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Abstract 

The aim of this research is to investigate the operational efficiency and potential output 

increase scenarios of 21 small and medium sized airports (SMA) located in 10 different 

European countries. A key feature of the proposed Data Envelopment Analysis (DEA) 

models is the consideration of two novel inputs related to the number of airlines and 

scheduled routes operating at each airport, in addition to the more common capital non-

discretionary inputs (runways, boarding gates and apron). These novel inputs are a way 

of considering the effects of the air transport market on airports’ performance and 

growth prospects. In particular, a model to estimate the growth in passenger numbers, 

aircraft movements and cargo that can be achieved by an airport through increasing its 

number of airlines and routes, and assuming an efficient operation, is presented. Also, a 

multi-objective DEA model is proposed to explore the possible trade-offs in the output 

Pareto efficient frontier of a given airport. In addition, a second stage fractional 

regression model specific for explaining DEA efficiency scores is conducted and the 

results suggest that ownership structure and hub airport status are significant factors for 

explaining variations in the operational efficiency of European SMA.  
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1. Introduction  

In an increasingly globalizing economy, the importance of air transport as an income-

generating activity for airport stakeholders, such as municipalities, private agents, 

public entities, airlines and policy makers, is decisive (Doganis, 1992; Wensveen, 

2011). An airport is thus part of an integrated traffic infrastructure that is needed in 

order to fulfil the framework conditions necessary for a highly developed business 

location, providing a meaningful economic and social development of the region 

(Sellner and Nagl, 2010; Button and Yuan, 2013). 

 

The deregulation process in the European Union air transport policy (1990-1998), the 

Open Skies Agreement (2007/339/EC) and the Single European Sky ATM Research 

(SESAR) programme have led airlines and airports into a more competitive and 

dynamic market scenario, forcing them to reduce duplication of services, adapt to rapid 

technological changes and an uncertain economic environment, dispense with state 

protectionism and look for economies of scale.  In this context, the intra-European air 

transport sector has a crucial role concerning the economy of Europe by ensuring a 

robust capacity of its regions for business and leisure. The route system structure of 

regional carriers and small and medium sized airports (SMA) enables air connectivity 

and lets smaller regions compete within Europe and with the rest of the world. From a 

market share analysis, short-haul travel is the largest segment of the world’s aviation 

system. Note, however, that this is true in terms of flight frequency, although, as kindly 

pointed out by a reviewer, not in terms of Available Seat Kilometres (ASK). 

 

In any case, the recent economic recession has brought new challenges to the European 

regional industry segment that must be overcome; these are related to efforts to 

accommodate travellers’ demands, alleviating congestion at major airports, changes to 

state aid rules, more stringent international regulations and emissions taxes on intra-

European flights, among others. SMA in Europe have their own specificity. Thus, some 

of the airports sampled in the present study operate low-cost-air carriers in a point-to-

point flight routes system while others use a hub-and-spoke architecture. Point-to-point 

flights can reduce passenger travel time, removing the schedule limitations and 

operational complexity of connecting flights. They do not allow, however, taking 

advantage of economies of scale as hub-and-spoke systems do. SMA have also specific 
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problems, such as limited capability and limited traffic, and restricted access to 

resources in order to expand. In this increasingly competitive market, the evaluation of 

the performance of European SMA can be decisive for airport operators in order to 

identify ‘best practices’ airports as well as to assess their own output growth 

possibilities.  

 

Nowadays SMA compete against one another in terms of air carriers and passengers and 

in the development of new routes, having considerably more options than in the past. 

The research that is presented in this paper aims at evaluating the operational efficiency 

of European SMA by using the well known Data Envelopment Analysis (DEA) 

methodology and considering two novel inputs related to the regional air carrier 

business market in addition to the traditional physical inputs of airports. The proposed 

approach not only rates the efficiency of the airports but also provides a tool to compute 

alternative, efficient outputs targets. Furthermore, a regression post hoc assessment is 

conducted in order to test the impact of airport ownership mode and airline hub airport 

service on the operational performance of European SMA.  

 

The remainder of the paper is set out as follows. In the next section, an overview of the 

literature on regional airport benchmarking is presented. In Section 3, the proposed 

approach, which includes several DEA models (for efficiency assessment, extended 

input-output varying scenarios and output Pareto efficiency frontier exploration based 

on augmented weighted Tchebycheff multi-objective optimization) and an appropriate 

fractional regression model for the second-stage DEA analysis, is presented. The results 

are presented and discussed in Section 4. Finally, Section 5 summarizes and concludes. 

 

2. Literature review on airports efficiency 

During the 1990s and particularly in the 2000s, considerable interest has been given to 

the study of the performance of airports in terms of efficiency and productivity change, 

using Stochastic Frontier Analysis (SFA) and, above all, DEA models. Almost all 

studies in the airport efficiency literature focus essentially on major international 

airports (e.g. Gillen and Lall, 1997; Sarkis, 2000; Adler and Berechman, 2001; Lin and 

Hong, 2006; Ahn and Min, 2014). Table 1 summarizes an extensive literature review on 

airport DEA efficiency in terms of the inputs and outputs considered – information that 
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will be useful for selecting the inputs and outputs to be used in this research. Note that, 

on the one hand, inputs have been classified within two groups: financial/cost inputs 

(such as capital costs, labour costs or operating expenses) and physical/operational 

inputs (such as number of runways, terminal area or number of scheduled flights). On 

the other hand, outputs have been grouped into three categories: operational outputs 

(such as aircraft movement, passenger movement and cargo), financial outputs (such as 

commercial or non-aeronautical revenues) and undesirable outputs (such as flight delays 

or aircraft noise). 

 

***********************Insert Table 1 around here*********************** 

 

Some comparative performance analyses across European countries have also been 

applied using DEA methodology. Adler et al. (2013a) analyzed 43 European airports for 

the period from 1998 to 2007, using a network DEA model, after a reduction variable 

stage based on principal component analysis. Suzuki et al. (2014) proposed an extended 

DEA model based on a distance friction model and fixed factor component which they 

applied to the 19 most important airports in Europe in 2005. 

 

However, the study of airport efficiency in SMA in the European context has received 

little attention. Actually, the analysis of SMA efficiency is restricted to a very small 

number of papers. On the one hand, Merkert and Mangia (2012) studied winter 

operations in 46 Norwegian regional airports both under a bootstrapped DEA approach 

and a truncated regression model in the second stage of the analysis. The empirical 

results revealed that poor technical efficiency is not exclusive to airports with more 

severe winter conditions. The findings regarding the factors that explain the 

performance show that geographic location has no significant effect on technical 

efficiency when a physical input performance analysis is carried out. The opposite 

effect is found when physical plus financial inputs are considered in the DEA model. 

Finally, population around the airport and airport size has a significant effect on the 

physical inputs DEA model. On the other hand, Adler et al. (2013b) focused on the 

assessment of 85 regional airports across seven European countries using a variable 

returns to scale approach based on an additive DEA model. Their research found that 

substantial cost savings can be obtained. In a second stage, ordinary and truncated 
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regression analyses revealed that small regional airports behaved differently from large 

hub airports. 

 

3. Dataset and methodology used 

This section presents the data considered in this research and outlines the methodology 

used in this study. 

3.1. Dataset 

The data for this study correspond to a sample of 21 European SMA observed in 2013, 

categorized as ACI Group 4 airports (Airports Council International Europe, 2015), 

welcoming fewer than five million passengers per year, and therefore belonging to the 

4th and 5th tiers, as per Burghouwt’s (2007) classification. Most of these airports are 

small regional airports, with a route network to other countries and other domestic 

destinations operating as point-to-point air carriers with route switching power. Most 

SMA operators have adopted the corporate business model as a management 

perspective. Table 2 provides the characteristics of this sample of SMA, showing large 

variations among the sample airports in terms of infrastructure and operational settings. 

For instance, the aircraft movements range from 3,000 operations for Rijeka (Croatia) to 

1.2 million operations for London City (U.K.). The average number of travellers per 

aircraft movement was 97.33 at Salzburg airport, but only 2.98 travellers per aircraft 

movement at Antwerp airport. The sample includes airports that do not have cargo, such 

as Bern Belp, Groningen, London City, Norwich, Southampton and Waterford. Some 

airports offer mostly seasonal destinations, such as, Innsbruck, Nantes, Norwich, Pula, 

Rijeka, Salzburg, Shannon, whereas others offer mostly year-round destinations, such as 

Antwerp, Budapest, London City and Waterford. Some airports provide services mostly 

to long-haul aircraft, whereas others serve mainly short-haul aircraft, such as Antwerp, 

Bern Belp, London City and Southampton. Note that Manston airport (U.K.) has not 

been included in the sample as it has recently suspended its operations because it ceased 

to be a commercially viable option for current and potential passenger and freight 

operators. 

 

***********************Insert Table 2 around here*********************** 
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The proposed approach uses as inputs three variables that, according to the literature 

review, are commonly used and which refer to the runway size (RUNAREA), boarding 

gates (BOARDG) and apron stands (APRON). In addition, two novel inputs have been 

considered, namely the number of scheduled routes (SCHROUT) and the number of 

airlines (AIRLINES) that operate in each airport. The first group of inputs corresponds 

to the infrastructure/facilities of the airport while the second group of inputs represents 

managerial inputs and refers to the ability of managers to attract and retain air transport 

operators. All the inputs are fixed, a.k.a. non-discretionary, i.e. the proposed DEA 

model for efficiency assessment does not try to reduce those inputs because that is not 

reasonable. As regards the number of airlines and the number of scheduled routes, since 

they are in principle “fixed”, these two non-discretionary variables can alternatively be 

considered as inputs or as outputs. We have opted for considering them as inputs 

because, as described below, we want to carry out the estimation of the output increase 

that might be achieved if those non-discretionary inputs were in the end increased 

through effective airport management intervention. Thus, the DEA model proposed for 

that purpose considers those two inputs non-discretionary (in the sense of non 

considering reducing them as a possibility) but assumes that they have been increased 

with respect to their initial, observed value. Hitherto, there have been no studies that 

include airlines routes and the number of carriers that operate in airports.  

 

With regard to outputs, the three considered here are: aircraft movements (MOV), 

passenger throughput (PAX) and cargo handled (CARGO). These are the three most 

important and more frequently used operational outputs (see Table 1). Data for the 

inputs and outputs variables come from several sources, including the European 

Regions Airline Association, Annual Reports of the sample of airports, Wikipedia, and 

the authors’ direct contact with the airports concerned. Note, finally, that other inputs, 

such as labour and other operating costs, could also have been considered, provided that 

the corresponding data were available, which is not the case in the study reported in this 

paper. 
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3.2. Proposed DEA models 

The proposed DEA models consider output orientation and Variable Returns to Scale 

(VRS). In the first place, a basic radial technical efficiency assessment is carried out 

using a conventional BCC-O DEA model (Banker et al., 1984). Let 

Data 

i index on inputs 

k index on outputs 

j index on airports 

n number of airports being benchmarked 

ijx  amount of input i corresponding to airport j 

kjy  amount of output k corresponding to airport j 

0 index of the specific airport being assessed 

 a non-Archimedean infinitesimal 

Variables 

0Eff  efficiency score of airport 0 

 potential radial output expansion of airport 0 

ks  slack of output k (additional to the radial output expansion) for airport 0 

1 2 n, ,...,  intensity variables used to compute efficient projection of airport 0 

Technical efficiency assessment DEA model 

1
0 k

k

Eff Max s  (1) 

s.t.  

j ij i0
j

x x i  (2) 

j kj k0 k
j

y y s k  (3) 

j
j

1 (4) 

j k0 j s 0 k free  (5) 
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Solving the above model a second time without the convexity constraint (4) allows 

determining the global efficiency CRS
0Eff , i.e. the efficiency under Constant Returns to 

Scale (CRS). The scale efficiency of the airports is thus 

CRS
scale 0
0

0

Eff
Eff

Eff
 (6) 

It is also possible to estimate the local Returns To Scale (RTS) of the different outputs. 

A simple way is by solving the above model again but substituting the convexity 

constraint (4) by this relaxed version, which corresponds to assuming Non-Increasing 

Returns to Scale (NIRS). 

j
j

1 (4’) 

Let us call the optimal solution of this relaxed model NIRS
0Eff . The local RTS of airport 

0 can then be classified as CRS, Increasing Returns to Scale (IRS) or Decreasing 

Returns to Scale (DRS) as per 

CRS NIRS
0 0 0

CRS NIRS
0 0 0

CRS NIRS
0 0 0

CRS if Eff Eff Eff

IRS if Eff Eff Eff

DRS if Eff Eff Eff

 (7) 

The above efficiency assessment also allows the computing of output targets for each 

airport; this corresponds to determining the output increases that can be achieved with 

the current number of scheduled routes and number of airlines. This can be interpreted 

as a measure of operational efficiency as well as a measure of the extent to which the 

available capacity is used. 

 

Moreover, DEA analysis also allows the estimation of the output increases that could be 

achieved in case of an increase in the amounts of inputs available. Although all the 

inputs are considered non-discretionary in the sense that its reduction is not deemed 

desirable, for some managerial inputs (namely, number of airlines and scheduled 

routes), let us call this subset 
MI , it may be possible, through effective management 

intervention, to increase them. In particular, the purpose of the model presented below is 

to compute the output increases associated with a hypothetical increase in these two 



 10 

managerial inputs. Let i , a vector whose i-th component i  is the increase in 

the amount of input 
Mi I  available to airport 0. Then the corresponding radial output 

increase can be computed using the following:  

Output-increase estimation DEA model 

0 k
k

Max s  (8) 

s.t.  

M
j ij i0

j

x x i I  (9) 

M
j ij i0 i

j

x x i I  (10) 

j kj k0 k
j

y y s k  (11) 

j
j

1 (12) 

j k0 j s 0 k free  (13) 

 

Note that the conventional efficiency assessment corresponds to solving the above 

model for 0,0 , i.e. 
1

0 0Eff (0,0) . The above model, however, allows 

computing the potential output increases that can be achieved if the managers of airport 

0 are able to increase the number of scheduled routes and the number airlines by the 

amounts given by the respective components of vector . Varying , the surface 

0  can be computed and plotted for each airport 0. This will be illustrated in 

Section 4.1. 

 

An additional DEA analysis that can be done is an exploration of the different Pareto 

efficient output targets that can be achieved by a given airport 0 assuming its current 

inputs. The idea behind this multi-objective DEA analysis is different from that of both 

model (1)-(5) and model (8)-(13), which assume a radial expansion of the outputs, 

which means maintaining the observed output mix. On the other hand, the managers of 
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airport 0 may be interested in exploring other efficient output targets which means 

calculating the corresponding output Pareto efficient frontier. Something similar, but 

with an input orientation, was carried out in Lozano and Gutiérrez (2011c) in a multi-

objective study of fleet, fuel and operating cost efficiency of European airlines. 

However, while in Lozano and Gutiérrez (2011c) all extreme Pareto efficient operation 

points were computed using the vintage ADBASE Multi-objective Linear Programming 

software (Steuer, 2006), in this application we will, instead, sample the output Pareto 

efficient frontier using an augmented weighted Tchebycheff DEA approach which is 

formulated below. Alternatively, an interactive weighted Tchebycheff approach, such as 

the one proposed in Steuer and Choo (1983), can be used. In any case, it seems 

reasonable to limit the exploration of the output Pareto efficient frontier to the region 

that dominates the current operation point since managers surely want to increase all 

outputs. To that end let 

Data 

max
k0y  maximum amount of output k that airport 0 can achieve with its current inputs 

(ideal point of airport 0) 

kw  k-th component of weight vector used for projection from ideal point of airport 0 

Variables 

0  Tchebycheff distance of target operation point of airport 0 to its ideal point  

k0ŷ  target value for output k of airport 0 

The idea is to solve the model below using different weight vectors so that different 

efficient output targets that dominate the current operation point and do not consume 

more than the current inputs can be calculated. 

Augmented weighted Tchebycheff DEA model 

max
0 k0 k

k

ˆMin y y  (14) 

s.t.  

j ij i0
j

x x i  (15) 
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j kj k0 k0
j

ˆy y y k  (16) 

max
0 k k0 kˆw y y k  (17) 

j
j

1 (18) 

j 00 j free  (19) 

 

Given the current inputs of airport 0, this augmented weighted Tchebycheff DEA model 

looks for an operation point, computed using the assumed VRS DEA technology, whose 

outputs dominate the current outputs of airport 0 and are as close as possible, weighted 

by vector w , from the maximum ideal output levels of airport 0. 

 

3.3. Second stage: Fractional regression models 

In order to explore the influence of exogenous factors in the airport’s efficiency, a 

second stage regression analysis can be carried out. The linear and Tobit models 

frequently used in second stage DEA efficiency analyses are, however, not suitable, in 

general, for the description of DEA scores data (Maddala, 1991; Papke and Wooldridge, 

1996; Ruggiero, 1998; Hoff, 2007; Simar and Wilson, 2007; McDonald, 2009). 

Ramalho et al. (2010) and (2011) provide a proper statistical basis for second stage 

DEA efficiency analyses, proposing generalizations of fractional models without 

boundary observations and flexible distributional assumptions. This type of regression 

analysis does not seem to have been applied yet to explain the results of transportation 

efficiency studies. 

 

Applying the Ramalho et al. (2010) approach, the proportional regression model, in 

terms of the conditional mean model for the proportional variable, Eff
-1

, 
10 Eff 1, is 

defined by: 

1Eff ( )E x H x  (20) 

where x is a vector of k-covariates, ( )H is a known nonlinear function, 0 ( ) 1H  and 

 is the vector of the parameters. Although nonlinear conditional mean specifications 

can adopt a variety of functional forms (Papke and Wooldridge, 1996; Ramalho et al. 
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2010), the nonlinear logit and complementary cloglog functions (21) and (22), 

respectively, are selected as link functions: 

1Eff
1

x

x

e
E x

e
 

(21) 

1Eff 1 exp expE x x  (22) 

In our case x is just a bidimensional vector of covariates (corresponding to ownership 

type and hub status, see Section 4.2) and  is the vector of regression parameters. The 

empirical analysis is applied to specifications justifiable by the RESET test 

(misspecification of the first order). The corresponding frm add-on package for the 

statistical software R (Ramalho, 2015) has been used for computing the estimation, 

specification analysis and calculation of partial effects of fractional regression models. 

 

4. Empirical results 

This section presents the results obtained using the methodology described in the 

previous section. This includes, in Section 4.1., an output-oriented technical efficiency 

assessment of the SMA in the sample, an estimation of the potential output increase 

associated with a hypothetical increase in the number of airlines and scheduled routes in 

a given airport and, finally, the computation of a discretization of the output Pareto front 

associated to the input vector of each airport. Then, in Section 4.2., a second stage 

regression analysis of the output-oriented technical efficiency scores obtained is carried 

out using the ownership type (private/public) and the hub/non-hub type as independent 

variables. 

4.1. DEA analysis results 

As regards the DEA analysis, Table 3 shows the output-oriented efficiency assessment. 

Both the radial expansion score  and the outputs slacks ks corresponding to the 

solution of model (1)-(5) for each airport, are shown. The corresponding normalized 

efficiency score 0Eff , as well as those obtained assuming CRS and NIRS, are shown. 

From these scores the scale efficiency and local RTS of each airport are obtained. Note 

that most of the airports are deemed to be technically efficient. That is not surprising, 

given that the number of airports evaluated is not large in relation to the number of 

inputs and outputs considered. The discriminant power of DEA, of course, increases as 

the number of units being assessed increases. Note, however, that not all technically 
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efficient airports are scale efficient. There are three that are not CRS efficient, i.e. they 

do not operate at their Most Productive Scale Size (Banker, 1984). Thus, two of these 

three technically efficient airports (namely A20 and A21) exhibit IRS while the third 

one (namely A12) exhibits DRS. All the technically inefficient airports exhibit IRS. 

Finally, note that the two most technically inefficient airports are A14 and A15, which, 

to be become efficient, need to more than double their current outputs. The rest of the 

technically inefficient airports do not have such low efficiency scores. 

 

*********************** Insert Table 3 around here *********************** 

 

Table 4 shows the benchmarks for each inefficient airport. Airports A10, A5, A3 and 

A18 are those that appear more frequently as benchmarks, which means their input and 

output bundles are the most representative efficient operating points. There are a 

number of airports (namely A1, A2, A4, A7, A9, A12 and A13) which, although 

efficient, do not appear as a benchmark of any of the inefficient airports. This means 

that these airports’ operating points are somewhat specific, i.e. their input and output 

bundles are particular.  

 

*********************** Insert Table 4 around here *********************** 

 

We have also carried out the estimation, for each airport, of the potential output 

increases 0 SCHROUT AIRLINES,  that could be achieved, provided the managers 

increase the current number of scheduled routes and airlines by SCHROUT  and 

AIRLINES  respectively. We considered vales SCHROUT 0,2,4,...,20  and 

AIRLINES 0,1,2,...,10 . Note that SCHROUT AIRLINES 0  corresponds to the 

current situation and therefore provides the same output increases given by the 

efficiency assessment commented on above. Figure 1 shows these 

0 SCHROUT AIRLINES,  values. Note that for some airports, no increase in outputs 

seems to be achievable by increasing the current number of scheduled routes and 

airlines. That indicates that those two inputs are not the ones that are constraining the 

outputs, which is not the case for other airports. Actually it can be said that the situation 

is different for each airport. One of the advantages of the proposed DEA model (8)-(13) 
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is that it allows studying the case of each airport individually.  Thus, for example, for 

some airports, such as A8, A16 or A17, it seems that increasing the number of airlines 

would not lead to increased outputs, and increasing the number of scheduled routes 

would initially allow increased outputs but the larger increase would have no effect. For 

other airports, for example, A6, the increase in outputs is feasible for the whole range of 

SCHROUT  values considered. For other airports, for example, A19, it is the opposite; 

the number of scheduled routes would not be as beneficial for increasing the outputs as 

increasing the number of airlines would be. Finally, for some airports, such as A18, the 

increase of both the number of scheduled routes and of airlines would allow them to 

increase their target outputs. 

 

*********************** Insert Figure 1 around here *********************** 

 

Another interesting analysis that has been carried out is the exploration of the output 

Pareto efficient frontier as per model (14)-(19). Figure 2 shows the results for one of the 

airports, namely airport A6 (Cardiff). To sample this output Pareto front a large number 

of weight vectors MOV PAX CARGOw w ,w ,w  are used. For a grid size of 0.05 this 

gives close to 20,000 points weight vectors. For each weight vector, using model (14)-

(19) a Pareto output efficient operating point is obtained. Note that two weight 

combinations may produce the same Pareto efficient point. Note also that, in order to 

visualize the whole Pareto efficient front, the operating points plotted in Figure 2 

correspond to a relaxed version of constraint (16) so that the target operating point does 

not necessarily have to be larger than the observed value for A6. Thus, of all the Pareto 

efficient points shown in Figure 2, only a fraction (343 points in the case of DMU A6) 

have output levels that dominate the current output values of that airport. 

 

Since each Pareto output efficient point involves three output components and in order 

to be able to visualize the Pareto front, each output dimension is plotted separately. This 

is equivalent to the typical parallel coordinates scheme to plot multidimensional Pareto 

efficient points. Thus, for each weight vector MOV PAX CARGOw w ,w ,w  the 

corresponding output value along each of the three dimensions is shown in each of the 

three surfaces shown. Since it is difficult to visualize some 3D surfaces in the plane, for 

each surface two different perspectives are shown. Note also that the weight vectors 
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MOV PAX CARGOw w ,w ,w  are normalized which means that only two components 

( MOVw  and PAXw  in this case) are necessary to represent each point. 

 

*********************** Insert Figure 2 around here *********************** 

 

As regards the MOV output it can be seen that the surface is almost flat with values in 

the range of 46,000-50,000 aircraft movements (which is two times the current number 

of operations for A6, i.e. 24,879). For very low values of PAXw , however, the Pareto 

front involves a much lower number of operations (as low as 11,000 passengers) 

although it increases quickly, reaching the flat region and even surpassing it, as MOVw  

increases. This is not surprising since increasing the weight given to the MOV output 

should increase the target value for that output. 

 

As regards the second output (PAX) there is again an extensive flat region also at a 

maximum value of 1,190,000 passengers, slightly above the observed value for A6 

(1,072,000 passengers), Again, very low values of PAXw , this output is lower but 

increases as MOVw  increases. For those weight combinations, we have seen above that 

MOV also increases. That is consistent with the positive correlation between aircraft 

traffic movement and passenger throughput. There seems to be, however, for these low 

values of PAXw  a small decrease of PAX (to 1,100,000 passengers aprox.) for large 

values of MOVw . 

 

Finally, the variable CARGO has an extensive flat region, with very low values (at 

around 950 tonnes), although the variable increases, same as the other two variables, for 

small values of PAXw . The increase is specially intense for low values of both PAXw  

and MOVw , which, not by chance, correspond to large values of CARGOw . 

 

Note that, although the renderings shown in Figure 2 can give an idea of the feasible 

trade-offs among the output variables across the Pareto efficient frontier, the numerical 

results provided by model (14)-(19), which can also be solved within an interactive 

multi-objective optimization approach, allow for amore precise (i.e. quantitative) 

estimation of the different output target levels that can be achieved. Finally, note that 
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Figure 2 corresponds to just one of the inefficient airports. For other airports, the 

number of efficient operating points dominating the current output levels is larger and 

for others is smaller. Actually, in the case of the efficient airports there are no other 

efficient operating points with larger output levels. Again, an interesting feature of the 

proposed DEA approach is that it allows a case by case analysis, tailored to the situation 

and preferences of each airport. 

 

4.2. Regression analysis 

In order to try to better understand the airports’ efficiency scores obtained, a regression 

analysis has been performed using the reciprocal of the technical efficiency scores as a 

dependent variable. The literature on second stage regression in airports’ performance 

analysis provides an extensive number and variety of independent contextual variables, 

allowing the formulation of a large number of different regression models.  

 

Despite the diversity of airport ownership regimes, the airports considered in our 

empirical study operate under two poles: public-owned (government/municipalities) 

airports and private-owned airports. Likewise, airports have been classified as hubs or 

non-hubs based on the information provided by the own airlines. Thus, an airport is 

considered a hub if there is an airline that uses it as a hub. Therefore, the contextual 

variables considered as regressors are two zero-one dummy variables: OWNERSHIP (if 

public ownership=0, private ownership=1) and HUB (if the airport does not operate as 

an airline hub=0; if it operates as an airline hub=1). The base cases are, therefore, the 

airports that are privately-owned and used as hubs, e.g. Bern Belp, Budapest, Nantes 

and Southampton. The models’ specifications assume that the relationship between 

ownership structure and hub airport status is additive. 

 

For the Tobit censored regression model, the efficiency scores are left-right censored at 

zero and one, respectively. Table 5 reports the regression results obtained for three 

alternative models considered: two conventional models (linear model and censored-

Tobit model) and two novel fractional regression models, (1) and (2), more appropriate 

for DEA efficiency scores. The results show that, although not all coefficients are 

statistically significant, the directions of the estimated coefficients coincide for all the 

models considered. Note, in particular, the differences between the linear and Tobit 



 18 

models on one side, and fractional models on the other, as regards the HUB factor, 

which is significant at the 0.01 level in the logit and cloglog models but not in the linear 

and Tobit models. 

 

For each model, a comparable coefficient of determination, R
2
, is calculated as a 

goodness of fit measure. Note that R
2
 values are similar across the models. It is 

noteworthy that the R
2
 values in fractional models are identical and 15% higher than in 

the linear model and 25% higher than in the McFadden's pseudo-R
2
 in the Tobit model. 

Additionally, the RESET test confirms the correct functional form specification for 

linear and fractional models. In order to explain the probability of an airport operating 

on the efficiency frontier, the cloglog functional form is appropriate due to the 

asymmetric character of the efficiency scores distribution (14, i.e. 66%, of the airports 

operated in the efficient frontier). 

 

***********************Insert Table 5 around here*********************** 

 

Table 6 reports the estimates of partial average estimates for the logit and cloglog 

models. The partial effects estimated under the logit specification are not very different 

from those estimated under the cloglog specification. Both models indicate that the 

effect of ownership on SMA efficiency is about 14% and 12% larger, in logit and 

cloglog, respectively, for public than for private SMA. This result was contrary to our 

expectations; however, similar results are found in the study of Curi et al. (2010) on the 

efficiency of Italian airports and in the research conducted by Ha et al. (2013) on the 

performance evaluation of Northeast Asian airports. These results provide some 

evidence that privatization is not a key driver for higher utilization of the available 

airport infrastructure and higher productivity at the regional level. The explanation may 

be related to the running of SMA under the close supervision of state/local authorities 

due to airports’ strategic contribution to regional development. In this respect, in some 

SMA, subsidization of the airport infrastructure might be a decisive but controversial 

issue, if they are compared with major airports. 

 

Furthermore, both fractional models coincide in that the effect of hub status on 

efficiency is larger, about 19% and 15% in logit and cloglog, respectively, for SMA 

offering airline hub services than those not offering airline hub services. The significant 
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differentiation in efficiencies between hub and non-hub SMA is supported by the 

coincident findings of Gillen and Lall (1997) and Sarkis (2000) for U.S. airports, Fung 

et al. (2008) in their evaluation of Chinese airports, and Tsui et al. (2014) in the Asia-

Pacific airports. This result may be due to the economies of scale operating in airport 

hubs also at the regional level. 

 

***********************Insert Table 6 around here*********************** 

 

5. Conclusions 

European SMA provide a vital complementary and supporting function to the 

consolidating European network of airline operators. In addition, performance 

evaluation is one of the pillars in the pursuance of the Single European Sky framework, 

unifying objectives for governments, managers and shareholders. In that context, this 

paper aims to provide a contribution to decision making and planning for SMA 

efficiency assessment and improvement. In particular, the paper makes several 

contributions to airport performance literature. Firstly, we estimate European SMA 

technical efficiency with the inclusion of two novel managerial inputs (number of 

scheduled routes and number of airlines) motivated by the recent operational flexibility 

for destination switching from the air carriers’ side. A second DEA model has been 

proposed to estimate the growth potential of each airport as a function of these 

managerial inputs. Thirdly, an approach to compute the output Pareto efficient frontier 

of a given airport, based on the augmented weighted Tchebycheff method, is proposed. 

Finally, we provide empirical evidence, based on a fractional regression analysis that 

uses a specific data-generating process for DEA results, on the impact of hub status and 

ownership on the efficiency of SMA in the European context.  

 

The proposed VRS, output-oriented DEA models allow the identification of a number 

of inefficient airports, for each of which its output targets have been computed. For both 

efficient and inefficient airports, the increase in aircraft movements, passenger traffic 

and cargo if the number of airlines and scheduled air routes is increased, and assuming 

efficient operation, has been estimated. It has been observed that the growth profile is 

different and specific for each airport, depending on its current level of utilization of its 

physical assets. Finally, when used for studying the case of each specifically inefficient 
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airport, the proposed multi-objective DEA approach allows managers to explore trade-

offs between the outputs of alternative efficient operating points and thus develop 

appropriate strategic plans to achieve the selected target output levels. 

 

The second-stage DEA analysis also reveals that the operational performance of 

European SMA is significantly related to the ownership regime and hub airline airport 

status. With respect to ownership, SMA that are publicly owned have higher operational 

efficiencies than those that are privately owned. With respect to hub status, hub SMA 

have higher operational efficiencies than non-hub SMA. 

 

Finally, mention should be made of the drawbacks and limitations of the study. An 

obvious one is the small size of the dataset used. Data availability issues should be 

addressed at the sector level in which case the results of this study could be confirmed 

with a larger sample of airports. Another limitation is the fact that this study has 

employed cross-sectional data. Further research is necessary to gain a deeper 

understanding of the progress adaptation of the airports to the new European air 

transport framework. In this sense, one possible research avenue could be to apply the 

Malmquist productivity index method using a resampling approach (Simar and Wilson, 

2007). Also, it would be interesting to differentiate between airports with traditional 

operators versus low cost carriers, airports contracting versus outsourcing activities and 

different management arrangements in order to analyze the impact that 

internationalization operations have on airports. The latter would allow the 

customization of airports’ performance and identify opportunities to improve the current 

operations. In addition, this performance research has focused on capital and operational 

inputs; a potential extension of this research would be to consider also variables related 

to revenues from aviation/non-aviation activities, labour costs and other operating 

expenses and externalities of airports operations (e.g. air pollution or noise). 
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Table 1. Literature survey of inputs/outputs in airport DEA models 

Inputs 

Physical/Operational 

Variables References 

Area of apron Fernandes and Pacheco (2002); Lin and Hong (2006); Barros and Dieke (2008); Merkert and Mangia 

(2014); Li (2014) 

Area of departure lounge Fernandes and Pacheco (2002) 

Apron capacity Lozano and Gutiérrez (2011a, 2011b) 

Capital invested De Nicola et al. (2013) 

Cargo terminal area Li (2014); Anh and Min (2014) 

Kerb frontage Fernandes and Pacheco (2002) 

Distance to nearest large city Adler and Berechman (2001) 

Minimum connecting times Adler and Berechman (2001) 

Number of employees Gillen and Lall (1997); Sarkis (2000); Sarkis and Talluri (2004); Pacheco et al. (2006); Barros and Dieke 

(2008); Li (2014); Assaf and Gillen (2012); Merkert et al. (2012); Merkert and Mangia (2014); Ha et al. 

(2013); Suzuki et al. (2014); Merkert and Assaf (2015) 

Land/Terminal area Gillen and Lall (1997); Pathomsiri et al. (2008); Pels et al. (2001); Lin and Hong (2006); Barros  and Dieke 

(2008); Assaf and Gillen (2012); Chow and Fung (2012); Ha et al. (2013); Merkert et al. (2012); Ahn and 

Min (2014); Li (2014); Merkert and Mangia (2014); Suzuki et al. (2014); Merkert and Assaf (2015) 

Landing/Take off distance 

available 

Zhang et al. (2014) 

Number of baggage belts Gillen and Lall (1997); Pels et al. (2001);  Lin and Hong (2006); Lozano and Gutiérrez (2011a), Lozano and 

Gutiérrez (2011b) 

Number of boarding gates Gillen and Lall (1997); Sarkis and Talluri, (2004); Bazargan and Vasigh (2003);  Lin and Hong (2006); 

Lozano and Gutiérrez (2011a, 2011b); Merkert et al. (2013); Suzuki et al. (2014) 

Number of check-in counters Pels et al. (2001); Fernandez and Pacheco (2002);  Lin and Hong (2006); Lozano and Gutiérrez (2011a, 

2011b) 

Number of vehicle parking spaces Gillen and Lall (1997);  Lin and Hong (2006); Fernandes and Pacheco (2002) 

Number of runways Gillen and Lall (1997); Sarkis (2000); Sarkis and Talluri, (2004); Adler and Berechman (2001); Bazargan 

and Vasigh (2003); Lin and Hong (2006); Pathomsiri et al. (2008); Assaf and Gillen (2012); Merkert et al. 

(2013); Merkert and Mangia (2014); Suzuki et al. (2014) 

Number of terminals Adler and Berechman (2001) 

Parking position Zhang et al. (2014) 

Passenger throughput capacity Lozano and Gutiérrez (2011a) 

Runway area/length Lozano and Gutiérrez (2011a), (2011b); Chow and Fung (2012); Merkert and Mangia (2014); Ha et al. 

(2013); Ahn and Min(2014); Merkert and Assaf (2015) 

Number of scheduled flights Li (2014) 

Financial 

Capital costs Martín and Román (2001), (2006) 

Labour costs Barros and Dieke (2007); Martín and Román (2001, 2006);  De Nicola et al. (2013); Merkert and Mangia 

(2014); Li (2014) 

Material costs Martín and Román (2001; 2006); De Nicola et al. (2013); Merkert and Mangia (2014) 

Non-operating expenses Bazargan and Vasigh (2003) 

Operating expenses Sarkis (2000); Sarkis and Talluri (2004); Bazargan and Vasigh (2003); Merkert and Mangia (2014) 

Other operational costs Assaf and Gillen (2012) 

Payroll Sarkis (2000); Bazargan and Vasigh (2003); Pacheco et al. (2006) 
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Table 1 (continued). Literature survey of inputs/outputs in airport DEA models 
 

 

 

Outputs 

Operational  

Aircraft Traffic Movements Sarkis (2000); Lin and Hong (2006); Lozano and Gutiérrez (2011a, 2011b); Assaf and Gillen (2012); 

Merkert et al. (2012); De Nicola et al. (2013); Ahn and Min (2014), Merkert and Mangia (2014); Suzuki 

et al. (2014); Merkert and Assaf (2015) 

Annual Passenger Movements Sarkis (2000); Lin and Hong (2006); Pathomsiri et al. (2008); Barros and Dieke (2008); Lozano and 

Gutiérrez (2011a, (2011b); Assaf and Gillen (2012); Merkert et al. (2013); Merkert and Mangia (2014); 

Ahn and Min (2014); Suzuki et al. (2014); Zhang et al. (2014); Merkert and Assaf (2015) 

Cargo handled Sarkis (2000); Sarkis and Talluri, (2004); Lin and Hong (2006); Barros and Dieke (2008); Pathomsiri et 

al. (2008): Lozano and Gutiérrez (2011a, 2011b); Merkert et al. (2012); Merkert and Mangia (2014); Ahn 

and Min (2014); Merkert and Assaf (2015) 

Commuter movements Gillen and Lall (1997) 

Overall passenger satisfaction/ 

perceived service quality 

Adler and Berechman (2001);  De Nicola et al. (2013); Merkert and Assaf (2015) 

Passenger and cargo (working load 

unit) 

Ha et al. (2013);  De Nicola et al. (2013) 

Percentage of on time operations Bazargan and Vasigh (2003);  De Nicola et al. (2013) 

Financial  

Commercial revenues Pacheco et al. (2006) 

Non-aeronautical revenues Assaf and Gillen (2012) 

Operating revenues Sarkis (2000); Sarkis and Talluri, (2004); Pacheco et al. (2006) 

Operating margin (EBITDA) Merkert and Assaf (2015) 

Undesirable 

Accumulated flights delays Pathomsiri et al. (2008); Lozano et al. (2013) 

Aircraft noise Yu (2004); Yu et al. (2008) 

Average conditional 

delay of delayed flights  

Lozano and Gutiérrez (2011b) 

Number/Percentage of delayed 

flights 

Pathomsiri et al. (2008); Lozano and Gutiérrez (2011b) 
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Table 2. Dataset for 21 European SMA (year 2013) 

# 
IATA 

code 
Airport Country 

RUNAREA 

(m
 2
) 

BOARDG  

(# gates) 

APRON  

(# stands) 

SCHEROUT 

(# routes) 

AIRLINES 

(# airlines) 

MOV       

(# mov.) 

PAX         

(# pax) 

CARGO 

(Tonnes) 
Ownership Hub 

A1 ANR Antwerp  Belgium 135,900 2 19 2 2 47,000 140,000 4,200 Public No 

A2 BRN Bern Belp Switzerland 51,900 5 12 35 3 56,000 240,000 0 Private Yes 

A3 LNZ Blue Danube Austria 180,000 12 16 35 15 10,900 624,000 43,000 Public No 

A4 BUD Budapest Hungary 302,265 38 44 86 37 83,830 852,100 92,112 Private Yes 

A5 CBG Cambridge Int’l U.K. 88,425 1 4 2 3 24,750 130,000 15 Private No 

A6 CWL Cardiff U.K. 110,032 15 17 18 9 24,879 1,072,062 1,052 Public No 

A7 GRQ Groningen Netherlands 180,000 4 5 10 4 43,836 202,000 0 Public No 

A8 INN Innsbruck Austria 90,000 10 10 17 60 40,000 1,000,000 3,000 Public No 

A9 IOM Isle of Man U.K. 194,120 6 13 10 5 31,833 746,817 2,034 Public No 

A10 LCY London City U.K. 35,970 14 18 47 10 120,000 3,003,000 0 Private No 

A11 SEN London Southend U.K. 68,672 6 20 24 3 33,595 1,000,000 16 Public No 

A12 NTE Nantes International France 130,500 22 27 63 18 48,000 3,631,693 8,668 Private Yes 

A13 NWI Norwich U.K. 82,845 5 8 7 6 40,598 423,000 0 Private No 

A14 PUY Pula Croatia 132,570 5 10 29 32 7,300 377,428 11.5 Private No 

A15 RJK Rijeka Croatia 112,500 6 5 15 7 3,000 150,000 10 Private No 

A16 RTM Rotterdam The Hague  Netherlands 101,700 8 19 24 8 53,899 1,500,000 47 Public No 

A17 SZG Salzburg Austria 123,750 11 14 33 111 17,122 1,666,468 8,127 Private No 

A18 SNN Shannon Ireland 144,000 13 17 22 8 24,264 1,400,032 16,109 Public No 

A19 SOU Southampton U.K. 63,751 9 14 36 6 36,058 1,720,000 0 Private Yes 

A20 FAE Vagar Faroe Islands 37,500 2 5 9 1 5,268 225,532 611 Public Yes 

A21 WAT Waterford  Ireland 32,959 2 4 1 1 9,000 30,000 0 Public No 
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Table 3. Efficiency assessment results 

 

 

 

 

 

 

 

 

Airport  MOVs  
PAXs  CARGOs  

0Eff  CRS
0Eff  scale

0Eff  NIRS
0Eff  RTS 

A1 1.000 0 0 0 1.000 1.000 1.000 1.000 CRS 

A2 1.000 0 0 0 1.000 1.000 1.000 1.000 CRS 

A3 1.000 0 0 0 1.000 1.000 1.000 1.000 CRS 

A4 1.000 0 0 0 1.000 1.000 1.000 1.000 CRS 

A5 1.000 0 0 0 1.000 1.000 1.000 1.000 CRS 

A6 1.111 22,389 0 0 0.900 0.890 0.989 0.890 IRS 

A7 1.000 0 0 0 1.000 1.000 1.000 1.000 CRS 

A8 1.083 4,608 0 0 0.923 0.912 0.988 0.912 IRS 

A9 1.000 0 0 0 1.000 1.000 1.000 1.000 CRS 

A10 1.000 0 0 0 1.000 1.000 1.000 1.000 CRS 

A11 1.000 0 0 0 1.000 1.000 1.000 1.000 CRS 

A12 1.000 0 0 0 1.000 0.940 0.940 1.000 DRS 

A13 1.000 0 0 0 1.000 1.000 1.000 1.000 CRS 

A14 2.684 34,418 0 0 0.373 0.352 0.946 0.352 IRS 

A15 2.232 24,838 0 0 0.448 0.180 0.403 0.180 IRS 

A16 1.040 12,901 0 443 0.962 0.959 0.998 0.959 IRS 

A17 1.070 55,109 0 0 0.934 0.907 0.971 0.907 IRS 

A18 1.000 0 0 0 1.000 1.000 1.000 1.000 CRS 

A19 1.042 31,863 0 204 0.960 0.943 0.983 0.943 IRS 

A20 1.000 0 0 0 1.000 0.820 0.820 0.820 IRS 

A21 1.000 0 0 0 1.000 0.738 0.738 0.738 IRS 



 32 

Table 4. Benchmarks of technically inefficient airports 

Inefficient airport Benchmarks 

A6 A9 (0.4635), A10 (0.2725), A18 (0.0141), A21 (0.2500) 

A8 A3 (0.0019), A5 (0.5571), A10 (0.2447), A18 (0.1962) 

A14 A3 (0.0005), A5 (0.6922), A10 (0.3073) 

A15 A3 (0.0002), A5 (0.9285), A10 (0.0713) 

A16 A5 (0.3140), A9 (0.2397), A10 (0.4463) 

A17 A3 (0.2019), A5 (0.2568), A10 (0.5405), A18 (0.0008) 

A19 A10 (0.5229), A11 (0.1468), A20 (0.3303) 
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Table 5. Estimation results for linear, censored and fractional models (based on logit 

and cloglog functional forms) 

 

Variable 

Linear 

regression 

model 

Censored regression 

model 

Fractional regression 

models 

Two limit Tobit Logit Cloglog 

Ownership 
-0.1552* 

(0.0765) 

-0.3260* 

(0.1820) 

-2.4826*** 

[0.8596] 

-0.8927** 

[0.3664] 

Hub 
0.1492 

(0.0896) 

0.3809 

(0.2415) 

3.2769*** 

[1.0956] 

1.0746*** 

[0.3879] 

Constant 
0.9668*** 

(0.0498) 

1.2193*** 

(0.1432) 

3.8219*** 

[0.5367] 

1.3454*** 

[0.1367] 

Log sigma - 
-1.1911*** 

(0.2951) 
- - 

R
2 

0.221 - 0.254 0.254 

R
2
 adjusted 0.134 -   

McFadden's 

pseudo-R
2 - 0.202 - - 

F statistic 2.556 - - - 

Percentage of 

predictions 

outside the 

[0,1] interval 

0.05 - - - 

Log -

likelihood 
9.9153 -8.1155 - - 

Order 2 -

RESET test 
0.7584 - 0.414 0.833 

Note 1: No. of observations=21; Standard errors are in parentheses; OLS standard errors (Linear model); 

ML standard errors (Tobit model); Robust standard errors are in square brackets; Levels of statistical 

significance are represented as follows: p-value<0.01(***); p-value<0.05(**); p-value<0.10 (*).  

Note 2: An additional regression analysis has been refitted, excluding A10 (LCY) from the sample 

(because due to its size it may be considered an outlier) and the results keep the significance indications 

and the magnitude and direction of the coefficient variables. 
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Table 6. Partial effects for fractional regression models 

 

Variable Logit Cloglog 

Ownership 
-0.1462* 

(0.0878) 

-0.1262* 

(0.0647) 

Hub 
0.1929* 

(0.1113) 

0.1519** 

(0.0723) 

Note: p-value<0.05 (**); p-value<0.10 (*). 
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Figure 1. Output increase estimation 0 SCHROUT AIRLINES,  for each airport 
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Figure 2. Output Pareto efficient frontier corresponding to airport A6 

 
 

  

  
 


