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Abstract

An axiomatic definition of divergence measure for
intuitionistic fuzzy sets (IFSs, for short) is presented
in this work, as a particular case of dissimilarity
between IFSs. As the concept of divergence mea-
sure is more restrictive, it has particular properties
which are studied. Furthermore, the relationships
among IF-divergences, dissimilarities and distances
are studied. We also provide some methods for
building divergence measure for IFSs. They will al-
low us to conclude this work with a classification of
the usual functions used in the literature for measur-
ing the difference between intuitionistic fuzzy sets in
two classes: which are divergence measures between
IFSs and which are not.
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1. Introduction

Since Zadeh introduced fuzzy sets in 1965 (see [25]),
this theory has become very popular. We can find in
the literature many papers and journals that focus
on fuzzy sets. In particular, they have been used to
model some real situations were crisp theory incurs
in a high lost of information.
Since the comparison of descriptions of two ob-

jects is necessary in many fields as psychology, anal-
ogy, physical sciences, image processing, clustering,
deductive reasoning, case-based reasoning, etc., to
measure the difference between fuzzy sets has been
an objective of many studies. For example, Bou-
chon et al. ([4]) proposed a general axiomatic that
model all the types of functions used for measuring
that difference. Montes et al. ([21]) made an ax-
iomatic definition of a divergence measure. Further-
more, Couso et al. ([8]) used the concepts of dissim-
ilarity to measure the difference between fuzzy ran-
dom variables. Usually, the comparison is achieved
through a measure intended to determine to which
extent the descriptions have common points or dif-
fer from each other (for a general proposal see [4]).

Although fuzzy sets are very useful in many con-
text, Atanassov proposed a more general theory (see
[1]), based on intuitionistic fuzzy sets. If fuzzy sets
allow a degree of membership, intuitionistic fuzzy

sets allow a degree of membership and a degree of
non-membership. This type of sets has shown to
be appropriate to model a lot of situations in which
fuzzy sets do not consider all the available informa-
tion. This theory is currently being developed, and
the proof is the amount of literature we can find
(see for example [2, 3, 5, 9, 15]).

For measuring the difference between intuitionis-
tic fuzzy sets, we can find an axiomatic definition
of dissimilarity measures and several examples (see,
for instance, [13, 14, 11, 17, 19, 22, 23]). In this
work, we proposed an axiomatic definition of a di-
vergence measure for intuitionistic fuzzy sets as a
particular case of dissimilarity measure with spe-
cific properties. As we will prove, this notion is
more restrictive than dissimilarity, and this allows
more variety of properties. Our aim is to study
the relationships among three ways of measuring
the difference between intuitionistic fuzzy sets: the
classical notion of distances, dissimilarities and di-
vergences. We also want to study some properties
of the notion of divergence.

This work is organized as follows: Section 2 is
used for introducing some well-known concepts. In
the first part we will recall the notion and prop-
erties of intutionistic fuzzy sets. Then we will re-
call the axiomatic definition of divergence for fuzzy
sets, which will be our starting point in next sec-
tion. Thus, in Section 3 we will propose an ax-
iomatic definition of divergence for intuitionistic
fuzzy sets. We are going to study the relationships
among IF-divergences, dissimilarities and distances,
and we will show some methods for building IF-
divergences. Section 4 is devoted to prove if some
of the most usual dissimilarities measures are or not
IF-divergences. We conclude the work with some fi-
nal comments and open problems.

2. Preliminaries

This section is devoted to introducing some well-
known concepts, and also fixing the notation. First
of all, we will focus on the theory of intuitionistic
fuzzy sets. Then, we will recall the axiomatic defi-
nition of a divergence measure for fuzzy sets.
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2.1. Intuitionistic Fuzzy Sets

Fuzzy sets are used to model a lot of real problems.
However, there are other situations where the model
can be improved. Atanassov introduced intuitionis-
tic fuzzy sets to model situations in which every
point in the universe has a degree a membership, a
degree of non-membership and a degree of indeter-
minacy or uncertainty. In this way he defined an
intuitionistic fuzzy set as follows:

A = {(x, µA(x), νA(x)) | x ∈ X},

where µA and νA are functions µA, νA : X → [0, 1]
such that 0 ≤ µA(x) + νA(x) ≤ 1.
On this way, µA and νA denote the degree

of membership and non-membership, respectively.
Thus, the function πA(x) = 1 − µA(x) − νA(x),
called the intuitionistic fuzzy index or the hesita-
tion index, expresses lack of knowledge of whether
x belongs to A or not.
Since intuitionistic fuzzy sets allow two degrees of

freedom into a set description, and fuzzy sets only
allow one, this generalization gives us an additional
possibility to represent the lack of information what
leads when we try to describe many real problems.
Thus, they are very convenient to model situations
where human answers are present: yes, no or does
not apply. A good example of these kind of situa-
tions is voting, since human voters can be divided
into three groups: vote for, vote against or abstain
(see for example [22]).
From now on, IFSs(X) will denote the set of

all intuitionistic fuzzy sets on X. Given A,B ∈
IFSs(X), the operations of union, intersection and
complement and the inclusion relation can be de-
fined as follows:

• Union of every A and B:

A ∪B = {(x, µA∪B(x), νA∪B(x)) | x ∈ X},

where µA∪B(x) = max{µA(x), µB(x)} and
νA∪B(x) = min{νA(x), νB(x)}.
• Intersection of every A and B:

A ∩B = {(x, µA∩B(x), νA∩B(x)) | x ∈ X},

where µA∩B(x) = min{µA(x), µB(x)} and
νA∩B(x) = max{νA(x), νB(x)}.
• Complement of every A:

Ac = {(x, νA(x), µA(x)) | x ∈ X}.

• A is a subset of B (denoted by A ⊆ B) if and
only if for every x ∈ X it holds that:

µA(x) ≤ µB(x) and νA(x) ≥ νB(x).

We have considered the initial definitions given by
Atanassov ([1, 2]), since they have been the most
usually considered in the literature. However, let
us recall that some generalizations based on t-norms
and t-conorms have already been presented (see for
example [10]).

2.2. Divergences for Fuzzy Sets

As we commented previously, a fuzzy set can be seen
as a particular case of intuitionistic fuzzy set. In
this particular context, several measures have been
proposed in order to measure the degree of differ-
ence between two fuzzy sets. A general study was
presented in [4]. As a particular case was widely
studied in [21]. There, an axiomatic definition of a
divergence measure for fuzzy sets was introduced.
It was based on the following natural properties:

• It is a nonnegative and symmetric function of
the two fuzzy sets.

• The divergence of a fuzzy sets with itself is zero.
• The “more similar” two fuzzy sets are, the lower

divergence between them.

These properties were mathematically described in
the following way.

Definition 2.1 ([21]) Let us consider an universe
X, and let FS(X) denotes the set of all fuzzy sets
on X. A map D : FS(X) × FS(X) → R is a
divergence measures if for every fuzzy sets A and B
it fulfills the following conditions:

1. D(A,B) = D(B,A).
2. D(A,A) = 0.
3. D(A ∩ C,B ∩ C) ≤ D(A,B), for every C ∈

FS(X).
4. D(A ∪ C,B ∪ C) ≤ D(A,B) for every C ∈

FS(X).

The nonnegativity of the divergence is not required
in the previous axioms. However, it is trivial to
deduce it from axioms 2 and 3 (or 2 and 4).

Montes et al. ([21]) studied some properties of
divergences, and they also proved that the most of
the usual functions used in the literature for mea-
suring the difference between fuzzy sets are, in fact,
divergences.

Example 2.2 ([21]) Let us consider a finite uni-
verse X. The following functions are divergence
measures for fuzzy sets.

• D1(A,B) = Sx∈X(|A(x) − B(x)|), for every
A,B ∈ FS(X), where S is a t-conorm.

• In particular, if the t-conorm is the sum
(S(x, y) = x + y), we obtain D2(x, y) =∑

x∈X |A(x) − B(x)|. Thus, we are measuring
the difference between fuzzy sets using the Ham-
ming distance between fuzzy sets.

• D3(A,B) =
∑

x∈X h(A(x), B(x)), where
h(t, z) = g

(
t+z

2
)
− g(t)+g(z)

2 and g : [0, 1]→ R+

is a concave function, increasing in [0, 0.5],
symmetric with respect to the point 1

2 and
g(0) = g(1) = 0.

This particular idea for fuzzy sets is our starting
point in this paper, in order to introduce an ax-
iomatic definition of comparison measure between
IFSs.
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3. Divergence measures for Intuitionistic
Fuzzy Sets

This section is devoted to introduce an axiomatic
definition of a measure of comparison of two intu-
itionistic fuzzy sets. In the first part we will in-
troduce the axioms and we are going to study the
relationships among IF-divergences, dissimilarities
and distances. Then, we will introduce some ba-
sic properties and some methods for building IF-
divergences.

3.1. Axiomatic definition

Some many functions have been presented in the
literature with the aim of measuring the difference
between intuitionistic fuzzy sets. The most com-
mon ones were dissimilarities. Let us recall that
a dissimilarity measure for intuitionistic fuzzy sets
is a function DIS from IFSs(X) × IFSs(X) to R
such that for every A,B,C ∈ IFSs(X), it fulfills
the following properties:

Ax.1 DIS(A,B) = DIS(B,A).
Ax.2 DIS(A,A) = 0.
Ãx.3 A ⊂ B ⊂ C, then

DIS(A,C) ≥ DIS(A,B).
DIS(A,C) ≥ DIS(B,C).

In next section we will enumerate several exam-
ples of dissimilarities, presented in the literature.
However, some of them have some drawback. Thus,
we have considered a particular case of dissimilar-
ities in order to obtain stronger properties for the
measure. Thus, we consider the concept of diver-
gence measure for intuitionistic fuzzy sets, which is
axiomatically defined as follows:

Definition 3.1 Let X be an universe, and let
IFSs(X) denote the set of all intuitionistic fuzzy
sets on X. A map DIF : IFSs(X) × IFSs(X) →
R is a divergence measure for intuitionistic fuzzy
sets (IF-divergence, for short) if for every A,B ∈
IFSs(X) it fulfills the following properties:

Ax.1 DIF(A,B) = DIF(B,A).
Ax.2 DIF(A,A) = 0.
Ax.3 DIF(A ∩ C,B ∩ C) ≤ DIF(A,B) for every

C ∈ IFSs(X).
Ax.4 DIF(A ∪ C,B ∪ C) ≤ DIF(A,B) for every

C ∈ IFSs(X).

In Section 4 we will provide some examples of
dissimilarity measures which are not IF-divergences.
The following result will be useful to prove that eve-
ry IF-divergence is a dissimilarity measure.

Lemma 3.2 Let us consider the intuitionistic fuzzy
sets A,B,C and D on X such that A ⊂ C ⊂ D ⊂
B. Then it holds that DIF(A,B) ≥ DIF(C,D).

Using this lemma we can prove the following propo-
sition.

Proposition 3.3 Every IF-divergence is also a dis-
similarity measure for intuitionistic fuzzy sets.

Thus, we can see that the definition of IF-
divergences is more restrictive than the definition
of dissimilarities.

Another important way of comparing two IFSs
was by means of distances. Let us note that there
is not a general relationship between IF-divergences
and distances. To see that, let us consider the map
d defined on the real interval [0, 1] as follows:

d(x, y) =


|x− 0.2| if x /∈ {0.1, 0.2}, y = 0.1.
|x− 0.1| if x /∈ {0.1, 0.2}, y = 0.2.
|0.2− y| if x = 0.1, y /∈ {0.1, 0.2}.
|0.1− y| if x = 0.2, y /∈ {0.1, 0.2}.
|x− y| otherwise.

It is easy to check that d is a metric on [0, 1]. There-
fore, for an universe X = {x}, the map

d∗(A,B) = d(|µA(x)−µB(x)|, |νA(x)−νB(x)|) (1)

is a metric on IFSs(X). However, d∗ is not an
IF-divergence, since for the intuitionistic fuzzy sets
A = {(x, 0, 0)}, B = {(x, 0.2, 0)}, C = {(x, 0.15, 0)}
and D = {(x, 0.18, 0)}, it holds that

d∗(C ∪D,B ∪D) = d∗(D,B) = 0.08
> 0.05 = d∗(C,B).

d∗(A ∩ C,B ∩ C) = d∗(A,C) = 0.15
> 0.1 = d∗(A,B).

Conversely, we can find an IF-divergence that is
not a distance. For this aim it is enough to con-
sider an universe X = {x} and the map defined on
IFSs(X) by:

DIF(A,B) =
(µA(x)− µB(x)) log2

(
µA(x)(1−µB(x))
µB(x)(1−µA(x))

)
.

(2)

It can be proved that this function is an IF-
divergence. Furthermore, if we consider the in-
tuitionistic fuzzy sets A = {(x, 0.2, 0)}, B =
{(x, 0.15, 0)} and C = {(x, 0.1, 0)}, they do not ful-
fill the triangle inequality:

DIF(A,B) +DIF(B,C) = 0.058
< 0.117 = DIF(A,C).

We have just seen that there is not a general rela-
tionship between distances and IF-divergences.

To complete the relationships among distances,
IF-divergences and dissimilarities, we are going to
see that a distance is not necessarily a dissimilarity.
For this aim, it is enough to consider once more the
distance d∗ defined in Equation 1, and the intuition-
istic fuzzy sets A = {(x, 0, 0)}, B = {(x, 0.18, 0)}
and C = {((x, 0.2, 0)}. Then, we have that A ⊂
B ⊂ C, but:

d∗(A,C) = d(0.2, 0) = 0.1
< 0.18 = d(0.18, 0) = d∗(A,B),
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and that contradicts the third axiom of dissimilari-
ties.
In Figure 1 we can see summarized the rela-

tionships we have obtained among distances, IF-
divergences and dissimilarities. A missed arrow
means that this implication does not hold in ge-
neral.

IF-divergence −→ Dissimilarity

Distance

Figure 1: Relationships among distances, IF-
divergences and dissimilarities.

3.2. Basic properties

In the previous subsection we have proposed an ax-
iomatic definition of divergence measures for intu-
itionistic fuzzy sets as a particular case of dissim-
ilarity measures. Next, we are going to study the
specific properties that they fulfill. First, we recall
that one of the reasonable properties that were re-
quired to be a good measure of the difference was
the nonnegativity. It has not been imposed on the
definition, since it can be easily obtained from the
axioms 1 and 2.

Proposition 3.4 Every IF-divergence is nonnega-
tive.

A property that an IF-divergence DIF can fulfill is:

Ãx.5 DIF(A,B) = DIF(Ac, Bc), for every A,B ∈
IFSs(X).

This property can be fulfilled by some IF-
divergence. However, we can find IF-divergences
that do not fulfill it. For example, the IF-divergence
DIF defined in Equation 2. If we consider A =
{(x, 0.6, 0.4)} and B = {(x, 0.5, 0.1)}, it holds that:

DIF(A,B) = 0.1 log2(1.5) = 0.0585
6= 0.7755 = 0.3 log2(6) = DIF(Ac, Bc).

In Section 4 we will see some examples of IF-
divergences that fulfill this property.
The following proposition relates axioms 3 and 4

of the Definition 3.1 when the IF-divergence fulfills
axiom 5.

Proposition 3.5 Let DIF be an IF-divergence.
If DIF(A,B) = DIF(Ac, Bc) for every A,B ∈
IFSs(X), then axioms 3 and 4 of Definition 3.1
are equivalents.

This result can be very useful when we are trying to
proof if a function DIF is or not an IF-divergence,
because if such function fulfills axiom 1, 2 and 5,
then axioms 3 and 4 are equivalents.
Using axioms 3 and 4, we can prove the following

proposition.

Proposition 3.6 Let A,B,C and D be intuitionis-
tic fuzzy sets on X. If µC = µD, then DIF(A,B) ≥
DIF(C,D).

Remark 3.7 Applying the axioms of symmetry of
the IF-divergences, it also holds that for every
A,B,C,D ∈ IFSs(X) such that νC = νD then
DIF(A,B) ≥ DIF(C,D).

To conclude this section, we are going to see two
methods to built an IF-divergence. The first one
is based on a divergence measure, and the second
one is used to built IF-divergences from other IF-
divergences.

Proposition 3.8 Let X be an universe, and Let D
be a divergence for fuzzy sets on X. If f is a map
f : [0,∞)× [0,∞)→ [0,∞) such that

1. f(0, 0) = 0, and
2. f(·, t) and f(t, ·) are non-decreasing,

then the function DIF, defined by:

DIF(A,B) = f(D(µA, µB), D(νA, νB))

for every A,B ∈ IFSs(X), is an IF-divergence.

This proposition is very useful to prove that some
of the most usual functions used for measuring the
difference between intuitionistic fuzzy sets are also
IF-divergences. Let us see some examples of this
application:

Example 3.9 Let us consider a finite universe
X = {x1, . . . , xn}, and let l denote the Hamming
distance for fuzzy sets, that is defined by:

l(A,B) =
n∑
i=1
|µA(xi)− µB(xi)|,

We are going to consider f1 and f2 two functions
defined by:

f1(x, y) = x+ y

2
,

f2(x, y) = max{x, y}.

It is obvious that these functions fulfill conditions
of Proposition 3.8. Then, it holds that the following
functions are IFS-divergences:

DH(A,B) = f1(l(µA, µB), l(νA, νB))

= 1
2

n∑
i=1

(|µA(xi)− µB(xi)|

+ |νA(xi)− νB(xi)|).
dH(A,B) = f2(l(µA, µB), l(νA, νB))

=
n∑
i=1

max{|µA(xi)− µB(xi)|,

|νA(xi)− νB(xi)|}.

In fact, the second one is known as the Hausdorff
distance ([11]), and the first one is a function de-
fined by Hong and King ([12]).
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The following result shows us that, if we have an
IF-divergence, it is possible to built some other IF-
divergences using a nondecreasing function.

Proposition 3.10 Let DIF be an IF-divergence de-
fined on an universe X. If ϕ is a nondecreasing
function ϕ : [0,∞) → [0,∞), ϕ(0) = 0, then Dϕ

IF,
defined by:

Dϕ
IF(A,B) = ϕ(DIF(A,B)), for A,B ∈ IFSs(X),

is other IF-divergence.

This follows directly from the definition of an IF-
divergence and properties of ϕ.
In the next example we are going to use the pre-

vious proposition to prove that some functions are
IF-divergences.

Example 3.11 Hung and Yang ([13]) defined the
following functions:

D1
HY(A,B) = dH(A,B).

D2
HY(A,B) = edH(A,B) − e−1

1− e−1 .

D3
HY(A,B) = 1− dH(A,B)

1 + dH(A,B)
.

We have already proven that the Hausdorff distance
is an IF-divergence. Therefore, D1

HY also is an IF-
divergence. To prove that D2

HY and D3
HY are IF-

divergences, it is enough to note that the functions:

ϕ1(t) = et − e−1

1− e−1 ,

ϕ2(t) = 1− t
1 + t

,

are nondecreasing functions, and therefore applying
Proposition 3.10, both functions

D2
HY(A,B) = ϕ1(dH(A,B)),

D3
HY(A,B) = ϕ2(dH(A,B)),

are IF-divergences.

4. Examples of IFS-Divergences

We have already commented that a lot of different
types of functions for measuring the difference be-
tween intuitionistic fuzzy sets have been presented
in the literature. In fact, we are going to present
some examples of dissimilarity measures, and we
should prove if these functions fulfill or not the ax-
ioms presented in Definition 3.1. From now on, we
are going to describe some of the more usual dissimi-
larity measures existing in the literature, explaining
if they are or not divergence measures.
Let us consider a finite universe X =
{x1, . . . , xn}. First of all, let us recall that the IF-
divergences presented in Examples 3.9 and 3.11 are
dissimilarity measures. The Hausdorff divergence is

one of the most common functions used for measur-
ing the distance between intuitionistic fuzzy sets.
Furthermore, this function is a dissimilarity and an
IF-divergence measure. Another important dissim-
ilarities are the Hamming distance for intuitionistic
fuzzy sets and the normalized Euclidean distance.
They are defined by:
• The Hamming distance ([3]):

lIFS(A,B) =
n∑
i=1

(|µA(xi)− µB(xi)|

+ |νA(xi)− νB(xi)|
+ |πA(xi)− πB(xi)|).

• The normalized Euclidean ([6]):

qIFS(A,B) =
( 1

2n
∑n
i=1(µA(xi)− µB(xi))2

+(νA(xi)− νB(xi))2

+(πA(xi)− πB(xi))2)1/2
.

These dissimilarities fulfill the properties of Defini-
tion 3.1, and therefore they are also IF-divergences.

Next, we are going to make an overview of other
purposed dissimilarity measures we can find in the
literature. First of all, Chen ([6, 7]) defined the
dissimilarity:

DC(A,B) = 1
2n

n∑
i=1
|SA(xi)− SB(xi)|,

where SA(xi) = µA(xi) − νA(xi) and SB(xi) =
µB(xi) − νB(xi). However, Hung and Kim ([12])
showed that this function is counterintuitive, in the
sense that every pair of intuitionistic fuzzy sets A
and B such that SA(xi) = SB(xi) for every i =
1, . . . , n, DC(A,B) = 0. For example, it is enough
to consider X = {x} and A = {(x, 0, 0)}, B =
{(x, 0.5, 0.5)}. For them it holds that DC(A,B) =
0, that is clearly counterintuitive. For this reason,
Hong and King ([12]) defined two functions:

DH(A,B) = 1
2n
(∑n

i=1 |µA(xi)− µB(xi)|
+|νA(xi)− νB(xi)|

)
.

DL(A,B) = 1
4n
((∑n

i=1 SA(xi)− SB(xi)
)

−
(∑n

i=1 |µA(xi)− µB(xi)|
+|νA(xi)− νB(xi)|

))
.

These dissimilarities are also an IF-divergence. An-
other dissimilarity measure that is also an IF-
divergence is the one purposed by Li et al. ([18]),
DO, and the one defined by Mitchell ([20]), DHB.
They are defined by:

DO(A,B) = 1√
2n

(∑n
i=1(µA(xi)− µB(xi))2

+(νA(xi)− νB(xi))2)0.5
.

DHB(A,B) = 1
2 p
√
n

((∑n
i=1 |µA(xi)− µB(xi)|p

) 1
p

+
(∑n

i=1 |νA(xi)− νB(xi)|p
) 1
p
)
.

Dengfeng and Chuntian ([16]) presented a dissimi-
larity measure that is not IF-divergence.

DDC(A,B) = 1
n

1
p

( n∑
i=1
|mA(xi)−mB(xi)|p

) 1
p ,
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where mA(xi) = 1
2 (µA(xi) − 1 + νA(xi) and

mB(xi) = 1
2 (µB(xi) − 1 + νB(xi). Liang and Shi

([19]) defined three dissimilarity measures. Only
the third is an IF-divergence.

Dp
e (A,B) = 1

n
1
p

(
n∑
i=1

(φµAB(xi) + φνAB(xi))p
) 1
p

where φµAB(xi) = 1
2 |µA(xi)−µB(xi)| y φνAB(xi) =

1
2 |νA(xi)− νB(xi)|.

Dp
s (A,B) = 1

n
1
p

(
n∑
i=1

(ϕs1(xi)− ϕs2(xi))p
) 1
p

,

where

ϕs1(xi) = 1
2 |mA1(xi)−mB1(xi)|.

ϕs2(xi) = 1
2 |mA2(xi)−mB2(xi)|.

mA1(xi) = 1
2 (µA(xi) +mA(xi)).

mA2(xi) = 1
2 (mA(xi) + 1− νA(xi)).

mB1(xi) = 1
2 (µB(xi) +mB(xi)).

mB2(xi) = 1
2 (mB(xi) + 1− νB(xi)).

mA(xi) = 1
2 (µA(xi) + 1− νA(xi)).

mB(xi) = 1
2 (µB(xi) + 1− νB(xi)).

Dp
h(A,B) = 1

(3n)1/p

(∑n
i=1(η1(i) + η2(i)

+η3(i))p
)1/p

,

where

η1(i) = φµ(xi) + φν(xi).
η2(i) = |mA(xi)−mB(xi)|.
η3(i) = max(lA(i), lB(i))−min(lA(i), lB(i)).
lA(i) = 1

2 (1− νA(xi)− µA(xi)).
lB(i) = 1

2 (1− νB(xi)− µB(xi)).

We have already seen three IF-divergences intro-
duced by Hung and Yang, that were nondecreasing
transformations of the Hamming distances. They
also purposed other dissimilarity measures ([13]),
but they were not IF-divergences.

Dω1(A,B) = 1− 1
n

∑n
i=1

m1(xi)+m2(xi)
M1(xi)+M2(xi) .

Dω2(A,B) = 1− 1
n

∑n
i=1(1−

1
2 |µA(xi)− µB(xi)|

+|νA(xi)− νB(xi)|).

Dpk1(A,B) = 1−
∑n

i=1
m1(xi)+m2(xi)∑n

i=1
M1(xi)+M2(xi)

.

Dpk2(A,B) =
∑n

i=1
|µA(xi)−µB(xi)|+νA(xi)−νB(xi)|∑n

i=1
|µA(xi)+µB(xi)|+νA(xi)+νB(xi)|

.

where

m1(xi) = min{µA(xi), µB(xi)}.
m2(xi) = min{νA(xi), νB(xi)}.
M1(xi) = max{µA(xi), µB(xi)}.
M2(xi) = max{νA(xi), νB(xi)}.

In Table 1 we can see a summary of the functions we
have seen in this section. There, we can see which
properties fulfill every function. We have to note
that all this function fulfill axiom 5, and therefore
axioms 3 and 4 are equivalents by Proposition 3.5.

Name Notation Ax.1&2 Ax.3&4 Ãx.5

Normalized
Hammaing lIFS OK OK OK

Hausdorff dH OK OK OK

Normalized
Eucliden qIFS OK OK OK

Chen DC OK FAIL OK

Hong and
Kim (I) DH OK OK OK

Hong and
Kim (II) DL OK OK OK

Li et al. DO OK OK OK

Dengfeng
and Chuntian DDC OK FAIL OK

Mitchell DHB OK FAIL OK

Liang and
Shi (I) D

p
e OK FAIL OK

Liang and
Shi (II) D

p
s OK FAIL OK

Hung and
Yang (I) D1

HY OK OK OK

Hung and
Yang (II) D2

HY OK OK OK

Hung and
Yang (III) D3

HY OK OK OK

Hung and
Yang (IV) Dω1 OK FAIL OK

Hung and
Yang (V) Dω2 OK FAIL OK

Hung and
Yang (VI) Dpk1 OK FAIL OK

Hung and
Yang (VII) Dpk2 OK FAIL OK

Hung and
Yang (VIII) Dpk3 OK FAIL OK

Table 1: Examples of dissimilarities.

5. Concluding remarks

In this work we have presented an axiomatic defini-
tion of divergences for measuring the difference be-
tween intuitionistc fuzzy sets. We have studied the
relationship among IF-divergences, distances and
dissimilarities, and we have concluded that the ax-
iomatic of IF-divergence is more restrictive than the
one of dissimilarities. Finally, we have proved that
some of the most usual dissimilarities used in the
literature are also IF-divergences, and we provided
some methods for building IF-divergences. We have
to recall that this is just a first approach to our ob-
jective of building an axiomatic theory of the di-
vergences for intuitionistic fuzzy sets. In fact, in fu-
ture work we hope to present a generalization of the
notion of “local divergence” for intuitionistic fuzzy
sets. We also want to formulate a more general
theory involving distances, dissimilarities and IF-
divergences, as we can see in the work of Bouchon
et al. ([4]). The application of these studies for
multiattribute decision making models and pattern
recognition problems is our last open problem in re-
lation to this work. These application will be done
in base on some applied papers based on particular
examples of divergence measures. More precisely,
we will complete in a general context the use of these
measures in pattern recognition made by [13, 17, 19]
and the use in decision making made by [23, 24].
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