be developed in the future, 

we opted for adapting this algorithm to the problem at hand, since our first aim is to obtain data to 

analyze the difference in the design of both types of production environments but not to develop new 

approaches for MCFP. The remainder of this section describes the modifications required in the Tabu 

Search algorithm to solve our particular problems. 

Specifically, a solution with N tasks will be represented by an array x̂ = xω(1), xω(2), …, xω(N) , 

for each scenario, in which the cardinality constraints are met. Each position of x̂ indicates the cell c 
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to which the i-th task has been assigned in scenario ω (xω(i) = c). To comply with cardinality 

constraints a feasible solution must satisfy that L Wω(c) U for all c and for all ω, where Wω(c) is the 

number of tasks assigned to cell c in scenario ω. See Fig. 1. For a given solution, the number of 

machines of each type required in each cell for scenario ω (
mcz ) can be obtained using the constraints 

in Equations (4) and (4'), respectively, for each production environment, as in Equation (10): 

Pp

pu

cixpli

ip

m

mc D
H

z
ˆ:

1

 

(10) 

---- FIGURE 1 HERE ---- 

Thus, the number of machines required in the robust solution can be computed as

mcmc zz , while the workload surplus in the machines of cell c for scenario ω is computed as 

in Equation (11): 

Mm

mmc

Pp

pu

cixpli

ipc HzDem
ˆ:

,0max

 

(11) 

Finally, it is easy to compute the total cost associated with solution x as follows: 

Mm Cc

mcm zxcost
Pp

pu

pli

pu

jxixij pp D
1

ˆˆ:1
Cc

cem

 

(12) 

From the initial solution onwards, a Tabu Search commences by exhaustively exploring the 

neighborhoods with three types of movement: [swap] exchange of cells between two tasks, i, j, that 

are carried out in different cells (xω(i) ↔ xω (j), xω(i) ≠ xω (j)); [insert] add an operation i to a different 

cell from the one presently in (xω(i) ← c', c' ≠ xω (i)); [union] merge all the operations of one cell with 

those of the other (thus reducing the total number of cells). These moves are typically used in the 

design of metaheuristic algorithms for the CFP [13, 27, 29–30]. With the aim of being able to 

diversify the search after a certain number of iterations without improvement (γ), the [split] move will 

divide the cell with the largest number of tasks into two (thus incrementing the total number of cells). 

The search ends after max_iter iterations without improvement. Two short-term memory structures 



11 

 

are considered to keep track of moves that remain tabu during a specified time horizon (tabu tenure). 

The swap and insert operations are associated with these tabu mechanisms, where the respective tabu 

tenures are δ and φ iterations respectively. The aspiration criterion used was the standard aspiration 

criterion used in most Tabu Search applications, which states that a tabu move is accepted if the 

solution it produces is better than the best solution found to date. 

4. Computational Experiments 

The above algorithm was coded in C using the Microsoft Visual C++ 6.0 programming 

environment via the Windows 7 operating system. All experiments were conducted on an HP Z800 

Workstation with a processor Intel Xeon X5647 operating at 2.93 GHz and 12.00 GB RAM. 

Preliminary numerical tests were used to set the values of the required parameters for the Tabu Search 

algorithm. The diversification procedure is applied after γ = 20 iterations without improvement. On 

the other hand, the stopping criterion is specified in terms of max_iter = 90 successive iterations 

without improvement in the objective function. Finally, the tabu tenures were fixed at δ = 10 and φ = 

15 iterations respectively. 

4.1. Experimental Framework 

This section describes the experimental framework used to analyze the differences between 

cellular manufacturing and cellular disassembly systems. A full factorial design study is proposed in 

order to appraise the significance of controllable factors in cellular designs. What is at issue here is to 

see what happens with the solutions of each production environment (manufacturing and 

disassembly) when varying factors, in order to analyze the differences and similarities between both. 

To do so, diverse instances of different sizes are required to carry out the computational tests, 

considering a set of factors for which there is a proved conjecture to affect cellular designs. The 

following factors were considered: 

 F1— number of products: the number and demand of products are two important factors which 

justify a cellular layout [17, 31]. Therefore the former factor is considered with three levels 

{F11— 10 products, F12— 20 products, F13— 50 products} that reflect different problem sizes.  
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 F2— demand variability between scenarios: when dealing with robust cellular designs, defining 

the number of scenarios is an issue [24] which affects the problem size. For experimental 

purposes we keep the number of scenarios fixed on 4 with a 25% of occurrence probability each, 

as we are not interested in analyzing the solution’s quality regarding the problem complexity, but 

in assessing the significance of controllable factors in cellular designs. In a robust design, the 

demand variability between scenarios is a factor which undoubtedly affects the decisions made. 

Therefore, two levels are considered for this factor {F21— 10% of demand variability between 

scenarios, F22— 40% of demand variability between scenarios}, a 10% of demand variability 

between scenarios implies that in every scenario the demand remains almost constant. On the 

other hand a 40% of demand variability implies a high degree of uncertainty in every scenario. 

 F3— material handling cost: one of the well-known benefits of cellular layouts is a reduction in 

material handling and lead times [1, 32–33]. Most of the cellular manufacturing models 

published in the literature consider the intercellular movement cost as a surrogate for material 

handling cost. Usually, mathematical models aim to create a trade-off between machine 

amortization cost and material handling costs, while minimizing total costs. However, to keep the 

study focused, only the material handling costs are considered as a factor. {F31— U~(0.5 - 1.0), 

F32— U~(2.0 - 2.5)}. 

 F4— uncertainty in quality of arriving products: a relative frequency function which is used to 

measure the probability that a disassembly operation is required for a given product, which is 

characteristic of disassembly systems [12, 34]. In order to generate the instances, for each task 

(product-operation) a random number (rand) is generated; if rand < 0.4, then the relative 

frequency function fpj  = 1, else fpj =U~(0.15 - 0.30) when F41, or  fpj =U~(0.50 - 0.75) when F42, 

and fpj =U~(0.85 - 1.00) when F43. Scenario F41 means that products arriving at the disassembly 

floor present a high degree of damage (many components are missing); on the other hand F43 

represents a scenario where almost all products arrive at the disassembly floor with all their 

components; the last scenario resembles assembly environments. 
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The advantages of using cellular manufacturing configurations for regular production are well 

known. For example, in some cases simply rearranging existing machines into a cellular 

configuration is sufficient to provide significant benefits such as reductions in: throughput time, 

in-process inventory, scrap, labor, set-up times, material handling costs, and floor space. Also higher 

machine utilization rates, better production efficiency and quality as well as market response time 

may be achieved by using cellular configurations [35–37]. On the other hand, cellular configurations 

could cause loss in the flexibility of the system because machines will now be dedicated to a few 

part-families instead of being available for more general purposes [38]. In our experiments, four 

dependent variables were considered to assess the performance of a cellular configuration for each 

production environment: 

 the total cost, 

 the average ratio of cell utilization, 

 the maximum number of intercellular moves, and  

 the average percentage of machine utilization. 

The former is used as a criterion to measure the quality of the solution, while the remaining three 

criteria are used to measure the design of the solution. The average ratio of cell size utilization 

regarding the maximum number of operations assigned is used as a surrogate for cell size. It should be 

noted that the size of the cells was not significant because solutions with the minimum number of 

cells are preferred, and the algorithm always provides solutions with this bound. 

In order to avoid any bias in the design of the instances, three diverse instances of different sizes 

were taken from the literature, where the operation sequences and machine types for a set of products 

are described; these are presented in Table 2. Each instance considers a different number of products 

and operations. However, as the proposed models do not coincide exactly with any model in the 

literature, not even with respect to the input data considered, instead of generating random instances 

we opted for using the problems reported in the literature as a data base, completing these if 
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necessary. Thus, for each one of these instances, the missing data were fixed semi-randomly, i.e. 

making sure that the order of magnitude of the data in question was not unreasonable. The full data 

employed are available on request from the authors. 

---- TABLE 2 HERE ---- 

For each instance type, where the number of products is fixed (F1), we define a class as a 

combination with the factors F2 and F3. In this sense, the class ‹2, 2, 1› represents an instance with 20 

products, a high variability of demand between scenarios, and low material handling costs. For each 

instance class, three replicates were generated. In order to analyze the differences between 

manufacturing and disassembly environments, the instances generated for the manufacturing 

environment were taken as a base to generate the instances for the disassembly environment, 

complementing them with factor F4. As a result 144 paired instances (3×3×2
2
=36 for manufacturing, 

and 108 for disassembly) were solved in order to derive conclusions. The computational times were 

very low in all cases. 

 

4.2. Analysis of Factors in Cellular Designs 

A first experiment was designed to consider the main and interactive effects within to screen the 

significant effects and interactions via the Analysis of Variance (ANOVA) for each dependent 

variable in each production environment (manufacturing and disassembly). It is important to note that 

when using ANOVA, three main assumptions must be checked: normality, homogeneity of variance, 

and independence of residuals. We did those checks for every experiment, and found no basis for 

questioning their validity. In the remaining sections we discuss and analyze the differences between 

cellular manufacturing and cellular disassembly systems for each one of the four response variables. 

The box plot in Fig. 2 shows that for the manufacturing case, the total cost behaves differently as 

the number of products changes. The ANOVA in Table 3a shows that the number of products (F1), as 

well as the material handling cost (F3) factors, were primarily responsible for the total cost 

configuration in the manufacturing systems. The number of products, the material handling cost, and 
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the interaction between both factors, contributed to a total of about 99% of the variances in the total 

cost in the manufacturing case. A post hoc Tukey test (Table 3b) shows the presence of significant 

differences in the number of products and material handling cost levels, relative to the total cost. This 

is not surprising, given that F3 is the movement cost. However, for demand variability (F2), no 

significant differences between 10% and 40% were found.  

---- FIGURE 2 HERE ---- 

---- TABLE 3 HERE ---- 

The box plot in Fig. 3 shows that for the disassembly case, as in the manufacturing case, the total 

costs behave differently as the number of products changes, but the product frequency also has an 

impact on this response variable. The ANOVA shows that for the disassembly case, the number of 

products (F1), the material handling cost (F3), and the product frequency (F4) factors in the 

disassembly systems were primarily responsible for the total cost configuration. The number of 

products (F1), the material handling cost (F3), the interaction between both, the product frequency 

(F4), and the interaction between number of products and product frequency contributed to a total of 

about 90% of the variances in the total cost. On average, the total cost in the manufacturing case is 

33.15% higher than in the disassembly case. However the 2-sample t-test reveals that there is 

insufficient evidence to conclude that the means of total costs in both production environments differ 

at the 0.05 level of significance. 

---- FIGURE 3 HERE ---- 

---- TABLE 4  HERE ---- 

Similar analyses were performed for the cell utilization, number of movements, and machine 

utilization, revealing the following findings (all results are significant at 0.05): 

(a) For the average ratio of cell utilization, the effects of the number of products (F1), the 

material handling costs (F3) and the interaction between both, accounted for 56.44% of the 

variances in the disassembly case (see Table 5), while in the manufacturing case the 

number of products was primarily responsible for the cell utilization, contributing to a total 
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of about 39% of the variances. It should be noted that not only F4 is not particularly 

relevant, but also the difference in the average ratio of cell utilization for both production 

environments is lower than 1%. This could be explained because cell utilization accounts 

for the number of operations assigned to a cell, and in both cases solutions with the smallest 

number of cells are preferred. So there is not enough statistical evidence to conclude that on 

average the cells in one production environment are smaller than in the other. 

---- TABLE 5 HERE ---- 

(b) The Number of Intercellular Movements, the effects of number of products (F1), material 

handling cost (F3), product frequency (F4), and the interaction between them accounted for 

96.19% of the variances in the disassembly case (see Table 6a), while in the manufacturing 

case the number of products (F1) and the material handling cost (F3) were primarily 

responsible for the number of movements, contributing to a total of about 99.26% of the 

variances (see Table 6b). On average, there are 20% more movements in disassembly than 

in manufacturing. 

---- TABLE 6 HERE ---- 

(c) For Machine Utilization, the effects of number of products (F1) and the product frequency 

(F4) accounted for 68.67% of the variances in the disassembly case (see Table 7a), while in 

the manufacturing case the number of products (F1) and the demand variability between 

scenarios (F2) were primarily responsible for the machine utilization, contributing to a total 

of about 61.93% of the variances (see Table 7b). The average percentage of machine 

utilization is 10.71% higher in the disassembly case than in the manufacturing case. There 

are fewer machines but their utilization rate is higher. 

---- TABLE 7 HERE ---- 

4.3. Comparing Cellular Designs in Manufacturing and Disassembly Environments 

The former analyses show that F4 is a significant factor for every response variable in the 

disassembly case. Therefore, a second experiment considers the main and interactive effects within 
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factor to screen the significant effects and interactions of each level of F4 in a disaggregated form, via 

the multivariate analysis of variance (MANOVA). A deeper analysis was conducted on paired 

samples for the manufacturing case and three scenarios of the disassembly case. Each scenario of a 

disassembly case differs from the others (including the manufacturing case) in the frequency of the 

required operations (F4). To do so, factors F1 to F3 were considered, and an additional factor (F5) 

was introduced to identify the proper production environment as follows: F51-manfuacturing, 

F52-Dissasembly with low product frequency, F53-Dissasembly with moderate product frequency, and 

F54-Dissasembly with high product frequency (closely similar to the manufacturing case). 

We decide to use MANOVA in order to minimize the probability of making one or more type I 

errors (i.e. to conclude that a difference exists when one does not) for the entire set of comparisons. 

The MANOVA is used to determine whether there are any differences between independent groups 

on more than one dependent variable. Therefore, we use a MANOVA to understand whether there 

were differences in manufacturing and disassembly environments based on three different 

performance indicators (total cost, cell size, and machine utilization). With MANOVA we take 

advantage of the data covariance structure to simultaneously test the equality of means from different 

responses. MANOVA requires checking nine assumptions: (1) the dependent variables should be 

measured at the interval or ratio level (i.e. they are continuous); (2) the independent variable should 

consist of two or more categorical, independent groups (manufacturing and disassembly with 

different quality product uncertainty); (3) independence of observations, which means that there is no 

relationship between the observations in each group or between the groups themselves; (4) an 

adequate sample size; (5) no univariate or multivariate outliers; (6) multivariate normality; (7) a 

linear relationship between each pair of dependent variables for each group of the independent 

variable; (8) a homogeneity of variance-covariance matrices, and (9) no multicollinearity. 

With the aim of examining individually each one of the three response variables, an ANOVA was 

performed for each variable within this experiment. Each analysis of variance evaluates the effects of 

the number of products (F1), demand variability between scenarios (F2), the material handling costs 
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(F3), the production environment (F5), and their interaction at two levels of each factor on each 

response variable. For the total cost, the results indicate that: the number of products, the material 

handling costs and the production environment (manufacturing and each disassembly process) are 

significant (p-value = 0.000). In other words, a significant amount of variation in the total cost is 

associated with variation in these three factors. The interaction between the number of products and 

material handling cost (0.000), as well as the interaction between the material handling cost and the 

production environment (0.039) are also significant; therefore we cannot consider the effects of both 

factors separately. The adjusted R
2
 = 96.30% indicates the adequacy of the model. For the size of cells 

(R
2
 = 72.65%), the results indicate that factors F1 and F3, as well as the two-level interaction between 

them, are significant; however, the production environment (F5) is not a significant factor, so we can 

consider their effects separately. This implies that the production environment does not affect the size 

of the cells. Finally, the ANOVA results for the machine utilization (R
2
 = 77.04%) indicate that the 

number of products, the demand variability and the production environment affect the percentage of 

machine utilization. However, the interaction between them is not significant. 

We examine the variability, error, and partial correlations matrices to assess the performance of 

the MANOVA. To appraise how the response variables are related, a partial correlation between them 

is computed. The partial correlation of 0.4854 between total cost and machine utilization is 

moderated; however, the partial correlation of -0.2444 between total cost and cell size is not large, 

and the partial correlation of -0.0538 between cell size and machine utilization is small. Because the 

correlation structure is not weak enough, the MANOVA is adequate. 

---- TABLE 8 HERE ---- 

We use the Wilks' test to judge where there is significant evidence for model effects. In Table 8, 

the p-values for the F1 to F5 factors show that different levels of each factor affect the responses 

differently; also, there is significant evidence for interaction between F1 and the remaining factors, 

but there is no significant evidence for interaction between F2-F3 and F2-F5 at α level 0.05. The 

second column in Table 8 shows the relative contribution of each factor over each response variable. 
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The Eigen analysis was used to assess how the response means differ among the levels of the different 

factors. From the results of the Eigen analysis, it is evident that the percentage of machine utilization 

means having larger differences among the factor levels for number of products (F1), demand 

variability (F2), handling cost (F3) and production environment (F5), and in some interactions 

between them. But at the two factor interaction level between F1and F2, the size of the cells’ means 

have the largest differences. The total costs’ means have the smallest differences at a two factor 

interaction on every factor. 

From the previous analysis, we conclude that: (a) the number of products is statistically significant 

for the three response variables, and is in most of the cases the principal response of the variance; (b) 

the production environment is also statistically significant for the three response variables, but it 

mainly affects the machine utilization rate; (c) the two factor interactions of the production 

environment with the number of products, and with the handling costs, are statistically significant; (d) 

there is enough statistical evidence to conclude that the production environment affects the three 

performance indicators of a cellular system; in particular, the machine utilization rate and size of the 

cells are the performance indicators that have the greatest impact. 

The MANOVA reveals that at least two groups were different. A post-hoc test was conducted to 

determine which of these groups differ from the others (see Fig. 4). 

---- FIGURE 4 HERE ---- 

5. Conclusions 

The differences between cellular manufacturing and cellular disassembly systems have been studied 

in this paper. A mathematical programming formulation for the robust manufacturing and 

disassembly cell formation problems has been proposed, and a solution method based on the Tabu 

Search schema is adapted for both problems, and was used for the comparison analysis, since our first 

aim is to obtain data to analyze the difference in the design of both types of production environment 

and not to develop new approaches to the cell formation problem.  
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Four dependent variables were considered in the experiments: total cost, size of the cells, number 

of intercellular moves, and machine utilization. A design of experiments approach based on the 

analysis of variance and multivariate analysis of variance is used in order to appraise the significance 

of controllable factors in cellular designs. The first set of experiments considers the main and 

interactive effects within the factors to screen the significant effects and interactions, via the Analysis 

of Variance for each dependent variable, on each production environment (manufacturing and 

disassembly). Results show that in the disassembly case, the uncertainty in the quality of arriving 

products is a significant factor for every response variable. Therefore, a second experiment screens 

the significant effects and interactions of each level of uncertainty in the quality of arriving products 

in a disaggregated form, via the multivariate analysis of variance with paired samples for the 

manufacturing case and three scenarios of the disassembly case. 

Results also show that the production environment affects the three performance indicators of a 

cellular system; in particular the machine utilization rate and size of the cells are the performance 

indicators that have the greatest impact. This means that disassembly and manufacturing systems 

differ. From a managerial point of view, it appears that both systems will behave differently as the 

uncertainty in the quality of arriving products increases. For example, there are production systems 

where the assembly and disassembly operations are performed on the same production floor, as in the 

manufacturing of electric engines. In this case all engines contain all their parts, as they have not gone 

through a cannibalism phase. On the other hand, when the products arrive from outside the facility 

many components are missing, therefore disassembly cells tend to be smaller and the disassembly 

operation is cheaper. 
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LIST OF TABLES 
 

 

Table 1. Notation used in the mathematical model. 

Sets 

P Set of product types. 

Q Set of disassembly/manufacturing operations. 

Qp Qp Q, subset of operations required by product p P. 

C Set of cells to be formed. 

M Set of machines. 

Ω Set of scenarios. 

Parameters 

Dω
p Demand for product type p in scenario ω. 

p Cost to move one unit of product p from one cell to another. 

(intercellular material handling cost). 

 Occurrence probability in scenario ω. 

Opj Set of machines required by the j-th operation of product p. 

pj Duration of the j-th operation on product p. 

fpj Relative frequency of the j-th operation of product p. It should be noted that 0 fpj  1. 

pjj’ Probability that the j’-th of product p be required immediately after the j-th operation (j 

<j’), where: 
'''́ 1

jlj plpjpjj ff . 

Hm Capacity of machine of type m in time units. 

m Amortization cost of machine of type m. 

U Maximum number of tasks allowed per cell. 

L Minimum number of tasks allowed per cell. 

 Cost which penalizes the infeasibility in the machine’s capacity constraint (adjusted by 

the decision maker). 

Binary decision variables 

xωpjc 1 if the j-th operation of product p is assigned to cell c in scenario ω, and 0 otherwise. 

yc 1 cell c is formed, and 0 otherwise. 

Integer decision variables 

zmc Number of machines of type m installed in cell c. 

Continuous decision variables (recourse variables) 

emω
c Workload surplus in the machines of cell c for scenario ω. 
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Table 2. Set of instances considered. 

Instance 

Type 
Base Reference |P| |Q|(N) (G) |M| 

Set01 Cao and Chen (2005) 10 6 (25) (3) 6 

Set02 George, Rajendran and Ghosh (2003) 20  8 (61)  (5) 8 

Set03 Spiliopoulos and Sofianopoulou (2008) 50 30 (154) (6) 30 

Note: |P| is the number of products in the instance, |Q| the total number of operations, the total 

number of tasks (N = p|Qp|), G = maxp{|Qp|} is the maximum number of operations required 

by any product, |M| is the number of types of machine. 
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Table 3.ANOVA and post hoc Tukey test for relevant factors in the manufacturing case (total cost). 

 

Source df Sum of squares Mean Square p-value 
Contri. 

(%) 

Cum. Contri. 

(%) 

F1 2 18968064 9484032   0.000 90.247 90.24 

F1*F3 2 1105131  552565   0.000 5.258 95.50 

F3 1 792047  792047   0.000 3.768 99.27 

F1*F2 2 8748    4374   0.467 0.042 99.31 

F2 1 7954    7954   0.244 0.038 99.35 

F1*F2*F3 2 1495     748  0.875 0.007 99.36 

F2*F3 1 709     709   0.724 0.003 99.36 

Error 24 133734    5572  0.636 100.00 

Total 35 21017882     

R-squared = 0.993 (adjusted R-squared = 0.991). 

 

(a) ANOVA. 
 

Factor Levels compared Diff signification 

F1 1 2 134266.3   0.0005 

 1 3 1602544.3 0.0000 

 2 3 1468278.0 0.0000 

     

F2 1 2 29727.67 0.2438 

     

F3 1 2 296656.8 0.0000 

 

(b) Post hoc Tukey test. 
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Table 4.ANOVA for Total Cost in the disassembly case. 

Source df Sum of squares Mean Square p-value 
Contri. 

(%) 

Cum. Contri. 

(%) 

F1      2 21176347 10588173 0.000 84.322 84.32 

F1*F3   2 527258 263629 0.000 2.099 86.42 

F4      2 451643 225822 0.000 1.798 88.22 

F3       1 379619 379619 0.000 1.512 89.73 

F1*F4   4 296815 74204 0.012 1.182 90.91 

F1*F2   2 146527 73264 0.038 0.583 91.50 

F2*F4   2 100841 50421 0.103 0.402 91.90 

F2      1 89295 89295 0.045 0.356 92.25 

F3*F4   2 35945 17973 0.439 0.143 92.40 

F2*F3   1 7520 7520 0.557 0.030 92.43 

Error   88 1901857 21612   7.573 100.00 

Total   107 25113668       

R-squared = 0.924 (adjusted R-squared = 0.907). 
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Table 5.ANOVAs for Average Ratio of Cell Utilization, disassembly case. 

 

Source df Sum of squares Mean Square p-value 
Contri. 

(%) 

Cum. Contri. 

(%) 

F1        2  1.018440  0.509220   0.000 42.20 42.20 

F1*F2     2  0.219991  0.109996  0.000 9.11 51.31 

F1*F3     2  0.201564  0.100782  0.000 8.35 59.66 

F3        1  0.142209  0.142209  0.000 5.89 65.56 

F2        1  0.141339  0.141339  0.000 5.86 71.41 

F2*F3     1  0.023203  0.023203  0.083 0.96 72.37 

F1*F4     4  0.000255  0.000064  1.000 0.01 72.38 

F4        2  0.000128  0.000064  0.992 0.01 72.39 

F2*F4     2  0.000128  0.000064  0.992 0.01 72.39 

F3*F4     2  0.000128  0.000064 0.992 0.01 72.40 

Error    88  0.666167  0.007570  27.60 100.00 

Total   107  2.413551     

R-squared = 0.7240 (adjusted R-squared = 0.6644). 
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Table 6.ANOVAs for maximum number of intercellular moves. 

 

Source df Sum of squares Mean Square p-value 
Contri. 

(%) 

Cum. Contri. 

(%) 

F1      2 1.64E+12 8.18E+11 0.0000 55.88 55.88 

F1*F3   2 4.25E+11 2.12E+11 0.0000 14.51 70.39 

F3      1 3.45E+11 3.45E+11 0.0000 11.80 82.20 

F1*F4   4 2.02E+11 5.0527E+10 0.0000 6.91 89.10 

F4      2 1.61E+11 8.0423E+10 0.0000 5.50 94.60 

F3*F4   2 4.6543E+10 2.3271E+10 0.0000 1.59 96.19 

F1*F2   2 3538851358 1769425679 0.2260 0.12 96.31 

F2      1 2804186857 2804186857 0.1250 0.10 96.40 

F2*F3   1 2452578482 2452578482 0.1510 0.08 96.49 

F2*F4   2 40226703 20113351 0.9830 0.00 96.49 

Error   88 1.03E+11 1168166347  3.51 100.00 

Total   107 2.93E+12     

R-squared = 0.9649 (adjusted R-squared = 0.9573). 

 

(a) Disassembly case. 

 

Source df Sum of squares Mean Square p-value 
Contri. 

(%) 

Cum. Contri. 

(%) 

F1      2 3.86E+12 1.93E+12 0.0000 67.66 67.66 

F1*F3   2 1.03E+12 5.14E+11 0.0000 18.02 85.68 

F3      1 7.74E+11 7.74E+11 0.0000 13.58 99.26 

F1*F2   2 2409487460 1204743730 0.4340 0.04 99.31 

F2      1 2157075325 2157075325 0.2250 0.04 99.34 

F2*F3   1 1146655926 1146655926 0.3730 0.02 99.36 

Error   26 3.6299E+10 1396123046  0.64 100.00 

Total   35 5.70E+12     

R-squared = 0.9936 (adjusted R-squared = 0.9914). 

 

(b) Manufacturing case. 
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Table 7.ANOVAs for machine utilization. 

 

Source df Sum of squares Mean Square p-value 
Contri. 

(%) 

Cum. Contri. 

(%) 

F4      2 0.792133 0.396067 0.0000 52.00 52.00 

F1      2 0.254054 0.127027 0.0000 16.68 68.67 

F1*F4   4 0.026927 0.006732 0.2100 1.77 70.44 

F2      1 0.017582 0.017582 0.0510 1.15 71.59 

F3      1 0.014283 0.014283 0.0780 0.94 72.53 

F1*F3   2 0.009536 0.004768 0.3510 0.63 73.16 

F3*F4   2 0.006688 0.003344 0.4780 0.44 73.60 

F2*F4   2 0.003961 0.001981 0.6450 0.26 73.86 

F1*F2   2 0.002495 0.001248 0.7580 0.16 74.02 

F2*F3   1 0.000075 0.000075 0.8980 0.00 74.03 

Error   88 0.39571 0.004497   25.97 100.00 

Total   107 1.523445       

R-squared = 0.7403 (adjusted R-squared = 0.6842). 

 

(a) Disassembly case. 

 

Source df Sum of squares Mean Square p-value 
Contri. 

(%) 

Cum. Contri. 

(%) 

F1      2 0.037005 0.018503 0.0000 45.24 45.24 

F2      1 0.01365 0.01365 0.0020 16.69 61.93 

F1*F2   2 0.000568 0.000284 0.7830 0.69 62.62 

F1*F3   2 0.000445 0.000222 0.8260 0.54 63.17 

F2*F3   1 0.00011 0.00011 0.7600 0.13 63.30 

F3      1 0.00003 0.00003 0.8730 0.04 63.34 

Error   26 0.029988 0.001153   36.66 100.00 

Total   35 0.081797       

 R-squared = 0.6334 (adjusted R-squared = 0.5065).  

 

(b) Manufacturing case. 
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Table 8.MANOVA Results. 

Source 
Wilks' Test 

(p-value) 

Variance contribution (%) Eigenvectors 

Cost Size Mach. Cost Size Mach. 

F1      0.000 63.32 82.76 5.38 -0.036 -0.063 1.036 

F2 0.000 0.07 0.31 1. 01 0.000 -0.758 -1.069 

F3 0.000 1.84 0.04 1.70 0.000 -0.270 -0.516 

F5 0.000 3.54 7.96 80.17 -0.054 -0.201 1.570 

F1*F2 0.000 0.11 0.00 1.24 -0.092 -1.058 0.184 

F1*F3 0.000 2.58 0.00 1.65 -0.006 -0.440 0.938 

F1*F5 0.000 3.96 0.01 1. 93 -0.012 -0.275 0.695 

F2*F3 0.146 0.04 0.02 0.07 0.001 -0.782 -0.475 

F2*F5 0.970 0.04 0.07 0.08 -0.006 -0.343 -0.517 

F3*F5 0.000 0.44 1.36 2.01 -0.087 -0.267 1.153 

Error  24.05 7.35 4.76    
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Figure 1. Solution coding 

Note: This figure shows a possible representation of a solution with two cells for a problem with five parts 

(where each one requires two operations) therefore there are 10 tasks.  

 
 

 

Figure 2. Boxplot for Total Cost: manufacturing case. 
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Figure 3. Boxplot for Total Cost: disassembly case. 
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Figure 4. Confidence interval at 95% for the total cost between manufacturing and the three disassembly 

environments. 

 

 


