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Abstract—Programs that process a large volume of data 

generally run in a distributed and parallel architecture, such as 

the programs implemented in the processing model MapReduce. 

In these programs, developers can abstract the infrastructure 

where the program will run and focus on the functional issues. 

However, the infrastructure configuration and its state cause 

different parallel executions of the program and some could 

derive in functional faults which are hard to reveal. In general, 

the infrastructure that executes the program is not considered 

during the testing, because the tests usually contain few input 

data and then the parallelization is not necessary. In this paper a 

testing technique is proposed to generate different infrastructure 

configurations for a given test input data, and then the program 

is executed in these configurations in order to reveal functional 

faults. This testing technique is automatized by using a test 

engine and applied in a case study. As a result, several 

infrastructure configurations are automatically generated and 

executed for a test case revealing a functional fault that is then 

fixed by the developer. 

Keywords— Software testing, MapReduce programs, Big Data 

Engineering, Hadoop 

I. INTRODUCTION 

The new trends in massive data processing have brought to 
light several technologies and processing models in the field 
called Big Data Engineering [1]. Among them, MapReduce [2] 
can be highlighted as it permits the analysis of large data based 
on the “divide and conquer” principle. These programs run two 
phases in a distributed infrastructure: the Mapper phase divides 
the problem into several subproblems, and then the Reducer 
phase solves each subproblem. Usually, MapReduce programs 
run on several computers with heterogeneous resources and 
features. This complex infrastructure is managed by a 
framework,  such as Hadoop [3] which stands out due to its 
wide use in the industry [4]. 

From the developer point of view, a MapReduce program 
can be implemented only with Mapper and Reducer, without 
any consideration about the infrastructure. Then the framework 
that manages the infrastructure is also responsible to 
automatically deploy and run the program over several 
computers and lead the data processing between the input and 
output. Among others, the framework divides the input into 

several subsets of data, then processes each one in parallel and 
re-runs some parts of the program if necessary. 

Despite the fact the program can be implemented 
abstracting the infrastructure, the developer needs to consider 
how the infrastructure configuration could affect the program 
functionality. A previous work [5] detects and classifies several 
faults that depend on how the infrastructure configuration 
affects the program execution and produces different output. 
These faults are often masked during the test execution because 
the tests usually run over an infrastructure configuration 
without considering the different situations that could occur in 
production, as for example different parallelism levels or the 
infrastructure failures [6]. On the other hand, if the tests are 
executed in an environment similar to the production, some 
faults may not be detected because it is common that the test 
inputs contain few data, which means that Hadoop does not 
parallelize the program execution. There are some tools to 
enable the simulation for some of these situations (for example 
computer and net failures) [7, 8, 9], but it is difficult to design, 
generate and execute the tests in a deterministic way because 
there are a lot of elements that need fine grained simulation, 
including the infrastructure and framework.  

The main contribution of this paper is a technique that can 
be used to generate automatically the different infrastructure 
configurations for a MapReduce application. The goal is to 
execute test cases with these configurations in order to reveal 
functional faults. Given a test input data, the configurations are 
obtained based on the different executions that can happen in 
production. Then each one of the configurations is executed in 
the test environment in order to detect functional faults of the 
program that may occur in production. The contributions of 
this work are: 

1. A combinatorial technique to generate the different 
infrastructure configurations, taking into account 
characteristics related to the MapReduce processing and 
the test input data. 

2. Automatic support by means of a test engine based on 
MRUnit [10] that allows the execution of the 
infrastructure configurations, together with the 
evaluation to detect failures. 



The rest of the paper is organized as follows. In Section II the 
principles of the MapReduce paradigm are introduced. The 
generation of the different configurations, the execution and the 
automatization of the tests are defined in Section III. In Section 
IV it is applied to a case study. In Section V the related work 
about software testing in MapReduce paradigm is presented. 
The paper ends with conclusions and future work in Section 
VI. 

II. MAPREDUCE PARADIGM 

The MapReduce program processes high quantities of data 
in a distributed infrastructure. The developer implements two 
functionalities: Mapper task that splits the problem into several 
subproblems and Reducer task that solves these subproblems. 
The final output is obtained from the deployment and the 
execution over a distributed infrastructure of several instances 
of Mapper and Reducer, also called tasks. The deployment and 
execution are automatically carried out by Hadoop or another 
framework. First, several Mapper tasks analyse in parallel a 
subset of input data and determine which subproblems these 
data need. When the execution of all Mappers are finished, 
several Reducers are also executed in parallel in order to solve 
the subproblems. Internally MapReduce handles <key, value> 
pairs, where the key is the subproblem identifier and the value 
contains the information to solve it. 

To illustrate MapReduce let us suppose a program that 
computes the average temperature per year from historical data 
about temperatures. This program solves one subproblem for 
each year, so the identifier or key is the year. The Mapper task 
receives a subset of temperature data and emits <year, 
temperature of this year> pairs. Then Hadoop aggregates all 
values per key. Therefore, the Reducer tasks receive 
subproblems like <year, [all temperatures of this year]>, that is 
all temperatures grouped per year. Finally, the Reducer 
calculates the average temperature. For example, in Fig. 1 an 
execution of the program considering the input is detailed: year 
2000 with 3º, 2002 with 4º, 2000 with 1º, and 2001 with 5º. 
The first two inputs are analysed in one Mapper task and the 
remainder in another task. Then the temperatures are grouped 
per year and sent to the Reducer tasks. The first Reducer 
receives all the temperatures for the years 2000 and 2002, and 
the other task for the year 2001. Finally, each Reducer emits 
the average temperature of the analysed subproblems: 2º in the 
year 2000, 4º in 2002 and 5º in 2001. This program with the 
same input could be executed in another way by the 
framework, for example with three Mappers and three 
Reducers. Regardless of how the framework runs the program, 
it should generate the expected output. 

Additionally, to optimize the program, a Combiner 
functionality can be implemented. This task is run after the 

Mapper and the goal is to remove the irrelevant <key, value> 
pairs to solve the subproblem. In MapReduce there are also 
other implementations such as for example Partitioner that 
decides for each <key, value> pair which Reducer analyses it, 
Sort that sorts the <key, value> pairs, and Group that 
aggregates the values of each key before the Reducer. 

The wrong implementation of these functionalities could 
cause a failure in one of the different ways in which Hadoop 
can run the program. These faults are difficult to detect during 
testing because the test cases usually contain few input data. In 
this way it is not necessary to split the inputs and therefore the 
execution is over one Mapper, one Combiner and one Reducer 
[2]. 

III. GENERATION AND EXECUTION OF TESTS 

The generation of the infrastructure configurations for the 
tests are defined in Section A, and a framework to execute the 
tests in Section B. 

A. Generation of the test scenarios 

To illustrate how the infrastructure configuration affects the 
program output, suppose that the example of Section II is 
extended with a Combiner in order to decrease the data and 
improve the performance. The Combiner receives several 
temperatures and then they are replaced by their average in the 
Combiner output. In this case, the program does not admit a 
Combiner because all the temperatures are needed to obtain the 
total average temperature. The error of adding the Combiner in 
order to optimize the program injects a functional fault in the 
program. Fig. 2 represents three possible executions of this 
program that could occur in production considering the 
different infrastructure configurations and the same input (year 
1999 with temperatures 4º, 2º and 3º). 

The first configuration consists of one Mapper, one 
Combiner and one Reducer that produces the expected output. 
The second configuration also generates the expected output 
executing one Mapper that processes the temperatures 4º and 
2º, another Mapper for 3º, two Combiner, and finally one 
Reducer. The third configuration also executes two Mapper, 
two Combiner and one Reducer, but produces an unexpected 
output because the first Mapper processes 4º and the second 
Mapper the temperatures 2º and 3º. Then one of the Combiner 
tasks calculates the average of 4º, and the other Combiner of 2º 
and 3º. The Reducer receives the previous averages (4º and 

 

Fig. 1. Program that calculates the average temperature per year 
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Fig. 2. Different infrastructure configurations for a program that 
calculates the average temperature per year with Combiner task  
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2.5º), and calculates the total average in the year. This 
configuration produces 3.25º as output instead of the 3º of the 
expected output. The program has a functional fault only 
detected in the third configuration. The failure is produced 
whenever this infrastructure configuration is executed, 
regardless of the computer failures, slow net or others. This 
fault is difficult to reveal because the test case needs to be 
executed in the infrastructure configuration that detect it, and in 
a completely controlled way. 

Given a test input data, the goal is to generate the different 
infrastructure configurations, also called in this context 
scenarios. For this purpose, the technique proposed considers 
how the MapReduce program can execute these input data in 
production. First, the program runs the Mappers, then over 
their outputs the Combiners and finally the Reducers. The 
execution can be carried out over a different number of 
computers and therefore the Mapper-Combiner-Reducer can 
analyse a different subset of data in each execution. In order to 
generate each one of the scenarios, a combinatorial technique 
[11] is proposed to combine the values of the different 
parameters that can modify the execution of the MapReduce 
program. In this work the following parameters are considered 
based on previous work [5] that classifies different types of 
faults of the MapReduce applications: 

 Mapper parameters: (1) Number of Mapper tasks, (2) 
Inputs processed per each Mapper, and (3) Data 
processing order of the inputs, that is, which data are 
processed before other data in the Mapper and which 
data are processed after. 

 Combiner parameters for each Mapper output: (1) 
Number of Combiner tasks, and (2) Inputs processed 
per each Combiner. 

 Reducer parameters: (1) Number of Reducer tasks, and 
(2) Inputs processed per each Reducer. 

The different scenarios are obtained through the combination 
of all values that can take the above parameters and applying 
the constraints imposed by the sequential execution of 
MapReduce. The constraints considered in this paper are the 
following: 

1. The values/combinations of the Mapper parameters 
depend on the input data because it is not possible more 
tasks than data. For example, if there are three data 
items in the input, the maximum number of Mappers is 
three. 

2. The values/combinations of the Combiner parameters 
depend on the output of the Mapper tasks. 

3. The values/combinations of the Reducer parameters 
depend on the output of the Mapper-Combiner tasks 
and another functionality executed by Hadoop before 
Reducer tasks. This other functionality is called Shuffle 
and for each <key, value> pair determines the Reducer 
task that requires these data, then sorts all the data and 
aggregates by key. 

To illustrate how the parameters are combined and how the 
constraints are applied, suppose the program of Fig. 2. The 
input of this program contains three data items, and these data 
constrain the values that the Mapper parameters can take 
because the maximum number of Mapper tasks is three (one 
Mapper per each <key, value> pair). The first scenario is 
generated with one Mapper, one Combiner and one Reducer. 
For the second scenario the parameter “Number of Mapper 
tasks” is modified to 2, where the first Mapper analyses two 
<key, value> pairs, and the second processes one pair. The 
third scenario maintains the parameter “Number of Mapper 
tasks” at 2, but modifies the parameter “Inputs processed per 
each Mapper”, so the first Mapper analyses one <key, value> 
pair and the other Mapper processes two pairs. The scenarios 
are generated by the modification of the values in the 
parameters in this way and considering the constraints. 

B. Execution of the test scenarios 

The previous section proposes a technique to generate 
scenarios that represent different infrastructure configurations 
according to the characteristics of the MapReduce processing. 
Fig. 3 describes a framework to execute systematically the tests 
with the scenarios generated by the technique of the previous 
section. 

The framework takes as input a test case that contains the 
input data and optionally the expected output. The test input 
data can be obtained with a generic testing technique or one 

 

Input: Test case with: 

   input data 

   expected output (optional) 

Output: scenario that reveals a fault 

(0)  /* Generation of scenarios (section A)*/ 

(1)  Scenarios ← Generate scenarios from input data 

(2)  /* Execution of scenarios */ 

(3)  ideal scenario output ← Execution of ideal  

                                            scenario 

(4)  ∀ scenario ∈ Scenarios: 
(5)    scenario output ← Execution of scenario 

(6)    IF scenario output <> ideal scenario output: 
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(8)  IF ideal scenario output <> expected output: 
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(10) ELSE: 

  (11)   RETURN Zero faults detected 

Fig. 3. a) General famework of test execution                                                         b) Algorithm for test generation and execution of test scenarios 
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specifically designed for MapReduce, such as MRFlow [12]. 
Then, the ideal scenario is generated (1) and executed (2, 3). 
This is the scenario formed by one Mapper, one Combiner and 
one Reducer which is the usual configuration executed in 
testing. Next, new scenarios are iteratively generated (4) and 
executed (5) through the technique of the previous section. The 
output of each scenario is checked against the output of the 
ideal scenario (6), revealing a fault if the outputs are not 
equivalent (7). Finally, if the test case contains the expected 
output, the output of ideal scenario is also checked against the 
expected output (8), detecting a fault when both are not 
equivalent (9, 10). 

Given a test case, the scenarios are generated according to 
the previous section, then they are iteratively executed and 
evaluated following the pseudocode of Fig. 3. For example, 
Fig. 2 contains the generation and execution of a program that 
calculates the average temperature per year in three scenarios 
considering the same test input: year 1999 with temperatures 
4º, 2º and 3º. The first execution is the ideal scenario with one 
Mapper, one Combiner and one Reducer, that produces 3º as 
output. Then the second scenario is executed and also produces 
3º. Finally, a third scenario is executed and produces 3.25º as 
output, this temperature is not equivalent to the 3º of the ideal 
scenario output. Consequently, a functional fault is revealed 
without any knowledge of the expected output of the test case. 

This approach is automatized by means of a test engine 
based on MRUnit library [10]. This library is used to execute 
each scenario. In MRUnit the test cases are executed in the 
ideal scenario, but this library is extended to generate other 
scenarios and enable parallelism supporting the execution of 
several Mapper, Combiner and Reducer tasks. 

IV. CASE STUDY 

In order to evaluate the proposed approach, we use as case 
study the MapReduce program described in I8K|DQ-BigData 
framework [13]. This program measures the quality of the data 
exchanged between organizations according to part 140 of the 
ISO/TS 8000 [14]. The program receives (1) the data 
exchanged in a row-column fashion, together with (2) a set of 
mandatory columns that should contain data and (3) a 
percentage threshold that divides the data quality of each row 
in two parts: the first part is maximum if all mandatory 
columns contain data and zero otherwise, and the second part 
of the data quality is calculated as the percentage of the non-
mandatory columns that contain data. The output of the 

program is the data quality of each row, and the average of all 
rows. 

Over the previous program, a test case is obtained using a 
specific MapReduce testing technique based on data flow [5]. 
The test input data and the expected output of the test case 
contain two rows represented in Table I. Row 1 contains two 
columns (Name and City), and only one column has data, so 
the data quality is 50%. Row 2 contains data in all columns, so 
the data quality is 100%. The total quality is 75%, which is the 
average of both rows. 

The procedure described in Section III is applied on the 
previous program using the previous test case as input. As a 
result, a fault is detected and reported to the developer. This 
failure occurs when the rows are processed in different 
Mappers and only the first Mapper receives the information 
related to the mandatory columns and the data quality 
threshold, because Hadoop splits the input data into several 
subsets. Without this information, the Mapper cannot calculate 
the data quality and does not emit any output. The bottom of 
Fig. 4 represents the scenario that produces the failure. There 
are two Mappers that process different rows. The first Mapper 
receives the data quality threshold (value of 50%), the 
mandatory column (“Name”) and the two columns of row 1 
with only data in one column, so the Mapper emits 50% as data 
quality of row 1. The second Mapper processes only row 2, but 
no other information about the mandatory columns or data 
quality threshold, so this Mapper cannot emit any output. Then 
the Reducer receives only the data quality of row 1 and emits 
an incorrect output of the average data quality. 

This fault is difficult to detect because it implies the parallel 
and controlled execution of the program. Moreover, this fault is 
not revealed by the execution of the test case in the following 
environments: (a) Hadoop cluster in production with 4 
computers, Hadoop in local mode (simple version of Hadoop 
with one computer), and (c) MRUnit unit testing library. These 
environments do not detect the fault because they only execute 
one scenario that masks the fault. Normally these 
environments run the program in the ideal scenario that is 
formed by one Mapper, one Combiner and one Reducer, and 
then the fault is masked due to a lack of parallelism. 

The test engine proposed in this paper executes the test case 
in the different scenarios that can occur in production with 
large data and infrastructure failures. In contrast with the other 

 

Fig. 4. Execution of the test case in different scenarios 
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TABLE I.  TEST CASE OF THE I8K|DQ-BIGDATA PROGRAM 

Input 

Excepted output Data quality threshold: 50% 

Mandatory columns: “Name” 

Row 1 
Name: Alice 

50% 

75% (average) 
City: (no data) 

Row 2 
Name: Bob 

100% 
City: Vienna 

 



environments, the test engine proposed does not need the 
expected output to detect faults. For example, in this case study 
the fault is revealed automatically because the outputs of the 
different scenarios are not equivalent to each other. The 
execution of some scenarios obtains an average quality of 
75%, whereas the execution of other scenarios obtains 50%. 
These outputs are not equivalent, and the test engine detects 
automatically a fault despite the unknown expected output. 

After the detection and report of the fault during the test 
phase, the developer fixed the program and then the test case 
passed. 

V. RELATED WORK 

Despite the testing challenges of the Big Data applications 
[15, 16] and the progresses in the testing techniques [17], little 
effort is focused on testing the MapReduce programs [18], one 
of the principal paradigms of Big Data [19]. A study of 
Kavulya et al. [20] analyses several MapReduce programs and 
3% of them do not finish, while another study by Ren et al. 
[21] places  the number between 1.38% and 33.11%. 

Many of the works about testing of the MapReduce 
programs focus on performance and to a lesser degree 
functionality. A testing approach for Big Data is proposed by 
Gudipati et al. [22] specifying several processes, one of which 
is about MapReduce validation. In this process Camargo et al. 
[23] and Morán et al. [5] identify and classify several 
functional faults. Some of these faults are specific of the 
MapReduce paradigm and they are not easy to detect because 
they depend on the program execution over the infrastructure. 
One common type of fault is produced when the data should 
reach the Reducer in a specific order, but the parallel execution 
causes these data to arrive disordered. This fault was analysed 
by Csallner et al. [24] and Chen et al. [25] using some testing 
techniques based on symbolic execution and model checking. 
In contrast to the previous works, the approach of this paper is 
not focused on the detection of only one type of fault, it can 
also detect other MapReduce specific faults. To do this, the test 
input data is executed over different infrastructure 
configurations that could lead to failures. 

Several research lines suggest injecting infrastructure 
failures [26, 27] during the testing, and several tools support 
their injection [7, 8, 9]. For example, the work by Marynowski 
et al. [28] allows the creation of test cases specifying which 
computers fail and when. One possible problem is that some 
specific MapReduce faults could not be detected by 
infrastructure failures, but require full control of Hadoop and 
the infrastructure. In this paper, the different ways in which 
Hadoop could run the program are automatically generated 
from the functional point of view, regardless of the 
infrastructure failures and Hadoop optimizations. 

Furthermore, there are other approaches oriented to obtain 
the test input data of MapReduce programs, such as [12] that 
employs data flow testing and [29] based on a bacteriological 
algorithm. In this paper, given a test input data, several 
configurations are generated and then executed in order to 
reveal functional faults. The test input data could be obtained 
with the previous testing techniques. 

The functional tests can be executed directly in the 
production cluster or in one computer with Hadoop. Herriot 
[30] can be used to execute the tests in a cluster while 
providing access to their components supporting, among 
others, the injection of faults. Another option is to simulate a 
cluster in memory with the MiniClusters libraries [31]. In the 
unit testing, JUnit [32] could be used together with mock tools, 
or directly by MRUnit library [10] adapted to the MapReduce 
paradigm. These test engines only execute one infrastructure 
configuration and usually without parallelization. In this paper 
a test engine is implemented by an MRUnit extension that 
automatically generates and executes the different 
infrastructure configurations that could occur in production. 

VI. CONCLUSIONS 

A testing technique for the MapReduce programs is 
introduced and automatized in this paper as a test engine that 
reproduces the different infrastructure configurations for a 
given test case. Automatically and without an expected output, 
the test engine can detect functional faults specific to the 
MapReduce paradigm that are in general difficult to detect in 
the test/production environments. This approach is applied in a 
real program using a test case with few data. As a result, a 
functional fault is revealed allowing the developer to fix the 
program. 

In order to improve the generation of the infrastructure 
configurations, as part of the future we plan to extend the 
technique to select efficiently the configurations that are more 
likely to detect faults. The current approach is off-line because 
the tests are not carried out when the program is in production. 
As future work we plan to extend the approach to on-line 
testing, in order to monitor the functionality with the real data 
when the program is executed in production and detect the 
faults automatically. 
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