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Abstract 

Soil organic matter is seriously affected by fires and suffers changes in stock, 

composition, and distribution. In the North-West side of the Cantabrian Range (northern 

Spain) fires are very common. In order to develop a cartographic technique to map areas 

with high carbon stocks caused by fire, we test a technique based on calibrated VIS-NIR 

soil organic carbon models and hyperspectral images. Total (TOC) and oxidizable 

carbon (OC) were measured in 89 soil samples. The samples were scanned with 

VIS-NIR spectrometer (400-2500 nm) and the spectra were resampled to the 

hyperspectral image channels. Spectroscopic models for TOC and OC were fitted (R2 > 

0·81) using partial least squares regression (PLSR). The predictions were regionalized 

to the hyperspectral image and the results validated with a new soil population 

consisting of twelve Valeri plots collected in burned slopes of the study area under 

heather vegetation. In soil samples, TOC and OC values are highly correlated (R = 0·92) 

and the coefficients of the PLSR models have a similar pattern, which suggests similar 

organic components. Nevertheless, there are significant differences in the values of the 

regression coefficients, much higher in the TOC model except at 560 and 2054 nm that 

might be interpreted as labile carbon components, and at 1590 nm. At this wavelength 

the coefficient of TOC is positive and OC is negative, and it could be interpreted as 

hydrocarbons components present in the TOC model. 
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INTRODUCTION 

Soil organic carbon (SOC) is an essential component of organic matter (SOM) that 

plays a key role in soil chemical and physical properties, affecting bulk density, nutrient 

availability, structural stability, hydraulic conductivity, and soil biodiversity. SOC is the 

largest terrestrial carbon pool with an estimated content of 1600 Pg for the first meter of 

soil depth (Novara et al., 2011). Soil organic carbon pools are essential to climate 

control through the regulation of C and N fluxes and support primary production of the 

ecosystems (Brevik et al., 2015). In an undisturbed ecosystem such as natural forest, 

soil carbon is stable over time (steady-state) and soil carbon mineralization is balanced 

by organic matter production (Novara et al., 2011), and most of the carbon is stored as 

partially decomposed organic matter (Schulze et al., 2000). The remaining non-

mineralized carbon undergoes slow oxidation processes and is stabilized as humic 

substances. Changes suffered by organic matter are the result of microbial activity 

(Guénon et al., 2013; Wang et al., 2015), but also can be originated by abiotic 

transformations induced by external factors, among which fire is a major one (Hatcher 

& Spiker, 1988). Some authors have reported an increase of the SOM content in areas 

affected by fire (Czimczik & Masiello, 2007; Fernández-Menéndez et al., 2011; 

Johnson & Curtis, 2001; Knicker, 2007; Santín et al., 2015; Santin et al., 2008). It is 

widely accepted that fire causes alterations in physical, chemical and biological soil 

properties (Mataix-Solera & Guerrero, 2007; Neary et al., 1999; Úbeda & Outeiro, 

2009). In soil organic matter fires lead not only to the formation of new thermally-

condensed products, but also to the transformation of labile compounds into recalcitrant 

organic forms (Gonzalez-Perez et al., 2004), all of them contributing to long-term C and 

N sequestration in soils (Kuhlbusch & Crutzen, 1995; Schmidt & Noack, 2000). In this 

way, Hajdas et al. (2007) found biochar from Pinus sp. in the B-C soil horizons 

boundary of an Australian soil dated 11·180±75 and 11·270–10·980 BP. Therefore, 

burned soils could represent a carbon sink of great importance and with potential impact 

on the global carbon cycle (Kuhlbusch, 1998). 

Annually 0·6 M ha of forest ecosystems are affected by fires in Europe (FAO, 2001). 

In the western part of the Cantabrian Mountain Range, northern Spain, the use of fire 

for millennia has modified the vegetation cover (Díaz González & Fernández Prieto, 

1994) and promoted intense soil transformations. Former research in the area concluded 

that fires influence the rates of SOC sequestration, carbon stocks of 32 Mg/ha and 

90 Mg/ha were measured in unburned and burned soils, respectively (Fernández-

Menéndez et al., 2011). 

Fires alter SOC (Czimczik & Masiello, 2007; Gonzalez-Perez et al., 2004; Knicker, 

2007; Santin et al., 2008) but the resulting SOM quantity and distribution in the 

landscape depend not only on losses by combustion and inputs of charred materials 

(Knicker et al., 2005) but also on post-fire erosion and sedimentation processes and 

landscape redistribution (Rumpel et al., 2006). In these processes the presence of ash 

layer plays an important role because it provides substantial SOM protection after fire 

episode. In this way, Cerdà & Doerr (2008) obtained that a 34 mm ash cover alone can 

reduce surface runoff from small plots by more than one, and sediment yield by more 

than two orders magnitude for a 1-hour, 55 mm h-1 rainstorm. Nevertheless in steep 

slopes the ash spatial variability increased with time as a result of water erosion (Pereira 

et al., 2013). Knowledge of soil carbon distribution in landscape using conventional 

analytical methodologies is further complicated by its high spatial variability (Ellert et 



 

al., 2001). Development of methods for soil carbon analysis that address and minimize 

the uncertainties associated with conventional methodologies are important for 

improving estimates of terrestrial carbon inventories and fluxes (Burres et al., 2001). In 

this way, remote sensing offers the possibility of spatial and temporal estimates of land 

cover and land management which impact soil carbon dynamics (Gehl & Rice, 2007). 

Nevertheless, research reporting the direct quantification of SOC or SOM content in the 

upper layer of soils using remote sensing has been limited to agricultural or bare soil 

areas (Ben-Dor et al., 2002; Gomez et al., 2012; Patzold et al., 2008; Selige et al., 2006; 

Uno et al., 2005). Relationships between visible reflectance, soil colour and organic 

carbon are the most common direct way to predict the organic carbon content in soils 

using satellite images from optic sensors (Chen et al., 2000; Steinhardt & Franzmeier, 

1979). But when soils are partially covered by vegetation, as it is the case of burned 

slopes covered by heather, the spectral signature in each pixel of image corresponds to 

mixed signal from soil and vegetation.  

We understand that separating the vegetation and soil contributions to the signal 

detected by the sensor is a key question for building valid soil carbon models using 

satellite imagery with optical sensors. However, in optical images, a complete removal 

of the vegetation signal is not possible. Nevertheless, the use of soil lab optical spectra 

(400-2500 nm) together with hyperspectral images can help to minimize the vegetation 

signal. This is possible because, unlike multispectral imagery, hyperspectral remote 

sensing provides a quasi-continuous spectrum for each pixel, which enables the spectral 

identification of minerals, rocks, or soils with similar laboratory reflectance spectral 

properties at the remote sensing scale (Chabrillat et al., 2002). 

On one hand, reflectance spectroscopy laboratory analysis provides a rapid and 

non-destructive method for soil carbon measurement based on diffusely reflected 

radiation of an illuminated soil sample (Gehl & Rice, 2007; Guénon et al., 2013). 

Diffuse reflectance spectroscopy in the visible and near infrared region (VIS-NIR, 400-

2500 nm) has been widely applied to quantify soil carbon successfully, often with 

reported R2 values greater than 0·80 (Ben-Dor & Banin, 1995; Chang & Laird, 2002; 

Chang et al., 2001; Janik et al., 1998; McCarty et al., 2002; Morra et al., 1991). 

Calibration methods are used to relate lab-spectra to soil analyses, including multiple 

linear regression (MLR), principal component regression (PCR), and partial least 

squares regression (PLSR) (Viscarra Rossel & Behrens, 2010; Viscarra Rossel et al., 

2006). Of special interest are recent works in which SOM was partitioned into fractions 

with different time of residence in soils. In this way, Vasques et al. (2009) obtained 

labile and recalcitrant soil organic carbon forms and used PLSR techniques to construct 

accurate models to predict these fractions. On the other hand, the application of satellite 

hyperspectral imagery to measure soil properties has rarely been reported (Croft et al., 

2012; Gomez et al., 2008; Lu et al., 2013), and only data from the Hyperion sensor 

(400-2500 nm) on board the Earth Observing-1 (EO-1) satellite have been used. Several 

studies used data from airborne hyperspectral sensor HyMap (400-2500 nm) to generate 

PLSR models for SOC: Hbirkou et al. (2012), Patzold et al. (2008), and Selige et al. 

(2006) in agricultural fields in Germany (R2 of 0·83, 0·74, and 0·90 respectively). Data 

from the airborne sensor AHS (430-2540 nm) were also used to calibrate SOC models 

(Stevens et al., 2010; Stevens et al., 2008). These models had limited predictive ability, 

but the results showed the potential of imaging spectroscopy as an alternative to 

conventional analytical techniques. A review of several studies dealing with the 



 

estimation of SOC from airborne and space-borne sensors and with challenges in 

achieving accurate predictions is given by Croft et al. (2012). 

The objectives of this research were: i) test the use of hyperspectral images and 

VIS-NIR lab-spectra of soils to map oxidizable and total organic carbon in hard to reach 

areas partially covered by vegetation and affected by fires, and ii) by comparing OC and 

TOC PLSR models approaching the molecular composition of both soil organic matter 

components in terms of residence times. 

MATERIALS AND METHODS  

Location and geological setting 

The study area is located in the Cantabrian Mountains (NW of Spain), in the western 

part of the mountain range which runs parallel to the northern coast of Spain (Figure 1). 

The climate is oceanic, with mean annual rainfall of 1500 mm, and moderate 

temperatures, with mean annual values ranging between 6·5 and 10·7°C. The orography 

corresponds to low-middle mountain areas, with altitudes between 200 and 1200 m and 

average slopes between 10º and 30º. In this part of the Cantabrian Range an area of 

approximately 60 km2 running SE-NW (Figure 1) was selected to conduct a flight 

campaign to obtain hyperspectral images. The geological and geomorphological 

characteristics of this area, together with the large history of forest fires, make it highly 

suitable for this study. The bedrock is mainly formed by sandstone, quartzite, and slates, 

giving rise to a high degree of lithological homogeneity. A large part of this substratum 

is covered by a coarse regolith exhibiting a grain-supported fabric with continuous soil 

cover. The soils developed over these bedrocks are Histosols and Regosols (WRB, 2014) 

with poorly evolved profile, sandy and stony, as well as very rich in organic matter 

(Fernandez et al., 2005) (Figure 2). 

Forest fires and soils 

Historically, livestock farming has given rise to the repeated burning of extensive areas, 

which has caused severe degradation of soil and natural vegetation. At present, the 

majority of the slopes are deforested, alternating gorse-briar scrubland with stony areas 

where the soil has completely disappeared. The dominant vegetation is oceanic heaths 

formations (Erica australis subsp. aragonensis (Willk.) Cout. and Calluna vulgaris (L) 

Hull), a result of the degradation suffered by the natural vegetation caused by forest 

fires (Díaz González & Fernández Prieto, 1994). As for the natural forest formations, at 

present, these have been reduced to different types of oak groves (Quercus petraea 

subsp. Petraea (Matt.) Liebl., Quercus robur L., and Quercus pyrenaica Willd.) (Figure 

2). 

During the first half of the 20th century forest fires occurred with extreme frequency 

in the north of the Iberian Peninsula, and in recent years fires are still very frequent in 

the area. Recent studies of the area and neighbouring locations show alterations of 

properties of the burnt soils, like significant loss in clay contents and textural and 

structural degradation which affect the hydrologic behaviour of burned soils, increased 

infiltration rates (0·0107 to 0·1070 cm/s, Fernandez et al., 2005), and enhanced soil 

erosion, with average values of soil losses, measured with 137Cs on burned slopes 

around 6·5 t ha-1 year-1 (Duarte et al., 2008). Fires also affected soil organic matter. 

Santin et al. (2008) measured TOC concentration in the surface layer (0-5 cm depth) 

ranging from 390·2 mg g−1 for soil in the burned slopes covered by heaths to 157·1 mg 



 

g−1 for soil in the non-burned forest. In the subsurface layer (5-10 cm depth), TOC 

accumulation is significantly lower, with values ranging from 289·5 mg g−1 for soil in 

the burned slopes to 70·7 mg g−1 in non-burned soils. 

Field soil sampling 

Soil sampling was carried out in the summer of 2013. Two types of samples were 

collected and its geographical position was recorded by a Global Positioning System 

(GPS) device. 89 surface soil samples from the upper 5 cm were collected randomly 

from three areas located in the south, north, and in the middle of the study area trying to 

cut the spatial gradient associated to the abundance of heaths, which are clearly higher 

in the north of the study area (Figure 2). All the samples were taken in the heathery 

slopes because this vegetation cover comes from the fire management of the territory 

(Díaz González & Fernández Prieto, 1994). In addition, for validation and in order to 

ameliorate the image pixel size effect, 12 Valeri plots (Rossello & Baret, 2007) with 

15×15 meters were used to estimate the full spectral variability on soils. Twelve 

samples were collected by mixing 5 samples gathered at the corners and the centre of 

each plot. 

Soil carbon analysis 

The soil samples were dried at 70°C, sieved at 2 mm, homogenized and divided into 

two parts: the first for chemical analysis and the second for spectral analysis in the 

laboratory. The total C (TOC) concentrations were determined, in duplicate, by means 

of dry combustion at 950°C (Elemental Vario EL CN-Analyzer). Oxidizable Carbon 

(OC) was analysed with dichromate oxidation method (Walkley & Black, 1934). 

Laboratory spectroscopy 

The diffuse reflectance spectra of the sieved soil samples were obtained using the 

VIS-NIR spectrometer LabSpec® 2600 (Analytical Spectral Devices Inc., USA). 

Samples were scanned using a Hi-Brite Contact Probe with built-in light source and a 

spot size of 10 mm. A Spectralon® panel was used as white reference. Ten 

measurements per sample were collected and then averaged in order to obtain a 

representative spectrum of each soil sample. 

Imaging spectroscopy 

A flight campaign was conducted over the study area by the National Institute for 

Aerospace Technology (INTA). Airborne hyperspectral data were collected at 

11:05 UTC on 10th October 2011 at an altitude of 2987 m above the sea level (9800 ft), 

using the AHS sensor. This sensor has 80 channels: 63 in the reflective part of the 

spectrum (visible and near infrared, VIS-NIR), 7 in the 3177-5251 nm region (mid 

infrared, MIR) and 10 in the 8310-12952 nm range (thermal infrared, TIR). Reflective 

channels were the only ones used in this study: 20 channels between 443 and 1001 nm 

with Full Width at Half Maximum (FWHM) ranging from 27 to 29 nm, 1 channel 

centred at 1590 nm with FWHM of 85 nm, and 42 between 1924 and 2553 nm with 

FWHM of 14-18 nm. It is worth mentioning that in remote sensing the 1300-2500 nm 

region is usually referred as short wave infrared (SWIR), while in spectroscopy it is 

considered as NIR. This last notation was used in this article. At sensor radiance data 

were corrected by INTA using Atmospheric & Topographic Correction (ATCOR-4) to 



 

obtain Hemispherical Directional Reflectance Factor (HDRF). Then data were 

georeferenced to the coordinate system Universal Transverse Mercator (UTM), datum 

World Geodetic System 1984 (WGS-84), zone 30 north; with a spatial resolution of 

5 m. Channels of the 1924-2553 nm region that were affected by noise, those with 

Signal-to-Noise Ratio (SNR) lower than 10, were removed, 24 in total. One channel of 

the VIS-NIR region was also removed due to an incorrect atmospheric correction. A 

total of 38 reflective channels were considered for further analysis. 

Spectra preprocessing and modelling of soil properties 

Lab-spectra of the 89 soil samples were shortened from 350-2500 nm to 400-2450 nm 

in order to remove noise at the beginning and end of each spectrum. Then they were 

spectrally resampled to match the response of the AHS sensor. After the resampling 

process, the 2051 channels of the lab-spectra were resampled to 38 new channels with 

the spectral resolution of the AHS sensor. Several preprocessing techniques were tested 

in the spectra before modelling and the best ones were identified by maximizing the 

ratio of performance to deviation (RPD). Reflectance spectra were converted to 

log(1/reflectance), since the prediction ability of the models improved with this 

transformation. 

The technique used for modelling TOC and OC was the PLSR method (Wold et al., 

2001), a common multivariate statistical technique used in chemometrics, as well as in 

the quantitative spectral analysis of soils. It allows to construct predictive models when 

there are many predictor variables that are highly collinear. By fitting a PLSR model, 

one hopes to find a few PLSR factors that explain most of the variation in both 

predictors and responses (Haaland & Thomas, 1988; Viscarra Rossel et al., 2006). Two 

types of PLSR models were calibrated for each soil property using VIS-NIR data, one 

with the lab-spectra between 400-2450 nm (2051 channels) and another with the 

resampled spectra to the AHS sensor (38 channels) (Figure 3). The number of factors to 

include in each model was selected by leave-one-out cross-validation. The optimal 

number of factors was chosen by minimizing the Akaike Information Criterion (AIC), 

in order to avoid under- and over-fitting (Akaike, 1969). The lower the AIC is, the 

better the model is. The regression coefficients of the PLSR models (b) were plotted to 

identify the most important spectral regions for the prediction of each soil property. 

In order to obtain spatially continuous maps of both soil properties, the PLSR 

models calibrated with the lab-spectra resampled to the AHS were applied pixel by 

pixel to the AHS image, after the geometric and atmospheric correction. Digital maps of 

both soil properties were obtained with a spatial resolution of 5 m (Figure 3). 

Validation and scaling methods 

The quality of the PLSR models was evaluated by means of several parameters obtained 

in the leave-one-out cross-validation: the coefficient of determination (R2
cv), the root 

mean square error (RMSEcv), and the ratio of performance to deviation (RPD). RPD is 

the ratio of the standard deviation of the reference data to the RMSE of cross-validation. 

Chang et al. (2001) defined three categories of models based on the value of RPD: 

models in category I (RPD>2) are considered to accurately predict the soil property, 

models in category II (2>RPD>1.4) belong to an intermediate class and have a limited 

predictive power, and models in category III (RPD<1.4) have no prediction ability. 

On the other hand, the predictive power of the TOC and CO maps was evaluated 

using the independent validation dataset consisting of 12 Valeri plots. A mean filter 



 

with kernel size 3×3 was applied to the maps of soil properties in order to obtain a 

representative value of the 15×15 m Valeri plot, and then compared to the values of 

reference. The parameters used to evaluate the difference between the reference and the 

predicted values by the maps were the R2, residual standard error (RSE), root mean 

square error of prediction (RMSEP), and Bias for the mean of the residuals. The results 

of the validation were satisfactory in terms of R2 and RSE, but not in terms of RMSEP 

and Bias. The overestimation of each map was corrected by means of a linear fit, 

adjusted using the estimated and reference values of two randomly chosen plots. 

Finally, the remaining 10 plots were used for an independent validation of the scaled 

maps. 

RESULTS AND DISCUSSION 

Soil samples descriptive analysis 

The results of the chemical analysis obtained in the lab for the 89 soil samples 

(individual samples) and for the 12 Valeri plots are summarized in Table I. A strong 

positive correlation was observed between both soil properties, TOC and OC, with a 

Pearson correlation coefficient (R) of 0·92 in the individual soil samples and 0·97 in the 

plot samples. The range of both TOC and OC are high but in accordance with the results 

obtained by Fernandez et al. (2005) and Santin et al. (2008) in the same area. The 

maximum values of 63·2% (TOC) or 37·9% (OC) could have a geomorphological origin 

related to the accumulation of extensive mantles of organic soil in remaining paleo 

surfaces, located mainly in the north of the study area. On the other hand, the lowest 

values of TOC and OC (4·3% and 2·7%, respectively) are related to the erosive 

degradation suffered by burned slopes in which the soil parent material corresponds 

mainly to coarse regolithic with grain-supported fabric. Frequent fires in these slopes 

caused very intense soil degradation and as a result these soils have extremely thin 

organic horizons (Duarte et al., 2008; Fernandez et al., 2005). 

PLSR models of soil organic carbon 

Several preprocessing techniques were tested in the spectra before the PLSR modelling. 

The best preprocessing for both soil properties was the transformation from reflectance 

(R) to log(1/R), and was applied to all the spectra. These results are in accordance with 

Vasques et al. (2009) and Viscarra Rossel et al. (2006), who also obtained the best 

models for TOC prediction using this transformation. PLSR settings and model 

performance statistics are summarized in Table II, and the PLSR regression coefficients 

obtained using the resampled spectra are plotted in Figure 4. Accurate PLSR models 

were obtained for both soil properties and spectral resolution (entire lab-spectra or 

lab-spectra resampled to AHS), with R²cv values between 0·78 and 0·89, and RPD 

ranging from 2·13 to 2·97. According to the model classification based on RPD by 

Chang et al. (2001), models provide accurate predictions. The best predictions were 

obtained for OC, with RMSEcv of 3·5% and an RPD of ∼3; and slightly worse for TOC, 

with RMSEcv of ∼6·5% and an RPD of ∼2·2. The prediction ability of the models was 

similar to that obtained in other works in which soil organic carbon was also modelled 

using lab-spectra and PLSR: Chang & Laird (2002) (R2 = 0·89), Martin et al. (2002) 

(R2 = 0·75, RPD = 1·97), and McCarty et al. (2002) (R2 = 0·82). 

Despite the high contrast in the number of channels of both spectral resolutions in 

Table II, no significant differences were observed between models using the entire 



 

lab-spectra (2051 channels) or the lab-spectra resampled to the AHS sensor (38 

channels). Slightly better results were even obtained using the resampled spectra. These 

results show the high potential of hyperspectral remote sensing for organic carbon 

mapping, and are in accordance with the results obtained by Gomez et al. (2008), who 

found that the spectral resolution did not significantly change the accuracy of the PLSR 

models when the lab-spectra were resampled to the hyperspectral sensor Hyperion, 

regardless of the organic carbon ranges and the number of samples. Lu et al. (2013) 

evaluated the performance of PLSR models for SOC prediction and other soil properties 

using three spectral settings: lab, Hyperion image, and lab resampled to Hyperion. Their 

model for SOC based on resampled spectra was slightly less accurate than that based on 

the entire lab-spectra, but still provided a moderately satisfactory result (R2 = 0·74, RPD 

= 1·98). 

In general, between 1000 and 2500 nm there are several absorption peaks in both 

models corresponding to overtones and combinations of fundamental vibrations of C-O, 

O-H, C=O, C-H, and N-H bonds that are present in organic compounds such as 

proteins, starch, cellulose, humic acids, and lignin (Ben-Dor et al., 1997; Huang et al., 

2008). These absorptions are however difficult to attribute to a single component since 

they are greatly overlapping in the VIS-NIR. The coefficients of the PLSR models 

obtained with the resampled spectra are plotted in Figure 4 as a function of wavelength, 

and in Table III the positive PLSR values and the corresponding wavelengths are given. 

In general, peaks in TOC model are higher than in OC model probably as a consequence 

of a greater amount of organic components in TOC model. This can be related to the 

chemical extraction methods (oxidization and dry combustion) more effective in TOC 

extraction (Tessier et al., 1979). Nevertheless, at 560 nm and 2054 nm there are 

absorption peaks that show higher value in OC than in TOC model. These peaks 

correspond to the most labile carbon fractions in Vasques et al. (2009) interpretation 

and to extractive lignine and carbohydrates in Huang et al. (2008) interpretation. These 

results seem to highlight the more labile nature of the OC model components. The rest 

of coefficients are higher in TOC than in OC model showing a greater amount of stable 

soil carbon components. A negative regression coefficient was obtained at 1590 nm in 

the OC model. This wavelength is significant in this work because it corresponds to a 

wideband (85 nm) bringing together the NIR bands information and moreover it was the 

only NIR band in the range between 1000 and 2000 nm that has been used in the 

models. The rest of the bands in this interval of the hyperspectral image had to be 

removed due to noise problems. According to the literature, this band could be 

associated with crystalline cellulose and lignine (Huang et al., 2008; Viscarra Rossel, 

2007) and also could be related to hydrocarbons components (∼1647, ∼1712 nm) 

present only in TOC model and associated to fire organic carbon transformations 

(Okparanma & Mouazen, 2013) but it is not easy to interpret in our results. At 2181, 

2196, 2212, and 2227 nm in both models there is an intense negative peak (Figure 4) 

which could be related to biochar components or intensely mineralized organic 

components (Bellon-Maurel & McBratney, 2011; Vasques et al., 2009). 

Maps of soil organic carbon 

PLSR models for TOC and OC were applied to the AHS image in order to obtain maps 

of both properties in the upper 5 cm of soils. The independent validation dataset 

consisting of 12 Valeri plots was used to evaluate the accuracy of these maps. The best 

results of the analysis between the reference and the predicted values were obtained for 



 

OC, with R2 of 0·74 and RSE of 4·5%; and slightly worse for TOC, with R2 of 0·74 and 

RSE of 6·0%. However, the analysis of the RMSEP and Bias showed that maps tend to 

strongly overestimate both soil properties, with RMSEP values higher than 40% and 

Bias of about -40%, probably due to the signal from the vegetation in the spectra from 

the image, not considered in lab calibrations based on soil spectra. Maps of soil 

properties were scaled using a linear fit based on data from two plots, and the 

performance of the maps was evaluated again using the remaining 10 plots (Table IV). 

The scatter plot of observed against estimated soil properties after the scaling is shown 

in Figure 5. As expected, very similar R2 and RSE values were obtained after the 

scaling, and a significant improvement was observed in the RMSEP and Bias. The 

validation of the scaled maps was satisfactory for both soil properties, TOC (R2 = 0·73, 

RMSEP = 7·8%) and OC (R2 = 0·72, RMSEP = 5·1%), with an accuracy only slightly 

lower than that obtained in the lab (see Table II). For illustration purposes, the spatial 

distribution of the predicted TOC and OC content in a slope located in the south of the 

study area is shown in Figure 6. Maps in Figure 6 were smoothed using a mean filter of 

kernel size 3×3 in order to improve the outcomes, and to clearly show the variation in 

the soil properties within the slope. 

Several studies used data from the AHS sensor to obtain spatially continuous maps 

of soil organic carbon, but all of them in bare soils. Model for SOC prediction in 

agricultural fields by Stevens et al. (2008) only explained 52·7% of the SOC variation, 

whereas Stevens et al. (2010) obtained better results in croplands (R2 = 0·75), but still 

with limited accuracy (RMSEP of ∼3 g C kg-1). Data from the airborne sensor HyMap 

were also used for SOC prediction in agricultural fields and slightly better results were 

obtained: Hbirkou et al. (2012) (R2 = 0·83), Patzold et al. (2008) (R2 = 0·74), and Selige 

et al. (2006) (R2 = 0·90). All these works, and also the one presented here, are limited to 

the upper layer of soils (0-5 cm), since all of them are based on remotely sensed data 

collected in the optical region of the spectrum (400-2500 nm), which capacity to 

penetrate in soil is very limited and restricted to the surface layer. In this work, topsoil 

organic carbon was modelled in a complex domain far from the bare soil ideal 

conditions, since soils were partially covered by vegetation. Nevertheless, maps of TOC 

and OC achieved an acceptable accuracy (Table IV), similar or slightly lower than that 

obtained in other works for bare soils, and only slightly lower than lab predictions. 

CONCLUSION 

i) The use of PLSR techniques in VIS-NIR spectra of soils is a suitable method to make 

accurate models to estimate soil organic carbon in the upper 5 cm of soils. The opacity 

of vegetation cover to optical sensors is a major problem to monitor the organic matter 

of soils with satellite imagery in wild landscapes, but it can be solved using these 

techniques applied to mixed pixels which are partially covered by vegetation. It is 

important to highlight that the accuracy of models is not influenced by the resolution of 

the spectra, making it possible to resample the spectra to wavelengths in the range of the 

hyperspectral images. 

ii) By comparing the coefficients of absorption bands of OC and TOC PLSR models, 

we can explore the main molecular components of both organic carbon fractions. The 

results seem to highlight the more labile nature of the OC model components. The 

coefficients related to not-labile forms are higher in TOC than in OC model showing a 

greater amount of stable soil carbon components. 
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Tables 

Table I. Descriptive statistics of the soil samples 

 TOC (%)  OC (%) 

 Individual Plot  Individual Plot 

n 89 12  89 12 

Minimum 4·3 4·5  2·7 2·9 

Maximum 63·2 45·9  37·9 33·8 

Mean 29·4 25·7  19·5 18·1 

Median 28·3 28·8  17·4 18·1 

SD 14·9 11·2  10·3 8·3 

CV (%) 50·7 43·6  52·8 45·9 

SD: Standard deviation; CV: Coefficient of variation, CV=SD×100/Mean. 

Table II. PLSR settings and performance statistics for prediction models of TOC and OC, based on VIS-NIR spectra 

  Lab-spectra  Lab-spectra resampled to AHS 

Property n Factors AIC R2
cv RMSEcv (%) RPD  Factors AIC R2

cv RMSEcv (%) RPD 

TOC (%) 89 7 187·3 0·78 7·01 2·13  7 181·2 0·81 6·55 2·28 

OC (%) 89 9 130·2 0·88 3·53 2·93  7 124·8 0·89 3·47 2·97 

Reflectance spectra were transformed to log(1/R). n: number of samples; Factors: number of PLSR factors selected by minimizing 

the Akaike Information Criterion (AIC); R2
cv: coefficient of determination of cross-validation; RMSEcv: root mean square error of 

cross-validation; RPD: ratio of performance to deviation. 

Table III. PLSR coefficients of models for TOC and OC prediction using resampled spectra, and molecular 

interpretations 

 Significant PLRS coefficients  Molecular interpretations 

Wavelength (nm) TOC OC Difference  Huang et al. (2008) Vasques et al. (2009) 

443 173·0 91·4 81·6  Lignine Recalcitrant carbon 

560 62·9 65·0 -2·1  Lignine and extractives Labile carbon forms 

591 180·8 138·4 42·4    

620 51·4 47·4 4·0    

885 3·9 2·4 1·5    

914 42·7 27·8 14·9   Organic pigments 

943 88·8 61·6 27·2    

1001 135·1 67·1 68·0   Recalcitrant carbon 

1590 26·5 -28·0 54·5  Hemicellulose hydroxyls  

2054 25·8 29·5 -3·7  Carbohydrates Labile carbon forms 

2071 53·7 45·0 8·7  Cellulose  

2086 71·3 52·5 18·8    

2102 88·9 56·4 32·5  Lignine Recalcitrant carbon 

2118 103·1 57·3 45·8   Recalcitrant carbon 

2134 112·8 57·6 55·2    

2150 85·1 40·5 44·6  Lignine  

2165 1·7 1·7 0·0    

2266 111·8 76·2 35·6   Recalcitrant carbon 

2296 175·0 108·7 66·3   Recalcitrant carbon 

2326 94·9 58·9 36·0  Lignine Recalcitrant carbon 

Table IV. Validation of maps of soil properties with an independent dataset 

Parameter n R2 RSE (%) a b RMSEP (%) Bias (%) 

TOC (%) 10 0·73 6·65 1·5 ± 0·3 -11 ± 8 7·80 1·40 

OC (%) 10 0·72 4·98 1·1 ± 0·2 0 ± 4 5·05 0·65 

n: number of samples; R2: coefficient of determination; RSE: residual standard error; Observed = a × Estimated + b; RMSEP: root 

mean square error of prediction; Bias: mean residual. 

 



 

Figures 

 

Figure 1. Location of the study area (NW Spain). 

 

 

Figure 2. General view of study area and organic-enriched profiles. In vegetation map, 

purple represents heaths affected by frequent fires. Pale green represents typical 

vegetation (chasmophytic) covering skeletal and stony soils originated mainly by post-

fire erosion. Forest is represented in vivid green and at least grasslands for livestock use 

are represented in yellow. 



 

 

Figure 3. Processing flow chart. 

 

 

Figure 4. Regression coefficients (b) of PLSR models for TOC and OC prediction using 

the resampled spectra. Dots represent the 38 AHS channels used in this work. 

 

 

Figure 5. Scatter plot of observed against estimated soil properties using scaled maps. 



 

 

Figure 6. AHS true color composite (bands at 650, 560, and 443 nm in RGB) (a), and 

spatial distribution of the predicted TOC (b) and OC content (c) in a slope partially 

covered by heath, located in the south of the study area. 


