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Abstract: The mining industry relies heavily on empirical analysis for design and prediction.
An empirical design method, called the critical span graph, was developed specifically for rock
stability analysis in entry-type excavations, based on an extensive case-history database of cut and fill
mining in Canada. This empirical span design chart plots the critical span against rock mass rating
for the observed case histories and has been accepted by many mining operations for the initial span
design of cut and fill stopes. Different types of analysis have been used to classify the observed cases
into stable, potentially unstable and unstable groups. The main purpose of this paper is to present
a new method for defining rock stability areas of the critical span graph, which applies machine
learning classifiers (support vector machine and extreme learning machine). The results show a
reasonable correlation with previous guidelines. These machine learning methods are good tools for
developing empirical methods, since they make no assumptions about the regression function. With
this software, it is easy to add new field observations to a previous database, improving prediction
output with the addition of data that consider the local conditions for each mine.

Keywords: hard-rock stability; span design graph; entry-type excavations; support vector machine;
extreme learning machine

1. Introduction

Entry-type mining methods, such as cut and fill, room and pillar and shrinkage stoping, have
been replaced in many mining operations by lower cost, non-entry mining methods, such as sub-level
caving. In many mines, however, the nature of the orebody is such that more selective, entry-type
mining methods are still desirable. The rock mass stability depends on the state of the stress condition
around the openings, the distribution of discontinuities, the strength and the condition of rock mass
and, finally, on the dimensions of the stope (the openings made in the process of extracting ore are
called stopes or rooms).

The span of the opening (the horizontal distance between the side supports) for a given rock
mass condition conforms a single parameter of the design from the many factors that influence the
stability of the stopes. There are two limiting constraints that have a decisive influence on the design
of the spans between pillars for these excavations [1,2]. Firstly, the nature of entry-type mining is such
that workers are exposed to freshly blasted ground. Thus, higher safety factors are required for the
design of entry-type room spans than for non-entry excavations. However, as stope excavations are
used only for a short time, the high safety factors used for permanent underground civil engineering
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structures are difficult to justify. Secondly, profitable mining often demands the maximum extraction
of ore, which is achieved increasing opening spans between pillars.

Many methods for designing open spans in underground excavations have been developed in the
past, often through empirical analysis. The empirical design method called the “critical span graph”
was developed by Brennan Lang (University of British Columbia) in 1994 [2] to provide a practical
design tool developed specifically for spans in entry-type excavations. It is based on an extensive
case-history database of cut and fill mining in Canada, and it defines stable, potentially unstable
and unstable rock in span areas on a graph of rock mass rating [3] (RMR76 rock mass performance
parameter) against the span between pillars. This graph has been accepted by many mining operations
for the initial span design of cut and fill stopes, and it enables an operator to assess the stability of
mine openings with respect to a rock mass.

In this paper, a new method for defining stability areas of the critical span graph that applies
supervised machine learning classifiers (support vector machine and extreme learning machines)
is presented.

The following Section 2, Methods, presents the critical span graph and the problem statement; and
it describes the support vector machine and the extreme machine learning methods. Section 3, Results,
explains how the methods are applied. In Section 4, the obtained results are discussed. The paper
closes with Section 5, Conclusions.

2. Methods

2.1. Critical Span Graph and Problem Statement

2.1.1. Critical Span Graph

Empirical design methods, which involve the application of knowledge based on documented
experience with similar mining conditions, have gained acceptance in the mining industry.
This requires a database of observations that relate the stability of the underground structures to
mine geometry, the rock mass characteristics and other factors that influence stability [1,2,4]. Empirical
methods have been made possible, in part, by widespread acceptance of rock mass classification
systems. Empirical design techniques are the only methods available for analyzing the susceptibility
of a rock mass to caving due to the characteristics of the process of rock failure. However, empirical
methods do not rely on a detailed understanding of failure mechanisms and, as such, are generally
only appropriate for preliminary designs [5].

The empirical design methods [1,4,6–10] that have been developed for the design of spans in
non-entry stopes and that have gained widespread acceptance in the mining industry would not be
suitable for entry-type mining methods, since the definition of stable in a cut and fill stope is much
more conservative than in the case of an open stope. Other empirical methods [3,11–16] have been
proposed as general purpose span design techniques for a range of excavations from temporary mine
openings to permanent underground structures. In general, however, they have been derived from
databases consisting primarily of civil engineering case histories, which require long-term stability
and higher safety factors than those required for entry-type excavation spans.

The empirical design method called the critical span graph was developed by B. Lang [2] at the
University of British Columbia, and it was specifically meant for spans in entry-type excavations, by
compiling and plotting the 172 observations of a database from entry-type case histories on a span
versus RMR76 graph, to enable future prediction of stable spans given the RMR76 of the stope. The
span is defined as the diameter of the largest circle that can be drawn within the boundaries of the
exposed rock when viewed in plan. Rock mass rating (RMR76) [3] is widely accepted and used as a
rock mass classification system. It combines the most significant geomechanical parameters: (1) the
strength of intact rock; (2) the percentage of the drill core (RQD); (3) the spacing of discontinuities;
(4) groundwater conditions; and (5) the orientation of discontinuities; and it represents them with
an overall comprehensive index of rock mass quality. To apply this system, the rock mass is divided
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into a number of structural domains, and each one is assessed. Weighted ratings were used because
the parameters are not equally important. The summation of all parameters yields an RMR value
ranging from 0–100. By this approach, we are able to produce a description of the rock mass based on
classes defined by its number (for example, RMR < 20 is a very poor rock, and RMR > 80 is a very
good rock). The advantage of this system is that only a few basic parameters relating to the geometry
and mechanical conditions of the rock mass are required. Its popularity stemmed from the fact that it
could be used for excavation design in rock with significant capacity to predict excavation stand-up
time. Because the RMR classification has been updated several times since its initial publications, it
is always referred to with a subscript indicating the year (i.e., RMRyear) to identify the version of the
classification being used. As an example of the application of the RMR76 for the characterization of the
rock mass, the mean values of the different geologic parameters and the corresponding values of rock
mass quality index are shown in Table 1 in the two main areas of the operation of the Detour Lake
Gold Mine [2], where the values of the original database compiled by B. Lang were obtained.

Table 1. Rock Mass Rating (RMR76) at Detour Lake Mine.

Category Main Zone Talc Zone
Description Rating Description Rating

Strength 160–180 MPa 13 35–50 MPa 4
RQD 90% 17 80% 16

Joint Spacing 0.4 m 16 0.3 m 9
Joint Condition smooth, hard, tight 17 smooth surfaces, soft 10
Groundwater none 10 none 10

Joint Orientation 0 0
Total RMR76 73 49

The critical span graph developed by Lang consists of two straight lines that divide the RMR76

versus span graph into three zones (stable, potentially unstable and unstable rock), as shown in Figure 1.
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Figure 1. Critical span graph: B. Lang (1994).

In 2002, the database was expanded to 292 observations by a further study conducted by
J . Wang [17] at British Columbia University, with the addition of case histories from six more mining
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operations and using a neural network analysis for the construction of the stability graph, updating
the critical span graph.

Subsequently, in 2003, P. Kumar [18] at the British Columbia University incorporated 107 new
observations, configuring a final database with 399 cases, updating the critical span graph also using a
neural analysis. Although some contradictions in the successive enlargements of the database made by
researchers at British Columbia University [2,17–19] are observed, the database established in the work
of Kumar [18], which is the one that incorporates the largest number of cases, was taken as a reference
for conducting the present study. This final database consisted of stope behavior data from eight
operating mines in Canada with observational data from 399 operational case histories. The data case
history sources are shown in Table 2. Each case history contains information on rock mass conditions
expressed as an RMR76 value, span and rock stability.

Table 2. Case histories’ data sources [18].

Mines Cases Stable (S) Potentially Unstable (P) Unstable (U)

Detour Lake Mine 172 94 37 41
Detour Lake Mine 22 10 0 12
Photo Lake Mine 6 0 6 0
Olympias Mine 13 4 1 8

Brunswick Mining 17 5 3 9
Musslewhite Mine 46 35 10 1

Snip Mine 16 12 2 2
Red Lake Mine 107 81 19 7

Summary 399 241 78 80

In this database, the RMR76 ranges from 24–87 and the span from 2–41 m. The RMR76 values
for 57% of the cases were concentrated in the 60–80 RMR76 value range. The span values from
3–30 m constitute 95% of the cases. The input data were obtained from different mines that had
different personnel surveying the stope dimensions and estimating the RMR76 values. This introduced
variability or inaccuracy into the input data. However, the span estimation error should be substantially
less than 1 m, which is within the tolerance of the graphical design approach. The variability in
estimating the RMR76 value can be more significant and will depend on the level of experience of the
engineer conducting the rock mass classification work. For experienced practitioners, the variability
for estimating the RMR76 value should be within ±10%. The critical span graph and its updates have
been widely accepted in the mining community and provide a quick and simple tool to estimate a
maximum span that may be designed based on the observed RMR76 value.

The stability of an excavation (defined in terms of short-term stability because the database is
based largely on stoping methods that, by their nature, are of a short duration) is classified into three
categories [2]:

1. Stable excavations: (i) no uncontrolled falling of the ground; (ii) no observed movement in the
roof; and (iii) no extraordinary support measures implemented.

2. Potentially unstable excavations: (i) extra ground support has been installed to prevent potential
falling of the ground; (ii) movement of 1 mm or more in 24 h has been observed in the roof; or
(iii) an increase in the frequency of popping and cracking indicating ground movement.

3. Unstable excavations: (i) the area has collapsed; (ii) the depth of failure of the roof is
0.5-times the span (in absence of structure-related failure); or (iii) support was not effective
in maintaining stability.

The critical span graph is empirically derived, and therefore, there are some conditions to its
application. The users of the graph must always be aware of the limits of the database, which control
its applicability [2]. These are: (i) the span is defined as the diameter of the largest circle that can be
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drawn between pillars and walls in plan view; thus, pillar stability is required for the span design to
be reliable; (ii) stopes must have local support installed; (iii) conditions where high stress influences
stability cannot be assessed reliably; (iv) the opening roof is horizontal; (v) the term stable refers to
short-term stability (approximately three months); (vi) discrete wedges must be adequately supported
before this design approach can be used reliably.

2.1.2. Problem Statement

Empirical methods are based on past practice and interpolation among similar input parameters
and must be used with a reasonable degree of engineering judgment and adjusted to local conditions.
From a mathematical point of view, the empirical methods should be considered as data-driven models.
That is, they rely on data to find out specific patterns that can be generalized to a broader range of data.

A mathematical solution to this problem would be a regression functions that would allow one
to make predictions for new conditions. In the real world, the regression function is unknown, and
data are high-dimensional. However, the classical regression and classification statistical techniques,
commonly used for the analysis of historical databases that are based on empirical design methods,
stand upon a strict assumption that the underlying probability distribution is known. In contrast,
supervised machine learning methods map the input-output relationship from the observed data
pairs (input-output) with the hope that this learned mapping would deduce the system response for
unknown conditions (unknown input data).

From this perspective, these learning methods can be good tools for developing empirical methods.
These learning techniques have the following advantages: they provide a solution for nonlinear and/or
unknown systems; they do not need a known distribution to learn from data; they are robust to noise
and very effective for sparse, high-dimensional data.

Moreover, the machine learning classifiers analyze input factors assigning a weighting or
numerical value to each input factor or factor combination. This is done to provide an estimate
or prediction for an output factor. As more information becomes available, the machine learning
classifier will adjust and change the input factor weightings to improve output prediction. To the
extent that field observations increase, the machine learning methods can optimize the use of that
information. As the purpose of a model of this type is the prediction, the procedure of cross-validation
is performed, since it allows one to estimate the ability of the model to obtain good predictions for
a hypothetical validation set. The goal of cross-validation is testing the model in the training phase,
in order to limit problems like overfitting, and giving an insight into how the model will generalize to
an independent dataset (i.e., an unknown dataset, for instance, from a real problem).

In this paper, a new method for defining stability areas of the span graph is presented.
Two machine learning classifiers are applied: support vector machine (SVM), which is probably
the most common method currently used and which offers the advantages of its great adaptability (e.g.,
to process unbalanced data or probabilistic classification), with generally high prediction accuracy
and robustness, but it has the disadvantage of performing a two-class classification (even though a
multi-class classification can be obtained from pair-wise classifications); and extreme learning machine
(ELM), which offers the advantage of performing multi-class classifications and fast learning speed.

All previous work with the critical span graph [2,17,18] classifies the data into three groups,
because field observations are grouped into the categories stable, unstable and potentially unstable.
The SVM and ELM classifiers were used following the same classification criteria, but it has also been
considered an alternative construction of the critical span graph, which only requires the information of
field observations corresponding to the stable and unstable classes, using a probabilistic classification
based on SVM that allows one to define soft boundaries between the two classes considered. As these
two classes are easier to assess by the engineer, the error due to incorrect assessment is minimized.

Our model represents, thus, an extension with respect to previously available criteria. This model
could incorporate additional field observations in a previous database, so that the machine learning
classifier continually improves prediction output. This is important because the empirical methods
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must be used with a reasonable degree of engineering judgment and adjusted according to local
conditions. Moreover, since the learning classifiers are multivariate tools, this model could incorporate
new control or decision variables that could be registered as field observations.

To extend the applicability of the critical span graph method, it must be developed with a database
with samples like those in the local field conditions. Examples of adaptations of the critical span graph
to local conditions, which can be perfectly resolved by learning classifiers, are described as follows:
(1) T. Brady et al. [1] have investigated the conditions of Nevada gold deposits (USA), which are found
in intensely fractured, faulted and argillized host rock (weak rock mass); thirty six case histories from
five different mines were added to the original database [2] and used to modify the critical span graph
for man-entry mining; and (2) C. Sunwoo et al. [20] have proposed a modified critical span graph that
has been successfully used to assess the stability of wide underground openings in six limestone mines
in Korea. The database for this modified critical span graph consisted of 140 points from the six mine
sites with the RMR values ranging between 40 and 70.

2.2. Support Vector Machine Classifiers

The support vector machine (SVM) is an efficient machine learning technique derived from
statistical learning theory by Vapnik (1995) [21–23] and has proven its good performance in
classification, regression [24], time series forecasting and prediction in geotechnical practice and
mining science [25–31]. It can solve non-linear and high-dimensional problems effectively.

A brief introduction about how to construct an SVM model for a classification problem is presented.
The main objective of SVM is to find an optimal separating hyperplane that correctly classifies data
points and separates the points of two classes as far as possible, by minimizing the risk of misclassifying
the training samples and unseen test samples. This means that two classes have maximum distance
from the separating hyperplane.

The idea of SVM classifiers can be described as follows: suppose there are m observation samples
(the training set), (xi, yi), i = 1, 2, ..., m where:

xT
i = (xi1, . . . xid) ∈ Rd

is a d-dimensional feature of the sample i and y ∈ {−1, +1} is its coded class label. If the sample xi is
assigned to the positive class, then yi is +1, and if it is assigned to the negative class, then yi is −1.

This training set can be separated by the hyperplane wTxi + b = 0, where w is the weight vector
and b is the bias. The equations of the marginal hyperplanes, H1 and H2 (Figure 2), are:

H1 : (wTxi + b) = 1

and:

H2 : (wTxi + b) = −1

Thus, correctly-classified points satisfy the inequality:

yi(wTxi + b) ≥ 1 (1)

for xi, i = 1, 2, ..., m.
The distance between marginal hyperplanes (namely, the margin) is equal to 2

||w|| . Any training
samples that fall on hyperplanes H1 or H2, the sides defining the margin, are support vectors, as shown
in Figure 2.
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Figure 2. Classification of data by support vector machine (SVM).

Thus, the problem is the maximizing of the margin by minimizing ||w||2 subject to Equation (1).
This is a convex quadratic programming problem. Lagrange multipliers (αi > 0, i = 1, ..., m) are used
to solve it:

Minimize Jp =
||w||2

2
+

m

∑
i=1

αi

[(
wTxi + b

)
yi − 1

]
Calculating the derivative of Jp with respect to both w and b, the dual problem can be described:

Maximize Jd (α) =
m

∑
i=1

αi −
1
2

m

∑
i=1

m

∑
j=1

αiαjyiyjxT
i xj

subject to
m

∑
i=1

αi · yi = 0, α ≥ 0

After minimizing Jp, the optimal weights are:

w∗ =
m

∑
i=1

α∗i yixi

where a∗i are optimal Lagrange multipliers.
The Lagrange multipliers are non-zero coefficients only for those observations ifor which the

constraints are exactly met, that is when yi

(
w∗

T
xi + b

)
= 1. These observations xi are, thus, the

support vectors. The optimal bias for any support vector xi is given by b∗ = yi −w∗
T

xi.
Thus, the linear decision function can be obtained by the following:

f (x) = sign(
m

∑
i=1

a∗i yixT
i x + b∗)

where a∗i are the optimal Lagrange multipliers (a∗i are non-zero coefficients only for the support vectors xi).
In real-world problems, input data are noisy, and no linear separation is possible in the feature

space. The hyperplane margin can be relaxed with the introduction of a non-negative slack variable.
Hence, the soft margins can be expressed as follows:

yi

(
wTxi + b

)
≥ 1− ξi (2)

where ξi ≥ 0 (i = 1, ..., m) is a slack variable that measures the amount of violation from the constraints.
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The optimization criterion to obtain the optimum separating hyperplane should be:

Minimize ψ =
1
2
||w||2 + C

m

∑
i=1

ξi

subject to yi

(
wTxi + b

)
≥ 1− ξi, ξi ≥ 0 (i = 1, ..., m)

where C is a regularization parameter (penalty parameter) that controls the trade-off between
maximizing the margin and minimizing the training error.

If the samples are non-linearly separable, the SVM can map the training points, using a function φ,
to a high-dimensional feature space where linear separation is possible. After a function φ is selected,
the quadratic programming problem becomes:

Maximize Jd(α) =
m

∑
i=1

αi −
1
2

m

∑
i=1

m

∑
i=1

αiαjyiyjK(xi, xj)

subject to 0 ≤ αi ≤ C,
m

∑
i=1

αiyi = 0, i = 1, ..., m

where:

K(xi, xj) =
[
φ(xi) · φ(xj)

]
The function K is called the kernel function.
The decision function is accordingly modified as:

f (x) = sign

[
m

∑
i=1

a∗i yiK(xi, x) + b∗
]

where a∗i are optimal Lagrange multipliers (a∗i are non-zero coefficients only for the support vectors xi).
Two of the kernel functions most commonly used in SVM classifiers are:

Linear K(xi, xj) = xT
i xj

Radial Basis Function (RBF) K(xi, xj) = exp
(
− 1

σ
· ||xi − xj||2

)
, σ > 0

In the present study, the classification problem is solved using LIBSVM software [32].
Cross-validation will be used to assess the quality of the model and avoid over-fitting [32,33].

It will be applied at two stages: firstly, the tuning of the model parameters (C and σ) and, then, the
validation of the chosen model. The cross-validation process divides the data into a fixed number of
equal (or approximately equal) datasets, called folds, randomly chosen. If, for instance, five folds are
used, an SVM model is obtained with a training dataset composed of all of the datasets but one, that
is 80% of the data, and then, this model is tested with the remaining dataset, that is the remaining
20% of the data. A value of the accuracy is obtained from this test. The process is repeated in such a
way that each of the five datasets, in turn, is used as the testing dataset. At the end of this process,
five accuracies have been obtained. The mean accuracy is called the five-fold cross-validation accuracy
for the model, and it is used to validate the model.

2.3. Extreme Learning Machine Classifiers

The extreme learning machine (ELM) algorithm [34] is a generalized single hidden layer
feedforward network (SLFN) where the input weights are chosen randomly and the output weights
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are calculated analytically. For hidden neurons, many activation functions, such as sigmoidal and
radial basis functions, can be used, and the output neurons have a linear activation function [35].

Huang [34] showed that the SLFN network, with a sufficient number of hidden neurons, with
randomly chosen input weights and hidden bias, can approximate, under the condition that the
activation function is infinitely differentiable, any continuous function to any arbitrary level of accuracy.
The output weights are determined analytically, so the SLFN network is obtained with very few steps
and with low computational cost.

Given a set of N observation samples (xi, yi), where
xi = [xi1, xi2, ..., xin] ∈ Rn is an n−dimensional feature of the sample i,
yi = [yi1, yi2, ..., yim] ∈ Rm is its coded class label.
Then, an SLFN with L hidden nodes is modeled as the following sum:

L

∑
i=1

βi · g(wixj + bi) =
L

∑
i=1

βi · hi(xj), jε [1, N]

where g is the activation function, wi = [wi1, wi2, ..., win]
T is the weight vector (input weights)

connecting the i-th hidden node and the input nodes, bi is the threshold (bias) of the i-th hidden
node and βi = [βi1, βi2, ..., βim]

T is the weight vector (output weights) connecting the i-th hidden node
and the output nodes.

SLFNs can approximate these N samples with zero error. In this case, it turns out:

L

∑
i=1

βi · g(wixj + bi) = yj, jε [1, N]

which can be written:

Hβ = Y (3)

where:

H =

 g(w1x1 + b1) · · · g(wLx1 + bL)
...

. . .
...

g(w1xN + b1) · · · g(wLxN + bL)


N×L

H =

 h1(x1) · · · hL(x1)
...

. . .
...

h1(xN) · · · hL(xN)


N×L

and:

β =
[

βT
1 . . . βT

L

]T

L×m
, Y =

[
yT

1 . . . yT
N

]T

N×m

H is called the hidden layer output matrix of the neural network; and the i-th column of H is the i-th
hidden node output with respect to inputs x1, x2, ..., xN .

In the ELM algorithm, for a given number of hidden neurons, it is assumed that the input weights
wi and bias bi of hidden neurons are selected randomly, that is they are real numbers. For fixed input
weights and biases, the only unknown parameters in SLFNs are the output weights vectors β between
the hidden layer and the output layer, so to train an SLFN is to find a least-squares solution β̂ of the
linear system corresponding to Equation (3).

If the number L of hidden nodes is equal to the number N of distinct training samples, the hidden
layer output matrix H is square and invertible, and SLFN can approximate these training samples with
zero error.
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However, in most cases, the number of hidden nodes is less than the number of different training
samples, so H is a non-square matrix. The smallest norm least-squares solution of the linear system
corresponding to the Equation (3) is then:

β̂ = H†Y (4)

where H† is the Moore–Penrose generalized inverse of matrix H.
Different methods can be used to calculate the Moore–Penrose generalized inverse of a matrix:

orthogonal projection method, singular value decomposition, etc. The orthogonal projection
method [36] can be used in two cases: (i) when HTH is non-singular and H† = (HTH)−1HT; and
(ii) when HHT is non-singular and H† = HT(HHT)−1.

The special solution β̂ = H†Y has the following important properties: (i) it is one of the
least-squares solutions of Equation (3), which means that it has a minimum training error; and
(ii) it has the smallest norm among all of the least-squares solutions of Equation (3). According to
Bartlett [37], for feedforward neural networks reaching the smallest training error, the smaller the
norms of weights are, the better generalization performance the networks tend to have.

Huang et al. [35] have proposed a version of the ELM algorithm that provides a unified solution
for regression and multi-class classification using a kernel matrix (ELM Kernel). From the learning
point of view, ELM aims to reach better generalization performance by reaching both the smallest
training error and the smallest norm of output weights. Thus, the optimization problem of the objective
function for the ELM Kernel can be expressed:

Minimize :
βεRL×m

FELM =
1
2
‖β‖2 +

C
2

N

∑
i=1
‖ξi‖2 =

1
2
‖β‖2 +

C
2
‖Y−Hβ‖2 (5)

where ‖ · ‖ denotes the Frobenius norm.
The first term in the objective function is a regularization term that controls the complexity of

the learned model and, therefore, its generalization performance. The parameter C is a user-specified
regularization parameter that trades off the norm of output weights and training errors (as in SVM),
and it also improves the generalization performance of the model [38].

The optimal solution
?
β that minimizes Equation (5) can be analytically obtained by setting the

gradient of FELM with respect to β to zero:

FELMmin ⇒
?
β− CHT

(
Y−H

?
β

)
= 0

According to Huang et al. [35], the closed form solution is:

?
β = HT

(
I
C
+ HHT

)−1
Y (6)

where I is the identity matrix of dimension N and HHT = ΩELM εRN×N is called ELM kernel matrix.

After obtaining the optimal
?
β, the decision score, on test point x εR1×L, is determined by the

output function of ELM:

f(x) = h(x)
?
β = h(x)HT

(
I
C
+ HHT

)−1
Y

f(x) =

 k(x, x1)
...

k(x, xN)


T (

I
C
+ ΩELM

)−1
Y (7)
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where ΩELM = HHT, ΩELMi,j = k(xi, xj) and k(x) = h(x)HT εR1×N is the ELM kernel vector for the
test point x.

The index corresponding to the highest value of f (x)εRm is considered the label of x.
In this specific case, that is similar to SVM, the feature mapping h(x) does not need to be known.

Instead, its corresponding kernel k(u, v) can be used. Equation (6) can be analytically solved by a
matrix inverse operation, while a constrained quadratic programming problem is required in SVM.
This makes the ELM Kernel easy and efficient to implement.

In the present study, the classification problem is solved using the MATLAB codes of ELM with
kernels for multi-class classification published by Nanyang Technological University, Singapore [34].

3. Calculations and Results

3.1. Calculations

3.1.1. Database

The database used for the application for the learning classifiers was published by Kumar [18] and
includes 399 samples classified into three groups: stable (S); unstable (U); and potentially unstable (P).

3.1.2. Imbalanced Data

One of the main problems of the data classification to obtain the span stability graph is that
the case-history data are clearly imbalanced, with a higher number of stable samples, the relation
stable/unstable being three to one. Imbalanced datasets can present a challenge when training a
classifier, since the regular learning algorithm has a natural tendency to favor the majority class by
assuming a balanced class distribution or equal misclassification cost. Intuitively speaking, with the
advantage in quantity, the majority class tends to push the separating boundary towards the minority
side to gain a better classification result for itself. Therefore, the standard learning classifiers will tend
to predict better the largest class, and SVM and ELM are no exception.

Different strategies have been proposed to improve the efficiency of learning classifiers when
using unbalanced data [39–42]. In general, these strategies have addressed the issue of class imbalance
in two different ways. The first way (preprocessing strategies) is to balance the original dataset.
The second way (training and post-processing strategies) involves modifying the classifiers in order to
adapt them to the datasets.

1. Preprocessing strategies: These are based on sampling techniques that rebalance the dataset in
order to get a new training set where the smallest class is better represented. Over-sampling,
where new instances are created, can be used.

2. Training strategies: These procedures modify the training incorporating information related
with the proportion of number of samples between the classes. For example, to the extent that a
learning classifier includes a cost function associated with the misclassification of the samples,
a higher weight can be associated with the cost for the misclassification of samples from the
smaller classes. This weight can also be related to the risk associated with a misclassification.

3. Post-processing strategies: In general, these procedures are directed towards changing the weight
vector of the decision function or of the determination of a new bias or threshold, in order to
adjust the boundary decision by the learning classifier, so providing a good margin for separating
the smallest class.

In this paper, the strategy was to assume a cost three times higher for the misclassification of
samples from the smaller class. Thus, more importance is given to the misclassification of an unstable
sample, because this would be an unsafe situation, while the opposite would not.
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3.1.3. Classification with Support Vector Machine

Two different strategies have been used to classify the samples with SVM: separation into
three classes (unstable, potentially unstable and stable); and binary separation (unstable-stable) with
probabilistic prediction.

Classification into Three Groups

The SVM classification strategy follows the same criterion (classification into three groups) as
previous works [2,17–19]. The SVM classifier with the linear kernel has been applied. The linear kernel
only considers the penalty parameter C.

LIBSVM software [32] uses the approach one-against-one when dealing with multi-classes.
A binary classifier is constructed of the two classes. Finally, the sample gofor every pair of classes, and
all of the samples are assigned to one es to the class it has been assigned to most of the times. The lines
that separate the zones are obtained from the binary separation lines.

The model parameter C has been tuned to maximize the five-fold cross-validation accuracy using
the grid-search method: the cross-validation accuracy of the models that corresponds to the C values
of a grid is obtained, and the C parameter of the model with the highest cross-validation accuracy is
considered the optimum. In this case, the grid was constructed in logarithmic scale with an initial
value of log2C = −6 and a final value of log2C = 6, the values of log2C being separated by a step
of 0.1. The optimum C is 2−5.1 = 0.0292, and the corresponding model cross-validation accuracy for
five folds is 82%.

Binary Probabilistic Classification

As an alternative strategy, a binary separation between unstable-stable classes with probabilistic
prediction was performed.

In all previous work [2,17,18], the critical span graph is obtained classifying field observations
into three categories. An alternative construction of the critical span graph is a probabilistic SVM
classification into two categories. It only requires the information corresponding to the stable and
unstable classes. Because these two classes are easier to assess by the engineer, the errors due to this
cause are minimized.

To make a probabilistic classification, it is necessary to generate the probabilities associated with
each sample. Namely, the output of a classifier should be calibrated using the posterior probability.
For that, the model is trained with the data, and then, probabilities are assigned with a logistic sigmoid
function, which is set according to the conditional probabilities obtained with the training set [43].
Platt scaling [44] has been used.

When performing a non-probabilistic binary separation (U-S), we do not obtain a strip of
separation between the two classes, which should correspond to the in-between cases represented by
the class P. However, we can use the logistic function to define soft boundaries between the two classes
considered (stable vs. unstable) and, thus, as further discussed in the next section, to obtain the critical
span graph.

The linear kernel function was used again. The parameter C was tuned using grid-search with the
same grid as in the three-group case, and the obtained optimum C was again 2−5.1 = 0.0292. However,
in this case, where there are only two groups, the corresponding model cross-validation accuracy for
five folds was 98%.

3.1.4. Classification with Extreme Learning Machine into Three Groups

This classification strategy follows the same approach of previous works [2,17–19]. MATLAB
codes for ELM with kernels called elm_kernel, published by Nanyang Technological University,
Singapore [34], were used. The grid-search method was used for the tuning of the kernel parameters,
in this case the RBF kernel, C and σ. The five-fold cross-validation accuracy was found for pairs of
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(C, σ) and the parameters related to the highest accuracy model retained. The grid was constructed
in logarithmic scale with an initial value of log2C = −6 and a final value of log2C = 6, the values of
log2C being separated by a step of 0.1. For the σ parameter, the initial and final values were log2σ = 0
and log2σ = 6, the values of log2σ being separated by a step of 0.1. The optimum parameter values are
C = 9.85 and σ = 8.57, and they correspond to a cross-validation accuracy for five folds of 88%.

3.2. Results

3.2.1. Results of Classification with Support Vector Machine

Classification into Three Groups

A linear model to classify the samples into three groups is created with the optimized C parameter
and the data [18]. Using this model, the points of a grid, with RMR values from 24%–87% and span
values from 1.8–41 m and a step of 0.1 for both, are classified and a color assigned (red, unstable; blue,
potentially unstable; and green, stable) in the graph. The three different zones limited by straight lines
emerge from this classification in the rectangle of study (Figure 3).

It must be taken into account that the span values must be selected, in general under the straight
line that allows its classification as the stable class (S). The limit of the stable zone shows that at the
lower RMR range, the openings can remain stable only with local support.

Figure 3. Critical span graph: SVM classification into three groups with the linear kernel.

Binary Probabilistic Classification

The result using a binary classification with the linear kernel with probabilistic prediction for
the stable and unstable groups is shown in Figure 4. The unstable-stable class separation curve (that
corresponds to a stability probability of 50%) has been represented together with the curves that
correspond to the probabilities 10%, 20%, 30%, 40%, 60%, 70%, 80% and 90% for the configuration
classified as stable.

A strip that separates stable (S) and unstable (U) classes can be obtained using the probabilistic
analysis. It can be established assuming that the stable cases (S) correspond to those with a probability
higher than 80% of being classified as stable and those with a probability lower than 20%. The strip
between these values will correspond to the potentially unstable (P).
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Figure 4. Critical span graph: SVM binary probabilistic classification with the linear kernel.

3.2.2. Results of Classification with Extreme Learning Machine

An ELM classifier with the radial basis function (RBF) as the activation function is applied, to
classify the points of the same grid of Section 3.2.1 to get a critical span graph, and three zones emerge
(stable, potentially unstable and unstable) from the classification of these points, which are shown in
Figure 5. It must be taken into account that the span values must be selected, in general, under the line
that allows its classification as the stable class (S).

Figure 5. Critical span graph: ELM classification into three groups.

4. Discussion

The comparison between the span graph design obtained with SVM for the linear classification
into three groups and the Lang critical span graph [2] is presented in Figure 6. Both graphs are very
similar, and while the stable region is almost the same, the potentially unstable strip width is larger in
the SVM graph. The design criterion obtained with SVM and by Lang [2], in the range of RMR values
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of the graph and taking into account the limit of the stable zone is practically the same. Although the
database published for Kumar (2003) [18] aims to be an extension of the initial database published for
Lang (1994) [2], there are some inconsistencies between both databases, which can cause variations in
the span graph. Nevertheless, the criterion design for mine-entry excavations obtained in both cases is
almost identical.

Figure 6. Critical span graph: comparison: SVM (three groups) vs. Lang.

The comparison between the SVM span graph using a probabilistic binary classification (taking as
the potentially unstable zone the strip between curves of the 20% and 80% probability of classification
as stable) and the initial critical span graph [2] is presented in Figure 7, that shows the Lang graph as
dashed lines in contrast to the continuous ones obtained with probabilistic binary classification. It can
be observed that the limit of the stable zone proposed by Lang is somewhat more conservative (even
though the difference is not significant), while the limit between unstable and potentially unstable
zones is very similar to that obtained by Lang.
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Figure 7. Critical span graph: comparison SVM (probabilistic binary) vs. Lang.
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With this procedure, the probability of having a stable layout being based only on the distribution
of stable and unstable span cases of the database was obtained. It can be considered as a qualitative
tool for the classification into three groups and to define the critical span graph. However, this
probabilistic analysis is not intended to determine the probability of failure, which can be determined
only by comparing the number of failed cases to stable ones at a certain probability curve [45,46], and
therefore, the probabilistic classification with SVM should not be applied to risk analysis. However, this
probabilistic analysis adds an estimation of the sensibility of the forecasted stability to the variations of
the quality of the RMR76 and the span value. This could allow a parametric analysis in which a range
of possibilities are considered in a conventional deterministic analysis in order to assess the sensitivity
of the design.

The comparison between the span graph design obtained with ELM for the classification in three
groups and the Lang critical span graph [2] is presented in Figure 8. Both graphics are very similar,
and while the stable region is almost the same, the potentially unstable region is slightly wider in the
areas corresponding to higher RMR76 and low span in the ELM graph. The design criterion obtained
with SVM and by Lang [2], in the range of RMR76 values of the graph and taking into account the limit
of the stable zone, is practically the same.

Figure 8. Critical span graph: comparison: SVM (3 groups) vs. Lang.

5. Conclusions

In this paper, a new procedure for hard-rock stability analysis and determination of the critical
span graph for mine-entry excavations, based on learning classifiers (SVM and ELM), is presented.

The proposed critical span graph shows reasonable correlation with previous guidelines that
have been accepted by many mining operations for the initial span design of cut and fill stopes.
These favorable comparisons suggest that the approach is reasonable for stope design in entry-type
mining excavations.

Thus, our model represents an improvement with respect to previously available criteria in the
sense that it automatizes the process. This model could incorporate additional field observations in a
previous database, so that the machine learning classifier continually improves the prediction output.
Moreover, since the learning classifiers are multivariate tools, this model could incorporate new control
or decision variables that could be registered as field observations. Furthermore, the cross-validation
procedure allows an insight into how the model will generalize to an independent or unknown dataset.
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It has also been shown that a classifier with a probabilistic approach can design the critical span
graph requiring only the information on the stable and unstable samples. Due to the easier assessment
of these kind of samples in mine conditions, this procedure reduces sampling errors.

Since empirical design techniques can only reliably be used in conditions similar to those under
which the empirical data were collected, these properties of our model are relevant in order to extend
the applicability of the empirical methods to local field conditions. Furthermore, the machine learning
software is relatively inexpensive and easy to use, and a mine operator could develop a learning
classifier as a successful tool for empirical design.

The critical span graph method can be applied to other field conditions (long-term stability or soft
rocks), but the field data should be collected in those specific field conditions for the training of the
classifiers. In this case, a critical factor is the correct definition of the behavior considered stable.

Supplementary Materials: The following are available online at www.mdpi.com/1996-1944/9/7/531/s1.
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