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Abstract

We prove a strong law of large numbers for random closed sets in a
separable Banach space. It improves upon and unifies the laws of large
numbers with convergence in the Wijsman, Mosco and slice topologies,
without requiring extra assumptions on either the properties of the
space or the kind of sets that can be taken on by the random set as
values.
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1 Introduction

In the last decades, a steady flow of research has been produced about the
Strong Law of Large Numbers (SLLN), as well as other limit theorems, for
random closed sets. The operations between sets are performed elementwise,
taking the closure if needed to ensure that the result remains a closed set.
Then the sample averages of a sequence of i.i.d. random sets converge to its
Aumann expectation. Applications of this result go back to [2, 21], see also
the recent papers [22, 9, 11, 24, 10].
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Artstein and Vitale [3] proved the SLLN for random compact sets in Rd,
with convergence in the Hausdorff metric. It was extended in two directions:
to random compact sets in a separable Banach space by Artstein and Hansen
[1] (and later in certain metric spaces by Terán and Molchanov [25]), and to
random closed sets in Rd by Artstein and Hart [2].

It is somewhat harder to deal with both non-compact values and an
infinite-dimensional carrier space at the same time. The Hausdorff metric
is too strong for the law of large numbers to hold and so must be replaced
by an appropriate weaker topology among a plethora of candidates from the
literature of hyperspace topology.

Ideally, a topology should be identified which is as fine as possible, has rea-
sonable properties, and allows the SLLN to be proved without extra assump-
tions on the space. Hiai [19] extended the Artstein-Hart SLLN to separable
Banach spaces by using the Mosco topology. It turned out later that this
topology misbehaves badly in non-reflexive Banach spaces: it even fails to
be Hausdorff. The slice topology defines a convergence for convex sets which
coincides with the Mosco topology in reflexive spaces and behaves better in
non-reflexive ones; Hess [17] proved an SLLN in that topology, provided that
one of the following assumptions holds:

(i) The carrier space has a strongly separable dual.

(ii) Almost surely, every bounded subset of X is relatively weakly compact.

Condition (ii) is quite artificial and, although it is granted in reflexive spaces,
that case is already covered by condition (i). In order to prove a law of large
numbers for possibly unbounded random sets in a separable Banach space
without additional assumptions, Hess [18] resorted to the Wijsman topol-
ogy. This is formally weaker, but applying it in combination with renorming
theorems still yields Mosco and slice convergence in certain conditions (see
Section 4 for some more details). In particular, Hess was able to show that
the SLLN for the slice topology follows from the SLLN for the Wijsman topol-
ogy, provided the space has a strongly separable dual (see [18, Proposition
3.9]).

Slice convergence (of convex sets) can always be written as Wijsman
convergence over the family of all equivalent norms. It seems, after Hess,
that the best approach would be to try and show that a countable subfamily
suffices, then apply the SLLN for the Wijsman topology in those norms to
obtain convergence except on a null set.
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But a surprising finding is that the cardinality of the family of norms is
not of the essence, since we present a way of reproving the SLLN for the
Wijsman topology that will make it clear that the neglected null set can be
taken to be the same for every equivalent norm. In order to do so, each
Wijsman convergence is reduced, using a result of Beer and Tamaki [8], to
a family of Painlevé–Kuratowski convergences. This reduction technique is
interesting in itself because Painlevé–Kuratowski convergence is the weakest
one we have mentioned, making the new proof not only simultaneously valid
for all equivalent norms but also arguably simpler than the one in [18].

Finally, we will show that the proof of the non-convex case (commonly
called a ‘deconvexification’ step) is very easy once Wijsman convergence has
been established. As a by-product, we can state the SLLN in a topology
which, for non-convex sets, is even stronger than the slice topology. That
topology is the gap topology generated by the family of all non-empty closed
bounded convex sets, henceforth simply called ‘the’ gap topology. The gap
between two sets A and C is

D(A,C) = inf
x∈A

inf
y∈C

∥x− y∥,

and gap topologies are the weak topologies generated by gap functionals.
Namely, in our case a net {Ai}i converges to A provided

D(Ai, C) → D(A,C)

for all non-empty closed bounded convex C.
Strengthening the convergence in the law of large numbers has practical

implications. The failure of the Hausdorff metric shows that reasonable as-
sessments of the behaviour of the sample mean can fail to indicate correctly
that of the expectation. For instance, the Hausdorff distance between the
sample mean and a set of interest may not converge to the distance between
the expectation and that set. Convergence in the Wijsman topology guar-
antees (almost surely) that every singleton eventually covered by the sample
average must be in the expectation as well. The gap topologies address the
more realistic question whether it is possible that the expectation is at a pos-
itive distance from a set C and yet all sample averages hit C. In applications
to stochastic optimization, this translates e.g. as C containing solutions of
every member of a sequence of approximating problems while being away
from the solutions of the true problem. What we will establish is that this
cannot happen when the test set C is bounded and convex.
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2 Notation and preliminaries

Let E denote a separable Banach space and (Ω,A, P ) a probability space.
The dual space of E is denoted E∗ and its unit sphere S∗. A random element
of E is a Borel measurable mapping ξ : Ω → E. Its expectation Eξ is
calculated using the Bochner integral.

For any subset A of a metric space with distance d, its distance function
is given by

d(x,A) = inf
y∈A

d(x, y)

and, for any r > 0, we set

Ar = {x ∈ E | d(x,A) ≤ r}.
If A ⊂ E, then coA, coA, clA denote, respectively, the closed convex hull,
convex hull, and closure of A. The support function of A is the mapping
s(·, A) : S∗ → [−∞,∞] given by s(f, A) = sup f(A).

Denote by F the class of all non-empty closed subsets of E. If the addi-
tional assumption of convexity is made, we write Fc. A mapping X : Ω → F
is a random closed set if it is Effros measurable, namely {X ∩ G ̸= Ø} is
A-measurable for each open G ⊂ E. A selection of X is a random element ξ
such that ξ ∈ X almost surely.

A random closed set is integrable if Ed(0, X) < ∞, equivalently if it is
has integrable selections. Then its Aumann expectation [4] is

EX = cl{Eξ | ξ is an integrable selection of X}.
The lim inf of a sequence of closed sets {An}n is the set of all limits of

sequences xn ∈ An, and the lim sup is the set of all limits of subsequences
xnk

∈ Ank
. The sequence is said to converge to the limit A in the Painlevé–

Kuratowski sense if

lim sup
n

An = A = lim inf
n

An.

Painlevé–Kuratowski convergence is not necessarily topological, but it be-
comes so if strengthened by defining the lim sup in the sense of the weak
topology instead of the norm topology of E; that yields the Mosco topology.
The sequence converges in the Wijsman topology if d(x,An) → d(x,A) for
all x ∈ E, and it converges in the slice topology if D(An, C) → D(A,C) for
all sets C being a non-empty slice of a ball (the intersection of a ball and a
closed halfspace). The gap topology defined in the Introduction yields that
convergence for all bounded convex C.
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3 Main result

In this section, we state and prove our main result.

Theorem 1. Let E be a separable Banach space, and let {Xn}n be a sequence
of pairwise independent and identically distributed integrable random closed
sets in E. Then,

n−1

n∑
i=1

Xi → coEX

almost surely, in the gap topology.

Observe that, if the initial space is non-atomic, then EX is convex and
so the limit is EX.

In order to prove this SLLN, we will rely on the SLLN for random elements
of a Banach space due to Etemadi [15].

Lemma 2. (Etemadi’s Strong Law of Large Numbers) Let E be a separable
Banach space, and let {ξn}n be a sequence of pairwise independent and
identically distributed random elements of E. Then,

n−1

n∑
i=1

ξi → Eξ

almost surely.

We will also use the fact that random closed sets can be regarded as Borel
measurable random variables with values in a metric space [16].

Lemma 3. (Hess’s measurability theorem) Let E be a separable Banach
space. A mapping X is a random closed set if and only if it is measurable
with respect to the Borel σ-algebra of the Wijsman topology.

Let B be the closed unit ball of a fixed arbitrary equivalent norm of E,
and r > 0. The first step in the proof is to show that

n−1

n∑
i=1

Xi + rB → coEX + rB (1)

in the Painlevé-Kuratowski sense, except on a null set independent of both
r and the chosen norm.
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Proof of coEX + rB ⊂ lim infn(n
−1

∑n
i=1Xi + rB).

Recall that the expectation of X may depend on the atomic structure of
the underlying probability space (Ω,A, P ), and consider the reduced expecta-
tion Eσ(X)X, namely the Aumann expectation of X when its distribution is
defined on the minimal σ-algebra generated by X. Although it may be the
case that EX ̸= Eσ(X)X, we have

coEσ(X)X = coEX

[23, Theorem 1.32(i)].
By the separability of E, there exists a countable dense subset

D ⊂ {Eξ | ξ integrable σ(X)-measurable selection of X}.

Since Eσ(X)X is the closure of the set in the right-hand side, D is dense in
Eσ(X)X too.

Take an arbitrary x ∈ D. By definition, there is a σ(X)-measurable
selection ξx such that x is the Bochner expectation Eξx. By Lemma 3, X is
Borel measurable with respect to the Wijsman topology, which is Polish [5].
By the Doob–Dynkin Lemma (e.g. [20, Lemma 1.13]), there exists a Borel
function ϕx : F → E such that ξx(ω) = ϕx(X(ω)) for each ω ∈ Ω.

We are thus able to find a sequence {ϕx ◦Xn}n which is pairwise indepen-
dent and identically distributed as ξx. Lemma 2, applied to that sequence,
yields

n−1

n∑
i=1

ϕx(Xn) → Eξx = x

except on a null set. Since D is countable, we can dispose of a null subset
N1 ⊂ Ω so that, for all x ∈ D,

x = lim
n

n−1

n∑
i=1

ϕx(Xn(ω))

for all ω ∈ Ω\N1.
But

n−1

n∑
i=1

ϕx(Xn(ω)) ∈ n−1

n∑
i=1

Xn(ω),

therefore x ∈ lim infn n
−1

∑n
i=1 Xi(ω) for ω ∈ Ω\N1.
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Fix any such ω. We check now that a convex combination
∑m

j=1 λjxj of
points xj ∈ D is also in the liminf. But this is not hard to show: it reduces to
choosing selections from Xn alternately so that the sample proportion pn,j of
selections whose expectation is xj tends to λj (e.g. for the nth step take the
selection ξn = ϕxj∗ (Xn) if |pn−1,j∗ − λj∗| is the largest distance |pn−1,j − λj|).
Thus, as a consequence of the reasoning we made for each xj, we obtain

|n−1

n∑
i=1

ξn(ω)− x| ≤ max
1≤j≤m

|pn,j − λj| · max
1≤j≤m

∥xj∥ → 0.

Therefore, for any y ∈ rB,

n−1

n∑
i=1

ξn(ω) + y → x+ y

so that

coEX + rB = cl(coD + rB) ⊂ lim inf
n

(n−1

n∑
i=1

Xi + rB)

since the right-hand side is closed.

Proof of lim supn(n
−1

∑n
i=1Xi + rB) ⊂ coEX + rB.

By the separation theorem,

coEX =
∩

x∗∈S∗

{x | x∗(x) ≤ s(x∗, EX)}.

Letting D′ be a countable dense subset of {x∗ ∈ S∗ | s(x∗, EX) < ∞}, one
still has

coEX =
∩

x∗∈D′

{x | x∗(x) ≤ s(x∗, EX)}

(for the case D′ = Ø we adopt the convention that the intersection over
x∗ ∈ Ø denotes the whole E.) Therefore,

coEX + rB =
∩

x∗∈D′

{x | x∗(x) ≤ s(x∗, EX) + s(x∗, rB)}.

By the linearity of the support function, s(x∗, EX) = Es(x∗, X) for every
x∗ ∈ D′, whence s(x∗, X) is an integrable random variable for x∗ ∈ D′. Let
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N2 be the union of the countably many null sets arising from the application
of Etemadi’s SLLN to those countably many random variables.

Fix any ω ̸∈N2. We must show that every convergent subsequence nk
−1

∑nk

i=1 ai,k+
yk → x such that ai,k ∈ Xi(ω), yk ∈ rB and x ∈ E, has x ∈ coEX + rB.
Reasoning by contradiction, assume the contrary. Then, for some ε > 0,

x ̸∈ coEX + (r + 2ε)B.

Accordingly, for some x∗ ∈ D′, x∗(nk
−1

∑nk

i=1 ai,k+yk) is at least s(x
∗, EX)+

s(x∗, (r + ε)B). But

x∗(nk
−1

nk∑
i=1

ai,k + yk) ≤ s(x∗, nk
−1

nk∑
i=1

Xi(ω)) + x∗(yk)

=

nk∑
i=1

s(x∗, nk
−1Xi(ω)) + x∗(yk) ≤

nk∑
i=1

s(x∗, nk
−1Xi(ω)) + s(x∗, rB).

By Lemma 2, the right-hand side converges to Es(x∗, X) + s(x∗, rB), but
then we have

s(x∗, EX)+s(x∗, rB)+s(x∗, εB) ≤ lim sup
k

x∗(nk
−1

nk∑
i=1

ai,k+yk) ≤ s(x∗, EX)+s(x∗, rB),

a contradiction.

So far, we have proved

n−1

n∑
i=1

Xi + rB → coEX + rB

in the Painlevé–Kuratowski sense, except on N1 ∪ N2, for all r > 0 and for
B being the unit ball of any equivalent norm: a key fact is that the choice
of N1 and N2 has not depended on B.

In order to transform this Painlevé-Kuratowski convergence into a stronger
convergence we use the following result, which is a part of [8, Theorem 4.5].
For the reader’s benefit, and to emphasize that the extra assumption in the
original statement is not used in its proof, we rewrite said proof in the lan-
guage of this paper.
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Lemma 4. (Beer–Tamaki) Let E be a metric space. Let A ∈ F and {An}n
be a sequence in F . If (An)

r → Ar in the sense of Painlevé-Kuratowski for
every r > 0, then An → A in the Wijsman topology.

Proof. Fix x ∈ E. For any r, r′ with r > r′ > d(x,A), we have

x ∈ Ar′ ⊂ lim inf
n

(An)
r′ .

Thus {x}r−r′ intersects (An)
r′ eventually, whence d(x,An) < r eventually.

On the other hand, if d(x,Ank
) ≤ r for a subsequence {nk}k, then

x ∈ lim sup
n

(An)
r ⊂ Ar

and so d(x,A) ≤ r. Thus d(x,A) > r ensures that d(x,An) > r eventually.
The combination of both parts yields d(x,An) → d(x,A).

In a Banach space, Ar = A+ rB, whence the lemma yields the following:
the sequence n−1

∑n
i=1Xi converges to coEX, in all the Wijsman topologies

generated by equivalent norms, except on the null set N1 ∪N2.
Note that this has been proven for X possibly non-convex, but in order to

strengthen this convergence we need to consider the convex case separately.

Lemma 5. (Beer) The slice topology, the gap topology and the supremum
of all Wijsman topologies generated by equivalent norms coincide on Fc.

Proof. The part ‘slice=gap’ is [6, Theorem 5.2], whereas ‘slice=supremum of
Wijsman’ is [7, Theorem 3.1].

Therefore, in the convex case, we achieve convergence in the slice or gap
topology. It remains to prove that this convergence extends to the non-
convex case. Let A be any non-empty closed bounded convex set. We must
prove that

D(n−1

n∑
i=1

Xi, A) → D(coEX,A)

except on a null set simultaneously valid for all such A. Although it might
be thought necessary to find a countable family of sets A determining gap
convergence, again a simple device shows that the null set N1 ∪N2 works for
an arbitrary A. Since

D(coEX,A) = inf
x∈coEX,y∈A

∥x− y∥,
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for a fixed ε > 0 we find y ∈ A such that

|D(coEX,A)− d(y, coEX)| ≤ ε.

Now we sandwich D(n−1
∑n

i=1Xi, A) as follows,

D(n−1

n∑
i=1

coXi(ω), A) ≤ D(n−1

n∑
i=1

Xi, A) ≤ d(y, n−1

n∑
i=1

Xi(ω)).

For any ω ̸∈N1 ∪ N2, by virtue of our intermediate results for the gap and
Wijsman topologies, the lower bound converges to D(E coX,A) and the
upper bound converges to d(y, coEX). But, since E coX = coEX (see [23,
Theorem 1.17(iii), p.154]), both limits differ by at most ε. We conclude that

lim sup
n

|D(n−1

n∑
i=1

Xi, A)−D(coEX,A)| ≤ ε,

whence the arbitrariness of ε yields the desired result irrespective of the set
A.

4 Additional remarks

1. Hess [18] observed that in reflexive spaces, where the Mosco topology
is Hausdorff, the SLLN can be recovered from that with Wijsman conver-
gence by applying it to an equivalent Fréchet differentiable norm. Let us
show the stronger result that the SLLN with slice convergence in [17] (under
separability of the dual space) is recovered too after a suitable renorming.

A Banach space with separable dual is weakly compactly generated (be-
cause it is separable) and Asplund. Thus it admits an equivalent norm whose
dual norm has the weak* Kadec–Klee property (see e.g. [14]). And then, by
[12, Theorem 3.2.(c)], Wijsman and slice convergence coincide for that norm.

That means that, even if the slice topology is never coarser than the
Wijsman and Mosco topologies, in fact its SLLN had only been proved in
situations when it was not more powerful: under condition (i) in the Intro-
duction, it is the same as Wijsman convergence for a suitable renorm; and
under condition (ii) Hess himself had shown that it is equivalent to Mosco
convergence [17].

2. Using the Beer–Tamaki device and the comment above, one can effort-
lessly prove new versions of some existing almost sure convergence theorems
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but with Wijsman convergence (or slice convergence if the dual space is sepa-
rable) instead of Painlevé–Kuratowski or Mosco convergences. The technique
is to apply countably many times a theorem stating Xi →i X to Xi + rB
with r ranging over a countable dense subset of (0,∞).

In some cases, that leads to a weakening of the assumptions of the original
theorem. For instance, in the Lévy Martingale Convergence Theorem of Cou-
vreux and Hess [13, Theorem 1], a condition called countable supportedness
is used to obtain conclusion (4.3), strong countable supportedness for (4.4),
and very strong countable supportedness for (4.5). The conclusions state
convergence in the Mosco, Wijsman and slice convergence, respectively. In
view of the above, and since X+rB satisfies the assumptions of [13, Theorem
1] as soon as X itself does, (4.4) already holds under countable supported-
ness, and (4.5) does too if the space has a separable dual. Moreover, in [13,
Corollary 2.(b)] (4.3) and (4.4) are obtained, and so (4.5) holds too if E∗ is
separable.

However, in some situations (e.g. when the original theorem assumes that
the random sets have weakly compact values) the random sets Xi + rB fail
the assumptions of the theorem and so this ‘on the fly’ technique could not
be used.

Obtaining slice or gap convergence without the assumption of separable
dual is not immediate. To avoid that assumption, it becomes necessary to
replicate the steps in the proof of the SLLN leading to the conclusion that the
null set involved can be taken the same for every equivalent norm. If that is
possible, the way to do it depends on reworking the specific arguments used
to prove each theorem.
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de l’Université de Montpellier 21, Exposé 2.
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