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Manuel Montenegro, a Beatriz Sinova, a Maŕıa Ángeles Gil∗ a
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Abstract

In evaluating aspects like quality perception, satisfaction or attitude which are in-
trinsically imprecise, the fuzzy rating scale has been introduced as a psychometric
tool that allows evaluators to give flexible and quite accurate, albeit non numeri-
cal, ratings. The fuzzy rating scale integrates the skills associated with the visual
analogue scale, because of the total freedom in assessing ratings, with the ability
of fuzzy linguistic variables to capture the natural imprecision in evaluating such
aspects.

Thanks to a recent methodology, the descriptive analysis of the responses to a
fuzzy rating scale-based questionnaire can be now carried out. This paper aims
to illustrate such an analysis through a real-life example, as well as to show that
statistical conclusions can often be rather different from the conclusions one could
get from either Likert scale-based responses or their fuzzy linguistic encoding. This
difference encourages the use of the fuzzy rating scale when statistical conclusions
are important, similarly to the use of exact real-valued data instead of grouping
them.
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1 Introduction

In rating many characteristics or attributes that cannot be directly measured
(like perceived quality, satisfaction, perception, attitude...), different scales
have been considered. The best known scales in this setting (see, for instance,
Yuen [66]) are the discrete ones, which consist of choosing the most appropriate
‘values’ within a class according to the rater judgement (like Likert-type scales)
and the continuous visual analogue scale, whose aim is to specify an exact level
of agreement to a statement or property by choosing a single point along a
line between two end-points (i.e., along a compact interval).

When Likert-type scale data are analyzed for statistical purposes, they are
either treated as categorical ones, so that techniques to analyze them are quite
limited, or numerically encoded by means of consecutive integer numbers,
which enlarges to some extent the number of procedures to be applied. The
main positive features in connection with the use of Likert-type scales are that
N surveys/questionnaires based on them are easy-to-conduct, and they require

neither a demanding training nor a special framework,
N labels for the given ‘values’ are expressed in terms that properly fit the

intrinsic imprecision of the considered characteristics or attributes.

Nevertheless, several weaknesses have been highlighted in the literature on this
type of scale (see, for instance, Jamieson [31], Carifio and Perla [9], Calcagǹı
and Lombardi [8]), namely,
H the number of possible ‘values’ to choose among is small, so the variability,

diversity and subjectivity associated with an accurate rating is usually lost,
and the choice of the most appropriate ‘value’ is not necessarily a simple
task (raters often prefer to have the opportunity of choosing in between two
‘values’);

H when ‘values’ are encoded by their relative position in accordance with a
certain ranking, differences between codes cannot be interpreted as differ-
ences in their magnitude, so only the statistical conclusions addressed to
categorical or ordinal data become really reliable and relevant information
can be lost.

Several studies (see, for instance, Reips and Funke [46], and Treiblmaier and
Filzmoser [60]) have pointed out that the visual analogue scale provides re-
searchers with many advantages in contrast to discrete scales. Thus, one can
benefit from a metric setting as well as from the fact that a much wider set
of statistical methods can be applied to analyze the data coming from this
rating. As for the Likert scales, one can find some pros and cons.

Among the pros, one can remark that
N the choice is to be made within a continuum, so the variability, diversity

and subjectivity is ensured,
N statistical conclusions are reliable and no relevant information is generally

lost.
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Among the cons, one can mention that

H the choice of the most appropriate point is not a simple task, and it does
not seem realistic to demand as much accuracy in connection with such an
intrinsically imprecise context;

H surveys/questionnaires based on the visual analogue scale require a special
framework and either a paper-and-pencil or a computer/web-based form to
be filled.

Benoit [3] (see also Benoit and Foulloy [4]) asserts that, from a measurement
point of view, the fuzzy scale “establishes a link between strongly defined
measurements ... and weakly defined measurements”. In this respect, Calcagǹı
and Lombardi [8] (see also De la Rosa de Sáa et al. [15,14]) indicate that
fuzzy scales have been applied to overcome the limitations of standard scales
by modeling the imprecision of human rating evaluations. Two approaches
should be mainly distinguished in applying fuzzy scales, namely,

• the fuzzy linguistic scales, which are frequently considered for different goals
as an a posteriori tool to encode data from a discrete (often a Likert) scale
by means of fuzzy numbers (see, for instance, Zadeh [67], Tong and Bonis-
sone [59], Pedrycz [42], Herrera et al. [27,26], Lalla et al. [32], and also Li [33],
Akdag et al. [1], Estrella et al. [18], Massanet et al. [39], Tejeda-Lorente et
al. [57,58], Villacorta et al. [62], Wang et al. [63], Garćıa-Galán et al. [19],
Liu et al. [34] and Tavana [56], about some very recent developments and
applications in connection with perceived quality, satisfaction, etc.);

• the fuzzy rating scale, which is considered as an a priori tool to directly as-
sess fuzzy values and integrating the continuous nature and free assessment
of the visual analogue scales with the ability to cope with imprecision of the
fuzzy linguistic ones; this scale has been introduced by Hesketh et al. [30]
(see also, among others, Hesketh and Hesketh [29], Matsui and Takeya [40],
Takemura [53–55], Yamashita [65], Hesketh et al. [28] and De la Rosa de
Sáa et al. [14] for some developments and applications).

The Likert, visual analogue and fuzzy linguistic scales have been commonly
involved in research with questionnaires. The fuzzy rating scale has been ap-
plied too, but only occasionally in spite of the clear advantages associated
with its use that will be detailed in the next section.

As we know, the success of a questionnaire method based on a certain scale
depends on the reliability and easy-to-handle use of such a scale. Reasons
why the fuzzy rating scale is not so popular yet can probably be found in the
following critical requirements:

▽ a certain framework is needed to conduct a fuzzy rating scale-based ques-
tionnaire (e.g., it cannot be properly conducted by phone, on the street,
etc.);

▽ respondents need a certain training to answer a fuzzy rating scale-based
questionnaire;

▽ a special statistical methodology is needed to analyze responses from a fuzzy
rating scale-based questionnaire.
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Although these requirements could prevent us from applying the fuzzy rating
scale, this paper aims to show by means of a real-life example and to a descrip-
tive extent that, actually, they are not substantial drawbacks. As its ultimate
goal, it also aims to show that statistical conclusions often differ depending
on the considered scale, in the same way that grouping real-valued data by
intervals often leads to different conclusions because of many differences being
hidden through the grouping.

For this aim, Section 2 recalls the ideas behind the fuzzy rating scale and
the way of applying it to questionnaires, along with the basic tools to handle
responses for the descriptive data analysis. Section 3 first presents the real-life
example, detailing its design and implementation. A key point in the applica-
tion is the one related to the fact that responses to most of the posed questions
have been given in accordance with both a fuzzy rating scale and a 4-point Lik-
ert one. Thanks to this double response, we later illustrate some of the relevant
descriptive measures to analyze fuzzy data that have been previously intro-
duced, by means of the analysis of the two types of responses collected from
the real-life example. The results from this double analysis are summarized,
corroborating that statistical conclusions differ depending on the considered
scale, and the practical implications from this fact are discussed. The paper
ends by commenting some related future research directions in Section 4.

2 Preliminary tools

Responses from fuzzy linguistic/rating scale-based questionnaires are assumed
to be fuzzy numbers.

A (bounded) fuzzy number is an ill-defined quantity or value which is charac-
terized by means of a mapping Ũ : R → [0, 1] such that it can be formalized
by either of the following:

• (vertical view) it is an upper semicontinuous, quasi-concave normal func-
tion with a bounded support set, supp Ũ = {x ∈ R : Ũ(x) > 0}, and Ũ(x)
meaning the ‘degree of compatibility’ of x with the property describing Ũ ;

• (horizontal view) for each α ∈ [0, 1], its α-level set

Ũα =




{x ∈ R : Ũ(x) ≥ α} if α ∈ (0, 1]

closure(supp Ũ) if α = 0

(i.e., the set of real numbers which are compatible with Ũ to a degree over
α) is a nonempty closed and bounded interval.

As an example of fuzzy number which is used in many different studies one
can refer to trapezoidal fuzzy numbers, which are given by Ũ = Tra(a, b, c, d)
= Tra(inf Ũ0, inf Ũ1, sup Ũ1, sup Ũ0) such that

Ũα = [a+ α(b− a), c+ (1− α)(d− c)] for each α ∈ [0, 1]
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(see Figure 1 for the graphical display of one of these fuzzy numbers).

Fig. 1. Graphical display of the trapezoidal fuzzy number Tra(5.1, 6, 6.75, 7.3)

2.1 The fuzzy rating scale

To really exploit the individual differences in responding to questionnaires,
and gain reliability by increasing the number of possible responses (see, for
instance, Lozano et al. [35]), one should consider a rich and expressive scale
in which “something can be meaningful although we cannot name it” (Gh-
neim [20]). As Zadeh [68] argues, “Paradoxically, one of the principal con-
tributions of fuzzy logic, a contribution which is widely unrecognized, is its
high power of precisiation of what is imprecise. This capability of fuzzy logic
suggests ... that it may find important applications in the realms of ... human-
centric fields.” The fuzzy rating scale certainly allows respondents to ‘precisi-
ate’ answers in a continuous way, with infinite possible nuances, as well as to
develop mathematical computations with these responses.

The guideline for the mechanism to draw the value that better expresses a
response according to the fuzzy rating scale (Hesketh et al. [30]) is as follows:

Step 1. A reference bounded interval/segment is first considered. This is often
chosen to be [0, 10] or [0, 100], but the choice of the intervals is not at all
a constraint. The end-points are often labeled in accordance with their
meaning referring to the degree of agreement, satisfaction, quality, and so
on.

Step 2. The core, or 1-level set, associated with the response is determined. It cor-
responds to the interval consisting of the real values within the reference
one which are considered to be as ‘fully compatible’ with the response.

Step 3. The support, or its closure or 0-level set, associated with the response is
determined. It corresponds to the interval consisting of the real values
within the referential that are considered to be as ‘compatible to some
extent’ with the response.

Step 4. The two intervals are ‘linearly interpolated’ to get a trapezoidal fuzzy
number.
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The main positive features in connection with the use of the fuzzy rating scale
are that
N fuzzy rating scale values properly capture the inherent imprecision when

rating this type of characteristics or attributes,
N this scale means a continuum, and the transition from a value to another is

gradual and flexible,
N this scale is much richer and more expressive than any one based on a

(unavoidable finite) natural language or its real/fuzzy-valued encoding,
N its flexibility allows us to capture individual differences, whence the natural

associated variability, diversity and subjectivity are not lost,
N values from this scale can be well handled mathematically and computa-

tionally, and one can state arithmetic and distances preserving the meaning
of fuzzy numbers and extend many statistical concepts and developments.

On the ‘negative side’ we have already pointed out that
H fuzzy rating scale-based questionnaires should be conducted in an appropri-

ate framework; in this respect, as it happens for the visual analogue scale,
one cannot answer such questionnaires by simply speaking, but a paper-
and-pencil or computerized form is required to be filled;

▽ respondents should be appropriately trained; although this assertion does
not need to be discussed since the real-life example to be detailed in the
next section clearly illustrates that the required background to use the
fuzzy rating scale is not that demanding (just knowing the notions of trian-
gle/trapezium and the intuitive idea of compatibility);

▽ a specific methodology is required if we wish to analyze responses from a
statistical perspective; in connection with this, during the last years sev-
eral statistical notions and procedures have been developed to analyze,
both descriptively and inferentially, fuzzy number-valued data (see Blanco-
Fernández et al. [6,7] for a recent review), considering each fuzzy datum as
a whole, so no relevant information is lost.

Remark 2.1 Although the fuzzy rating scale has been stated on the basis of
trapezoidal (or even, in particular, triangular) fuzzy numbers, neither the ideas
behind nor the statistical methodology to analyze data make this statement
essential. However, such a simple shape, which can be naturally identified with
the notion of trapezium, makes the fuzzy rating scale easy to explain and apply,
almost irrespective of the background of respondents. Furthermore, their use
is also supported by arguments provided by Pedrycz [43], Grzegorzewski [24],
Grzegorzewski and Pasternak-Winiarska [25], Ban et al. [2], and others, who
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have soundly discussed how triangular and trapezoidal fuzzy numbers can
be considered to describe or approximate fuzzy data. Recently, an additional
supporting argument has been given through an empirical sensitivity analysis
carried out about the (to some extent descriptive) effect of the shape of fuzzy
data on several statistical measures (see Lubiano et al. [36]).

2.2 Arithmetic, metrics and modeling of fuzzy-valued random elements

Let Fc(R) denote the space of (bounded) fuzzy numbers. To develop statistics
with fuzzy number-valued data, computations often involve two operations
from the usual fuzzy arithmetic based on Zadeh’s extension principle [67]:

• If Ũ , Ṽ ∈ Fc(R), then the sum of Ũ and Ṽ is defined as the fuzzy number
Ũ + Ṽ ∈ Fc(R) such that for each α ∈ [0, 1]

(Ũ + Ṽ )α =
[
inf Ũα + inf Ṽα, sup Ũα + sup Ṽα

]
,

and it can be easily checked that

Tra(a, b, c, d) + Tra(a′, b′, c′, d′) = Tra(a+ a′, b+ b′, c+ c′, d+ d′).

• If Ũ ∈ Fc(R) and γ ∈ R, the product of Ũ by the scalar γ is defined as
γ · Ũ ∈ Fc(R) such that for each α ∈ [0, 1]

(γ · Ũ)α = γ · Ũα =
{
γ · y : y ∈ Ũα

}
=





[
γ inf Ũα, γ sup Ũα

]
if γ ≥ 0,

[
γ sup Ũα, γ inf Ũα

]
if γ < 0,

and it can be easily checked that

γ · Tra(a, b, c, d) =




Tra(γ a, γ b, γ c, γ d) if γ ≥ 0,

Tra(γ d, γ c, γ b, γ a) if γ < 0.

As for the visual analogue scale, an interesting feature of the fuzzy rating
one is that we can consider nice metric structures. This becomes especially
useful for statistical purposes in this setting, since in general Ũ + (−1) · Ũ
6= indicator function of {0} (the neutral element for the fuzzy sum). As a
consequence, it is not possible to establish a well-defined difference between
fuzzy numbers preserving all the properties of the difference of real numbers.
Among the distances between fuzzy numbers, the following have been shown
to be well-adapted for statistical developments:

• If Ũ , Ṽ ∈ Fc(R),

ρ1(Ũ , Ṽ ) =
1

2

∫

[0,1]

(∣∣∣inf Ũα − inf Ṽα

∣∣∣+
∣∣∣sup Ũα − sup Ṽα

∣∣∣
)
dα

and

ρ2(Ũ , Ṽ ) =

√
1

2

∫

[0,1]

([
inf Ũα − inf Ṽα

]2
+
[
sup Ũα − sup Ṽα

]2)
dα

are said to be, respectively, the 1-norm distance and 2-norm distance be-
tween Ũ and Ṽ (see Diamond and Kloeden [17]) .
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In case Ũ and Ṽ are trapezoidal fuzzy numbers, the squared distance ρ2
reduces to [

ρ2(Ũ , Ṽ )
]2

=
1

6

[
(inf Ũ0− inf Ṽ0)

2+(inf Ũ1− inf Ṽ1)
2+(inf Ũ0− inf Ṽ0)(inf Ũ1− inf Ṽ1)

]

+
1

6

[
(sup Ũ0−sup Ṽ0)

2+(sup Ũ1−sup Ṽ1)
2+(sup Ũ0−sup Ṽ0)(sup Ũ1−sup Ṽ1)

]
.

• If Ũ , Ṽ ∈ Fc(R)

D(Ũ , Ṽ ) =

√∫

[0,1]

∫

[0,1]

([
Ũ

[λ]
α − Ṽ

[λ]
α

]2)
dα dλ,

with Ũ [λ]
α = λ · sup Ũα+(1−λ) · inf Ũα is said to be (see Bertoluzza et al. [5],

Trutschnig et al. [61] for arguments and details about) the (1/3) mid/spr
distance between Ũ and Ṽ .
In case Ũ and Ṽ are trapezoidal fuzzy numbers, the squared distance D

reduces to [
D(Ũ , Ṽ )

]2

=
1

3

[
(mid0 Ũ −mid0 Ṽ )2 + (mid1 Ũ −mid1 Ṽ )2

+ (mid0 Ũ −mid0 Ṽ )(mid1 Ũ −mid1 Ṽ )
]

+
1

9

[
(spr0 Ũ0 − spr0 Ṽ )2 + (spr1 Ũ − spr1 Ṽ )2

+ (spr0 Ũ − spr0 Ṽ )(spr1 Ũ − spr1 Ṽ )
]
,

where mid0/mid1 and spr0/spr1 denote, respectively, the centre (mid-point)
and the spread (radius) of the core/support of the fuzzy number.

To develop a well-stated methodology to analyze fuzzy data, we need a formal
model for the random mechanism generating fuzzy number-valued data. This
model should integrate randomness (to generate data) and fuzziness (because
of the intrinsic nature of these data). Random fuzzy sets (originally coined
as fuzzy random variables by Puri and Ralescu [45]) result in a well-defined
and sound model within the probabilistic setting, what allows us to extend or
preserve almost all the basis (although extending statistical methods for the
analysis of fuzzy data is not a straightforward task).

Given a random experiment mathematically modeled by means of a probabil-
ity space (Ω,A, P ), a random fuzzy number (or one-dimensional random fuzzy
set, for short RFN ) associated with it is a mapping X : Ω → Fc(R) such that,
for all α ∈ [0, 1], the α-level mapping Xα is a compact random interval (that
is, for all α ∈ [0, 1] the real-valued mappings inf Xα and supXα are random
variables). In case we deal with trapezoidal-valued random fuzzy numbers,
the sufficient and necessary condition is that the real-valued mappings inf X0,
inf X1, supX1 and supX0 are random variables.

One can prove (see, for instance, Colubi et al. [11]) that X : Ω → Fc(R) is an
RFN if and only if it is a Borel-measurable mapping with respect to a certain
σ-field and the above mentioned metrics, which enable us to properly refer to
the induced distribution of an RFN.
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2.3 Relevant descriptive summary measures of a fuzzy dataset

In summarizing the distribution of an RFN over a sample of individuals,
some of the best know measures extend the mean and median (central ten-
dency/location measures) and the variance and median absolute deviation
(dispersion/scale measures) of real-valued random variables.

Assume that over the sample of individuals (ω1, . . . , ωn) the RFN X provides
us with the sample of fuzzy number-valued data x̃n = (x̃1, . . . , x̃n) (i.e., x̃i

= X (ωi), i = 1, . . . , n).

• SAMPLE AUMANN-TYPE MEAN:

Following the definition by Puri and Ralescu [45], and particularizing it
to trapezoidal fuzzy data, the sample Aumann-type mean is defined as the
fuzzy number x̃n ∈ Fc(R) given by

x̃n = Tra

(
1

n

n∑

i=1

inf(x̃i)0,
1

n

n∑

i=1

inf(x̃i)1,
1

n

n∑

i=1

sup(x̃i)1,
1

n

n∑

i=1

sup(x̃i)0

)
.

• SAMPLE 1-NORM MEDIAN:

Following Sinova et al. [51], and particularizing it to trapezoidal fuzzy
data, the sample 1-norm median is defined as the fuzzy number M̃e(x̃n)
∈ Fc(R), such that for all α ∈ [0, 1]

(
M̃e(x̃n)

)
α

=
[
Me

{
α inf(x̃1)1 + (1− α) inf(x̃1)0, . . . , α inf(x̃n)1 + (1− α) inf(x̃n)0

}
,

Me
{
α sup(x̃1)1 + (1− α) sup(x̃1)0, . . . , α sup(x̃n)1 + (1− α) sup(x̃n)0

}]
,

Me{·} denoting the median of the corresponding real-valued dataset, with
the usual convention of using the mid-point of possible medians in case it
is not unique.
The practical computation of M̃e(x̃n) cannot be generally simplified, even

for trapezoidal fuzzy data. This is due to the fact that, in contrast to what
happens for the L2 metrics ρ2 and D, the expression of ρ1 cannot be es-
pecially simplified for trapezoidal data. Actually, except from very especial
cases, the sample 1-norm median is usually approximated by computing
for each of a large number of equidistant levels (in the examples below,
this number is taken to be 101) the infima and suprema of the α-levels
and finally rebuilding the fuzzy number from the intervals they determine.
Computations involved in the real-life example have been carried out by
using R functions. Other location measures have been defined (see Sinova
et al. [49,52]), although they usually involve more computational tasks.

• SAMPLE FRÉCHET-TYPE VARIANCE:

Following Lubiano et al. [37], the sample D-Fréchet-type variance partic-
ularized to trapezoidal fuzzy data is defined as the real number
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s2(x̃n) =
1

n− 1

n∑

i=1

[
D(x̃i, x̃n)

]2

=
1

3

[
s2(mid0 x̃1, . . . ,mid0 x̃n) + s2(mid1 x̃1, . . . ,mid1 x̃n)

+ s
(
(mid0 x̃1, . . . ,mid0 x̃n), (mid1 x̃1, . . . ,mid1 x̃n)

)]

+
1

9

[
s2(spr0 x̃1, . . . , spr0 x̃n) + s2(spr1 x̃1, . . . , spr1 x̃n)

+ s
(
(spr0 x̃1, . . . , spr0 x̃n), (spr1 x̃1, . . . , spr1 x̃n)

)]

with

s2(a1, . . . , an) =
1

n− 1

n∑

i=1

(ai − a)2, a =
1

n

n∑

i=1

ai,

s((a1, . . . , an), (b1, . . . , bn))=
1

n− 1

n∑

i=1

(ai − a) · (bi − b).

• SAMPLE MEDIAN 1-NORM DEVIATION:

Following De la Rosa de Sáa et al. [13,16], the sample median 1-norm
deviation is defined as the real number ρ1-MDD(x̃n) such that

ρ1-MDD(x̃n) = Me
{
ρ1
(
x̃1, M̃e(x̃n)

)
, . . . , ρ1

(
x̃n, M̃e(x̃n)

)}
,

with the usual convention of using the mid-point of possible medians Me{·}
in case it is not unique.
As for computing the 1-norm median, the practical computations for the

real-life example to be detailed later have been carried out by using R func-
tions.

In addition to these summary measures, we are going to consider two addi-
tional ones. The first one refers to the diversity of values, whereas the second
one establishes an indicator of the similarity of the distributions of two fuzzy
datasets.

Assume that over the sample of individuals (ω1, . . . , ωn) the RFN X takes on
k different values with sample relative frequencies fj, j = 1, . . . , k.

• SAMPLE GINI-SIMPSON DIVERSITY INDEX:

Following Gini [23] and Simpson [47] (who adapted Gini’s index in some
biological developments to quantify the diversity of answers), the sample
Gini-Simpson quadratic index is the real number given by

DivGini(x̃n) = 1−
k∑

j=1

f 2
j .

It should be noticed that the diversity index only takes into account the
different values the random element takes on in the sample and their as-
sociated sample frequencies, irrespectively of the nature of these values.
Consequently, this summary measure does not need a special adaptation.
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Another popular diversity index is the one based on Shannon’s entropy.
However, as it has been proved for different random samplings (see Pérez
et al. [44], Caso and Gil [10] and Gil and Gil [21]), the Gini-Simpson index
can be unbiasedly estimated, whereas Shannon’s one cannot.

Recently, Sinova et al. [48] have introduced the fuzzy characterizing func-
tion of the distribution of a random fuzzy number as an extension of the
moment-generating function of a real-valued random variable. On the basis of
its properties, one can state a descriptive index of the dissimilarity between
the distributions of two fuzzy datasets.

• SAMPLE DISSIMILARITY BETWEEN DISTRIBUTIONS:

Consider two sample fuzzy datasets. Assume that the first dataset is
associated with a (trapezoidal-valued) RFN X and it is denoted by x̃n

= (x̃1, . . . , x̃n), the second one being associated with a (trapezoidal-valued)
RFN Y and denoted by ỹm = (ỹ1, . . . , ỹm).
Following the definition of the fuzzy characterizing function of the distri-

bution of an RFN by Sinova et al. [48], for a fixed small value ε > 0, the
ε-sample dissimilarity between the distributions of x̃n and ỹm is given by
the index based on the ρ2 distance between the corresponding sample fuzzy
characterizing functions, which can be proven to be given (up to the factor
1/ε) by

̺ε(x̃n, ỹm)

=
1

ε
max

t∈[−ε,ε]


 1

2n2

n∑

i=1

n∑

i′=1

et[inf(x̃i)1+inf(x̃i′ )1] − et[inf(x̃i)0+inf(x̃i′)0]

t[inf(x̃i)1 + inf(x̃i′)1]− t[inf(x̃i)0 + inf(x̃i′)0]

+
1

2m2

m∑

j=1

m∑

j′=1

et[inf(ỹj)1+inf(ỹj′ )1] − et[inf(ỹj)0+inf(ỹj′ )0]

t[inf(ỹj)1 + inf(ỹj′)1]− t[inf(ỹj)0 + inf(ỹj′)0]

−
1

nm

n∑

i=1

m∑

j=1

et[inf(x̃i)1+inf(ỹj)1] − et[inf(x̃i)0+inf(ỹj)0]

t[inf(x̃i)1 + inf(ỹj)1]− t[inf(x̃i)0 + inf(ỹj)0]

+
1

2n2

n∑

i=1

n∑

i′=1

et[sup(x̃i)1+sup(x̃i′ )1] − et[sup(x̃i)0+sup(x̃i′ )0]

t[sup(x̃i)1 + sup(x̃i′)1]− t[sup(x̃i)0 + sup(x̃i′)0]

+
1

2m2

m∑

j=1

m∑

j′=1

et[sup(ỹj)1+sup(ỹj′ )1] − et[sup(ỹj)0+sup(ỹj′ )0]

t[sup(ỹj)1 + sup(ỹj′)1]− t[sup(ỹj)0 + sup(ỹj′)0]

−
1

nm

n∑

i=1

m∑

j=1

et[sup(x̃i)1+sup(ỹj)1] − et[sup(x̃i)0+sup(ỹj)0]

t[sup(x̃i)1 + sup(ỹj)1]− t[sup(x̃i)0 + sup(ỹj)0]




1/2

.

On the basis of the results in Sinova et al. [48], it can be concluded that
this index vanishes if and only if the two sample distributions coincide.
The correction factor 1/ε is not really relevant at all, but it can be con-

sidered for descriptive purposes to make differences more evident. Thus,
the choice of very small values of ε usually leads to very small distances,
irrespectively of the sample distributions being more or less close.
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3 Descriptive data analysis of a real-life example

When one attempts to develop descriptive statistics with fuzzy data, some
distinctive features with respect to the real-valued case should be taken into
account, namely: one cannot make use of a difference operator which is well-
defined and preserves all the properties from the real-valued case, and there
is no ‘universally accepted’ total order between fuzzy numbers. The measures
in the preceding section overcome these eventual concerns with the use of
appropriate metrics.

To illustrate the suggested descriptive approach, we first present a real-life ex-
ample involving fuzzy rating scale-based data. Aiming to compare the values of
the descriptive measures in the preceding section with their counterpart(s) for
Likert-type data, and to descriptively conclude about the differences between
the use of the scales, the example involves two types of responses.

3.1 Real-life application

The study to be described is related to the well-known questionnaire TIMSS-
PIRLS 2011, which was the result of the union in 2011 of the TIMSS (Trends
in International Mathematics and Science Study) and PIRLS (Progress in In-
ternational Reading Literacy Study) to jointly assess the same fourth grade
students in mathematics, science and reading, and to have the most appropri-
ate basis for studying the relationships among these abilities. This was possible
because TIMSS and PIRLS questionnaires were conducted on the same stu-
dents, with some additional questionnaires having been filled by their parents,
teachers and school management team. Managing data on the same students
makes possible to perform valuable investigations and researchers can apply a
variety of modeling techniques to explore these important issues.

In 2011, the Spanish Institute of Educational Evaluation (INEE) commis-
sioned some members of our Department at the University of Oviedo (Spain)
to develop a data analysis with the data collected through some of the TIMSS/
PIRLS questionnaires conducted in Spanish schools (see Corral et al. [12] for
a summary of conclusions). These questionnaires are standard and most of the
involved questions have to be answered according to the 4-point Likert scale
given by A1 = disagree a lot, A2 = disagree a little, A3 = agree

a little and A4 = agree a lot.

These studies have been interesting, but our colleagues have been contemplat-
ing whether the use of a fuzzy rating scale approach for the responses would
yield somewhat different statistical conclusions or enlighten about some ap-
parently curious conclusions. This work will focus on the first fact. To carry
out an introductory analysis about the likely differences, we have chosen the
following nine questions (three per subject) from the Student questionnaire,
as gathered in Table 1.
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Table 1
Questions selected from the TIMSS-PIRLS 2011 Student Questionnaires

reading in school

R.1 I like to read things that make me think

R.2 I learn a lot from reading

R.3 Reading is harder for me than any other subject

mathematics in school

M.1 I like mathematics

M.2 My teacher is easy to understand

M.3 Mathematics is harder for me than any other subject

science in school

S.1 My teacher taught me to discover science in daily life

S.2 I read about science in my spare time

S.3 Science is harder for me than any other subject

The questionnaire form involving these nine questions, along with a few more
questions related to the facilities to study the students enjoy at home, has
been adapted to allow a double-type response, namely, the original Likert and
a fuzzy rating scale-based one (see Figure 2 for QuestionM.2, and the webpage
http://bellman.ciencias.uniovi.es/SMIRE/FuzzyRatingScaleQuestionnaire-SanIgnacio.

html for the full paper-and-pencil and computerized datasets).

In this way, each of the nine questions in Table 1 is assumed to be filled in
accordance with both the 4-point Likert scale and the fuzzy rating one with
reference interval [0, 10].

To ease the relationship between the two scales, each numerically encoded
Likert response, re-scaled to [0, 10], has been superimposed upon the reference
interval of the fuzzy rating scale part.

The questionnaire involving these double-response questions has been con-
ducted on 69 fourth grade students from Colegio San Ignacio (Oviedo-Asturias,
Spain).

A preliminary analysis has been considered in Gil et al. [22], and this paper
aims to enter in more detail and complete it with the ultimate goal of corrob-
orating that statistical results often vary with the scale employed. Indeed, this
is something one can immediately expect from the fact that the fuzzy rating
scale is much richer and more expressive, and it captures a higher subjectivity
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M.2 My teacher is easy to understand

Fig. 2. Example of the double-response form to a question

and variability in responding, than Likert ones.

Fig. 3. Example of 4 double responses to Question M.2 for which the Likert-type
ones coincide while the fuzzy rating scale-type clearly differ

To support and illustrate this last assertion, one can consider a combined
graphical display of the double response to Question M.2 for which the Likert
scale-based response chosen by four students has corresponded to A2 = dis-

agree a little, and the fuzzy rating scale-based responses for the same
students have been definitely different (see Figure 3).

Because of the 4th grade students at Colegio San Ignacio being grouped in
three different classrooms, three of us have conducted the questionnaire with
the support of a teacher. Two groups have used the computer-administered
format, whereas the other one has filled the paper-and-pencil one.

The training of the nine-year-old children has taken up to fifteen minutes.
Since they ignored what real-valued functions mean, we have taken advantage
of their knowledge of the notion of trapezium already at this stage, what has
been sufficient to make them understand the meaning of the upper and lower
bases in the fuzzy rating.
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Along the training, some students asked about the possibility of using trian-
gles or singletons as responses to the fuzzy rating scale-based questionnaire.
Actually and surprisingly, there have been more missing responses with the
Likert than with the fuzzy rating scale.

As it will be explained later, the obtained responses have been quite reason-
able, which allows us to conclude that the requirements for training do
not mean an important handicap.

3.2 Descriptive data analysis of the real-life example: a comparative view

The complete datasets for the study can be found in http://bellman.ciencias.

uniovi.es/SMIRE/FuzzyRatingScaleQuestionnaire-SanIgnacio.html. In addition to Lik-
ert and fuzzy rating scales (for short FRS) datasets, in the statistical analysis
in this section we will consider the datasets obtained when the Likert-type
responses are
• encoded by means of the re-scaled to [0, 10] usual numerical encoding (i.e.,
A1 ≡ 0, A2 ≡ 10/3, A3 ≡ 20/3 and A4 ≡ 10), for short NELikert, and

• encoded by means of the re-scaled to [0, 10] set of four terms with its usual
semantics (see Figure 4), for short FLELikert.

Fig. 4. A usual fuzzy linguistic encoding of a 4-point Likert scale

Other balanced and unbalanced fuzzy linguistic encodings have been consid-
ered, like those in Calcagǹı and Lombardi [8], Villacorta et al. [62], and Wang
et al. [63]. However, we have validated different encodings through the per-
centage of discrete responses matching with the closest one in ρ2’s sense, and
the one in Figure 4 has been the one yielding over 80% of matches.

3.2.1 Analyzing location and dispersion of the datasets

In summarizing the distribution of the sample of responses from the ques-
tionnaire, we are first going to estimate their sample Aumann-type mean, 1-
norm median, Fréchet-type variance and median 1-norm deviation, all of them
leading to strongly consistent estimators of the corresponding population pa-
rameters. For each question only data from the students who have provided
with both the Likert-type and the FRS responses have been considered in the
comparative analysis.

The only measure making sense for Likert responses is the median (and it
could be trivially deduced from the one for the NELikert data), so we will
only consider the NELikert, the FLELikert and the FRS data.
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Table 2
Sample mean, median, variance and median distance deviation for NELikert re-
sponses to Question M.3 (1st row); sample Aumann-type mean, 1-norm median, D
Fréchet-type variance and ρ1-MDD for FLELikert responses to Question M.3 (2nd
row); and for FRS responses to Question M.3 (3rd row)

NELikert NELikert NELikert NELikert NELikert
sample data mean median variance MDD

´ ´

16.3918 3.33

FLELikert FLELikert FLELikert FLELikert FLELikert
sample data Aumann-type mean 1-norm median variance ρ1-MDD

11.9399 2.5

FRS FRS FRS FRS FRS
sample data Aumann-type mean 1-norm median variance ρ1-MDD

M.3

12.2326 3.0357

To easily visualize some of the differences one can find depending on the scale,
we first describe in detail how to proceed with all datasets for Question M.3.
In this way, the available information (data), and the location and dispersion
measures have been gathered in Table 2 (1st row for NELikert responses, 2nd
row for FLELikert ones and third row for the FRS-based ones), the measures
for fuzzy-valued data being obtained by considering the Aumann-type mean, 1-
norm median, D-variance and ρ1-MDD as formalized in the preceding section.

By looking at the results in Table 2 one can easily show that
⊲ the values of the measures for the FRS responses are rather or quite dif-
ferent from those for the encoded Likert ones; for instance, the mean value
for the NELikert responses equals 5.8935 and the one for the FLELikert
is Tri(3.2859, 5.8935, 7.8261) = Tra(3.2859, 5.8935, 5.8935, 7.8261), whereas
the one for the FRS equals Tra(4.0149, 4.2562, 4.8982, 5.1895). If the fuzzy
means are defuzzified through their weighted averaging based on levels (see
Yager [64], or more recently Nasibov and Shikhlinskaya [41]),

wabl(Ũ) =
∫

[0,1]
[(inf Ũα + sup Ũα)/2] dα,
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which in the trapezoidal case coincides with the average of the end-points
of the 0- and 1-level, we get the value 6.5377 for the FLELikert and 4.5897
for the FRS;

⊲ the median for the NELikert and FLELikert dataset are the encoded A3,
which is visually very different to that for the FRS;

⊲ as formally proven in Sinova et al. [51], the 1-norm median is more robust
than the Aumann-type mean since it is somewhat less influenced by the
possible ‘outliers’ (in this case, some high values);

⊲ regarding the variance and MDD, the FRS responses lead to a value in
between the one for the NELikert and the one for the FLELikert; although
it has been empirically shown (see De la Rosa de Sáa et al. [14]) that the
variance is mostly lower for the FRS than for the other two ones, this is
not true for this case. This can be possibly due to the diversity being much
higher for the FRS responses and also (as we will comment later) to the
fact that M.3 is one of the questions for which the distance between the
FRS-based median and mean value is larger; close descriptive conclusions
can be drawn for the MDD.

On the other hand, quite different summary measures can be obtained depend-
ing on the considered scale, as one can see by looking at the sample means and
medians of different types of responses to Questions M.3 and S.1 (see Table 3,
the NELikert and FLELikert sample distributions being immediate to obtain
on the basis of the Likert ones).

Table 3
Sample data according to Likert and FRS for Questions M.3 and S.1

M.3 S.1

Likert FRS Likert FRS
sample data sample data sample data sample data

M.3 S .1

Once more, differences between the central tendency measures of these distri-
butions are much more clearly visualized through the FRS data than through
the encoded Likert ones. In this way, Table 4 clearly shows that although for
NELikert and FLELikert the sample means are very close, and the sample
medians coincide, this does not happen when sample FRS data are analyzed
since their mean and median are quite different.
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Table 4
Comparative display of the sample mean and median for NELikert, FLELikert and
FRS responses to Questions M.3 and S.1

M.3 NELikert S.1 NELikert M.3 NELikert S.1 NELikert
mean mean median median

5.8935 6.2572 20/3 20/3

M.3 FLELikert S.1 FLELikert M.3 FLELikert S.1 FLELikert
Aumann-type mean Aumann-type mean 1-norm median 1-norm median

M.3 FRS S.1 FRS M.3 FRS S.1 FRS
Aumann-type mean Aumann-type mean 1-norm median 1-norm median

The global analysis of the sample means and medians for the nine questions
can be found in Table 5.

On the other hand, the analysis of the sample variances and MDDs for the
same questions can be found in Table 6.

A pairwise linear correlation analysis between the values of the sample vari-
ances for the three scales in Table 6 yields to very strong increasing linear
relationships between them. More specifically,

rNELikert variance,FLELikert D-variance = .9978,

rNELikert variance,FRS D-variance = .9791,

rFLELikert D-variance,FRS D-variance = .9708.

By looking at Table 6, one can immediately conclude that the variance is lower
for the FLELikert- and FRS-based responses than for the NELikert ones for
the nine questions, but the comparison is not uniform between the variances
for FLELikert and FRS data. Moreover, one can conclude that the MDD is
lower for the FLELikert responses than for the NELikert ones for the nine
questions, but the comparison is not uniform with respect to the MDD for
FRS data.
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Table 5
Sample means and medians for the responses to Questions R.1 to S.3

NELikert NELikert FLELikert FLELikert FRS FRS
mean median Aumann mean 1-norm median Aumann mean 1-norm median

R.1 6.3738 20/3

R.2 8.2099 10

R.3 2.1885 0

M.1 6.5672 20/3

M.2 8.3341 10

M.3 5.8935 20/3

S.1 6.2572 20/3

S.2 2.6553 10/3

S.3 3.9392 10/3

If we now compute distances between the sample Aumann-type mean and 1-
norm median of the FRS responses, we can easily realize that the variance is
smaller for the FRS than for the FLELikert data except when the distance
between the mean and the median of the FRS responses is large (over .7, see
Table 7), that is, the mean is not very representative as a central tendency
summarization.
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Table 6
Sample D-variances and ρ1-MDDs for the responses to Questions R.1 to S.3

question R.1 R.2 R.3 M.1 M.2 M.3 S.1 S.2 S.3

NELikert variance 6.2191 4.8236 10.2874 9.4243 6.2381 16.3918 9.9034 7.1199 12.2823

FLELikert D-variance 4.8253 3.4621 7.3660 7.2054 4.4168 11.9399 7.4159 5.2613 9.1435

FRS D-variance 4.7650 3.1600 8.2858 7.0894 5.2719 12.2326 6.6063 5.1205 8.2269

question R.1 R.2 R.3 M.1 M.2 M.3 S.1 S.2 S.3

NELikert MDD 0 0 0 3.33 0 3.33 3.33 3.33 3.33

FLELikert ρ1-MDD 0 0 0 2.5 0 2.5 2.5 2.5 2.5

FRS ρ1-MDD 1.2934 1.3625 1.7149 2.2140 1.2119 3.0357 1.8289 1.4314 2.3375

Moreover, the MDD is generally smaller for the FRS than for the FLELik-
ert/NELikert data when the distance between the mean and the median is
rather small (see Table 7).

Table 7
Distances between the Aumann-type mean and the 1-norm median for the FRS
responses to Questions R.1 to S.3

question R.1 R.2 R.3 M.1 M.2 M.3 S.1 S.2 S.3

ρ1 .3522 .3519 .8708 .1607 .8216 .7352 .2534 .0726 .2705

ρ2 .3608 .4193 .9129 .1829 .8527 .7421 .3047 .0803 .3360

D .3554 .3023 .8871 .1111 .8328 .7386 .2615 .0642 .1999

3.2.2 Diversity in responding

A first evidence supporting the use of the fuzzy rating scale is that the rich-
ness and diversity/variability/subjectivity of the available information clearly
increase w.r.t. the discrete scales.

This is amply confirmed by looking at Table 3, which displays together, for
instance on the left side, the responses to Question M.3 in accordance with the
4-point Likert scale (on the left-left), and those collected by using the fuzzy
rating scale (on the left-right).

If we quantify the diversity of values by considering the Gini-Simpson index
and, for each question, we only consider data from the students who have
provided with both the Likert-type and the FRS responses, we obtain the
results in Table 8. Notice that the frequencies of the different values coincide
for Likert datasets and their NELikert and FLELikert encodings, so there is
no need for an extra computation.
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Table 8
Sample Gini-Simpson diversity index for Likert responses (and their usual encod-
ings) and FRS responses to Questions R.1 to S.3

question R.1 R.2 R.3 M.1 M.2 M.3 S.1 S.2 S.3

DivGini(Likert) .5960 .5587 .5730 .6915 .5266 .7078 .6921 .6362 .7287

DivGini(FRS) .9853 .9833 .9842 .9837 .9793 .9725 .9846 .9839 .9844

The results in Table 8 are coherent with what has been proved in De la Rosa
de Sáa et al. [14]: under quite general conditions the use of the fuzzy rating
scale allows individual diversities to be more evident than with the
use of Likert one or its numerical/fuzzy linguistic encodings.

Fig. 5. Scatter diagram for Gini-Simpson diversity index for Likert (abscise) vs
Gini-Simpson diversity index for FRS (ordinate) responses to Questions R.1 to S.3

Furthermore, one can see that, in contrast to what happens for the variance,
the scatter diagram for the pairs of values of the Gini-Simpson diversity index
for the Likert vs FRS scale (see Figure 5) does not show any specific con-
nection between the values of the index for both scales (in fact, the linear
correlation coefficient equals rDivGini(Likert),DivGini(FRS) = −.121, and quadratic
or cubic relationships are also unappropriate). This is mainly due to the lack
of a relationship between the diversities for questions related to math.

3.2.3 Analyzing the similarity between sample distributions

Finally, by means of the sample index of dissimilarity between two distribu-
tions, some pairwise differences of FRS-based responses are examined. More
concretely, possible differences by sex (girls/boys), format of the questionnaire
students have filled (paper-and-pencil/computerized) and type of bedroom
students have at home (shared/individual) have been described in terms of
the index ̺.001. Outputs for the computations have been collected in Table 9.

Since there is not a maximum value the index can take on, we can only state
descriptive comparative conclusions instead of separate ones. The last ones
would require an inferential reasoning which should be yet developed. As an
example of some of the conclusions we can draw,
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Table 9
Analyzing the influence of sex, format and type of bedroom on the FRS responses

posed differences by sex differences by format differences by room
question ̺.001 ̺.001 ̺.001

R.1 .3874 1.0148 .5859

R.2 .2397 1.1045 1.2238

R.3 .6087 .7244 .4755

M.1 1.2692 .8622 .9392

M.2 .3713 1.3347 .3153

M.3 .6207 1.5316 .6548

S.1 .6784 1.5403 .2659

S.2 .2754 .6827 .5868

S.3 .4223 1.5221 .8058

⊲ sex is especially influential in students liking or not mathematics (by looking
at responses in more detail, boys seem to have a more positive view about
the subject than girls),

⊲ the bedroom type is more influential in the attitude with respect to learning
from reading (those having an individual room being more positive about
this activity), and

⊲ rather surprisingly, the version of the questionnaire seems to be influential
for the responses to almost all the questions.

3.3 Some remarks about the descriptive analysis

It should be highlighted that the choice of the reference bounded interval does
not essentially affect the main conclusions in the study in this paper. More
concretely,

− the central tendency measures (i.e., the Aumann-type mean and the 1-norm
median) are equivariant by translation and scale;

− the D-variance/ρ1-MDD is invariant by translation and squared equivari-
ant/equivariant by scale;

− Gini’s diversity index is invariant by translation and nonnull scale, small/
large dissimilarities in a reference interval correspond to small/large dissim-
ilarities in any other one.

The comparative descriptive study in Section 3 has dealt with an even-point
Likert scale, the 4 points having been predetermined by the TIMSS/PIRLS
team in connection with the considered questionnaire. Consequently, respon-
dents have had no chance to choose a neutral position within the Likert scale.
Nevertheless, it should be pointed out that the fact that a neutral label is
included in the questionnaire does not affect in general the main implication
from this paper: statistical conclusions can differ depending on the scale.
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To briefly illustrate these assertions by means of a real-life example, we can
consider the datasets obtained after conducting a double-response question-
naire similar to the one in Section 3, but for which respondents can choose
among five possible Likert-type responses and, simultaneously, draw a fuzzy
rating scale-type one having [0, 100] (see, for more details, Sinova et al. [50],
and the web http://bellman.ciencias.uniovi.es/smire/FuzzyRatingScaleQuestionnaire-

Restaurants.html). A sample of 70 people with different age, background and
work type and position has been considered for responding to a restaurant
customer satisfaction questionnaire. Some of the questions have consisted of
making the customers rate the degree of agreement with the statements “QF2.
The menu has a good variety of items”, “QF3. The quality of food is excel-
lent”, “QR2. Employees are patient when taking my order”, and “QR7. The
service is excellent”.

Table 10 shows that, as for the 4-point and reference interval [0,10], differences
can be found between statistical conclusions depending on the considered scale.

Table 10
Comparative display of the sample mean-variance/sample median-MDD for NELik-
ert, FLELikert and FRS responses to Questions QF3 vs QR7/QF2 vs QR2

QF3 vs QR7 NELikert QF3 vs QR7 NELikert QF2 vs QR2 NELikert QF2 vs QR2 NELikert
mean D-variance median ρ1-MDD

0 20 40 60 80 100

´́ 546.58 vs 427.54 75 (Somewhat agree) 25

QF3 vs QR7 FLELikert QF3 vs QR7 FLELikert QF2 vs QR2 FLELikert QF2 vs QR2 FLELikert
Aumann-type mean D-variance 1-norm median ρ1-MDD

0 20 40 60 80 100

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

462.13 vs 356.04 0 20 40 60 80 100

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

18.75

QF3 vs QR7 FRS QF3 vs QR7 FRS QF2 vs QR2 FRS QF2 vs QR2 FRS
Aumann-type mean D-variance 1-norm median ρ1-MDD

0 20 40 60 80 100

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

371.86 vs 272.93 0 20 40 60 80 100

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

16.79 vs 8.96

As a summary implication, this paper corroborates what has been stated from
other statistical perspectives (see De la Rosa de Sáa et al. [15], for the repre-
sentativeness of the mean, and Lubiano et al. [38], for some studies from an
inferential viewpoint): conclusions based on responses from the fuzzy rating
scale do not coincide in general with those based on responses from either Lik-
ert or fuzzy linguistic Likert scales. This implication has an important analogy
with what happens when grouping real-valued data by intervals: both, ‘iden-
tifying’ fuzzy rating scale-valued responses with one of a few possible Likert
labels (or their fuzzy linguistic counterpart) and ‘identifying’ real-valued re-
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sponses with one of a few possible non-overlapping interval-valued ones, entail
a loss of information so that some existing differences can be ignored, whence
statistical conclusions are not usually well preserved under such an identifica-
tion.

4 Concluding remarks

This paper has explained in detail an approach to descriptively analyze data
obtained from the use of a fuzzy rating scale-based questionnaire. It should
be remarked that there are many other studies to be developed, although
they are beyond the extent and length of this paper and will also depend in
practice on the real interests users can have. Among them, there are still many
statistical methods to be developed for both descriptive and inferential fuzzy
data analysis, and this is a clear future direction to consider.
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Lubiano, Fuzzy rating scale-based questionnaires and their statistical analysis,
IEEE T. Fuzzy Syst. 23 (2015) 111–126.
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from a fuzzy rating scale-based questionnaire. A case study, Psicothema, 27
(2015) 182–191.
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