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Lista de símbolos. 

 

 

 

Símbolo Significado Unidades 

𝜃𝐹  Posición angular del marco 𝑟𝑎𝑑 

𝜃̇𝐹  Velocidad angular del marco 𝑟𝑎𝑑 · 𝑠−1 

𝜃̈𝐹  Aceleración angular del marco 𝑟𝑎𝑑 · 𝑠−2 

𝜃𝑤 Posición angular de la rueda 𝑟𝑎𝑑 

𝜃̇𝑤 Velocidad angular de la rueda 𝑟𝑎𝑑 · 𝑠−1 

𝜃̈𝑤 Aceleración angular de la rueda 𝑟𝑎𝑑 · 𝑠−2 

𝐽𝐹 Momento de inercia del marco 𝑘𝑔 · 𝑚2 

𝐵𝐹 Rozamiento en el eje de rotación del marco 𝑁 · 𝑚 · 𝑠 · 𝑟𝑎𝑑−1 

𝑚𝐹 Masa del marco 𝑘𝑔 

𝑙𝐹 
Distancia desde el eje de rotación al centro de masa del 

marco 
𝑚 

𝐽𝑤 Momento de inercia de la rueda 𝑘𝑔 · 𝑚2 

𝐵𝑤 Rozamiento en el eje de rotación de la rueda 𝑁 · 𝑚 · 𝑠 · 𝑟𝑎𝑑−1 

𝑚𝑤 Masa de la rueda 𝑘𝑔 

𝑙𝑤 
Distancia desde el eje de rotación al centro de masa de la 

rueda 
𝑚 

𝜏𝑚 Par proveniente del motor 𝑁 · 𝑚 

𝑔 Aceleración de la gravedad 𝑚 · 𝑠−2 

A Matriz de estados - 

B Matriz de entrada - 

C Matriz de salida - 

D Matriz de transmisión directa - 

K Matriz de realimentación - 

𝑒𝜃 
Error entre la posición angular deseada y la real del 

marco 
𝑟𝑎𝑑 

𝜏 Constante de tiempo del filtro complementario 𝑠 

Δ𝑇 Periodo de muestreo s 

accelθF
 

Posición angular del marco calculada con los datos del 

acelerómetro 
rad 

𝑔𝑦𝑟𝑜θ̇F
 Velocidad angular del marco medida con el giróscopo rad · s−1 
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1. Introducción. 
  

 El péndulo invertido ha estado presente en la teoría de control por su naturaleza de 

sistema naturalmente inestable. 

 

  Un ejemplo de este tipo de sistemas consiste en un péndulo invertido y  una rueda de 

reacción. La combinación de tres de ellos forma  un cubo cuyos actuadores están colocados 

internamente.  Esto hace que sea muy conveniente a la hora de trabajar en lugares con poca 

gravedad, donde un vehículo montado sobre ruedas podría quedar inmovilizado boca arriba 

mientras que el cubo sería capaz de seguir utilizando las ruedas de reacción.  

 

 

Figura 1.1. Sistema completo que incluye tres péndulos invertidos (izquierda) y versión 

reducida (derecha). 

 

 Para poder entender el sistema completo es útil trabajar con una versión reducida 

utilizando solo un péndulo, ya que el principio de funcionamiento se mantiene. 

 

 El objetivo del proyecto es diseñar un controlador para un prototipo ya existente de la 

versión reducida que sea capaz de mantenerlo en equilibrio sobre una de las esquinas, como 

se aprecia en la figura 1.1. Además, el cálculo de la posición del marco ha de ser 

independiente de la inclinación, dentro de un rango razonable, de la base que lo sujeta. 

 

2. Descripción del Sistema. 
 

 El sistema está compuesto principalmente por el marco y la rueda de reacción. Esta 

última está acoplada a un motor de continua sin escobillas que es el encargado de 

proporcionar al sistema el par necesario según la acción de control requerida. También 

incluye un servomotor, que puede ser utilizado para frenar la rueda bloqueando una de los dos 

topes presentes en ella. 

 

 También están presentes los sensores necesarios para poder medir la posición y 

velocidad del marco. Por un lado, un potenciómetro colocado en el punto de rotación del 

sistema que proporciona un valor de tensión dependiendo del ángulo. Por otro lado, el sistema 

lleva incorporados dos sensores IMU, cada uno con un acelerómetro y un giróscopo. 
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 Para llevar a cabo el control del sistema se utiliza una placa de desarrollo BeagleBone 

Black. Es la encargada de leer toda la información de los sensores, realizar los cálculos 

necesarios y enviar la acción de control requerida a la placa de control del motor. Esta última 

recibe una referencia de corriente, que depende del ciclo de trabajo de una señal PWM, e 

incorpora un control en bucle cerrado. 
 

 
 

Figura 2.1. Componentes más importantes del sistema: marco (1), rueda de reacción (2), placa 

BeagleBone Black (3), placa de conexión (4), motor de continua sin escobillas (5), placa de 

control del motor (6), servomotor (7), potenciómetro (8) y sensores IMU (9). 
 

2.1. MODELO. 

 
 Para poder realizar un análisis y el control del sistema es necesario encontrar unas 

ecuaciones que definan su dinámica. Para ello se puede dividir en sus dos componentes 

principales, marco y rueda, y examinar sus diagramas de cuerpo libre. 
 

 
 

Figura 2.2. Diagramas de cuerpo libre del marco y la rueda. 

 

 En el caso de marco, su dinámica se puede expresar con la ecuación  (3.1), donde su 

aceleración angular depende de los diferentes pares. 

𝐽𝐹 𝜃⃗̈𝐹 = −𝐵𝐹 𝜃⃗̇𝐹 + 𝑙𝐹 × (𝑚𝐹 · 𝑔⃗) + 𝑙𝑤 × 𝐹⃗  − 𝜏𝑚 + 𝐵𝑤 𝜃⃗̇𝑤 ( 2.1 ) 

 

 La fuerza F que parece en la ecuación puede ser calculada aplicando la segunda ley de 

Newton a las fuerzas que aparecen en el diagrama de la rueda, y que da como resultado sus 

dos componentes: 

𝐹𝑥 = 𝑚𝑤 ·  (𝑙𝑤 · 𝑐𝑜𝑠(𝜃𝐹) · 𝜃̇𝐹
2
+ 𝑙𝑤 · 𝑠𝑖𝑛(𝜃𝐹) ·  𝜃̈𝐹) − 𝑚𝑤 · 𝑔 ( 2.2 ) 
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𝐹𝑦 = 𝑚𝑤 ·  (𝑙𝑤 · 𝑠𝑖𝑛(𝜃𝐹) · 𝜃̇𝐹
2
− 𝑙𝑤 · 𝑐𝑜𝑠(𝜃𝐹) · 𝜃̈𝐹) 

 

 Una vez que su expresión es conocida, la ecuación del marco puede ser simplificada 

calculando los productos vectoriales y considerando que el todos los pares tienen tan solo una 

componente ya que el movimiento está restringido a un plano. 

𝐽𝐹𝜃̈𝐹 = −𝐵𝐹𝜃̇𝐹 + 𝑚𝐹 · 𝑙𝐹 · 𝑔 · 𝑠𝑖𝑛(𝜃𝐹) − 𝑚𝑤 · 𝑙𝑤
2 · 𝜃̈𝐹 + 𝑚𝑤 · 𝑙𝑤 · 𝑔 · 𝑠𝑖𝑛(𝜃𝐹) − 𝜏𝑚 + 𝐵𝑤 · 𝜃̇𝑤  

( 2.3 ) 
𝜃̈𝐹 = −

𝐵𝐹

𝐽𝐹 + 𝑚𝑤 · 𝑙𝑤
2 𝜃̇𝐹 −

(𝑚𝐹 · 𝑙𝐹 + 𝑚𝑤 · 𝑙𝑤) · 𝑔

𝐽𝐹 + 𝑚𝑤 · 𝑙𝑤
2 𝑠𝑖𝑛(𝜃𝐹) −

1

𝐽𝐹 + 𝑚𝑤 · 𝑙𝑤
2 𝜏𝑚 +

𝐵𝑤

𝐽𝐹 + 𝑚𝑤 · 𝑙𝑤
2 𝜃̇𝑤  

 

 En el caso de la rueda, su dinámica también se puede expresar en relación a los pares 

que se le apliquen, pero teniendo en cuenta que su aceleración también está influenciada por 

el marco. 

𝐽𝑤 (𝜃⃗̈𝑤 + 𝜃⃗̈𝐹) =  𝜏𝑚 − 𝐵𝑤 𝜃⃗̇𝑤 

( 2.4 ) 
𝜃̈𝑤 =

𝜏𝑚 − 𝐵𝑤 · 𝜃̇𝑤

𝐽𝑤
− 𝜃̈𝐹 

  

 También es posible reescribir la ecuación, sustituyendo el valor de la aceleración del 

marco, para conseguir una expresión que describa el efecto de cada una de las variables del 

sistema. 

𝜃̈𝑤 = −
𝐵𝐹

𝐽𝐹 + 𝑚𝑤 · 𝑙𝑤
2 𝜃̇𝐹 −

(𝑚𝐹 · 𝑙𝐹 + 𝑚𝑤 · 𝑙𝑤) · 𝑔

𝐽𝐹 + 𝑚𝑤 · 𝑙𝑤
2 𝑠𝑖𝑛(𝜃𝐹) +

𝐽𝑤 + 𝐽𝐹 + 𝑚𝑤 · 𝑙𝑤
2

𝐽𝐹 + 𝑚𝑤 · 𝑙𝑤
2 𝜏𝑚

−
(𝐽𝑤 + 𝐽𝐹 + 𝑚𝑤 · 𝑙𝑤

2) · 𝐵𝑤

𝐽𝐹 + 𝑚𝑤 · 𝑙𝑤
2 𝜃̇𝑤 

( 2.5 ) 

  

 Dado que existen términos no lineales en el modelo, y sabiendo que el punto de 

operación del sistema es elegido para ser un ángulo de 0 rad en el marco y con velocidad 0 en 

la rueda, las ecuaciones se puede linealizar.  Esto resulta en sustituir el término sin(θF) por θF. 

 

 Una vez obtenidas las ecuaciones, el sistema se puede describir tambien en forma de 

diagrama de bloques, que es útil a la hora de  realizar simulaciones para comprobar el 

funcionamiento del modelo. 

 

 

Figura 2.3. Diagrama de bloques del sistema completo. 
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2.2. ESTIMACIÓN DE LOS PARÁMETROS. 
 

 Como se puede observar en el diagrama de bloques, existen varios parámetros que son 

necesarios para poder definir la dinámica del sistema. 

  

 Los paámetros relacionados con la rueda (mw, lw, Jw y Bw) provienen de un proyecto 

realiza anteriormente con el Cubli dado que la rueda no ha sido modificada. Los que afectan 

al marco (mF, lF, JF y BF), sin embargo, han de ser hallados de nuevo ya que parte de la 

electrónica presente no estaba acoplada al marco cuando se estimaron por primera vez. 

 

 La masa se halla pesando la estructura desacoplada de la base y restando la masa 

conocida de la rueda. El centro de masas se calcula colgando el marco boca abajo por varias 

de sus esquinas y encontrando el punto en el que las proyecciones de la gravedad se cruzan. 

 

 Los dos parámetros restantes, momento de inercia y rozamiento en el eje de rotación, 

no se pueden medir directamente y por eso se has estimado utilizando técnicas de 

optimización. Para ello se ha realizado un experimento en el que el sistema cuelga boca abajo 

y se deja oscilar como un péndulo. En las mismas condiciones se crea un modelo en Simulink 

utilizando el diagrama de la figura 2.3 con el término no lineal y los parámetros provenientes 

del anterior proyecto. 

  

 El error entre ambos comportamientos se utiliza para variar los parámetros hasta que 

se minimiza la distancia entre la realidad y la simulación.  Esta optimización  incluye 

métodos como descenso más inclinado (“steepest descent”) combinado con una minimización 

de línea (“line search”) o una herramienta de Matlab denominada Senstools, que incorpora el 

método de Newton-Raphson y un análisis de la sensibilidad de los parámetros. 

 

 Los parámetros finales se muestran en la siguiente tabla. 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 

Tabla 2.1. Parámetros finales del sistema. 
 
 

Parámetro Valor Unidades 

𝐽𝑤 0,601 ·10
-3

 𝑘𝑔 · 𝑚2 

𝐵𝑤 17,03 ·10
-6

 𝑁 · 𝑚 · 𝑠 · 𝑟𝑎𝑑−1 

𝑚𝑤 0,222 𝑘𝑔 

𝑙𝑤 0,096 𝑚 

𝐽𝐹 4,8 ·10
-3

 𝑘𝑔 · 𝑚2 

𝐵𝐹 7,7 ·10
-3

 𝑁 · 𝑚 · 𝑠 · 𝑟𝑎𝑑−1 

𝑚𝐹 0,548 𝑘𝑔 

𝑙𝐹 0,08498 𝑚 
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3. Diseño del Controlador por 

Métodos Clásicos. 
 

3.1. ANÁLISIS DE ESTABILIDAD DEL SISTEMA. 
 

 El diagrama de bloques se puede simplificar en una función de transferencia entre el 

par del motor y la posición del marco, sustituyendo además los parámetros por los valores 

estimados. Esto da como resultado la ecuación  (3.1). 

𝐺(𝑠) =
−148,8 𝑠

𝑠3 + 1,177 𝑠2 − 98,19 𝑠 − 2,783
 ( 3.1 ) 

 

 Se puede observar que el sistema tiene un cero en el origen y tres polos. La posición 

de estos últimos se puede ver mejor el lugar de las raíces, figura 3.1. 

 

 Debido a la existencia de un polo en el semiplano derecho del gráfico, el sistema tiene 

un comportamiento natural inestable. Esto implica que no es posible utilizar un controlador 

proporcional para llevar el sistema a una zona estable. 

 

Figura 3.1. Lugar de las raíces del sistema, donde se puede observar un cero (s = 0) y tres 

polos (s = 10,5014; s = 0,0283 y s = 9,3531). 

 

3.2. DISEÑO DEL CONTROLADOR. 
 

 El controlador es diseñado para llevar el polo inestable a la zona estable del diagrama. 

Para ello primero se coloca un polo a la izquierda del inestable (s = 5,54), para crear dos 

ramas que después son atraídas por dos ceros colocados en la zona estable (s = 9,488, s = 

1,599), a la izquierda del polo en s = 0,0283. Después se colocan dos polos rápidos (s = 

100, s = 200)  para que el controlador sea realizable pero que no influyan en la dinámica 

del sistema. Por último solo es necesario ajustar la ganancia para que los polos en lazo cerrado 

se encuentren en la zona estable. 
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 Figura 3.2. Lugar de las raíces del sistema, incluyendo el controlador. 

 

 La función de transferencia del controlador final resulta en :  

𝐷(𝑠) = 0,62737
(1 + 0,1054 𝑠) · (1 + 0,6254 𝑠)

(1 − 0,1805 𝑠) · (1 + 0,01 𝑠) · (1 + 0,005 𝑠)
 ( 3.2 ) 

 

 

3.3. DISCRETIZACIÓN. 
 

 Para poder implementar el controlador en el sistema real es necesario discretizarlo. 

Para ello se utiliza la transformación bilineal (o método de Tustin), con un periodo de 

muestreo de 0,01s, desde el espacio continuo en s al espacio discreto en z. Esto da como 

resultado la función de transferencia discreta entre el error y el par necesario. 

𝐷(𝑧) =
−8,134 + 7,422 𝑧−1 + 8,302 𝑧−2 − 7,434 𝑧−3

1 −  1,382 𝑧−1 + 0,3415 𝑧−2 + 0,001638 𝑧−3
 ( 3.3 ) 

 

 Esta función se puede escribir en la forma de ecuación en diferencias, que es la que se 

implementa en el sistema real para calcular la acción de control necesaria. 

𝜏𝑚[𝑛] = −8,134 𝑒𝜃[𝑛] + 7,422 𝑒𝜃[𝑛 − 1] + 8,3023 𝑒𝜃[𝑛 − 2] − 7,434 𝑒𝜃[𝑛 − 3] 
+1,382 𝜏𝑚[𝑛 − 1] − 0,3415 𝜏𝑚[𝑛 − 2] − 0,001638 𝜏𝑚[𝑛 − 3]  

( 3.4 ) 

 

4. Diseño del Controlador en Espacio 

de Estados. 
 

 Con el objetivo de tener un mejor control sobre la rueda, ya que en el diseño anterior 

solo se mide la posición del marco, se puede realizar un control en espacio de estados. Este 

método resulta muy conveniente a la hora de analizar sistemas con varias entradas y salidas.  
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4.1. REPRESENTACÓN EN ESPACIO DE ESTADOS. 
 

 El primer paso para poder representar el sistema en espacio de estados es elegir los 

estados y las variables de entrada y salida. En este caso los estados son la posición del marco 

y las velocidades del marco y la rueda (𝜃𝐹 , 𝜃̇𝐹 , 𝜃̇𝑤). La variable de entrada es el par del motor 

(𝜏𝑚) y las variables de salida se corresponden con los estados a controlar, la posición  del 

marco y la velocidad de la rueda (𝜃𝐹 , 𝜃̇𝑤).   

𝑥 = [

𝜃𝐹

𝜃̇𝐹

𝜃̇𝑤

]                𝑦 = [
𝜃𝐹

𝜃̇𝑤
]              𝑢 = [𝜏𝑚] ( 4.1 ) 

 

 Las variables se relacionan entre sí mediante ecuaciones diferenciales de primer orden 

que, si son lineales, se pueden escribir en forma matricial. 

𝑥̇(𝑡) = 𝐴 · 𝑥(𝑡) + 𝐵 ·  𝑢(𝑡) 
𝑦(𝑡) = 𝐶 ·  𝑥(𝑡) + 𝐷 · 𝑢(𝑡) 

( 4.2 ) 

 

 En el caso del Cubli se pueden utilizar las ecuaciones del sistema linelizadas para 

construir estas matrices. 

𝑥̇(𝑡) =

[
 
 
 
 
 

0 1 0
(𝑚𝐹 · 𝑙𝐹 + 𝑚𝑤 · 𝑙𝑤) · 𝑔

𝐽𝐹 + 𝑚𝑤 · 𝑙𝑤
2 −

𝐵𝐹

𝐽𝐹 + 𝑚𝑤 · 𝑙𝑤
2

𝐵𝑤

𝐽𝐹 + 𝑚𝑤 · 𝑙𝑤
2

−
(𝑚𝐹 · 𝑙𝐹 + 𝑚𝑤 · 𝑙𝑤) · 𝑔

𝐽𝐹 + 𝑚𝑤 · 𝑙𝑤
2

𝐵𝐹

𝐽𝐹 + 𝑚𝑤 · 𝑙𝑤
2 −

(𝐽𝑤 + 𝐽𝐹 + 𝑚𝑤 · 𝑙𝑤
2) · 𝐵𝑤

𝐽𝐹 + 𝑚𝑤 · 𝑙𝑤
2 ]

 
 
 
 
 

𝑥(𝑡)

+

[
 
 
 
 
 

0

−
1

𝐽𝐹 + 𝑚𝑤 · 𝑙𝑤
2

𝐽𝑤 + 𝐽𝐹 + 𝑚𝑤 · 𝑙𝑤
2

𝐽𝐹 + 𝑚𝑤 · 𝑙𝑤
2 ]

 
 
 
 
 

 𝑢(𝑡) 

 

𝑦(𝑡) = [
1 0 0
0 0 1

]  𝑥(𝑡) 

( 4.3 ) 

 

4.2. LEY DE CONTROL POR REALIMENTACIÓN DE ESTADOS. 
 

 El objetivo del controlador es mantener el sistema en equilibrio, lo que significa que la 

referencia para cada estado en siempre cero. Esto hace que sea posible definir una nueva 

matriz de estados con la inclusión de una realimentación de estados. 

 

 

Figura 4.1.Representación del control por realimentación de estado en el sistema. 
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 El resultado es una nueva matriz de estados cuyos valores propios (que son los polos 

del sistema en lazo cerrado) dependerán de la matriz K.  

𝑥̇(𝑡) = (𝐴 − 𝐵𝐾) 𝑥(𝑡) ( 4.4 ) 

 

 La elección de la matriz K depende de la posición de los polos deseada. En este caso la 

posición elegida es 6,7 y 15, tras haber simulado el comportamiento del sistema con 

distintas combinaciones. Estos polos resultan en la matriz de ganancias que multiplicará a los 

estados para llevar al sistema a la posición de equilibrio. 

𝐾 = [−2,3021 −0,2274 −0,0039] ( 4.5 ) 

 

5. Cálculo de la Posición del Marco. 
 

 La posición del marco se puede medir utilizando el potenciómetro, teniendo en cuenta 

que el valor dependerá de la inclinación de la base. Sin embargo, es posible utilizar los IMUs 

presentes en el sistema, de manera que se pueda medir el ángulo con independencia de la 

base. 

  

5.1. FILTRO COMPLEMENTARIO. 

 
 El filtro complementario se utiliza para fusionar la información proporcionada por el 

acelerómetro y el giróscopo. De esta manera se eliminan los problemas de ruido debidos  a 

vibraciones  y a la propia aceleración lineal del marco al medir la gravedad con el 

acelerómetro a la vez que se eliminan los errores que se puedan acumular a la hora de integrar 

las medidas del giróscopo. 

 

 Esta combinación se realiza con un filtro de paso bajo y otro de paso alto, combinando 

las salidas se ambos, como se aprecia en la figura 5.1. 

 

 
Figura 5.1. Esquema que representa el cálculo del ángulo del marco, utilizando un filtro de 

paso bajo y otro de paso alto.  

 

 El cálculo del ángulo se puede observar en la ecuación 5.1. 

 

𝜃𝐹 =
1

1 + 𝜏 𝑠
𝑎𝑐𝑐𝑒𝑙𝜃𝐹

+
𝜏 𝑠 

1 + 𝜏 𝑠
 
1

𝑠
 𝑔𝑦𝑟𝑜𝜃̇𝐹

=
1

1 + 𝜏 𝑠
 (𝑎𝑐𝑐𝑒𝑙𝜃𝐹

+ 𝜏 𝑔𝑦𝑟𝑜𝜃̇𝐹
) ( 5.1 ) 
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5.2. FREQUENCIA DE CORTE. 

 
 La frecuencia de corte es igual para ambos filtros, consiguiendo una ganancia unitaria 

en todo el espectro de frecuencias. Esta se puede hallar realizando un test al sistema, en el que 

se recogen los valores medidos por el potenciómetro, así como las medidas del acelerómetro y 

el giróscopo.  

 

 Utilizando los mismos métodos de optimización que para los parámetros del sistema, 

minimizando la diferencia entre el cálculo con los datos del potenciómetro y cálculo con los 

datos del IMU, se consigue hallar la frecuencia óptima, 1,85 𝑟𝑎𝑑 · 𝑠−1 (τ = 0,5399 s). 

 

 
Figura 5.2. Comparación final, con la frecuencia óptima, entre el ángulo medido con el 

potenciómetro (azul) y calculado utilizando el filtro complementario (rojo). 

 

 

5.3. DISCRETIZACIÓN DEL FILTRO. 
 

  A la hora de implementar el filtro es necesario discretizarlo. El método utilizado es el 

mismo que para el primero de los controladores, transformación  bilineal, y con el mismo 

tiempo de muestreo. 

 

𝜃𝐹 =
𝛥𝑇 + 𝛥𝑇 𝑧−1

(2 𝜏 + 𝛥𝑇) − (2 𝜏 − 𝛥𝑇) 𝑧−1
 (𝑎𝑐𝑐𝑒𝑙𝜃𝐹

+ 𝜏 𝑔𝑦𝑟𝑜𝜃̇𝐹
) ( 5.2 ) 

 

 Como con el controlador, desde la ecuación anterior se puede derivar la ecuación en 

diferencias, que es la que finalmente se implementa en el sistema real. 

 

𝜃𝐹[𝑛] =
(2 𝜏 − 𝛥𝑇)

(2 𝜏 + 𝛥𝑇)
 𝜃𝐹[𝑛 − 1] + 

𝛥𝑇

(2 𝜏 + 𝛥𝑇)
 𝑎𝑐𝑐𝑒𝑙𝜃𝐹

[𝑛] +
𝛥𝑇

(2 𝜏 + 𝛥𝑇)
 𝑎𝑐𝑐𝑒𝑙𝜃𝐹

[𝑛 − 1]

+
𝛥𝑇 ·  𝜏

(2 𝜏 + 𝛥𝑇)
 𝑔𝑦𝑟𝑜𝜃̇𝐹

[𝑛] +
𝛥𝑇 ·  𝜏

(2 𝜏 + 𝛥𝑇)
 𝑔𝑦𝑟𝑜𝜃̇𝐹

[𝑛 − 1] 
( 5.3 ) 
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6. Resultados. 
 

 El controlador diseñado por métodos clásicos, una vez implementado en el sistema, da 

unos resultados que se pueden observar el la figura 6.1. 

 

 

Figura 6.1. Resultados del controlador en el sistema real. A la izquierda se puede observar la 

posición del marco y a la derecha la velocidad de la rueda en cada momento. 

 

 En ella se puede ver que el controlador es capaz de mantener la posición en equilibrio, 

incluso cuando se le aplican diferentes perturbaciones. Sin embargo, se observa que la 

velocidad de la rueda tarda bastante en llegar a 0 𝑟𝑎𝑑 · 𝑠−1 debido al poco rozamiento que 

existe en su eje. Esto puede producir que si se aplica otra perturbación, la rueda esté muy 

cerca de la máxima velocidad que puede alcanzar el motor, por lo que no es posible que 

acelere más y produzca el par necesario. 

 

 Para mejorar esa característica se ha diseñado un controlador en espacio de estados, 

que permite llevar la velocidad de la rueda también a 0 por medio de la acción de control. En 

este caso el equilibrio se alcanza y el riesgo de saturación se reduce. 

 

 Este controlador es el elegido para probar si se han satisfecho los requisitos del 

proyecto. Por un lado, se requería que el sistema fuera capaz de mantenerse cerca de la 

posición de equilibrio sin perturbaciones que no fueran naturales. Como se puede ver en la 

figura 6.2, se cumple tanto usando el potenciómetro como los datos del IMU. 

 

 
Figura 6.2. Resultados del controlador en espacio de estados, utilizando las medidas del 

potenciómetro (izquierda) y del IMU (derecha). 

 



 

 

Villarmarzo Arruñada, Noelia 

U N I V E R S I D A D  D E  O V I E D O   

Escuela Politécnica de Ingeniería de Gijón Hoja 13 de 15 

 Por otro lado, la medida del ángulo del marco debía ser independiente de la 

inclinación de la base. En la figura 6.3 se ha implementado el controlador utilizando los datos 

del IMU pero guardando también las medidas de potenciómetro. Se puede ver que el 

potenciómetro se ve afectado cuando la base se inclina,  mientras que no afecta al cálculo con 

el IMU por lo que el controlador es capaz de seguir manteniendo el marco en posición 

vertical. 

 
Figura 6.3. Implementación del controlador de espacio de estados con los datos del IMU. 

cuando se cambia la inclinación de la base. 
 

7. Conclusiones. 
  

 El objetivo del proyecto era trabajar con un sistema inestable y no lineal y conseguir 

diseñar un controlador capaz de mantenerlo en posición de equilibrio. 

  

 En primer lugar, se ha construido el modelo del sistema que  es capaz de describir la 

dinámica de las partes que lo componen para, posteriormente, hallar los parámetros que 

definen el sistema real. 

 

 Después, se ha diseñado un controlador utilizando técnicas clásicas, utilizando el lugar 

de las raíces, para conseguir un sistema realimentado estable. Este diseño es capaz de 

mantener la estructura en equilibrio. Sin embargo, la velocidad de la rueda no está controlada, 

lo que puede provocar algún problema si se alcanza la velocidad de saturación del motor. Por 

esta razón otro tipo de controlador, utilizando espacio de estados, fue diseñado, de manera que 

este problema queda resuelto. 

 

 El otro requerimiento consistía en que el cálculo de la posición del marco debía ser 

independiente de la base, ya que en el cubo completo ésta no existe. Para cumplir esta 

característica se ha diseñado un filtro complementario para fusionar los datos que provienen 

del acelerómetro y el giróscopo presentes en el sistema, de manera que el control se 

independiza de las medidas del potenciómetro.  

 

 En conclusión, un sistema de control que es capaz de mantener el sistema en posición 

de equilibrio con independencia de la base ha sido diseñado y cumple con las especificaciones 

requeridas. 
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sensors.
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includes a description of the given setup, the derivation of the dynamic model and the
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mentation of the controller and the complementary filter used to measure the angular
position of the frame. Part III includes the acceptance tests made to the system and the
conclusions that can be derived from the project.

The attached DVD contains a digital copy of this report, all the data and Matlab files
needed to plot the figures in the report, data sheets, the code needed to run the controller,
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Chapter 1. Introduction

1 | Introduction

The effective control of an inverted pendulum is still an active area of research nowadays.[1]
One example of such a system is a setup called Cubli. It consists of a cube controlled
with reaction wheels. The Cubli can jump up and balance on one of its edges or on one of
its corners, as shown in figure 1.1. The Cubli is designed as a simple setup to let control
engineers work with an inverted pendulum. A working Cubli can also be an interesting
way to show and explain the general public what control engineering is about.[2]

Figure 1.1: A Cubli balancing on one of its corners.[3]

One application of the internally actuated cube has been suggested for alternative loco-
motion in planetary or asteroid exploration. The internal actuation is not very efficient
in higher gravity environments, however, in environments with microgravity such as as-
teroids the technology becomes very feasible.[4]

In microgravity a Cubli could tumble or even jump across the surface. A traditional rover
with wheels would not be able to sufficiently grip or might even push the rover off the
surface long enough for it to land upside down. Where such a situation would be fatal for
most rovers, a cube with internal actuation would not be immobilized by landing upside
down.[5]

This concept was the basis of a small experimental lander called MINERVA, short for
Micro/Nano Experimental Robot Vehicle for Asteroids, which was to explore the near
earth asteroid Itokawa, see figure 1.2. The lander was deployed from its mother spacecraft
HAYABUSA in 2005, when it unfortunately missed the asteroid’s small gravitational pull
and drifted off into space.[6]
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Figure 1.2: MINERVA experimental lander, which was designed for asteroid exploration.[6]

A more recent example of development in this area is NASA’s Hedgehog robot, which
also is actuated internally with reaction wheels. It has been through several tests aboard
an aircraft for microgravity research in June 2015, where it showed its ability to jump out
of a sandpit. A picture of the Hedgehog robot can be seen in figure 1.3.[5]

Figure 1.3: NASA’s Hedgehog robot for asteroid exploration.[5]

It is also possible to take a group of cubes, so they could move together to traverse ob-
stacles or solve puzzles one cube alone could not. A group of cubes can form a structure
(figure 1.4), and by communicating between each other they can use their reaction wheels
to get the structure to move in the desired direction. Since each cube can move indepen-
dently, a single cube can detach for an assignment or catch up with the main structure if
it gets dropped.[7]

Figure 1.4: A number of cube robots (called M-blocks at Massachusetts Institute of Technology (MIT))
making two different structures. These M-blocks stick together with the help of magnets placed in their
corners.[8]
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2 | Design Considerations

From the introduced applications both in modular robot design as well as planetary or
asteroid exploration, a high controllability Cubli design is desired. In a realization of a
full functioning Cubli, different considerations regarding design and overall functionalities
must be taken into account. Later in this chapter restrictions are considered regarding
the features to implement in this project.

2.1 Desired Functionalities
A simple design method, for the Cubli to stand on one of its corners, is to make it jump
to this position in two steps. First, it should be made to stand on one of its edges before
going to a balancing position on a corner.

Therefore, as a basic ability, the prototype should be able to jump onto any one of its
edges and balance. By rotating one of its reaction wheels to a determined and controlled
velocity and braking it suddenly, it should be able to raise the cube to an unstable position
on an edge. When the jump up controller has raised the Cubli another controller must
catch it around equilibrium position.
This second controller is essential to allow the prototype to keep balancing. It should
react fast enough when put into action so that the Cubli does not fall again. With some
more considerations regarding this controller’s robustness, it should be possible to change
the inclination of the surface under it to a certain extent.
In a similar fashion, the second step of the process consists of speeding up wheels and
braking them one more time to raise the Cubli to one of its corners. The latter should
finally be caught by a controller able to maintain it in this unstable equilibrium.

Once standing on a corner, a spinning functionality should allow the prototype to turn
around itself. This change in orientation also permits the Cubli to move in its environment
by falling and raising repeatedly towards the desired direction.

With a cube, communication and power supply as wired connections are not practical if
the prototype has to move around. To ensure a complete autonomy, the prototype should
be remotely controllable, i.e. it should be possible to ask it to run pre-defined routines
(stand on an edge or a corner, rotate, etc.) from a distant computer.
Moreover, it should be self-sustained by an internal battery able to power the embedded
computer, actuators and sensors for a reasonable amount of time.

All these functionalities are potential features to implement. The next section sets some
limits to what is actually to be achieved for this project.
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2.2 Prototype Restrictions
After some potential functionalities have been described, it is necessary to put some
restrictions to the scope of this project.

To achieve a full Cubli design, an intermediary step with a one-side prototype is chosen
as the focus for this project. This is to simplify the design process of the model and the
controller before scaling it to a full cube.
This simplified prototype consists of a single square face of a cube, later on called frame.
It should have one reaction wheel to raise it and a baseplate to which the frame is fixed
so it only has one degree of freedom.

With only one frame, the prototype cannot spin around itself nor move as described in
section 2.1. Instead of balancing up in two steps, the frame can only balance on its corner
which is comparable to getting the cube to balance on its edge.
The jump-up of the cube is also set aside, since it is considered out of scope for this
Bachelor project.

Concerning the wireless capabilities of the prototype, since it is only going to be built as
a single frame in this project, the need for power autonomy and remote communication
is not critical for it to work properly. Moreover, wireless communication and hardware
design are also out of scope for this Control Engineering project. This means the system
will be powered by an external power supply and communication will be done by physically
connecting to the prototype.

Noncritical functionalities are now set aside. The remaining focus is put on the control
of a balancing single frame that is scalable to a cubic model.

At Aalborg University (AAU), there exists a working setup of a one-side Cubli. The
overall goals of this semester are to make a model of this system, to simulate the model
and then to design and implement a controller for it to balance around its equilibrium
point. Furthermore, the prototype should be able to balance even when its baseplate is
inclined. In the next chapter, the available Cubli setup is described in more detail.
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3 | System Description

The system is composed of a frame and reaction wheel as the main objects to be con-
trolled.
The control action is done with a brushless DC motor which actuates both on the frame
and the wheel.
A board with a microcontroller and a motor control board are mounted on the frame
through a connecting and breakout board.
The frame is fixed to a baseplate, connected with a potentiometer that can be used for
direct angle measurements of the frame’s angular position.
Two additional sensor breakout boards, including an integrated circuit with gyro and
accelerometer, are located at the top of the frame. These are to be used for angle and
velocity measurements independently of the angle of the baseplate.
A servomotor that controls the brake system is also attached, which has an arm capable
of blocking the wheel by hitting one of the two break-blocks mounted on the edge of the
reaction wheel.
The different components of the existing system can be seen in figure 3.1.

Figure 3.1: Existing setup viewed from the front and the back. There is a color coding to distinguish
the different parts: frame(1), wheel(2), microcontroller(3), connecting and breakout board(4), brushless
DC motor(5), motor control board(6), servomotor(7), potentiometer(8), Inertial Measurement Units(9).

A detailed description of all the components is presented in the following sections for a
better overview of the system.

16gr630 7 of 125



Chapter 3. System Description

3.1 Mechanical Components
The frame and the reaction wheel constitute the mechanical parts of the system.

Frame
The frame is made of aluminum with dimensions 17x16x0,5 cm with two cross connections
between opposing corners. To keep the weight down on the frame, a large area of the
frame is milled out. That composes the body of the Cubli.
As it can only be balanced in one direction, it is attached to the base on one of its vertices
to avoid it from falling in any of the other directions.

Reaction Wheel
In the case of the Cubli, the reaction wheel is made of brass with most of the mass in a
ring at its outer edge and two cross connections through its center. The reaction wheel
is coupled to the axis of a motor, through its center of rotation. When the wheel turns,
its change of velocity creates a torque on the system that is transmitted with opposite
direction to the body due to the conservation of angular momentum.

3.2 Main Boards
On the prototype, a microcontroller provides the main computing power and controls the
system through the connecting and breakout board, directly attached to the frame.

Microcontroller
The microcontroller used on this system is a BeagleBone Black [9], which is in charge of
managing the data from the motor and the sensors and calculating the required control
action.
It uses an ARM processor at a clock frequency of 1 GHz and has a large amount of general
purpose inputs and outputs, of which some of them support the I2C protocol or include
an Analogue to Digital Converter (ADC).
The ADCs of the BeagleBone have a 12-bit resolution that is limited to a range of
0− 1, 8 V. The fastest sampling time it can provide is 125 ns [10].

Connecting and Breakout Board
This board is used for power distribution with different voltages sent to each unit. There
is also a built-in gain for the potentiometer, configured for the range of the BeagleBone
ADCs and the possible positions that the frame can have. The schematics can be found
in appendix M.
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3.3 Actuators
There are two actuators in the system, a brushless DC motor as the main actuator, which
is used to apply the required control action and aservo motor, which can be used to brake
the wheel in order to raise the frame.

Brushless DC Motor
The brushless DC motor is attached to the wheel and it is in charge of providing the
required torque to the system. It is an EC 45 flat 50 Watt [11], which has additional fea-
tures such three Hall effect sensors for angular velocity measurements. Table 3.1 contains
some of the characteristics for this motor.

Motor Data Value [Unit]

Nominal current 2,33 [A]

Motor constant (Kt) 33,5 10−3

[N ·m · A−1]

Mechanical time constant 12,4 [ms]

Table 3.1: Important parameters of the brushless DC motor.

Motor Control Board
There is a motor control board, Maxon ESCON Module 50/5 [12], connected between the
BeagleBone and the brushless DC motor, and it is specifically made to work with ESCON
motors.

The following table shows some of the main characteristics of the board.

Characteristics Value [Unit]

Nominal output current 5 [A]

Peak current (<20 s) 15 [A]

Current control PWM frequency 53,6 [kHz]

Sample Rate of PI current controller 53,6 [kHz]

Table 3.2: Important parameters of the motor control board.

The motor control board can be configured with a program provided by Maxon called
ESCON studio.[13]
The board is set to run with a closed loop control for the current. It is assumed that the
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reference current is the one given to the motor so the loop can be seen just as a unit gain.
This assumption is validated through a test described in appendix I, where it can be seen
that both currents can be assumed to be equal.
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Figure 3.2: Result of the test done to the motor to check that the reference current can be assumed to
be the one applied to the motor.

The reference current is sent to the control board as a PWM signal, whose duty cycle is
configured within the range of 10 % to 90 % corresponding to 4 A at 90 % and −4 A at
10 %. The actual configuration can be seen appendix G.

Braking System
There is a braking mechanism included in the system, which can be used to make the
frame go from resting position to vertical position.

To perform this task the brushless DC motor spins up the reaction wheel and when it
has enough kinetic energy the braking mechanism suddenly brake it, using for this task a
Hitec HS225 Mighty Mini Servomotor. The inertia of the wheel is thus transfered to the
frame, in order to raise it to standing position.

3.4 Sensors
The prototype setup is provided with some sensors such a potentiometer for direct an-
gle reference with respect to the baseplate and two Inertial Measurement Units (IMU),
containing accelerometer and gyro, for global angle measurements.
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Potentiometer
This sensor is a precision potentiometer with continuous turning, linearity within ±1, 0 %
and a resolution of 10 kΩ ±10 %.
The potentiometer is placed at the corner of the frame which is fixed to an axis and it
can be used to measure the actual position of the frame.
However, its use is restricted to the existing setup, since it is fixed and gives only an angle
in relation to the base, which is not present in the full Cubli.
In this project the potentiometer is used to test the dynamics of the Cubli, as feedback
in the initial controller design and to check if the calculation of the angle using the IMU
is done correctly.
Since some of the analysis and design will depend on the reliability of the potentiometer,
different tests are carried out to check its characteristics and behavior.

Linearity Test
To confirm the linearity of the potentiometer a test is done, which is described in appendix
A. As seen in figure 3.3, the result gives an almost straight line within the 1 % linearity
of the potentiometer, but at a certain angle the potentiometer has an area where the
measurement is deviating. The reason for this deviation lies in the fact that it is a
continuous rotating potentiometer and at that point it has a dead zone. A way to correct
this problem is to turn the potentiometer and recalibrate its limits. However, in this
project it is not necessary since precise measurements are only needed around 0 degrees
in the control region.

Figure 3.3: Result of the linearity test using a protractor measuring in degrees. It shows that the sensor
has a linear behavior around the 0 degrees.
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Range Test
An additional test is done to find the conversion from voltage to angle of the potentiometer.
It is also tested if there is an offset that has to be taken into account. The detailed
description of this test is found in appendix B.

Figure 3.4: Potentiometer measurements in
volts and the corresponding values that the

ADC provides.

Figure 3.5: Potentiometer measurements
converted to radians and degrees.

The results of this test is shown above in figure 3.4, where the reference lines reveals an
offset between the middle of the range and the equilibrium point of the Cubli frame.
This offset, also seen on figure 3.5, exists in the physical position of the frame. When the
frame is standing in its equilibrium position it is displaced by approximately 0,068 rad
due to uneven distribution of mass around its center.
This results in a 0,853 rad range to one side of the optimal position and 0,717 rad on the
other.
It is chosen that the angle-offset must be accounted for such that the equilibrium position
of the frame is at angle 0 rad.

Inertial Measurement Unit
The Motion Processing Unit (MPU) contains a triple axis accelerometer and gyro inte-
grated in the same chip [14], mounted on the breakout board from SparkFun [15].

The gyro has a full-scale range of ±250, ±500, ±1000, and ±2000 deg · s−1, while the
accelerometer has a programmable full scale range of ±2, ±4, ±8 and ±16 g.

The input voltage can be between 2,3 and 3,4 V, and it includes embedded algorithms
for run-time bias and temperature calibration.
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The unit collects gyroscope and accelerometer data while synchronizing data sampling at
a user defined rate, and it uses Inter Integrated Circuit (I2C) protocol for communication,
whose speed can be up to 400 kHz.

3.5 Code Base
More than the physical setup, a certain amount of code allowing to run controllers on the
present hardware is also available.
Written in C++, it comprises all the drivers necessary to interface the BeagleBone board
with the motor and all the different sensors described above, in section 3.3 and section
3.4.

The actual controllers which make the Cubli stand up on its corner, are all composed of
source and header files in a folder named controller/controller_code/. Each controller has
to implement three functions, as shown in Listing 3.1.

1 /∗∗
2 ∗ Runs the a c t u a l c o n t r o l l e r on the g iven feedback ( s ) and the pre−d e f i n e d input ( s ) .
3 ∗ Takes the sampling time and a 3x1 vec to r x_hat conta in ing the feedbacks
4 ∗ ( proce s s ed data from the s e n s o r s ) :
5 ∗ 0 : angular p o s i t i o n o f the frame
6 ∗ 1 : angular v e l o c i t y o f the frame
7 ∗ 2 : angular v e l o c i t y o f the wheel .
8 ∗ Returns the output which should be app l i ed to the actuator ( cur r ent −> motor )
9 ∗/

10 extern CONTROLLER_OUTPUT_struct_T AAU3_CUSTOM_CONTROLLER ( real_T Ts ,
11 const real_T x_hat [ 3 ] ) ;
12 /∗∗
13 ∗ I n i t i a l i z e s the c o n t r o l l e r parameters ( gain , po lynomia l s c o e f f i c i e n t s )
14 ∗ Has to be c a l l e d only once , b e f o r e running the c o n t r o l l e r i t s e l f .
15 ∗/
16 extern void AAU3_CUSTOM_CONTROLLER_initialize ( void ) ;
17 /∗∗
18 ∗ Does whatever i s needed ( i f needed ) to stop the c o n t r o l l e r
19 ∗/
20 extern void AAU3_CUSTOM_CONTROLLER_terminate ( void ) ;

Listing 3.1: Code snippet of the standard controller interface, written in C.

This is a default model based on the way MATLAB auto-generates controller code into
C++ files. This model shall be used in this project as a general reference, to keep some
common structure between the different controllers to be implemented. However, it is
possible to adapt the arguments and the returned variables depending on the needs.
Moreover, MATLAB auto-generation of code is not used in this project.

The file controller/controller_test.cpp contains the core part of the controllers operation.
One of its functions, void ControllerTest : : runController ( ControllerArgs∗ ←↩
args ) , is called at some regular pre-defined intervals which is the desired sampling time.
This initializes the available controllers, retrieves and processes the data from the sensors,
and finally uses the controller code to compute the output current to send to the motor.
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This updated output current is actually sent at the beginning of the next call.

It is important to note that the whole code is intended to run on the Beaglebone Black.
Indeed, the latter uses an ARMv7 processor architecture, which requires the program to
be compiled either directly on a computer with similar architecture which might be slow,
or on another standard PC with a cross-compilation toolchain [16].

In this chapter, the Cubli setup has been described from the mechanical parts to the
electronics components and to the software code base. The next chapter presents a math-
ematical approach for the description and analysis of the system and its behavior.
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4 | System Modeling

With the given setup being described, it is necessary to study its natural behavior in more
detail by deriving a model of this system. This chapter shows the process used to put up
this model.

A mechanical drawing of the Cubli showing angles and coordinate system conventions is
seen in figure 4.1. A two-dimensional global coordinate system is chosen with its origin
on the pivot point of the frame. Moreover, the positive direction of the angles is chosen
to be clockwise.

Figure 4.1: Mechanical drawing of the Cubli, including coordinate system and angle conventions. Note
that the x axis is pointing upwards.

In next section, a complete model of the given setup is derived from Newton’s Second
Law of motion and rotation.

4.1 Derivation
To derive the modeling equations for the Cubli system from Newton’s Second Law, it is
split up into its two moving parts as seen in figure 4.2 and figure 4.3.
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Figure 4.2:
Free body diagram of the frame of the Cubli.

Figure 4.3:
Free body diagram of the reaction wheel of the

Cubli.

The equation for the frame is deduced from the figure 4.2.

JFθ̈F = −BFθ̇F + lF × (mF · g) + lw × F− τm + Bwθ̇w [N ·m] (4.1)

Where:
JF is the inertia of the frame [kg ·m2]

θ̈F is the angular acceleration of the frame [rad · s−2]

BF is the friction coefficient of the frame [N ·m · s · rad−1]

θ̇F is the angular velocity of the frame [rad · s−1]

lF is the length to center of mass of the frame [m]

mF is the mass of the frame [kg]

g is the gravitational acceleration [m · s−2]

lw is the length to center off mass of the wheel [m]

F is the force delivered to the frame from the wheel [N]

τm is the torque delivered by the motor [N ·m]

Bw is the friction coefficient of the wheel [N ·m · s · rad−1]

θ̇w is the angular velocity of the wheel with respect to the frame [rad · s−1]
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The following equation is then derived from figure 4.3:

Jw(θ̈F + θ̈w) = τm − Bwθ̇w [N ·m] (4.2)

Where:
Jw is the inertia of the wheel [kg ·m2]

θ̈w is the angular acceleration of the wheel with respect to the frame [rad · s−2]

In equation (4.1) the term lw × F describes the torque delivered from the wheel to the
frame, as it acts around the pivot corner of the frame. The vector F is decomposed into
to forces parallel to the axes, Fx and Fy, as seen on figure 4.2 and figure 4.3. To be able
to apply Newton’s Second Law, expressions for both the x- and y-coordinate describing
the position of the center of mass of the wheel are found.

x = lw · cos(θF) [m] (4.3)
y = lw · sin(θF) [m] (4.4)

According to Newton’s 2nd law of motion, ∑F = m · a. Then to find Fx and Fy, the
acceleration of the point at center of mass of the wheel must be known for both the x-
and the y-direction. To achieve this the derivatives of the expressions for x and y in
equation (4.4) are derived.

ẋ = −lw · sin(θF) θ̇F
[
m · s−1

]
(4.5)

ẍ = −lw · cos(θF) θ̇ 2
F − lw · sin(θF)θ̈F

[
m · s−2

]
(4.6)

ẏ = lw · cos(θF) θ̇F
[
m · s−1

]
(4.7)

ÿ = −lw · sin(θF) θ̇ 2
F + lw · cos(θF) θ̈F

[
m · s−2

]
(4.8)

Equation (4.6) and equation (4.8) can now be used with Newton’s 2nd law of motion,
while also taking gravity into account in sum of forces, to derive Fx and Fy.

−Fx −mw · g = mw · ẍ
Fx = −mw · ẍ −mw · g
Fx = mw · ( lw · cos(θF) θ̇ 2

F + lw · sin(θF) θ̈F )−mw · g [N] (4.9)

−Fy = mw · ÿ
Fy = −mw · ( −lw · sin(θF) θ̇ 2

F + lw · cos(θF) θ̈F )
Fy = mw · ( lw · sin(θF) θ̇ 2

F − lw · cos(θF) θ̈F ) [N] (4.10)

The original objective was to evaluate the term lw × F in equation (4.1). Since the
expressions for the two forces, Fx and Fy, that compose the vector F, are found in equation
(4.9) and (4.10), the vector product from equation (4.1) is evaluated.
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lw × F =

∣∣∣∣∣∣∣∣∣∣∣
î ĵ k̂

lw · cos(θF) lw · sin(θF) 0

Fx Fy 0

∣∣∣∣∣∣∣∣∣∣∣
[N ·m]

(4.11)

lw × F =


(lw · sin(θF) · 0− 0 · Fy)

(lw · cos(θF) · 0 + 0 · Fx)

(lw · cos(θF) · Fy − lw · sin(θF) · Fx)

 [N ·m]

(4.12)

lw × F = 0 · î + 0 · ĵ + (lw · cos(θF) · (mw · ( lw · sin(θF) θ̇ 2
F − lw · cos(θF) θ̈F ))

−lw · sin(θF) · (mw · ( lw cos(θF) θ̇ 2
F + lw · sin(θF) θ̈F )

−mw · g)) · k̂ [N ·m]
(4.13)

lw × F = (−lw2 ·mwθ̈F (cos2(θF) + sin2(θF)) + lw · sin(θF) mw · g) · k̂ [N ·m]
(4.14)

lw × F = (−lw2 ·mwθ̈F + lw sin(θF) mw · g) · k̂ [N ·m]
(4.15)

Since all torques only have a z-coordinate, equation (4.15) is inserted in equation (4.1),
without vector-notation. Note that lF × (mF · g) = (mF · lF · g · sin(θF)) · k̂.

JF · θ̈F = −BF · θ̇F + mF · lF · g · sin(θF)
−mw · lw2 · θ̈F + mw · lw · g · sin(θF)− τm + Bw · θ̇w [N ·m] (4.16)

(JF + mw · lw2) · θ̈F = −BF · θ̇F + (mF · lF + mw · lw) · g · sin(θF)− τm + Bw · θ̇w [N ·m]
(4.17)

Isolating θ̈F from equation (4.17) gives the final expression for the angular acceleration of
the frame.

θ̈F = −BF · θ̇F + (mF · lF + mw · lw) · g · sin(θF)− τm + Bw · θ̇w

JF + mw · lw2

[
rad · s−1

]
(4.18)
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The equation above can be rearranged to clarify the effect that each variable exerts on
the final acceleration of the frame.

θ̈F = − BF

JF + mw · l2w
· θ̇F + (mF · lF + mw · lw) · g

JF + mw · l2w
· sin(θF)

− 1
JF + mw · l2w

· τm + Bw

JF + mw · l2w
· θ̇w

[
rad · s−1

]
(4.19)

Once the acceleration of the frame is described by equation (4.19) it is possible to derive an
expression for the angular acceleration of the wheel with respect to its axis from equation
(4.2).

θ̈w = τm − Bw · θ̇w

Jw
− θ̈F

[
rad · s−1

]
(4.20)

Substituting θ̈F by the expression for the angular acceleration of the frame (equation
(4.18)) into equation (4.20) gives the final description for θ̈w, as shown in equation (4.21).

θ̈w = τm − Bw · θ̇w

Jw

−(mF · lF + mw · lw) · g · sin(θF)− τm + Bw · θ̇w − BF · θ̇F

JF + mw · lw2

[
rad · s−1

]
(4.21)

θ̈w = (Jw + JF + lw2 ·mw) · (τm − Bw · θ̇w)
Jw · (JF + mw · lw2)

−(mF · lF + mw · lw) · g · sin(θF)− BF · θ̇F

JF + mw · lw2

[
rad · s−1

]
(4.22)

Equation (4.22) can be rearranged in the same way as equation (4.19).

θ̈w = Jw + JF + lw2 ·mw

Jw · (JF + mw · lw2)
· τm −

(Jw + JF + lw2 ·mw) · Bw

Jw · (JF + mw · l2w) · θ̇w

−(mF · lF + mw · lw) · g
JF + mw · lw2 · sin(θF) + BF

JF + mw · lw2 · θ̇F
[
rad · s−1

]
(4.23)

The final model of the system can be summarize with the following equations:

θ̈F = − BF
JF+mw·lw2 · θ̇F + (mF·lF+mw·lw)·g

JF+mw·lw2 · sin(θF)− 1
JF+mw·lw2 · τm + Bw

JF+mw·lw2 · θ̇w

(4.24)

θ̈w = Jw+JF+mw·lw
2

Jw·(JF+mw·lw2) · τm − (Jw+JF+lw
2·mw)·Bw

Jw·(JF+mw·lw2) · θ̇w − (mF·lF+mw·lw)·g
JF+mw·lw2 · sin(θF) + BF

JF+mw·lw2 · θ̇F

(4.25)
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4.2 Linearization
Now that a model of the Cubli frame is put forth in equation (4.24), it is apparent that
the system is nonlinear due to the term including sin(θF). In order to proceed with a
simulation and controller design, it is convenient to first linearize the model. This is done
by use of a Taylor series approximation.

Based on equation (4.17) the system is described in an operating point, around which it
varies with ∆θF.

(JF + mw · lw2)(θ̈F0 + ∆θ̈F) = −BF · (θ̇F0 + ∆θ̇F)
+(mF · lF + mw · lw) · g · sin(θF0 + ∆θF)
−(τm0 + ∆τm) + Bw · (θ̇w0 + ∆θ̇w) [N ·m]

(4.26)
(JF + mw · lw2)(θ̈F0 + ∆θ̈F) = f((θ̇F0 + ∆θ̇F), (θF0 + ∆θF), (τm0 + ∆τm), (θ̇w0 + ∆θ̇w)) [N ·m]

(4.27)

The operating point is chosen as θF0 and θw0 and their derivatives being equal to 0. This
corresponds to the frame being in the upright position, see figure 4.1. At this position all
the velocities and accelerations are 0, which results in 0 torque τm as well. Taking this
into account and applying the Taylor series approximation yields the following.

(JF + mw · lw2)∆θ̈F =
��

���
���

���
�:0

f(θ̇F0 , θF0 , τm0 , θ̈w0)

+ ∂

∂θ̇F
f ·∆θ̇F + ∂

∂θF
f ·∆θF + ∂

∂τm
f ·∆τm + ∂

∂θ̇w
f ·∆θ̇w [N ·m]

(4.28)

All the higher order terms are discarded due to their negligible impact on the system
when it is near the operating point.

(JF + mw · lw2)∆θ̈F = −BF∆θ̇F + (mF · lF + mw · lw) · g·cos(θF)∆θF

∣∣∣∣ θF = 0

−∆τm + Bw∆θ̇w [N ·m]
(4.29)

(JF + mw · lw2)∆θ̈F = −BF∆θ̇F + (mF · lF + mw · lw) · g ·∆θF −∆τm + Bw∆θ̇w [N ·m]
(4.30)

Equation (4.30) shows the final linearized model.

4.3 Block Diagram
To verify the model in simulation equation (4.30) is transformed into the Laplace domain,
after which a transfer function of the system can be derived. The proceeding equations
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are valid only around the operating point, and so for better overview, in the following
∆θF = θF.

(JF + mw · lw2) · θF · s2 = −BFθF · s + (mF · lF + mw · lw)g · θF − τm + Bwθw · s
(4.31)

The angle of the reaction wheel, θw, still features in equation (4.31). It is desirable to have
only one input, τm, and one output, θF. To achieve this, equation (4.20) is transformed
into the Laplace domain and solved for θw.

θw · s2 = τm − Bwθw · s
Jw

− θF · s2 (4.32)

θw = −JwθF · s2 + τm

Jw · s2 + Bw · s
(4.33)

Equation (4.33) is now substituted for θw in equation (4.31), and the transfer function is
of the system is derived.

(JF + mw · lw2) · θF · s2 = −BFθF · s + (mF · lF + mw · lw) · g · θF − τm

+Bw ·
(
−JwθF · s2 + τm

Jw · s2 + Bw · s

)
· s

θF
τm

=
s

−JF−mw·lw2

s3+
(

Bw
Jw + Bw+BF

JF+mw·lw2

)
s2−

(mF·lF+mw·lw)·g
(JF+mw·lw2)Jw

− BFBw
(JF+mw·lw2)Jw

s−(mF·lF+mw·lw)Bw·g

(JF+mw·lw2)Jw

(4.34)

The transfer function from equation (4.34) can also be represented in the form of a block
diagram, as seen in figure 4.4.

∑ ∑ ∑ 1
JF+mw·lw2

1
s

1
s

∑ ∑ 1
Jw·s Bw

Jw

BF

(mF · lF + mw · lw)g

τm(s) θF(s)θ̈F(s) θ̇F(s)

θ̇w(s)

◦ ••••

•

−
+

+
+

+
−

+
−

+
−

Figure 4.4: Block diagram of the Cubli as a SISO system. The input is the torque applied to the wheel.
The output is the angular position of the frame.
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5 | Plant Analysis

Once the model of the system has been described, a further analysis can be done. It
includes the acquisition and estimation of the parameters, the model testing and the
stability analysis.

5.1 Acquisition of Parameters
A method to obtain the parameters from the wheel (mass, distance from its center to
the pivoting point of the frame, inertia with respect to its center of rotation and friction)
is provided in appendix L. However, as these parameters should remain constant and
they have been obtained by previous project runners, it is chosen to use these known
parameters [17].

Parameter Value Units

mw 0, 222 kg

lw 0, 093 m

Jw 0, 601 · 10−3 kg ·m2

Bw 17, 03 · 10−6 N ·m · s · rad−1

Table 5.1: Parameters of the wheel.

In the previous sections parameters have been found, however, some critical parameters
were given from a previous project. When these parameters were found, the Cubli had
another mass, due to some physical modifications of the platform, which were performed
after the referred project.

Mass of the Frame
The first one to find is the mass of the frame, which can be measured by weighing the
setup without the base and substracting the known mass of the wheel. This gives a mass
of 0, 548 kg, see appendix E.

Center of Mass of the Frame
The new center of mass can be found hanging the frame from different corners and mea-
suring the deviation angle from the vertical position in every direction. This gives a center
of mass which can be seen in figure 5.1.
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Figure 5.1: Location of the center of mass, where θ1 = 0, 043 rad and θ2 = 0, 078 rad.

The new point is not in the vertical line as it was assumed in the model, but this can
be solved correcting the offset in the calculation of the angle inside the control loop and
taking this new point as the equilibrium one.

The new lF can then be obtained projecting the center of mass onto the vertical line,
resulting in 8, 498 cm, see appendix E.

Inertia and Friction of the Frame
The last parameters, JF and BF, can not be measured directly so they have to be estimated.
The starting point is given by the parameters from the previous report, as seen on figure
5.2 [17].

Time (s)
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

A
ng

le
 (

ra
d)

-0.15

-0.1

-0.05

0

0.05

0.1

0.15
Simulation with Initial Model Parameters

Test data
Simulation

Figure 5.2: A comparison of the model simulation and the initially given parameters
(JF = 6, 08 · 10−3 kg ·m2 and BF = 5, 32 · 10−3 m · s · rad−1). Data is obtained through appendix D.

This problem can be solved using optimization, which is the subject of the proceeding
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section.

5.2 Parameter Estimation using Optimization
In this section methods for optimization are investigated. The base of the implementation
is in this case a Matlab script which is fed with test data along with the model simulation,
whose task is to fit the model output to the test data by adjusting one or more parameters
in the model. In this case the model representation supplied to the script is a Simulink
model, which can then be run by the script whenever needed and the script can modify
the parameters to be adjusted. The process is iterative.

The Optimization Problem
The basic scheme for the optimization problem is given in figure 5.3.

Figure 5.3: Schematic of the optimization problem, where input (u(t)) and output(y(t)) data is logged.
The input data is used with the simulation to generate the simulation output (ym(t)). The real output and
the simulated output are then compared and an adjustment is made to the parameters of the simulation.
Then a new ym(t) is generated with the u(t) and compared to the y(t). This process is iterated until a
satisfactory match between y(t) and ym(t) is achieved. Inspired from Senstools documentation.[18]

The provided data is taken from an initial value test of the Cubli hanging down like a pen-
dulum, see appendix D. If the fit is done in the operating region from −0, 15 to 0, 15 rad,
the simulated behavior in this range will be closer to reality.

Furthermore, the nonlinear model is used to accurately describe the oscillatory behavior
of the pendulum. The model is modified such that it describes the system as a regu-
lar pendulum without the dynamics of the reaction wheel, in order to match the test
conditions under which the data was extracted, as seen in figure 5.4.
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∑ ∑ 1
JF+Jw+mw·lw2

1
s

1
s

BF

(mF · lF + mw · lw)g sin

τm(s) θF(s)θ̈F(s) θ̇F(s)
◦ ••

−
+

+
−

Figure 5.4: Block diagram of the system as a regular pendulum with the wheel fixed to the frame.

In order to minimize the difference between the data points measured in test and the
output of the model, a function to describe such a relationship is needed. The cost
function used to describe goodness of the fit, is a mean square error function.

P(θ) = 1
2N

N∑
k=1

(yk − ymk(θ))2 (5.1)

Where:
θ is the parameter(s) to be adjusted

N is the degrees of freedom for each parameter

k is each sample in time, t = 1T, 2T, ..., kT, ..., NT
where T is sampling time

yk is the kth sample of the test measurement output vector

ymk is the kth sample of the model output vector

A normal mean square error function is only divided by the degrees of freedom, N, but in
this case it is divided by 2N to cancel out the factor two which arises when computing its
gradient. This does not have any impact on the solution since the minimum maintains
its original position.

Optimization using the Gradient
One way of solving the optimization problem is through the use of the gradient. It
indicates in which direction the steepest descent (or ascent) is found in an infinitesimal
surrounding of a given starting point.

For a function f(x) with a change in x of δ, the following can be obtained from the Taylor
series.[19]

f(x + δ) ≈ f(x) + gTδ + 1
2δTHδ (5.2)

Where:
g is the gradient ∇f(x)

H is the Hessian

δ is the change in x
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In gradient based methods, only the first order Taylor approximation is used, that is, the
last term, 1

2δTHδ is discarded. If the derivative of the first order approximation is set to
zero, the following is obtained.[19]

∇ f(x + δ) ≈ g = 0 (5.3)

That is, if the gradient of the function to be minimized is 0, a minimum or maximum
exists as a candidate for a solution in this point. It follows that if standing in some point
and computing the gradient in this point, then the gradient, g, is the steepest ascent
direction and the negative gradient, −g, is the steepest descent direction. This only takes
into account the immediate surroundings of the initially chosen point. A visualization
of how the gradient points opposite to the minimum of an arbitrary function is seen on
figure 5.5, which means that the negative gradient points to the minimum.

1.5
1

Visualization of Gradient of Arbitrary Function

0.5
0

X1

-0.5
-1

-1.5
-1

X2

0

1

f(x)    

0

-1

-2

-3

-4

-5

-6

Figure 5.5: Visualization of gradient of an arbitrary function.

One way of implementation is to set a step-size which decides how far in the −g direction
to go. The step-size can then be scaled in each iteration to avoid taking too large steps
as shown in figure 5.6 and 5.7, where x∗ is the value of x which minimizes f(x), x0 is
the starting point at which −g is computed and x is the point reached after the step.[18]
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Figure 5.6: A too large step will cause the
algorithm to step over the valley, resulting in a

larger value of f(x) in the −g direction.

Figure 5.7: By going back and choosing a
smaller step, a smaller value for f(x) is

obtained.

The method does find a minimum. However, it converges to it rather slowly. An imple-
mentation where it is possible to directly retrieve the gradient of the function which is to
be minimized, f(x), is shown in figure 5.8.
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Figure 5.8: An example of a direct
implementation of a gradient optimization

method. It steps over the valley and the step
size is reduced in the red iteration.
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Figure 5.9: From the zoom on the
convergence, it is seen that many iterations
(here 100) are needed using this method.

Steepest Descend Method
The steepest descent method also uses the gradient to determine in which direction the
local minimum lies; the method is therefore also often referred to as the gradient descent
method. In the steepest descent method, the problem is minimized along the gradient in
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each iteration, as opposed to just taking a step as described in the previous.
To achieve this minimization along the gradient, one often uses a line search algorithm.
There exists several line search algorithms, such as Dichotomous, Golden Section, Fi-
bonacci, backtracking line search and so on. For the purpose of minimizing the one-
dimensional problems in the gradient directions, the Dichotomous and Fibonacci line
searchers are further investigated in the following sections. To use the line search however,
a region in which the minimum is assumed to reside (the bracket) must be provided.[19]
In the following such a region is assumed given, but in the section following the two line
searchers, a method for selecting a bracket is discussed.

Dichotomous Line Search
The dichotomous line search is one of the more basic methods. The method locates the
middle of the bracket (along x) and finds a point on either side of the middle, this gives
the following two x-values at which the cost function must be evaluated.[19]

xa = xU − xL

2 − ε xb = xU − xL

2 + ε (5.4)

Where:
xL is the lowest value of x in the bracket

xU is the highest value of x in the bracket

xa is the lower value of x at which f(x) must be evaluated

xb is the upper value of x at which f(x) must be evaluated

ε is the small change in positive and negative direction from the middle
When the cost function, f(x) is evaluated at xa and xb, the two results are compared
and two new possible intervals with possibility of containing the minimum can be deter-
mined as a consequence. These two intervals can be combined such that a new smaller
bracket containing the minimum is found.[19]

This process of reducing the range of the bracket is illustrated in figure 5.10, where the
green and red functions are examples of how f(x) could behave given the red known points.
This leaves the two possible intervals for the minimum x∗. In the case of f(xa) < f(xb), in
figure 5.10a, the possible intervals, xL < x∗ < xa and xa < x∗ < xb, can be combined to
the new bracket xL < x∗ < xb, shown in blue, which is sure to contain the minimum, x∗,
within xL and xU. Said in an other way, if f(xa) < f(xb), x∗ must be contained in [xL, xb],
so xb = xU for the next iteration. In the unlikely case that f(xa) = f(xb), either xa or xb
can be set as the new boundary.[19]
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(a) Here f(xa) < f(xb) resulting in the red
interval, xL < x∗ < xa, and green interval,
xa < x∗ < xb, which when combined yields
the new bracket, [xL, xb], shown in blue.

(b) Here f(xb) < f(xa) resulting in the
green interval, xa < x∗ < xb, and red in-
terval, xb < x∗ < xU, which when com-
bined yields the new bracket, [xa, xU],
shown in blue.

Figure 5.10: The function, f(x), is only evaluated at the points indicated by red dots. Two examples of
how the graph of f(x) could appear is shown in green and red.

In the example implementation provided in figure 5.11 the method is demonstrated on
a rough scale so that the decisions made by the algorithm are clearly seen. Red lines
represent xa, blue lines xb and for each iteration a new xL or xU is selected and indicated
by the dotted markings.
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Dichotomous Line Search

Figure 5.11: The bracket is marked as xL and xU, the remaining reference lines marks xa as red and xb
as lines. The lines which are dotted are the ones selected as new xL, xa, or new xU, xb in each iteration.

Fibonacci Line Search
The Fibonacci line search and the golden section search are both based on a fundamental
method of interval selection. As opposed to the dichotomous line search, these methods
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only require one function evaluation per iteration. This is achieved by reusing one of the
function evaluations performed in the previous iteration.[19]

An example of this interval system is shown in figure 5.12 where the first iteration, marked
in green, assuming some bracket, [xL, xU], produces two intervals with equal lengths of
I1. Either the right or the left interval is then chosen as the new bracket. In figure 5.12
f(xa) > f(xb), therefore the right interval must contain the minimizer, so long as there is
only one minimum within the bracket. Thus, the new bracket is set: [xL, xU] = [xa, xU].
In the case that f(xa) = f(xb), either xa or xb can be set as the new boundary.

Within this bracket one function evaluation has already taken place (the circled red dot),
this interval can be reused and only one further evaluation of f(x) is needed to proceed
with the next iteration.

Figure 5.12: The function, f(x), is only evaluated at the points indicated by red dots and the function
f(x) is obviously unknown in the process. First iteration is marked in green and the second in blue. x∗

denotes the local minimizer and I is used to relate length of the intervals, showing that the two intervals
in each iteration are equal.

If this procedure is repeated with numerous iterations, a series of interval lengths is pro-
duced. From figure 5.12 the relation between successive interval lengths can be described
as I1 = I2 + I3, or in general for any iteration, k, as Ik = Ik+1 + Ik+2.
With this as a basis, different ratios between Ik+1 and Ik+2 can be chosen, such as the
golden section or the Fibonacci numbers.[19]
If for the last nth iteration, In+2 is assumed to be zero, then In = In+1 + In+2 = In+1 and

16gr630 31 of 125



Chapter 5. Plant Analysis

the following sequence of intervals emerges.

In+1 = 1In = F0In

In = In+1 + In+2 = 1In = F1In

In−1 = In + In+1 = 2In = F2In

In−2 = In−1 + In = 3In = F3In

In−3 = In−2 + In−1 = 5In = F4In

In−4 = In−3 + In−2 = 8In = F5In
...

Ik = Ik+1 + Ik+2 = Fn−k+1In
...

I1 = I2 + I3 = FnIn (5.5)

Where:
Fn is the largest Fibonacci number used.

{ F0, F1, . . . Fn } is the Fibonacci sequence up to Fn

For the last expression in equation (5.5), the size of the first bracket, I1, is known and
the last interval, In, can be chosen as the precision of the search. From this, the largest
Fibonacci number needed can be found as Fn = I1

In
, and the remaining intervals can be

calculated progressively during each iteration by use of the appropriate numbers in the
Fibonacci sequence.[19]
In figure 5.13 an example implementation is shown where each iteration contains xa and
xb. In the iterations where xa is chosen as the new xL it is marked with a red circle and
for xb chosen as new xU a blue circle is used. It shows clearly shows how each iteration
only requires one function evaluation.
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Figure 5.13: Fibonacci line search where the first iteration is at the top of the graph and each subsequent
iteration is listed one line at a time downward. New xL is marked with a red circle and new xU with a
blue circle. The chosen minimizer is marked in red at the bottom.

To see the benefits of using the Fibonacci line search rather than the more rudimentary
dichotomous line search, the one-dimentional implementations are compared between fig-
ure 5.15 and figure 5.14. The precision intervals determining how close each method is to
reaching the true minimum are set to approximately the same value. This is done such
that the number of function evaluations used for similar results can be compared in the
two methods.
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Figure 5.14: Example showing iterations and function evaluations used to obtain a given performance
of the dichotomous Line Search.
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In the dichotomous line search fewer iterations are used because each iteration almost
cuts the bracket in half for each iteration. However, since each iteration requires two
evaluations of f(x), the final number of function evaluations exceeds that of the Fibonacci
line search. This is of course not always true – the location of the minimum in the bracket
plays a role. If the minimum lies close to the middle of the bracket the dichotomous line
search might get there faster than the Fibonacci line search. However for a broad spectrum
of problems the performance of the Fibonacci line search will likely outperform that of
the dichotomous line search.
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Figure 5.15: Example showing iterations and function evaluations used to obtain a given performance
of the Fibonacci Line Search.

The lower number of function evaluations makes the Fibonacci line search superior in this
case. In these examples the function can be analytically evaluated and the minimization
problem can be solved analytically in one iteration. This is however not the case for a cost
function representing mean squared error between simulation and reality for each change
in one or more parameters. Such a cost function requires a simulation for each and every
function evaluation. This is a time-expensive task which is why Fibonacci line search is
chosen for the task at hand.

Forward Backward Method
The gradient shows the search direction and Fibonacci line search finds a minimizer to
the one-dimensional problem contained within some bracket in this direction. It follows
that some method for finding the bracket to contain the line search must be selected.
For this purpose the forward backward method is chosen. The method attempts to find
values of the cost function which goes from high to low to high.[20]

The idea is simple: It takes a step forward from the initial point, evaluates the cost
function, and if the value is higher than the original one it takes a step backward, otherwise
it takes a step forward. If it finds high low low, the step-length is increased. Since it is
searching in the gradient direction a low high high geometry indicates that the minimum
lies in the found interval so long as the set searched is monotonic; that is, the initial step
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did not step over a peak of the cost function.[20]
In figure 5.16 an implementation of the gradient descend method is illustrated. Figure
5.17 shows how the gradient method generates a pattern with almost orthogonal lines
converging to the minimum of the function.

Steepest Descend with Forward Backward Method and
Fibonacci Line Search
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Figure 5.16: An example of a direct
implementation of the gradient descent

method using the forward backward method
to determine the bracket in which the

Fibonacci line search is used to solve each of
the successive one-dimensional problems. The
dotted lines represent the bracket found by the
forward backward method in each iteration.

Steepest Descend with Forward Backward Method and
Fibonacci Line Search, Zoom
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Figure 5.17: Zoom on the convergence shows
how the gradient descend method create a
pattern of lines converging to the minimum,

(43 iterations are shown).

Implementation of Steepest Descent
To better understand the problem at hand the cost function to be minimized is shown in
figure 5.18. It might seem strange to do optimization when one could just directly find
the minimum by graphical inspection of the cost function. However, this graph took over
5 hours to render and contains the results of 90 000 simulations, which makes it a very
inefficient and unpractical to work with in general. It is therefore desirable to obtain an
optimization algorithm which can give a result in a relatively short time in case of any
changes, be it new test data or changes to the system model. In this case the cost function
is saved in a data-file, such that it can be plotted during implementation as a graphical
reassurance that the optimization algorithm is behaving normally.
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Figure 5.18: The cost function to be minimized. The parameters are shown in the xy-plane and the
deviation between simulation and test data, cost, for each two parameters is shown on the z axis. To
generate the graph 90 000 simulations were run, one for each point on the surface, and the rendering
time exceeded 5 hours on a regular PC. This is not practical to work with in general, but valuable in the
implementation process of the optimization algorithm.

When implementing the steepest descent method the gradient of the cost function in
needed, which includes a numerical differentiation of the model.

∇ P (θ) = G(θ) = ∇
(

1
2N

N∑
k=1

(
yk − ymk

(θ)
)2
)

(5.6)

G(θ) = − 1
N
(
∇ ymk

(θ)T(yk − ymk
(θ))

)
(5.7)

The implementation is seen in Listing 5.1.

1 %−−−− CALCULATING THE GRADIENT OF THE COST FUNCTION −−−−−−−−−−−−−−−−−−−−−−−−
2
3 % gradientOfC = 1/N ∗ ( Y − Ym ) ∗ Ym'
4 % Where :
5 % Y i s the data recorded from t e s t
6 % Ym i s the model s imu la t i on output
7 % Ym' i s the p a r t i a l d e r i v a t i v e o f the s imulated model with r e s p e c t to
8 % each o f the parameters to be est imated .
9

10 % parameters : J_f B_f
11 % Small magnitude d e v i a t i o n from these parameters i s s e t
12 delta = 0 . 0 1 ;
13
14 % C a l c u l a t i n g the d e v i a t i o n
15 deltaJ_f = J_f+delta ∗J_f ;
16 deltaB_f = B_f+delta ∗B_f ;
17
18
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19
20 % Running the s imu la t i on again , now with J_f the d e v i a t i n g parameter
21 deltaYmJf = simCubli ( deltaJ_f , B_f , J_f , B_f ) ;
22
23 % Running the s imu la t i on again , now with B_f as the d e v i a t i n g parameter
24 deltaYmBf = simCubli ( J_f , deltaB_f , J_f , B_f ) ;
25
26 % F i n a l l y c a l c u l a t i n g the p a r t i a l d e r i v a t i v e s o f the model in ( J_f , B_f)
27 YmDiffBf = ( deltaYmBf − Ym ) / delta ;
28 YmDiffJf = ( deltaYmJf − Ym ) / delta ;
29
30 % This however i s j u s t f o r the model . . and we need
31 % the gr ad i e n t o f the c o s t funct ion , as s ta t e d e a r l i e r :
32 % gradientOfC = 1/N ∗ ( Y − Ym ) ∗ Ym'
33 gJf = −(1/N ) ∗ ( ( Y − Ym ) '∗ YmDiffJf ) ;
34 gBf = −(1/N ) ∗ ( ( Y − Ym ) '∗ YmDiffBf ) ;
35
36 % The gra d i en t o f the c o s t f u n c t i o n in the cur rent po int ( J_f , B_f) i s then :
37 g = [ gJf
38 fBf ] ;

Listing 5.1: Algorithm for the approximation of the gradient of the cost function.

With the gradient calculated the search direction is known, and implementation of the
forward backward method as described above determines the search interval. This enables
the above described Fibonacci line search to minimize the one-dimentional problem in each
iteration. In figure 5.19a the process of the minimization is shown on the cost function and
a contour plot is shown in figure 5.19b. In the contour plot the black dotted lines shows
the search direction and region determined by the gradient and the forward backward
method.

(a) The parameters are shown in the xy-plane and
the cost for each set of parameters is shown on the
z axis.
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(b) A contour plot of the cost function with the
optimization iterations. Here the black dotted
lines shows the search.

Figure 5.19: Here each iteration of the steepest descend using Fibonacci and forward backward method
is seen directly on the cost function.
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The final result achieved in by the algorithm is shown in figure 5.20, where
the normed RMS error between test results and simulation with final parameters,
JF = 4, 8 · 10−3 kg ·m2 and BF = 7, 8 · 10−3 m · s · rad−1, is also shown.
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Figure 5.20: The final result of the minimization using steepest descent with Fibonacci line search and
forward backward method.

Newton’s Method
When approaching the minimum another method can be used, also rooted in the Taylor
approximation. It is called Newton’s method and uses both the first and second order
terms of the approximation.[19]

f(x + δ) ≈ f(x) + gTδ + 1
2δTHδ (5.8)

In this case the derivative of the approximation is set to 0, and the following is ob-
tained.[19]

∇ f(x + δ) ≈ g + 1
2 ∇ Hδ2 (5.9)

∇f(x + δ) ≈ g + Hδ = 0 (5.10)
Using this to find an expression for the difference in x, δ, yields the following.[19]
0 = g + Hδ (5.11)
δ = −H−1g (5.12)
The gradient is found in the previous section, the Hessian is also needed and can be
related to to gradient as follows.[18]
H(θ) = ∇ (∇ P (θ)) = ∇ G(θ) (5.13)
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To avoid the second derivative of the cost function in equation (5.1), the Hessian can be
approximated simply by removing the 2nd derivative therm, which leads to the follow-
ing.[18]

H̃(θ) , 1
N

(∇ ym(θ)) (∇ ym(θ))T (5.14)

This approximation assumes that the model is only linearly dependent on the param-
eters, θ. As the error term, (y− ym(θ)), approaches zero the approximation becomes
increasingly accurate.

Senstools
Some of the background for the implementation above comes from documentation on a
Matlab toolbox called Senstools [18]. Since this toolbox includes an extra feature based
on parameter sensitivity and frequency domain and uses Newton’s method to converge
faster, it is a good decision to use this tool to check the previous results.

The same data, Simulink model and initial parameters as the previous case are given to
this toolbox and the result of the fit can be seen in figure 5.21.
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Figure 5.21: Data from the test (blue) and final fit with the new parameters (red) made with Senstools.

Finally, the parameters that Senstools estimates for the model are JF = 4, 8 · 10−3 kg ·m2

and BF = 7, 7 · 10−3 m · s · rad−1. The normed RMS error is 27, 4 % compared to the
27, 54 % shown in figure 5.20. In appendix N the normed RMS error is calculated only
for the first part of the region where the fit of the graphs is best, where Senstools get
22, 8908 % and the gradient descend implementation is 23, 0713 %. It can be seen that the
previously explained implementation provides a satisfactory result as the error is almost
the same, but since Senstools gives a slightly better result its parameters are chosen as
the final ones.
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5.3 Final Parameters
The final parameters of the system can be seen in 5.2.

Parameter Value Units

mw 0, 222 kg

lw 0, 096 m

Jw 0, 601 · 10−3 kg ·m2

Bw 17, 03 · 10−6 N ·m · s · rad−1

mF 0, 548 kg

lF 0, 08498 m

JF 4, 8 · 10−3 kg ·m2

BF 7, 7 · 10−3 N ·m · s · rad−1

Table 5.2: Parameters of the whole system.

5.4 Model Testing
Substituting all the constants of equation (4.34) with the parameters of the real model
results in the final transfer function of the system.

G(s) = −148, 8 · s
s3 + 1, 177 · s2 − 98, 19 · s− 2, 783 (5.15)

Using equation (5.15) it is possible to simulate the response of the system to a step input
and compare it with the response of the simulation of the block diagram. This is done to
verify that the block diagram is in fact showing the system described in equation (5.15),
as seen in figure 5.22.
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Figure 5.22: Step response comparison between the transfer function from equation (5.15) and the
block diagram from figure 4.4. The conclusion form this is the blockdiagram of the system was made
correctly.

In figure 5.23, the effect of the linearization is apparent. In the simulation the frame is
placed in upright position very slightly off 0 rad.
Figure 5.23 shows the behavior around the frame’s pivot point and does not include the
platform itself. For this reason, the simulation allows for the frame to fall down and act
as a normal pendulum. The nonlinear model shows how the pendulum dampens around
its natural equilibrium point, while the linear model keeps increasing the angle.
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Figure 5.23: Simulation of the linearized model compared to the nonlinear model.
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Another simulation can be made to see how the linearization behaves around 0 rad, see
figure 5.24.
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Figure 5.24: Simulation of the linear and non linear models, when they oscillate around equilibrium
position. It can be seen that the approximation is very closed to the nonlinear model in the range between
−0,79 rad and 0,79 rad.

From figure 5.24, the linearized model is considered a good approximation of the system’s
behavior in the operational region of ±0, 79 rad.

To further investigate the model, another test is made, see appendix C, to determine
weather the fall response of the nonlinear model and the real system matches.
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Figure 5.25: Comparison of test and nonlinear
model of frame falling from equilibrium position.
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Figure 5.26: Comparison of test and model of
frame falling from initial condition −0, 174 rad.

In figure 5.25 the Cubli falls from equilibrium position given a very small impulse. When
plotting the two data sets the time of the fall is aligned to see if the characteristics of the
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simulated fall matches reality.
To show that the simulation matches reality regardless the initial condition, the test is
repeated starting from −0, 174 rad (−10◦) in both simulation and test, the result is shown
in figure 5.26.

5.5 Stability Analysis
The linearized model is considered valid within the discussed range of angles (±0, 79 rad),
so it can be used to do a deeper analysis on the behavior of the system.

Root Locus
The Root Locus plot gives information about the location of the poles and zeros in open
loop, and how the poles in closed loop will change as the gain of the whole system increases.

As seen in figure 5.27 and figure 5.28 the system has one zero (s = 0), and three poles
(s = −10, 5014; s = −0, 0283 and s = 9, 3531). This means that the system is unstable
as it has one pole in the Right Half Plane (RHP) and, moreover, as one of the branches
never crosses over to the Left Half Plane (LHP), the system can not be controlled just
with a proportional controller.
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Figure 5.27: Root Locus of the system.
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Figure 5.28: Zoom of figure 5.27 from
s = −0, 04 to s = 0, 04.

Nyquist Plot
In any transfer function, the zeros of 1+L(s) (L(s) being the open loop function) become
the poles of the closed loop system. That is why it is interesting to look at the Nyquist
Stability Criterion, which can give information about this topic.

16gr630 43 of 125



Chapter 5. Plant Analysis

The number of zeros in the RHP of 1+L(s) (ZRHP) is given by the number of poles of L(s)
(PRHP) and the number of clockwise encirclements of the Nyquist plot around -1 (N) (a
counterclockwise circle has a negative sign in this equation).

ZRHP = N + PRHP (5.16)

For the system to be stable (ZRHP) has to be zero, which means that there is no pole of
the close loop function in the RHP.

In the case of this plant, the number of poles of L(s) = G(s) in the RHP is one and there
are no encirclements of -1 in the Nyquist plot (figure 5.29). That results in one zero in the
RHP. As this zero will be a pole in the closed loop, the system is confirmed as unstable.

-120

-60

0 dB

+60

Figure 5.29: Nyquist plot of the plant.
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6 | Design Specifications

6.1 Requirements
Based on the design considerations and limitations explained earlier in this report, a list
of requirements has been developed.

1. The Cubli should be able to balance starting from an unstable equilibrium
position and null velocity.

Considering only naturally occurring perturbations, the Cubli needs to be able
to regulate its position by itself, around 0 rad, without falling directly.

2. The prototype should be able to balance around 0 rad, even though the
angle of inclination of the baseplate is changed within a reasonable range,
using internally mounted sensors.

This ensures that the 2D design of the Cubli can keep its upright position
independently from its base plate and therefore, can be more easily translated
to a 3D model.

From these established requirements, a controller allowing the Cubli to stabilize in an
upright position is to be designed and implemented.

6.2 Further Capabilities Analysis
Moreover, a further investigation on the behavior of the controlled system is to be done
in order to determine the capabilities of the final prototype. This includes:

1. Maximum recovery angle

Once the Cubli is balance, its position is forced to change to different angles
and the capability of it to go back to the equilibrium position is checked.

2. Maximum catching angle with no initial velocity of the wheel

The maximum starting angle the system can have and still be able to balance
is to be tested.
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7 | Classical Controller Design

The controller design is a wide field that goes from classic linear PID controllers to more
advanced techniques using numerical optimization.

In this chapter, a controller is designed using classical techniques. It is further analyzed
to verify if the results fulfilled the requirements.

7.1 Root Locus Design
The Root Locus of a transfer function is a plot of all the possible positions of the closed
loop poles when applying a proportional gain K. The number of poles will be the same
as the ones in the open loop case and each of them will have an associated branch that
shows how it moves along with K. The plot has the following main characteristics:

- The plot is symmetric with respect to the real axis.

- The number of branches, defined as n, is equal to the number of poles in the open
loop function.

- There are m branches that end in the zeros of the open loop function, m being the
number of zeros.

- There are n-m branches going to infinity.

- The position of the poles changes the behavior of the system as seen in figure 7.1

Stable Region Unstable Region

Real

Imag

Figure 7.1: Response of a system depending on the position of its poles.
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Root Locus design of controllers is based on the fact that the closed loop poles of a system
will depend on the poles, zeros and gain of the open loop function. Knowing how the plot
changes with the addition of poles and zeros, the branches can be modified to place the
poles of the closed loop function where needed.

7.2 Design of the Controller
The design of the controller is based on the root locus plot, where the final location of
the poles in closed loop can be seen.

The root locus of the system with a proportional controller can be seen in figure 7.2.
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Figure 7.2: Root Locus of the system. It has one zero (s = 0), and three poles (s = −10, 5014;
s = −0, 0283 and s = 9, 3531).

Looking at the root locus it can be derived that the system can not be controlled using
only a proportional controller because there is always a pole in the RHP no matter the
gain.

However, a first approximation of the system’s behavior in closed loop can be done through
a proportional controller. Such a system is tested with a gain of 10 as a controller. The
final closed loop poles are placed at −40, 4198; −0, 0018 and 39, 2448. In figure 7.3 it is
shown the response of the simulation and the one from the real setup with this proportional
controller.
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Figure 7.3: Behavior of the closed loop function with a proportional controller, both in simulation and
reality.

It is clear that, upon application of a 0 rad reference and a minimal initial offset, the
closed loop function with only a gain of 10 has an unstable response. Then the branches
of the root locus need to be changed by means of the addition of poles and zeros in the
controller.

As there exists one pole in the Right Half Plane (RHP), the controller must also have one
there to create two branches which can be attracted to the Left Half Plane (LHP).

Then, two zeros must be placed in the LHP to make the branches enter in the stable
region of the plot.

It is also important for the number of poles to be greater than the number of zeros so
that the controller is feasible in reality. This means that two poles need to be placed
somewhere so they don’t affect the behavior of the final system. This can be achieved if
they are placed in the LHP and far from the imaginary axis.

Finally, the gain must be adjusted to make the closed loop poles to be in a stable location.
The resultant Root Locus can be seen in figure 7.4.
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Figure 7.4: Root Locus of the final system.

The final system looks like figure 7.5 and the transfer function of the controller is give by
equation (7.1).

∑
D(s) G(s)

U(s) Y (s)
◦ •+

−

Figure 7.5: Block diagram of the final controlled system.

Where

D(s) = 0, 62737 · (1 + 0, 1054 s) · (1 + 0, 6254 s)
(1− 0, 1805 s) · (1 + 0, 01 s) · (1 + 0, 005 s) =

= −4582, 2 · (s + 9, 488) · (s + 1, 599)
(s− 5, 54) · (s + 100) · (s + 200) (7.1)

The stability of the controlled system can be then analyzed using the Nyquist plot of the
controller and the plant together in open loop, as seen in figure 7.2.
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Figure 7.6: Nyquist plot of the system with the controller.
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Now there are two poles in the RHP and the number of encirclements around -1 equals
-2 (they are counterclockwise). This means that the system should be stable (see section
5.5), as the number of zeros in the RHP becomes 0.

7.3 Discretization of the Controller
Since the controller appears stable from the root-locus and Nyquist plots analysis, the
controller calculations are to be implemented for testing on the system.
All the controller computations are made on the Beaglebone Black board, which is a
computer and cannot run continuously. This means that the controller has to go through
a discretization, i.e. that an approximation of the continuous-time controller is made in
the discrete-time domain.

The discretization process of a controller consists of mapping frequencies from the con-
tinuous domain to the discrete domain (z-domain), with respect to the sampling time, T,
of the feedback control system:

s = jω → z = esT (7.2)

The sampling time is chosen to be 0,01 s. This decision is based on the results from
appendix J, where it can be seen that the code takes around 0,008 s. To avoid timing issues
a frequency of 100 Hz is chosen and results in the sampling time previously mentioned.

Since, by definition, the discrete domain cannot represent the complete behavior of a sys-
tem through time, approximations are used to estimate this behavior. Different methods
are briefly described and compared hereafter.

The most direct method is the Zero-Order Hold (ZOH) approximation. It mimics a Digital
to Analog Converter’s output behavior by holding a value of a certain amplitude during
a time as long as the defined sampling time. Although it matches reality correctly as
long as the signal does not change too much between each sample, it does not fit as well
at high frequencies. Thus, it translates into phase lag in the frequency domain and can
cause trouble in closed-loop systems.
Another of the most commonly used aproximations is the bilinear transform (or Tustin’s
method) which is based on the trapezoidal integration principle. A reason to use this
method instead of others is that it maps the entire LHP (stable area in the continuous
domain) into the unit circle (stable area in the discrete domain)[21].
The bilinear approximation of z is defined as:

z ≈
1 + sT

2
1− sT

2
(7.3)

The inverse transformation of expression (7.3) is given by:

s ≈ T
2 ·

1− z−1

1 + z−1 (7.4)
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In general, the expression (7.4) is used to replace s in the continuous-time transfer func-
tion of the designed controller. However, due to the non-linear mapping induced by the
discretization, a pre-warp of the frequencies can be used before discretizing. This avoids
effects of phase lag near the cross-over frequency and thus, also avoids unwanted reduction
of gain and phase margins.[22, 23]

Moreover, Matlab has an available function, c2d ( ) , designed to convert a continuous
system’s transfer function into the discrete domain by specifying the sampling time (here,
T = 0, 01 s) and the desired method ( ' zoh ' , ' t u s t i n ' or ' prewarp '). When using the
' prewarp ' option, a supplementary argument is needed, corresponding to the critical
fequency, [24].
Here, 33, 5 rad · s−1 is chosen as the critical pre-warp frequency, as it corresponds to
the point at which the phase lag is at its maximum on the open loop Bode plot of the
continuous plant and controller, see figure 7.7.
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Figure 7.7: Bode plot of the continuous open loop system.

Figure 7.8 shows Bode plots comparing open loops with the original continuous controller
against the discretized controller’s with ZOH, normal Tustin’s method and pre-warping.
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Figure 7.8: Bode plot of the open loop system with the continuous controller (in blue), ZOH dis-
cretized controller (in orange), Tustin discretized controller (in yellow) and pre-warped Tustin discretized
controller (in purple).

From figure 7.8, it is possible to see that the phase of the ZOH discretized controller
diverges from the continuous one’s, no later than at 3 rad · s−1. On the other hand,
Tustin discretized controllers match closely with the continuous one until approximately
10 rad · s−1.
The discrete systems here, are only plotted before the vertical line which represents the
Nyquist frequency, i.e. a half of the sampling frequency, chosen earlier in this section.
More importantly, the two discrete versions of the controller, the orange one using a
simple Tustin method and the purple one using also pre-warping, seem very similar both
in frequency and phase.

However, pre-warping should improve the matching between the discretized version and
the continuous version of the controller, by re-mapping frequencies to reduce the bilinear
transform’s distortion. Thus, given some appropriate pre-warp frequency, the discretized
system’s poles are scaled, so that it becomes realizable.
Thus, the pre-warped discretized controller is chosen for the actual implementation on
the Cubli, in the code base, see section 3.5, and its discrete transfer function is:

D(z) = τm,w(z)
eθ(z) = −8,314 + 7,422 · z−1 + 8,302 · z−2 − 7,434 · z−3

1− 1,382 · z−1 + 0,3415 · z−2 + 0,001 638 · z−3 (7.5)

In this section, the controller designed from the root locus has been discretized. The next
step is to translate this discretization in a form that can be run on the micro-computer
running the calculations, i.e. the BeagleBone Black.
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7.4 Implementation of the Controller
To implement a discrete controller in a code environment, the preferred form of equation
is the difference equation. This is why equation (7.5) is transformed into:

τm[n] = −8,314 · eθ[n] + 7,422 · eθ[n− 1] + 8,3023 · eθ[n− 2]− 7,434 · eθ[n− 3]
+1,382 · τm[n− 1]− 0,3415 · τm[n− 2]− 0,001 638 · τm[n− 3] [N ·m]

(7.6)

Where:
τm is the needed motor torque [N ·m]

eθ is the error between wanted and measured frame angle [rad]

x[n−m] is the m-th previous state of a signal x, m = 0,1,2,3 [·]

To match the code convention defined in section 3.5, this equation is put into a func-
tion named AAU3_DiscSISOTool ( ) , as seen in listing 7.1. The coefficients a and b are
initialized in the AAU3_DiscSISOTool_initialize ( ) function.

1 SISOT_P_Out_Sig_struct_T AAU3_DiscSISOTool ( const real_T x_hat [ 3 ] )
2 {
3 /∗∗ Dec la ra t i on o f a temporary v a r i a b l e ∗/
4 SISOT_P_Out_Sig_struct_T SISOT_P_U ;
5
6 /∗∗ S i g n a l s h i f t i n g ∗/
7 SISOT_PComp . e_del [ 3 ] = SISOT_PComp . e_del [ 2 ] ;
8 SISOT_PComp . e_del [ 2 ] = SISOT_PComp . e_del [ 1 ] ;
9 SISOT_PComp . e_del [ 1 ] = SISOT_PComp . e_del [ 0 ] ;

10
11 SISOT_PComp . taum_del [ 3 ] = SISOT_PComp . taum_del [ 2 ] ;
12 SISOT_PComp . taum_del [ 2 ] = SISOT_PComp . taum_del [ 1 ] ;
13 SISOT_PComp . taum_del [ 1 ] = SISOT_PComp . taum_del [ 0 ] ;
14
15 /∗∗ New c a l c u l a t i o n s ∗/
16 // On−the−i n s t a n t e r r o r
17 SISOT_PComp . e_del [ 0 ] = SISOT_PComp . theta_ref − x_hat [ 0 ] ;
18
19 // C o n t r o l l e r job
20 SISOT_PComp . taum_del [ 0 ] = SISOT_PComp . K ∗ ( SISOT_PComp . a [ 0 ] ∗ SISOT_PComp . e_del [ 0 ] + ←↩

SISOT_PComp . a [ 1 ] ∗ SISOT_PComp . e_del [ 1 ] + SISOT_PComp . a [ 2 ] ∗ SISOT_PComp . e_del [ 2 ]←↩
+ SISOT_PComp . a [ 3 ] ∗ SISOT_PComp . e_del [ 3 ] + SISOT_PComp . b [ 1 ] ∗ SISOT_PComp .←↩

taum_del [ 1 ] + SISOT_PComp . b [ 2 ] ∗ SISOT_PComp . taum_del [ 2 ] + SISOT_PComp . b [ 3 ] ∗ ←↩
SISOT_PComp . taum_del [ 3 ] ) ;

21
22 // Current s a t u r a t i o n as a prevent ive p r o t e c t i o n
23 i f ( TORQUE_2_CURRENT ∗ SISOT_PComp . taum_del [ 0 ] > 4)
24 SISOT_PComp . taum_del [ 0 ] = K_T ∗ 4 ; //SISOT_PComp. taum_del [ 1 ] ;
25 e l s e i f ( TORQUE_2_CURRENT ∗ SISOT_PComp . taum_del [ 0 ] < −4)
26 SISOT_PComp . taum_del [ 0 ] = K_T ∗ −4;//SISOT_PComp. taum_del [ 1 ] ;
27
28 SISOT_P_U . I_m = TORQUE_2_CURRENT ∗ SISOT_PComp . taum_del [ 0 ] ;
29
30 r e turn SISOT_P_U ;
31 }

Listing 7.1: Code for the implementation of the controller designed from root locus in C++.
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7.5 Analysis of the Controller
The first step is to simulate both the continuous and discrete controller with the model
of the system and analyse the behavior of the whole closed loop system.

This is done not only to see the behavior of the designed controller but also to verify that
the discretized controller matches the original continuous one.

With a constant reference of 0 rad and a disturbance in the form of a torque applied
to the frame of 0,55 Nm, the responses are the ones shown in figure 7.9 and figure 7.10.
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controllers.

Both controllers seem to have a good behavior and both reach the desired final position
in simulation when a disturbance is applied.

The implementation of the controller in the real model gives the results in appendix K,
where it can be seen that the controller is able to balance the Cubli. However, the behavior
is marginally stable and the reason seem to be that there is no control on the velocity of
the reaction wheel. This means that another kind of controller, which also takes care of
the velocity of the wheel, may result in a better behavior.

One way could be using a cascade controller to control both the velocity of the wheel and
the position of the frame. In figure 7.11 it can be seen the block diagram for a cascade
control, with the particularity of a feedback from the position of frame to the velocity of
the wheel.
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∑
D2

∑
D1 G1 G2

θFreference θ̇w θF

+
−

+
−

Figure 7.11: Block diagram for a cascade control (the dotted line corresponds to a feedback in the
Cubli system that is not present in the normal cascade control).

The problem of this solution in the case of the Cubli is that both variables to control
are coupled together and we have a direct influence of the input in both of them, which
means that it is not feasible to split the plant and produce a cascade control approach
.[25]

Another way is to use a state space approach, since now the system will have two outputs
to control. This controller solution is further detailed in chapter 8.
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8 | State Space Controller

State space representation describes a system with a set of first-order differential equa-
tions. This can be done through the use of state variables, which describe internal states
of the system. This representation gives a very convenient way of analyzing systems that
have several inputs and outputs.[21]

In this chapter the state space description of the system is derived and a controller capable
of maintaining it in equilibrium position is designed.

8.1 State Space Representation of the System
The first step to give a representation of the system in state space is to choose the
input, output and state variables. In this case the state variables are chosen to be the
position of the frame and the velocities of frame and wheel (θF, θ̇F, θ̇w). The input is
the torque from the motor (τm) and the chosen outputs are the ones to control, (θF, θ̇w).

x =


θF

θ̇F

θ̇w

 y =

θF
θ̇w

 u =
[
τm

]
(8.1)

The relationship between them is given in the form of first-order differential equations:
ẋ = f(x,u) (8.2)

y = g(x,u) (8.3)
In this case f and g can be derived from equation (4.25) and equation (4.24). They are
non-linear functions since there exist a sinusoidal term in both.

However, it has been shown in section 4.2 that a linear approximation near the equilibrium
point is possible. Then, the system can be described in the form of linear state space
equations as seen in equation (8.4) and equation (8.5).

ẋ(t) = A · x(t) + B · u(t) (8.4)

y(t) = C · x(t) + D · u(t) (8.5)
Where:

A = ∂
∂x f(xo,uo) is the 3x3 state matrix

B = ∂
∂u f(xo,uo) is the 3x1 input matrix

C = ∂
∂x g(xo,uo) is the 2x3 output matrix

D = ∂
∂u g(xo,uo) is the 2x1 feedforward matrix
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The state space description can be seen also in the form of a block diagram like the one
from figure 8.1.

A

B C

D

∫∑ ∑u ẋ x y•

Figure 8.1: Block diagram of the state space representation of the Cubli system.

This matrices can be obtained from the linearized equations of the system from 4.2, given
the final system description as equation (8.6) and equation (8.7).

ẋ(t) =


0 1 0

(mF·lF+mw·lw)·g
JF+mw·lw2 − BF

JF+mw·lw2
Bw

JF+mw·lw2

− (mF·lF+mw·lw)·g
JF+mw·lw2

BF
JF+mw·lw2 − (Jw+JF+lw2·mw)·Bw

Jw·(JF+mw·lw2)

 ·x(t)+


0

− 1
JF+mw·lw2

Jw+JF+mw·lw2

Jw·(JF+mw·lw2)

 ·u(t)

(8.6)

y(t) =

1 0 0

0 0 1

 · x(t) +

0

0

 ·u(t) (8.7)

Substituting the values for the parameter in equation (8.6) and equation (8.7) gives the
final description for the system.

ẋ(t) =


0 1 0

98, 2208 −1, 1458 0, 0025

−98, 2208 1, 1458 −0, 0309

 · x(t) +


0

−148, 8077

1812, 7013

 · u(t) (8.8)

y(t) =

1 0 0

0 0 1

 · x(t) (8.9)

8.2 System Analysis in State Space
The stability of the system can be derived from matrix A. The denominator of the
transfer function of the system is equal to the characteristic polynomial of A, which
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means that its eigenvalues are the poles of the system. The eigenvalues of A are, as
expected, −10, 5014; 9, 3531 and − 0, 0283, with a pole in the RHP since the system is
unstable by nature.

Once the system is confirmed as unstable, its controllability in state space must be deter-
mined. The controllability refers to the ability to go from one state to another in a finite
amount of time by means of admissible inputs. To conclude on that, the controllability
matrix, ζ, must be analyzed.

ζ =
[
B AB A2B

]
=


0 −149 175

−149 175 −14817

1813 −226 14824

 (8.10)

The controllability matrix, ζ, in this case is full rank which means that the system is
controllable.

Another important characteristic for the design of controllers is the observability, which
refers to the capability of inferring the internal states knowing the outputs of the sys-
tem. In this case there exists a matrix which only includes C and A, meaning that the
observability has no relation with the inputs of the system.

O =


C

CA

CA2

=



1 0 0

0 0 1

0 1 0

−98, 22088 1, 1458 −0, 0309

98, 22088 −1, 1458 0, 0025

115, 5755 −99, 5691 0, 0039


(8.11)

This observability matrix, O, also has full rank so the states can be observed.

8.3 Design of the Controller in State Space
The aim of the controller is to maintain the system in equilibrium position, which means
that the reference for each state is always zero.

With this assumption a new state matrix can be created such that its poles are placed in
the LHP and then the system becomes stable. This is done by adding a state feedback
and a 3x1 gain matrix to the whole system, as seen in figure 8.2.
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A

B C
∫

-K

∑u ẋ x y

Figure 8.2: Block diagram with the state feedback.

This new configuration gives a new equation for ẋ:

ẋ(t) = (A−BK) · x(t) (8.12)

The objective is to find K such that the eigenvalues of A−BK are placed at the LHP.
This gain matrix can be found using the Matlab command place (A , B , P ) , where P is a
vector containing the desired position of the new poles.

To choose the position of these poles two simulations are made for different values. In
the first one the Cubli starts from equilibrium and a disturbance torque is applied, while
in the second one it starts from an initial angle different from 0 rad and with an initial
velocity of the frame. It can be observed that the velocity of the wheel reaches in all the
cases 0 rad · s−1.
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(b) Velocity of the reaction wheel.

Figure 8.3: A small disturbance torque is applied to the frame. The response is simulated with a
number of controllers that have different locations of poles. All the controllers slow down the wheel to
0 rad · s−1.
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(b) Velocity of the reaction wheel.

Figure 8.4: The response is simulated with a number of controllers that have different locations of poles.
All the controllers slow down the wheel to 0 rad · s−1.

The final combination of poles is −6, −7 and −15, which gives the yellow responses in
figure 8.3a and figure 8.4a. This seems a good option since its response is quite fast
but not with too much overshoot. The gain matrix for this combination results in the
following:

K =
[
−2, 3021 −0, 2274 −0, 0039

]
(8.13)

8.4 State Space Controller Implementation
The controller in state space results to be three gains that do not need to be discretized
to implement them in the real system. Listing 8.1 contains the code for the function that
calculates the action of control. x_hat contains the states of the system, being the angle
of the frame (x_hat [ 0 ] ), the velocity of the frame (x_hat [ 1 ] ) and the velocity of the
wheel (x_hat [ 2 ] ). x_hat is the equivalent of vector x. The inner product between K
and x is calculated on line 11 in code listing 8.1. On line 14 the found output torque is
converted to a current, since the motor control board takes a current as reference. The
TORQUE_2_CURRENT constant is found by taking the inverse of the motor torque constant.
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1 /∗∗ Runs the c o n t r o l l e r based on the feedback s i g n a l in x_hat ∗/
2 LSF_COutput_struct_T AAU3_DiscLinFeedback2 ( const real_T x_hat [ 3 ] )
3 {
4 /∗∗ Var iab le d e c l a r a t i o n s ∗/
5 LSF_COutput_struct_T LSF_Sig_Out ;
6
7 /∗∗ C o n t r o l l e r c a l c u l a t i o n s ∗/
8 LSF_Controller . tau_m = 0 ;
9 f o r ( i n t i = 0 ; i < 3 ; i++)

10 {
11 LSF_Controller . tau_m += LSF_Controller . K [ i ] ∗ x_hat [ i ] ;
12 }
13
14 LSF_Sig_Out . I_m = LSF_Controller . tau_m ∗ TORQUE_2_CURRENT ;
15
16 r e turn LSF_Sig_Out ;
17 }

Listing 8.1: Code for the implementation of the State Space Controller. The feedback from the Cubli
is contained in the array x_hat.

The important part of the implementation, and in some cases it can give problems, is the
measurement of the states that are involved in the feedback. In the case of the Cubli,
there are three states to be measured: the position and velocity of the frame and the
velocity of the wheel.

The first one can be measured using the values from the potentiometer or using built-in
sensors like the IMU, as will be explained in detail in chapter 9.

The velocity of the frame is measured using the gyroscopes present in both IMUs, which
give an angular velocity value.

Finally, information about the velocity of the wheel is measured with a tachometer at-
tached to the motor and send to the BeagleBone through the motor control board.

Figure 8.5: Internal states measurements for the implementation of the controller.
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9 | Angle Measurement with Built-
in Sensors

It is a goal to get the Cubli setup to balance the frame in an upright position independently
of the baseplate orientation feasible limits.

As described in section 3.4 there are two IMUs mounted on the frame of the Cubli (shown
on figure 3.1). They can be used to achieve this goal since they only depend on the absolute
angle and they can also be used in the full Cubli. In this case it has been decided to use
IMU number one for the calculations, but number two would be valid too.

9.1 Angle Calculations from the IMUs
The angular position of the Cubli can be calculated using the accelerometer, the gyroscope
or combining both. In this section each of the options is described and analyzed.

Angle from the Accelerometer
The accelerometer measures linear acceleration, and if the accelerometer is attached to a
object that does not accelerate with respect to the Earth, the accelerometer will measure
the gravitational acceleration. This can be used to determine the orientation of the
accelerometer sensor with respect to the Earth [26].
The accelerometers used with the Cubli setup have 3-axis detection as described in section
3.4. To determine the angle of the frame (accel_θF) with the accelerometer it is needed to
get the measurements from two of the three axes. The two measurements needed are the
ones in line with the frames movement direction, based on the way the IMU is mounted,
as shown in figure 9.1.
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θF

g
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xβ

Figure 9.1: Position of the IMU on the setup.
The orientation of the accelerometer in relation
to the Cubli frame is shown. The sensor is ro-
tated by π

4 in relation to the angle θF. On the
IMU the components of the acceleration vector
are shown. In case of no movement of the frame
these are the components of the gravitational
acceleration vector.

Figure 9.2: atan() is only valid as long as x
is positive (a), where the angle (β) is found
through the inverse tangent β = arctan

(y
x
)
.

If the frame moves more than 45◦ from equi-
librium, then the IMU will have x or y move
outside the two areas indicated with a. Angle
calculation for area b is β = π + arctan

(y
x
)
and

for c it is β = arctan
(y

x
)
− π.

Based on the markings on the IMU, those are the x- and y-axis components of the linear
acceleration. Taking the two axis measurements shown in figure 9.1 and the different
calculations of β depending on x and y (see figure 9.2), the angle can be found using
equation (9.1) [27].

accel_θF = β + π

4 [rad] (9.1)

Where:
β is the angle between the x component and the gravity vector [rad]

The offset (π4 ) is added because the IMU is mounted with a π
4 rotation compared to

the orientation of the frame.

A test to measure the angle of the frame with the accelerometer is performed, with the
purpose of comparing it to data from the potentiometer. The data from both sensors is
read at the same time, to make it possible to compare the accelerometer to the poten-
tiometer to determine if the accelerometer can be used instead of the potentiometer.
A comparison of the two measurements is shown in figure 9.3. The accelerometer angle
(accel_θF) is found by taking the x- and y-axis components and calculating the angle
with equation (9.1). The data of the test can be found in appendix H.
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Figure 9.3: The graph shows a comparison of the angle of the frame measured by the potentiometer
(orange) and the same angle found with the accelerometer (blue). The accelerometer angle is calculated
based on the data from the x- and y-axis components (appendix H).

The measurements of the potentiometer and accelerometer are both showing the Cubli
frame in the same position. It can be seen that the calculations from the accelerometer
has a lot more noise than the potentiometer.

While the Cubli setup tries to balance the frame, the IMU mounted on the top of it
will move along with the frame. The spikes are present on the calculated angle from
the accelerometer data in figure 9.3 due to the acceleration of the frame that creates a
disturbance on the measurement of the gravitational acceleration [26].
A way to minimize this disturbance would be to move the IMU as close as possible to the
point of rotation. This way the accelerometer is still able to measure the gravitational
acceleration, but the distance to the pivoting point is shorter and the linear acceleration
will be smaller. However, since the design should be portable to the full Cubli, where the
pivoting point is always changing, this solution does not seem to be adequate.

Angle from the Gyroscope
The angle of the frame could also be found with the gyroscope (gyro_θF), by integrating
the measured angular velocity on the axis aligned with the direction of motion of the
frame as shown in figure 4.1.

gyro_θF[n] =
∫ n ·∆T

0
ωF dt (9.2)
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Where:
ωF is the measured angular velocity of the frame [rad · s−1]

∆T is the sampling time [s]

The problem with the data from the gyro is an accumulating error which is caused by the
integration done to convert angular velocity into an usable angle. It is also known that
the gyros will exhibit a drifting error when experiencing small and slow movement [26].
These problems can be observed in figure 9.4.
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Figure 9.4: Angular position calculation with the data of the gyroscope.

Assuming that the drift is proportional to time (the slope is always constant), a way to
minimize its influence on the data would be to do a test while keeping the frame motionless.
The inclination of the slope from the data graph multiplied with the sampling time is then
the offset that has to be subtracted from each measurement.

It can also be calculated online, while the controller is running. In this case the accelerom-
eter can provide information to compensate this drift. One solution to fuse these two sets
of data is to use a complementary filter, explained in detailed in next section.

Data Fusing with Complementary Filter
In order to filter the drift of the gyroscope and the disturbance errors of the accelerometer,
a complementary filter can be used to combine both measurements. This is done to get a
more reliable angle measurement for both when the frame is moving and when its standing
still in the equilibrium point.
The two angle measurements of the IMU are sent through a filter and then summed
in order to get an angle of the Cubli’s frame. This will result in relying more in the
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accelerometer data when there is a slow movement and more in the gyroscope when the
movement is fast.[28]

1
τ ·s+1

1
s

τ ·s
τ ·s+1

∑
accel_θF

gyro_θ̇F

θF

◦

◦
Figure 9.5: Block diagram of the complementary filter setup used for the IMU on the Cubli. The
calculated accelerometer angle passes through a low pas filter. The angular velocity measurement from
the gyro is integrated and then passed through a high pass filter. Both measurements are then summed
to get the angle of the frame. tau refers to the time constant of the filters.

The filter for the IMU is designed as shown in figure 9.5 with a low pass filter on the
measurements from the accelerometer, and an integration followed by a high pass filter
on the measurements from the gyroscope [29].[28]

θF = 1
1 + τ · s · accel_θF (9.3)

θF = τ · s
1 + τ · s ·

1
s · gyro_θ̇F (9.4)

Combining the two equations yields equation (9.5)

θF = 1
1 + τ · s · accel_θF + τ · s

1 + τ · s ·
1
s · gyro_θ̇F = accel_θF + τ · gyro_θ̇F

1 + τ · s (9.5)

Where τ is the time constant of the filters.

9.2 Discretization of the Complementary Filter
In order to use the complementary filter on the Cubli it needs to be discretized. This is
done with the bilinear transformation method, where s = 2

∆T ·
1−z−1

1+z−1 , with a sample time
of 10 ms. Rewriting equation (9.5) yields

θF = 1
1 + τ · s · (accel_θF + τ · gyro_θ̇F) (9.6)

If s is replaced by its discrete expression the equation can be written in z-domain.

θF = 1
1 + τ · 2

∆T ·
1−z−1

1+z−1

· (accel_θF + τ · gyro_θ̇F) (9.7)

θF = ∆T + ∆T · z−1

(2 · τ + ∆T)− (2τ −∆T) · z−1 · (accel_θF + τ · gyro_θ̇F) (9.8)
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Then equation (9.2) is transformed from z-domain to discrete time domain, resulting in
the difference equation.

θF[n] = (2 · τ −∆T)
2 · τ + ∆T · θF[n− 1] + ∆T

2 · τ + ∆T · accel_θF[n] + ∆T
2 · τ + ∆T · accel_θF[n− 1]

+ ∆T · τ
2 · τ + ∆T · gyro_θ̇F[n] + ∆T · τ

2 · τ + ∆T · gyro_θ̇F[n− 1] (9.9)

9.3 Calculation of the Cut-off Frequency
Based on the setup of the complementary filter in figure 9.5, the same cut-off frequency
is chosen for both low and high pass filter, since it is desired to find the angle of the
frame with a gain of 1 (see figure 9.6). As it can be seen in figure 9.7, if both filters have
different cut-off frequencies the gain is less than one at some frequencies, which could be
a problem in the calculation of the angular position of the frame.
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Figure 9.6: Magnitude bode diagrams of the
high pass and low pass filters with the same
cut-off frequency as well as the summation of

both.

10-3 10-2 10-1 100 101 102 103
-9

-8

-7

-6

-5

-4

-3

-2

-1

0

1

2

M
ag

ni
tu

de
 (

dB
)

High Pass Filter
Low Pass Filter
Sumation of both Filters

Bode Diagram of the Filters

Frequency  (rad/s)

Figure 9.7: Magnitude bode diagrams of the
high pass and low pass filters with different

cut-off frequencies as well as the summation of
both.

The cut-off frequency for the filters can be determined by using Senstools and the data
obtained through the test detailed in appendix H.

The toolbox uses the data form the potentiometer as the real output of the system,
the data from the IMUs as the input and the modeling of the system is done through
equation (9.9). With this data Senstools can find the optimal value for τ based on the
difference between the angle measured by the potentiometer and an angle calculated from
accelerometer and gyroscope measurements done during the same test.

The final fit can be seen in figure 9.8 and it gives an optimal τ = 0,5399 s. This results
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in a cut-off frequency for the filter equal to 1, 85 rad · s−1.
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Figure 9.8: Final result of the complementary filter compared with the data from the potentiometer.
It can be observed that the two measurements match closely.

9.4 Implementation of the Complementary Filter
Implementing equation (9.9) yields to following piece of code.

1 //−−−−−−−−−−−−−−−−−−−−−− IMU −−−−−−−−−−−−−−−−−−−−−−−−−−//
2 double Imu : : getPosition ( double accAngleNow , double gyroVelocityNow , double Ts , i n t ←↩

imuNb )
3 {
4 const double acc_off_1 = 0 . 8 4 ; // a c c e l meass o f f s e t
5 const double tau = 0 . 5 3 9 9 ; // cut−o f f f o r the complementary f i l t e r
6
7 // C o e f f i c i e n t s f o r the complementary equat ion
8 const double K1 = (2 ∗ tau − Ts ) / (2 ∗ tau + Ts ) ;
9 const double K2 = Ts / (2 ∗ tau + Ts ) ;

10
11 i f ( imuNb == 1)
12 {
13 s t a t i c double acc_angle_1 [ 2 ] = { accAngleNow + acc_off_1 , 0} ,
14 gyro_angle_1 [ 2 ] = { gyroVelocityNow , gyroVelocityNow } ,
15 comp_angle_1 [ 2 ] = { acc_angle_1 [ 0 ] , 0} ;
16
17 // Set o ld measurement data
18 acc_angle_1 [ 1 ] = acc_angle_1 [ 0 ] ;
19 gyro_angle_1 [ 1 ] = gyro_angle_1 [ 0 ] ;
20 gyro_angle_1 [ 0 ] = gyroVelocityNow ;
21 comp_angle_1 [ 1 ] = comp_angle_1 [ 0 ] ;
22
23 acc_angle_1 [ 0 ] = accAngleNow + acc_off_1 ;
24
25 //Complementary equat ion us ing Tustin
26 comp_angle_1 [ 0 ] = K1 ∗ comp_angle_1 [ 1 ] + K2 ∗ ( acc_angle_1 [ 0 ] + acc_angle_1 [ 1 ] ←↩

+ tau ∗ gyro_angle_1 [ 0 ] + tau ∗ gyro_angle_1 [ 1 ] ) ;
27 r e turn comp_angle_1 [ 0 ] ;
28 }
29 }
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Listing 9.1: Code for the implementation of the complementary filter in C++.

The position is calculated through the function getPosition ( ) .

First, the values for the offset of the accelerometer angle and the cut-off frequency are
initialized, as well as the two constants for the filter, K1 and K2.

When this function is called the first time, accelerometer, gyroscope and angle arrays are
initialized.

The old values from accel_angle, gyro_angle and comp_angle are moved up in their
arrays and new data is saved in gyro_angle and accel_angle on index 0.

Finally, the equation of the complementary filter in implemented to get the angular po-
sition of the frame.

72 of 125 16gr630



Part III

Test & Conclusion

16gr630 73 of 125





Chapter 10. Acceptance Test

10 | Acceptance Test

This chapter deals with the needed tests that the system with the state space must
overcome in order to fulfill the requirements as well as an analysis of the other capabilities,
described in chapter 6.

10.1 Requirements Test
- The Cubli should be able to balance starting from an unstable equilibrium
position and null velocity.

To test this requirement, the Cubli is placed at equilibrium and the controller is then
started. The test is done twice, first with the measurements of the potentiometer andthen
using the IMU, to ensure that the controller works in both cases.
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Figure 10.1: Angular position of the frame,
measured with the potentiometer, when

starting from equilibrium position.
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Figure 10.2: Angular position of the frame
starting from equilibrium position, calculated

with the complementary filter.

The results show that the requirement is fulfilled in both cases since the system is main-
tained around the equilibrium position.

- The prototype should be able to balance around 0 rad, even though the
angle of inclination of the baseplate is changed within a reasonable range,
using internally mounted sensors.

To check this requirement a similar test, like the previous one, is done, but is this case
the angle of the baseplate is changed to check that the measurements of the IMU are still
capable of balance the Cubli. Since the potentiometer is attached to the baseplate its
measurements are done in relation to the baseplate’s position and can be used to show
that baseplate and frame are at different angles.
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Figure 10.3: Angular position of the frame. The orange curve is the result of the complementary
filters angle calculation, which does not depend on the angle of the baseplate. The blue curve shows the
measurements of the potentiometer, which are in relation to the baseplate.

The output of this experiment shows that the calculation of the position using the IMU
makes the system able to keep in equilibrium position when the angle of the Baseplate is
changed. This can be seen on the graph in figure 10.3. Here the angle calculated by the
complementary filter shows the frame keeping its upright position, while the potentiometer
angle changes as the baseplate is lifted up and down.

10.2 Capabilities Analysis
- Maximum recovery angle

To obtain the maximum recovery angle, the Cubli is place in equilibrium at the start.
Once the controller has balance it, its position is changed with little disturbances. The
result can be seen in figure 10.4.
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Figure 10.4: Angular position of the frame while disturbances are applied to the frame. The intention
is to find the maximum recovery angle of the controller. The controller is not able to recover from a
disturbance that pushes the frame over 0,08 rad from resting position, due to the overshoot.
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As it can be observed, the controller is able to return to equilibrium position but it creates
a remarkable overshoot in the other direction. This behavior limits the recovery angle
since the overshoot may drive the Cubli to an angle beyond its handling limit even though
the initial disturbance is within it.
It can be seen that the controller is capable of recovering from 0, 08 rad but it fails when
the angle is 0, 1 rad. Then, it can be concluded that the maximum recovery angle for the
system with the designed controller is 0, 08 rad.

- Maximum catching angle with no initial velocity of the wheel

There exists a limitation in this capability which is given by the maximum current that
the motor can provide. As can be seen in figure 10.5, if the initial angle is different from
0 rad both the weight of the frame and the weight of the wheel exert an initial torque to
the system. This must be overcame by the motor to avoid the Cubli to fall.

Figure 10.5: Forces acting on the system that create an initial torque when the frame starts from a
position different from 0 rad.

The minimum torque (T) that the motor must apply is give by equation (10.1).

T = (mF · lF + mw · lw) · g · sin(θF) [N ·m] (10.1)

Since the torque is restricted by the characteristics of the motor and the control board,
the maximum initial angle is derived in equation (10.2).

θF = asin
(

T
(mF · lF + mw · lw) · g

)
[rad] (10.2)

Substituting the values of the maximum torque (see section section 3.3) and the pa-
rameters of the Cubli (see section section 5.1) the maximum possible starting angle is
0, 2024 rad (11, 59◦). This also applies for the negative angle since the limitation of torque
is the same but with opposite sign.

Taking this limit into account some starting angles are tested to check if the controller is
able to balance the system with these initial conditions.

As it can be seen in figure 10.6 and figure 10.7, the controller is capable of moving the
system to equilibrium position starting from −0,12 rad and −0,17 rad (also valid for the
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positive angles). It is also noteworthy that as the starting angles goes away from the
equilibrium the controller takes more time to make the Cubli reach equilibrium position
and there is more oscillations in the response.
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Figure 10.6: Angular position of the frame
when the system starts from −0,12 rad

(−6, 87◦).
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Figure 10.7: Angular position of the frame
when it starts from −0,17 rad rad (−9, 74◦).

However, when the starting angle is −0,185 rad (−10, 59◦) is no longer possible to balance
the system in equilibrium position and the frame falls.
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Figure 10.8: Angular position of the frame when it starts from −0,185 rad (−10, 59◦).

It can be concluded that the maximum range for the starting angle with zero initial
conditions goes from −0,17 rad to 0,17 rad, in which the controller is able to balance the
system around equilibrium position.
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11 | Discussion

For the state space controller a set of poles were selected, looking at the response of the
system for each K matrix, shown in the two simulations, figure 8.3a and figure 8.4a. Using
different pole combinations results in different overshoots and settling time, so another
pole combination could be selected if a different behavior of the Cubli was desired. The
choice is whether a small overshoot is desired or if the frame is to reach 0 rad faster. Having
less overshoot would increase the maximum catching angle with the current system, since
the second overshoot with the current used controller is larger than the angle inflicted by
a disturbance. A fast response will result in handling better external disturbances if they
are applied continuously.

As already mentioned briefly in the complementary filter section, the measurement from
the accelerometer in the IMU could be improved by moving the sensor to a position where
it would be influenced less by the acceleration of the frame but still be able to measure
the angle of the frame. In case of the single frame, that would be as close as possible to
the point of rotation fixed to the baseplate.

The fusing of accelerometer and gyroscope measurements can be done using a different
type of filter than the used complementary filter. The choice of using a complementary
filter was based on the use of it in similar applications [29]. Since the filter showed a good
behavior for the problem at hand, no further investigation was needed.
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12 | Conclusion

The aim of this project was to work with an unstable nonlinear system and be able to
construct an appropriate model and design a controller capable of balancing it around
equilibrium position.

First, a pre-analysis of the system has been made, starting from a description of all the
components present in the given setup. It also included the derivation of the equations
that describe the dynamics and the description of the system in s-domain. Then the
parameters of the setup have been found, both with measurements and with an estimation
using optimization, to be able to analyze the behavior of the system and compare it with
the real model.

Afterwards, a controller to balance the Cubli has been designed using root locus. It has
been shown that it was able to keep it in upright position. However, the system had a
marginally stable behavior and the reason seemed to be that there was no control on the
velocity of the reaction wheel. Thus, it was decided to use a state space design approach,
to control both position of the frame and velocity of the wheel.

It was also a requirement to be able to change the angle of the baseplate, which means that
the calculation of the angle had to be independent of the inclination. A very convenient
option was to use internally mounted sensors for this purpose, so the final chosen solution
was to use an IMU present on the setup and calculate the angle through a complementary
filter.

Finally, some acceptance tests have been performed to ensure that the final controlled
system was able to accomplish the requirements and, similarly, a further analysis has
been carried out to check other capabilities of the Cubli.

In conclusion, a control system that can balance the Cubli in upright position inde-
pendently of the angle of the baseplate, within a reasonable range, has been designed,
implemented and tested successfully within the requirements.
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13 | Perspective

After designing the one-side prototype, the next step is to build a full cube version. To
achieve this goal some changes and extra features must be added to the current design.

The placement of the IMUs on the full Cubli is something that has to be determined.
One way to do it if possible is to place just one IMU in the very center of the Cubli.
Alternatively one sensor could be placed in each corner of the Cubli. That would mean
using 8 IMUs. This way, there is always at least one sensor very close to the point of
rotation, and thus, it should be possible to get measurements with minimal disturbance
from linear acceleration. A system that keeps track of the orientation of the Cubli could
be implemented, so that the controller receives information from the most reliable sensor.

Each of the three reaction wheels needs to have its own controller. In this case it is not
the goal to achieve an upright position, but to perform other maneuvers. This will require
a redesigned controller since the chosen one is not able to get a changing reference for the
internal states.

The Cubli will have to be able to jump up from a resting position. To do that the reaction
wheel has to spin up. Once at the desired speed the wheel will be braked and the resulting
torque will raise the Cubli. Now the system has to catch itself. In order to do that a
separate controller might have to be designed that handles the jump up part, and then
switches to the balancing controller for the balancing functionality.
For the full Cubli, since there are three wheels and three braking systems, all the con-
trollers will need to be coordinated.
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A | Potentiometer Linearity

Name: Group 630
Date: 15/03 - 2016

Purpose
Finding the linear accuracy of the potentiometer as well as the equilibrium range of the
system.

Setup

+ -

Multimeter

Figure A.1: Setup diagram

List of Equipment

Instrument AAU-no. Type

Multimeter 60760 Fluke 189 Multimeter

Dedicated Power Supply of Cubli (24 V - 3 A) AAU3 XP Power, AEB70US24

Digital Protractor None CMT Orange Tools

Procedure
1. Make the setup with connections as seen on figure A.1, placing the + connection in

the brown cable of the potentiometer and the + connection in the yellow one.

2. Setting the multimeter to measure DC mV.

3. Balance the frame in upright equilibrium position measuring the angle and voltage.

4. Measure the voltage of the potentiometer around Equilibrium point and also min
and max angle voltage for every 10◦.
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Results

Angle from equilibrium in degrees mV

-41,7 0,066

-40,0 0,067

-38,5 4,25

-30,0 50,55

-20,0 103,66

-10,0 159,20

0 213,64

10,0 264,66

20,0 317,95

30,0 370,74

40,0 425,10

48,65 472,11

Results from Linearity Test
Result of the test shows that below −39, 5◦ the potentiometer has a dead area. The dead
area might come from the continuous rotation of the potentiometer, since the measurement
are very near to this point where the potentiometer changes. The area have at dead span
from 5◦ to 10◦.

The graph shows the measured values according to angle.
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Figure A.2: Result from linearity test

Because of the dead area the potentiometer could be rotated so the frame will be turning
in this area, but since the Cubli has been built like this and the code has some hardcoded
value of the potentiometer and the area are not used then it will be left as it is. Also
because the software is distributed on different machines it has to be changed on every
system.

Results of Equilibrium Zone
During the test the equilibrium has varied, and area where it can stand balanced have
been measured.

Equilibrium range in degrees mV

-0,44 211,80

-0,05 213,64

0,053 217,00

Since the frame is connected to the baseplate through the potentiometer and this one is
kept in place by bearings, the only force keeping the frame standing is the friction between
them and potentiometer. This region is about 1◦.
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B | Potentiometer Angle Resolu-
tion

Name: Group 630
Date: 15/03 - 2016

Purpose
Finding the resolution needed for the conversion of potentiometer voltage to angles, along
with possible offsets.

Setup

Figure B.1: Setup diagram

List of Equipment

Instrument AAU-no. Type

Oscilloscope 61604 Agilent 54621A

Dedicated Power Supply of Cubli (24 V - 3 A) XP Power, AEB70US24

Probe 1:1

Procedure
1. Make the setup with connections as seen on figure A.1, with ground on the brown

cable and signal on yellow cable of the potentiometer.

2. Set the oscilloscope on rolling and calibrate so that the full range of the frame
movement can be captured on the display.

3. Balance the frame in upright equilibrium position.
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4. Move the frame to the left position, hold for a brief duration, then move it over to
the right position.

5. Once both the equilibrium, leftmost and rightmost positions are captured on the
screen, pushing the stop-button on the scope, to hold keep the measurement.

6. Save the data to the floppy-disk as a CSV file.

Results
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Figure B.2: Raw test data plot, Volt over time.
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C | Initial Condition Response from
Vertical Position

Name: Group 630
Date: 15/03 - 2016

Purpose
Finding the fall response of the frame from the vertical position, θF = 0◦, and from a 10◦
tilted position. Data is used to compare the measured response and the simulation given
by the theoretical nonlinear model.

Setup
The wheel is being held in a fixed position with a strip tied to it and the frame. The
probe chosen is a 1:1 and is connected to the potentiometer with probe to yellow cable
and ground clamp to brown cable. The power supply has to be turned on in order to get
readouts from the potentiometer. A sponge is placed on the rubber pad in order to damp
the impact of the frame.

Figure C.1: Picture of the setup for the fall response test
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List of Equipment

Instrument AAU-no. Type

Oscilloscope 61604 Agilent 54621A

Dedicated Power Supply of Cubli (24 V - 3 A) XP Power, AEB70US24

Probe 1:1

Sponge 5P0N63

Procedure
1. Keep the Cubli in the starting position (0◦ or 10◦).

2. Let the Cubli fall over.

3. Use the oscilloscope to measure the voltage changes in the potentiometer and save
them.

4. Take the measurements and plot them in Matlab.

Results
Data from the test is presented in the following graphs, showing both the measured
voltage and calculated angular position. The position is obtained using the conclusions
from appendix B explained in Section 3.4.
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Figure C.2: Raw data taken from the
potentiometer
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Figure C.3: Angular position of the frame
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Fall response starting from 10◦
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Figure C.4: Raw data taken from the
potentiometer
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Figure C.5: Angular position of the frame

Note
The bouncing in the data when the frame reaches the lower position is due to the presence of
the sponge.
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D | Pendulum Behavior Test
Name: Group 630
Date: 16/03 - 2016

Purpose
Observing the behavior of the Cubli when hanging upside down. Data is then used to estimate
some of the parameters of the Cubli.

Setup
The Cubli is put upside down under a table with 2 clamps placed at each side of the bottom
plate of the Cubli setup. The wheel is being held in a fixed position with a strip tied to it and
the frame. The probe chosen is a 1:1 and is connected to the potentiometer with probe to yellow
cable and ground clamp to brown cable. The power supply has to be connected, and turned on,
to the Cubli in order to get readouts from the potentiometer.

Figure D.1: The Cubli setup hanging upside down beneath a table during the pendulum behavior test

List of Equipment

Instrument AAU-no. Type

Oscilloscope 61604 Agilent 54621A

Dedicated Power Supply of Cubli (24 V - 3 A) XP Power, AEB70US24

Probe 1:1

2x Clamp

Procedure
1. Place the setup upside-down and place the frame touching the base.
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2. Let the Cubli fall and swing until it stops.

3. Use the oscilloscope to measure the changes in the potentiometer.

4. Collect all the data and plot it in Matlab.

Results
The results of the experiment can be seen in figure D.2 and figure D.3. The second graph is
obtained using the conclusions from appendix B explained in Section 3.4.
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Figure D.2: Raw data taken from the
potentiometer
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Figure D.3: Angular position of the frame

Note
During this experiment it was observed that if the frame was released from the left position (the
right upper side on figure D.1 since the Cubli is upside down), the frame would hit the rubber
pad on the other side. This behavior was not observed when releasing the Cubli from the right
position (left upper corner).
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E | Measurement of Mass and Po-
sition of Center of Mass of the
Frame

Name: Group 630
Date: 15/03 - 2016

Purpose
Measuring the mass and center of mass of the frame.

List of Equipment

Instrument AAU-no. Type

Scale 86759

Dedicated Power Supply of Cubli (24 V - 3 A) AAU3 XP Power, AEB70US24

Digital Protractor None CMT Orange Tools

Procedure
1. The Cubli base frame is leveled and the angle of equilibrium point is measured.

2. The frame is dismounted from the base and weight.

3. The frame is mounted back on the base after being rotated 90 degrees and the angle of
equilibrium point is measured.

4. The Cubli frame is returned to the original placement on the base frame.

Results of the frame weight

Weight of the frame kg

Fully mounted frame 0,770

Mass of the wheel 0,222

By subtracting the known mass of the wheel form the fully mounted frame, it gives a frame
mass of 0, 548 kg.
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Results of center of mass
To measure the center of mass the equilibrium positions of the frame on sides that are orthogonal
must be determined. They can be seen in figure E.1, and the total center correspond to the
crossing of the two lines.

Frame rotation angle Angle from equilibrium point Converted angle

0◦ 2, 5◦ 0,043 rad

90◦ 4, 5◦ 0,078 rad

Figure E.1: Location of the center of mass, where θ1 = 0, 043 rad and θ2 = 0, 078 rad
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F | IMU Setup Retrieval
Name: Group 630
Date: 30/04 - 2016

Purpose
Determining how the IMU is configured on the Cubli to help analyzing the data that is measured
from it.

Setup
The Cubli is plugged through USB to a PC which has the ability to connect via Secure SHell
(SSH) to the Beaglebone Black.
A program is written with parts of the given code to communicate with the IMU from the
Beaglebone Black and retrieve the registers data from the sensor chip.

List of Equipment

Instrument Type

Computer Asus UX301LA

Procedure
1. Plug the Beaglebone Black through USB and wait until the blue LEDs on the Beaglebone

Black start blinking slowly.

2. Send the binary compiled program to the board.

3. Connect to a distant terminal on the Beaglebone Black through SSH and launch the
program.

4. Read the output of the program.

Results
From the output of the program, the following table is built.

Register Hex Value on IMU 1 Hex Value on IMU 2

CONFIG 0x00 0x00

GYRO_CONFIG 0x00 0x00

ACCEL_CONFIG 0x00 0x00
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Having a 0 in the CONFIG registers means that both IMU use a low pass filter for the noise
on their output with the highest possible frequency of 260 Hz for the accelerometers and 256 Hz
and that the accelerometers have no delay while the gyroscopes have a rather small delay of
0,98 ms.

The GYRO_CONFIG and ACCEL_CONFIG three most significant bits indicate that no self-
test are asked to the sensor. The two next give information on the pre-selected range of mea-
surement of these sensors.
Since there are all set to 0, gyroscopes will measure data within ± 250 ◦ · s−1, whereas accelerom-
eters will present values in the range of ± 2g (g being the Earth’s gravitational acceleration).
Eventually, the three least significant bits in ACCEL_CONFIG being set to 0, the digital filter
on the accelerometers are disabled and the output value is put to 0 after each sample.
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G | Maxon Control Board: ESCON
Software

Name: Group 630
Date: 29/04 - 2016

Purpose
Get the configuration parameters through the ESCON software, which is used to configure the
Maxon controller.

List of Equipment

Instrument Type

Computer HP Elitebook 8570P

Procedure
1. ESCON software is installed on the computer.

2. The control board is connected by a USB cable to the computer and the ESCON software
is started.

3. The software automatically detects the controller and the configuration is uploaded to the
software.

4. The configuration is then collected.

Results/Data
In the following text there are the most relevant configurations of the Maxon Control Board
used in this project. Some of the data has been found on the data sheet of the ESCON module
50/5 and the Maxon Motor data sheet.

PWM controller
The control PWM runs at a frequency of 53,6 kHz and the Maxon motor is customized for this
frequency. The PWM controller has been configured to use a Maxon motor EC 45 flat 50 W
(part no. 251601). The parameters in the controller are:
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Motor characteristics Value

Speed constant 285,0 rpm · V−1

Thermal time constant winding 17,6 s

Number of pole pairs 8

Controller
The controller has a maximum current drag in continuous operation of 5 A. The motor has a
no load nominal speed of 6710 rpm and a stall current of 23,3 A. It has been limited in the
configuration software as following

System data Value

Max. permitted speed 1000 rpm

Nominal current 2,33 A

Max. output current limit 9,00 A

Hall Sensors
There are built-in hall sensors on the motor, used for detecting its position and velocity.

Detection of rotation and speed Value

Speed sensor Available Hall sensor

Digital sensor polarity Inverted

Control Loop
The control can operate in open loop, close loop or current mode. The close loop and the current
mode runs at a frequency of 5,36 kHz. The controller has been configured to the following:

Mode of operation Value

Close loop Current control

Gain 268

Digital Input
The digital input can be configured, so the motor can be activated or change direction by a
signal. The speed or current can be set by a PWM signal. Its configuration can be seen in the
following table:
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Digital input Value

Digital input 1 PWM

Current at 10% −4,00 A

Current at 90% 4,00 A

Fixed offset 0,00 A

Digital input 2 Enable motor

On High active

Analog Output
The analog output can be configured to give actual values of the motor, such speed or current.
The analog output resolution is 12-bit and the voltage ranges from −4 V to 4 V. The actual
configuration of the analog output is the following:

Analog outputs Value

Analog output 1 Actual current

Current at: 0 V −4 A

Current at: 4 V 4 A

Analog output 2 Actual speed

Speed at: 1 V −1000 rpm

Speed at: 3 V 1000 rpm
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H | Measurements from IMU
Name: Group 630
Date: 2/05 - 2016

Purpose
Get data from the IMU and the potentiometer when running the state-space controller, and
used it to design the complementary filter.

List of Equipment

Instrument AAU-no. Type

Dedicated Power Supply of Cubli (24 V - 3 A) XP Power, AEB70US24

Computer Asus A55V

Procedure
1. Plug the power supply given of the Cubli.

2. Wait until the blue LEDs on the Beaglebone Black start blinking slowly and connect the
USB cable to the PC.

3. Send the binary compiled program of the controller to the board.

4. Connect to a distant terminal on the Beaglebone Black through SSH and launch the
program.

5. Let the program run with the state-space controller.

6. Apply small disturbances to the Cubli so there is some variations in the angle

7. Stop the program (by pressing Q and ENTER).

8. Retrieve the log file from the Cubli setup with the recorded data.
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Results
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Figure H.1: Linear acceleration measurements from the accelerometer and the calculated gravity mag-
nitude
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Figure H.2: Angular velocity measurements from the gyroscope
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Figure H.3: Angle measurements from the potentiometer
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I | Motor Current Test
Name: Group 630
Date: 02/05 - 2016

Purpose
Check the assumption that the asked motor torque is the one that it gives in reality.

Setup
The Cubli is put in equilibrium at approximately 0 ◦. It is plugged to a computer from which
the code can be sent, started and to which the data can later be retrieved, through USB over
an Secure SHell (SSH) connection.

List of Equipment

Instrument Type

Dedicated Power Supply of Cubli (24 V - 3 A) XP Power,
AEB70US24

Computer Asus A55V

Procedure
1. Plug the power supply given with the Cubli setup to a 220V power outlet.

2. Wait until the blue LEDs on the Beaglebone Black start blinking slowly and connect the
USB cable to the PC.

3. Send the binary compiled program of the controller to the board.

4. Connect to a distant terminal on the Beaglebone Black through SSH and launch the
program.

5. Let the program run.

6. Stop the program (by pressing Q and ENTER).

7. Retrieve the log file from the Cubli setup with the recorded data.
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Results
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Figure I.1: Result of the test done to the motor to check that the reference current can be assumed to
be the one applied to the motor.
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J | Timing Characteristics of the
Program

Name: Group 630
Date: 11/05 - 2016

Purpose
Check the proper behavior of the program running on the microcontroller to ensure proper
operation of the control system.

Setup

Figure J.1: Setup diagram

To measure timing characteristics, it is necessary to connect to external pins of the BeagleBone
Black and raise and lower the pin around the interesting program area in the source code. Here,
the section of interest is the whole function runController ( ) which performs the sensor
readings and runs the controller computations.
It should be made sure that the current sent to the motor controller is null, so that the wheel
stands still while doing the measurement.
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List of Equipment

Instrument AAU-no. Type

Dedicated Power Supply of Cubli (24 V - 3 A) XP Power, AEB70US24

Oscilloscope 3386 Agilent 54621A

Probe 1:1

Computer Asus UX301LA

Procedure
1. Make the setup with connections as seen on figure J.1, with ground on pin 2 and signal

on pin 26 of the P8 header on the BeagleBone Black.

2. Launch the appropriate program over a USB SSH connection.

3. Set the oscilloscope on rolling and calibrate it so that a few periods of the pulse signals
can be clearly seen on the display.

4. Stop the acquisition and save the data to a floppy-disk as a CSV file. Gather the CSV log
file generated by the program, from the BeagleBone Black.

Results
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Figure J.2: Pulse signal of the monitored code region executing the main controller operations.

110 of 125 16gr630



Appendix

Figure J.2 shows that the function runController ( ) is called every 10 ms along the few pe-
riods shown on the graph. This is the expected behavior since the function runs in a scheduled
thread and it seems to respect, rather precisely, the timing period it is asked in the code to run
at.
It is also interesting to note that each call made to the function lasts approximately 8 ms which
means this critical section of the code has the time to run completely before the next call.
However, this does not leave a very large margin to add other potential features in this code
environment.
By running a few other similar tests and removing parts of the code, the sensor readings
are identified to be the most time consuming feature. Furthermore, jumps in the poten-
tiometer readings, which can be seen on figure J.3 and figure J.4 seem to arise from the
way the ADC values are read by the program through the operating system’s I/O system.
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Figure J.3: Potentiometer readings from a
range test. Groups of data points can be

observed.
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Figure J.4: Zoom-in on the potentiometer
readings. Irregularities can be seen in the

ADC values.

The area at issue in this situation seems identifiable, but since it is decided to eliminate the
potentiometer in this project, and since the measured data is only negligibly affected in any
case, no further investigation is to be made on this matter during this project.

16gr630 111 of 125



Appendix

K | Root Locus Designed Con-
troller Response

Name: Group 630
Date: 24/05 - 2016

Purpose
Checking the stability of the controller upon basic stimulation.

Setup
The Cubli is put in an unstable equilibrium at approximately 0 ◦. It is plugged to a computer
from which the correct code can be sent, started and to which the data can later be retrieved,
through USB over an Secure SHell (SSH) connection.

List of Equipment

Instrument AAU-no. Type

Computer Asus A55V

Dedicated Power Supply of Cubli (24 V - 3
A)

AAU3 XP Power,
AEB70US24

Procedure
1. Plug the power supply given with the Cubli setup to a 220V power outlet.

2. Wait until the blue LEDs on the Beaglebone Black start blinking slowly and connect the
USB cable to the PC.

3. Send the binary compiled program of the controller to the board.

4. Connect to a distant terminal on the Beaglebone Black through SSH and launch the
program.

5. Let the program run..

6. Stop the program (by pressing Q and ENTER).

7. Retrieve the log file from the Cubli setup with the recorded data.
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Results
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Figure K.1: Angular position of the Cubli

0 5 10 15 20 25 30 35 40 45 50

Time (s)

-4

-3

-2

-1

0

1

2

3

4

C
ur

re
nt

 (
A

)

Current Asked to the Motor

Figure K.2: Current asked to the motor
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Figure K.3: Angular velocity of the wheel
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L | Parameters of the Reaction
Wheel

Group 630

Purpose
Provide a method to measure and estimate the wheel’s mass, distance to the frame’s pivoting
point, inertia and friction to include these parameters in the model instead of previous groups’.

Setup and Principle
To measure the mass of the wheel, a scale can be used if the wheel is dismantled from the setup.
To get the distance from the center of the wheel to the pivoting point of the frame, a precise
ruler can be used. The setup needed to estimate the wheel’s inertia and friction can be seen on
figure L.1.

Figure L.1: Setup diagram

By applying a current step to the motor, and measuring the output velocity, as shown on figure
L.2, it is possible to use Senstools in a similar way to how it is used in section 5.2 with a
Simulink model of the wheel and the attached motor. The inertia and friction parameters of the
simulation model will be fitted to match the reality on this test.
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i τ θ̈w θ̇w
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−

Figure L.2: Block diagram of the wheel used for the simulation
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List of Equipment

Instrument Type

Dedicated Power Supply of Cubli (24 V - 3 A) XP Power, AEB70US24

Probe 1:1

Computer

Procedure
1. Plug the dedicated Power Supply Unit to the Cubli setup, then to the computer.

2. Prepare the code so that a current step is applied to the motor after a certain amount of
time and the velocity of the wheel and the actual current are logged into a file. Upload
this program to the BeagleBone Black.

3. Fix the frame tightly so that it doesn’t move during the test.

4. Launch the test program and wait a few seconds after the activation of the motor so that
the wheel’s velocity seems to saturate.

5. Stop the program. Gather the CSV log file generated by the program, from the BeagleBone
Black.

6. It is possible to repeat the last two steps multiple times to have a set of tests to compare.

7. Use the data to fit the model in Simulink with Senstools.
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M | Connecting and Breakout
Board Schematic

The connecting and breakout board present in the system has been done by Simon Jensen,
Electronic Technician at Aalborg University.

Input and Output Connections
The BeagleBone Black input and output connections diagram figure M.1:

Figure M.1: Expansion header diagram.

Voltage Information
The power supply that supplies the entire system is 24 V. There has been built voltage regulators
in to the connecting and breakout board to supply the different units with operation voltage.
Many connections between the different units and the BeagleBone Black has to be in the same
voltage level, for the BeagleBone Black to be compatible with the units.

Many of the sensors are operating on different voltage. Below is a list of the different voltage
usage:
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Unit Voltage (V)

BeagleBone Black 5 V

BeagleBone Black ADC Max. 1,8 V

BeagleBone Black logic level 3,3 V

Maxon Controller Board 10 V to 50 V

Maxon Motor 24 V

Potentiometer Max. 50 V

ServoMotor 4,8 V to 6 V

IMU PMU6050 3,3 V

Potentiometer Connections
The Potentiometer connections diagram figure M.2:

Figure M.2: Potentiometer diagram.

The Potentiometer is connected to the BeagleBone’s A/D and only a small area is used on the
Potentiometer, and for this reason the signal is gained and it is done by using an Operational
Amplifiers (op-amp) which can only gain the voltage to 1,8 V, because of the supply voltage to
the op-amp is only 1,8 V.

The Potentiometer is only using a small area of rotation on the Cubli, about ¼ of the full
rotation. The gain is calculated from the max. rotation voltage and the result is a gain of 3 V.

To verify the gain, the potentiometer voltage is measured and the ADC value is read from the
BeagleBone Black.
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Unit Voltage (V)

Measured before the gain 0,470 V

0,470 V with a gain of 3 1,410 V

Measured after the gain 1,417 V

ADC value 1,419

After the signal has been gained, a low-pass filter with a frequency of 194 Hz is added to damp
noise on the signal.

Motor Control Board Connections
The Maxon Motor Driver Board connections diagram figure M.3:

Figure M.3: Motor Driver diagram.

Since the BeagleBone Black ADC only operates up to 1,8 V and the Maxon control board
operates at −4 V to 4 V, a voltage divider has been put in from the Maxon motor control to
the Beagle Bone so the BeagleBone’s A/D limit is not exceeded so the voltage is multiplied by
0,44382. Then if the Maxon controller operates at a maximum of 4 V it becomes 1,775 28 V
below the BeagleBone A/D limit of 1,8 V.

Extra Connections
MPU6050’s I2C and 3,3 V connections to the BeagleBone Black.
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Figure M.4: PMU6050 connections diagram.

5 V power supply for the ServoMotor on Connecting and Breakout Board, and 3,3 V to 5 V level
converter is needed to get the BeagleBone Black PWM signals to the ServoMotors logic circuit.

Figure M.5: ServoMotor diagram.

5 V power supply for the BeagleBone Black and the LED’s on Connecting and Breakout Board.

Figure M.6: Power converter from 25 V to 5 V for the BeagleBone Black.

25 V power and grounding connections and 5 V and 3,3 V LED’s connections.
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Figure M.7: Power diagram.

5 V LED’s connections to the BeagleBone Black.

Figure M.8: LED’s diagram to the BeagleBone Black.

120 of 125 16gr630



Appendix

N | Error Comparison between Sen-
stool and Line Search

Name: Group 630 Date: 24/05 - 2016

Purpose
Checking how the error changes for both estimation of parameters if the last data is not taking
into account.

Results
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Figure N.1: Normed RMS Error removing the last part of the data, using the parameters that Line
Search gives
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Figure N.2: Normed RMS Error removing the last part of the data, using the parameters that Senstools
gives
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O | Attached DVD Content
The DVD contains a digital copy of the report and seven extra folders. The content of each one
is the following:

1. Code

It contains a compressed file with the Eclipse protect needed to run the controllers.

2. Data Sheets

It contains the data sheets of the BeagleBone, the brushless motor, the motor control
board and the IMU.

3. Matlab Files

It includes the files needed to get most of the pictures of the report that do not come
from a test.

4. Optimization Code Files

It contains the code and data files needed to implement the optimization code.

5. Senstool Documentation

It contains the manual for Senstool and a compressed file which includes the Matlab
files needed to run the toolbox.

6. Test Files

It contains the Matlab and .csv files needed to get all the results of the test.

7. Videos

It includes three videos made to the system, both with the classical and the state
space controller.
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