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Abstract—In this paper a new procedure based on a Back-
ward/forward sweep (BFS) algorithm for solving power flows in
weakly meshed DC traction networks is presented. The proposed
technique is able to consider the trains as non-linear and non-
smooth (non-differentiable) voltage dependent loads or genera-
tors. This feature permits the inclusion of the trains overcurrent
protection and the squeeze control. With the use of the mentioned
controls, the conventional power flow problem becomes a voltage
constrained power flow problem, and the interaction between
the trains and the network can be accurately modeled. However,
the train control induces a highly non-smooth voltage dependent
load characteristics, causing convergence problems in most of the
derivative based algorithms. The proposed algorithm is faster,
more robust and stable than the derivative based ones. In
addition, the authors present all the formulation in a compact
matrix based form by means of the graph theory application and
the node incident matrix.

Index Terms—Backward/forward sweep (BFS) algorithm, dis-
tribution system modeling, DC traction networks, railway sys-
tems, voltage dependent load modeling.

I. INTRODUCTION

THE use of power flow techniques applied to DC traction
systems simulation is widely extended for planning or

operation purposes [1]–[7]. Some of these works consider the
DC system and also the AC system feeding the DC one [1],
[2], [5]–[8] and others consider only the DC subsystem [4],
[9]. The former provide a more accurate solution because the
effect of the AC subsystem is considered, but the latter are
faster, and for most applications they have enough accuracy.
As it is stated in [4], some of these works solve the system
of equations using direct approaches based on Gaussian elimi-
nation, Cholesky decomposition or Zollenkopf bifactorisation
considering that DC substations are DC voltage or current
sources [?], [4], [9] . Others use Newton based methods [1],
[2], [10]. One of the drawbacks of these last iterative methods
is the lack of robustness [11]. It must be pointed out that in all
the Newton based power flow methods the initialization point
has a big influence over their convergence. This is another
important disadvantage of these kind of methods when they
are applied to the simulation of traction systems. The trains
can drastically change their behavior from one instant to other,
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specially when they are equipped with regenerative braking
systems. They can behave as a load in one instant, and a
generator in the next one. In such cases, using the previous
instant current and voltage profile as an initialization point is
useless.

The existence of non-smooth (non-differentiable) defined
loads or generators in the problem definition [12] constitutes
another important obstacle for all derivative based methods.
In this particular case, the non-smooth characteristics are
basically derived from the trains squeeze control and the
overcurrent protection systems. At each instant, a specific
amount of electrical power is demanded by the train (train
in traction mode), or is available to be injected in the network
(train in regenerative braking mode). This is an input of the
problem and is beyond the scope of this work to develop an
electromechanical model of the train to calculate this power
reference. If the catenary voltage is lower than a given value,
the overcurrent protection reduces the demanded power when
the train is in traction mode. On the other hand, if the catenary
voltage is higher than a given quantity, the squeezing control
will not inject all the available regenerated power into the
network. It will derive part of the power to the rheostatic
braking system, reducing the amount of power injected into
the electrical network. With these two mechanisms, all trains
collaborate to maintain the grid voltages within the limits. In
[2] an optimal power flow approach was used to simulate these
controls and add the voltage constrains to the problem.

From the point of view of the initialization problem, the
use of Backward/forward sweep (BFS) methods could be a
good option. Their convergence is not as much affected by
the initial point as it is in derivative based methods. However,
these methods have not been applied to this kind of systems,
maybe for two reasons. The first one has to do with the
topology of the DC traction systems. It is not unusual to find
DC traction systems forming rings or other more complex
meshed configurations, and the BFS methods were designed
to be used with radial systems. Some authors already proposed
solutions for using modified BFS methods in electrical meshed
systems [13]–[16]. The second reason has to do with the use of
complex loads or generators models in BFS methods. Most of
the studied papers deal with constant impedance and constant
power loads or generators, but it has been demonstrated
that even PV generators and voltage dependent loads can be
embedded in these sort of solvers [13], [17]–[19].

The main contribution of this work is the modification of
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Fig. 1: Test System no1 considering all meshes.

the BFS algorithm for solving power flows in weakly meshed
DC traction networks with non-linear and non-smooth voltage
dependent loads and generators. The authors formulate all the
problem in a compact matrix form based in graph theory and
node incident matrix.

The paper is structured as follows. In section II the system
that must be solved is described and the problem of over-
current and squeeze control modeling is presented. Section
III details the algorithms for solving the system with the
proposed compact matrix based formulation. Section IV shows
and analyses the algorithm performance and convergence when
compared with a derivative based method. Finally in section
V the conclusions are presented.

II. SYSTEM DESCRIPTION

Considering the test system labelled as Test System no1
represented in Fig. 1. The first node N1 is defined as the slack
node and it represents the AC network. Branches B1, B2 and
B3 represent the connection between the AC network and the
DC traction network. The impedance of these branches will
depend on the short-circuit impedance of the AC network, the
impedance of the power transformer installed at each branch
and the commutation impedance of the power converter. A
detailed analysis of how these impedances can be obtained
can be found in [20], [21].

The branches connecting the slack node to the DC network
are called links. The DC nodes that are not trains or slack are
called substations. A substation can be connected or not to the
slack bus through a link. In this work, all links are considered
as reversible allowing the power flow in both directions.

In Fig. 2 the selected electrical model to simulate the
train behavior is represented. It represents the actual power
that the train can inject or demand from the catenary as
a function of the catenary voltage and the power reference
(P ∗t ). This non-linear and non-smooth piecewise definition
of the trains characteristic has been also used in [12], [22],
[23]. The authors assume that the power reference is an input
and can be calculated with complex train models like the
one proposed in [24]. Once the power reference is known
(positive if the train is in traction mode or negative if the
train is in braking mode), this power reference is absorbed
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a) Overcurrent function
(traction mode)

b) Squeeze control
(breaking mode)

Fig. 2: Squeeze and overcurrent protection functions for a
given power reference (P ∗t ).

or injected into the grid just if the catenary voltage (V ) is
among the limits (V min

cont , V
max
cont ). When the train is in breaking

mode (P ∗t < 0), the power injection increases the catenary
voltage. If this voltage rises above V max

cont the power injection
must be reduced. Before exceed the maximum value permitted
for the catenary voltage Vmax, the injected power must be
totally restricted. The difference between the power available
for being regenerated and the actual power injected into the
grid will be burned using the rheostatic braking system. This
injection power strangulation is called squeeze control. It is
graphically represented in Fig. 2b) and mathematically in
expression (1). When the train is in traction mode (P ∗t > 0),
the power absorption tends to reduce the catenary voltage. If
the voltage is too low, the overcurrent protection reduces the
power demand and before the voltage falls below Vmin the
train power electronics equipment disconnect the train from the
grid. The graphical representation of the overcurrent protection
model can be observed in Fig. 2a) and can be mathematically
formulated according expression (2).

Pt =


P ∗t V ≤ V max

cont

P ∗t · V max−V
V max−V max

cont
V max
cont < V ≤ V max

0 V > V max

(1)

Pt =


0 V ≤ V min

P ∗t · V−V min

V min
cont−V min V min < V ≤ V min

cont

P ∗t V > V min
cont

(2)

This piecewise definition of the train, makes possible to
model its real behavior and the interaction between the trains
and the electrical network. However,it makes the problem
not too much tractable for being solved with conventional
derivative-based algorithms. On the contrary, modeling the
trains just like non-linear constant power loads or generators,
will lead to unconstrained power flow. The calculated voltages
and power flows would not represent the real situation.

III. ALGORITHM DESCRIPTION

A. Core BFS algorithm

In this section, the core of the BFS algorithm that will
constitute the most internal loop will be described. This
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specific algorithm is applied when the network is radial. For
this reason, all branches that generate meshes are cut and the
currents through those branches are going to be assumed as
known currents. In further sections, it will be explained how
these currents are updated, but for now, the currents through
the cut branches are assumed as known. In the same way,
the currents demanded or injected by the loads (trains and
substations) are considered as constant known values. For the
first iteration, all nodal currents are initialized using the their
rated values, the ones that they would demand or inject at
the rated voltage. In further sections, it will be explained how
this value will be updated considering the dependence of these
currents with the network voltage.

The problem is formulated using the node incidence matrix
(Γ). Each row of Γ represent a branch and each column a node.
For a given row representing a branch connecting the nodes p
and q, the column p will be filled with 1, and the column q
will be filled with −1 (p < q). Therefore, Γij element can be
defined as:
• Γij = 1 when the tail of the edge i, is vertex j.
• Γij = −1 when the head of the edge i, is vertex j.
• Γij = 0 otherwise.
Using the Γ matrix, the Kirchhoff Current and Voltage Laws

(KCL and KVL) in all nodes and branches are formulated as
follows:

ΓT · ITB + Id · ITN = 0 (3)
Γ · VT − RB · ITB = 0 (4)

Where:
• IB is a vector containing all branch currents iBi.
• IN is a vector containing all nodal currents iNi.
• V is a vector containing all nodal voltages Vi.
• RB is a diagonal matrix. Each term of the diagonal RBi

represents the resistance of branch i. In this first approach
these terms will be constant for a given instant.

• Id is the identity matrix.
The matrix equation (3) represents the KCL in all nodes.

It has nN equations and (nN + nB) unknowns, being nN
the number of nodes and nB the number of branches. The
unknowns for this equation are the nodal currents and the
branch currents. The matrix equation (4) represents the KVL
in all branches. It has nB equations and (nN +nB) unknowns,
the voltages in all nodes and the currents in al branches.

The total number of equations represented in (3) and (4) are
(nN+nB) and the total number of unknowns is (2·nN+nB). It
is obvious that it will be necessary the use of the load/generator
models and the voltage definition in the slack to solve the
problem.

A radial version of the Test System no1 in Fig. 1 could be
obtained cutting all the links except the first one and all the
DC branches creating meshes (for instance B5) (see Fig.3).

The currents through the cut branches are considered as
known currents (zero for the first iteration). The vectors lc and
lnc are defined as vectors containing respectively the indices
of the cut and non-cut branches. Under these assumptions, the
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Fig. 3: Radial version of the Test System no1. Links B2 and
B3 have been cut as well as DC line B5.

currents through the non-cut branches can be obtained in a
general form using the expression (3) as follows:

ITB(lnc) =
(
ΓT (2 : nN , lnc)

)−1

·

·
(
−ΓT (2 : nN , lc) · ITB(lc)− ITN (2 : nN )

) (5)

The colon operator (:) is defined as follows. When it sepa-
rates two indices in a vector or a matrix it means ”from ... to”.
For instance, in X(i : j, k) it represents the column k of
the matrix X from row i to row j. When it is used alone,
as for instance in X(k, :), it represents ”the whole” row or
column. For instance, X(k, :) represents the whole kth row of
the matrix.

It must be remarked that for the first iteration the currents
through the cut branches ITB(lc) are initialised as zero. In
conventional AC distribution systems, when the variation of
the loads is slow, it can be a good strategy to initialise the
currents through the cut branches with the value obtained in
the previous instant. However, in DC traction networks, the
change of the trains power reference can vary drastically from
one instant to the next one. For instance, a train can be braking
at a given instant acting as a generator and accelerating in the
following instant acting as a load. This situation can make
the current flow direction through a cut branch vary in two
successive instants, so the best solution is to initialise the cut
branches currents to zero in all instants.

The currents injected in all nodes are computed assuming a
plain voltage profile with the voltage value equal to the rated
one. As it can be observed in equation (5), the slack current
(iN1) is not considered. It is important to remark that the
matrix ΓT (2 : nN , lnc) is always a square regular matrix. Once
the cut branches are selected, ΓT (2 : nN , lnc) will be constant
during all iterative process. Its inverse has to be calculated
only once. With a single matrix equation, the backward sweep
(BS) is completed. In successive iterations, the injected nodal
currents will be calculated assuming the voltage profile of the
previous iteration.

The forward sweep (FS) can be conducted by means of
(4) removing the rows corresponding to the cut branches and
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assuming that the slack voltage is a known variable. The matrix
expression for the FS step is expressed in a general form as:

VT (2 : nN ) = (Γ(lnc, 2 : nN ))
−1 ·

·
(
−Γ(lnc, 1)V(1) + RB(lnc, lnc)ITB(lnc)

) (6)

In this case, it can be also stated that the matrix Γ(lnc, 2 :
nN ) is a square regular matrix. If the network is radial and the
loads are constant current loads, the algorithm is a direct non-
iterative algorithm, there is no need of iterate. This algorithm
will be designated as a Core BFS Algorithm (C-BFS) and its
pseudocode is represented in Algorithm 1.

Input: Γ,RB , lc, lnc, IN (2 : nN ), IB(lc), Vslack
Output: IB(lnc),V(2 : nN )

1. IB(lnc)← expr.(5) Backward Sweep
2. V(2 : nN )← expr.(6) Forward Sweep

Algorithm 1: C-BFS (Core Backward/Forward Sweep Algo-
rithm).

For meshed networks, the currents through the cut branches
must be updated while the stop criteria is not fulfilled. The
stop criteria will use the KVL in the cut branches and it is
expressed as:

||Γ(lc, :) · V− R(lc, lc) · IB(lc)|| ≤ ε (7)

The procedure for updating the currents through the cut
branches is described in the next section.

B. Cut branches current updating procedure

Once the first C-BFS iteration is run, the currents through
the cut branches must be updated. For this purpose, an
improved method, based on the one presented in [15] is going
to be described. In the Test System no1 represented in Fig.
1, let us consider that only one branch (Branch 2) was cut.
The current update through the cut branch (∆IB2) can be
calculated solving the circuit depicted in Fig. 4a) by means
of the Thevenin equivalent. Fig. 4a) represents the Thevenin
equivalent of the system observed from nodes N1 and N3. The
Thevenin voltage is calculated as Vth2 = V 0

1 − V 0
3 .The super

indices (0) express that the voltages are the ones obtained from
the C-BFS algorithm. For calculating the Thevenin resistance
Rth2, neither train currents nor nodal currents injections are
considered. Once the Thevenin resistance is calculated, the
current through the branch B2 is updated using the next
incremental current:

∆IB2 =
Vth2

RB2 +Rth2
=

V 0
1 − V 0

3

RB2 +Rth2
(8)

The radial network represented in Fig. 3, obtained by
cutting the Test System no1 branches B2, B3 and B5, can
be represented as a multipole system like the one depicted in
Fig. 5.
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Fig. 4: a) Thevenin equivalent of the network observed from
nodes N1 and N3. b) Thevenin equivalent of the network
observed from train N6.
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Fig. 5: Multipole representation of the Test System no1. Links
B2 and B3 have been cut as well as DC line B5. Unitary
current sources I2, I3 and I5 will be sequentially connected
to obtain the Thevenin resistances.

The Thevenin voltage sources can be calculated using the
voltages already obtained from C-BFS algorithm. For calcu-
lating the Thevenin resistances, a current source connected to
each dipole corresponding to a cut branch will be considered.
With all current sources activated at the same time, the rela-
tionship between the current sources and the dipole voltages
can be expressed as follows:V1 − V3

V1 − V4

V2 − V7

 =

R22 R23 R25

R32 R33 R35

R52 R53 R55

 ·
I2I3
I5

 (9)

Applying the current sources sequentially, the Thevenin
resistances (those in the main diagonal) can be easily obtained
by means of the voltages in the left side of the equation (9).
For instance, with the sequence (I2, I3, I5) = (1, 0, 0), the
Thevenin resistance Rth2 will be Rth2 = R22 = V1 − V3.
The voltages V1 and V3 can be obtained using the C-BFS
algorithm, the circuit is radial and it only takes one iteration
for each pair of voltages. This process is repeated for all cut
branches.

To express this procedure in a general way using a compact
matrix formulation, expressions (5) and (6) are used in a
simplified form. In expression (5), nodal currents are not
considered. In (6), the slack voltage is set to zero because in
this part of the algorithm, only voltage differences are needed
and not absolute values. Under these assumptions, all voltages
derived from the current injections can be calculated as:
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VT
ci(2 : nN ) = −Γ(lnc, 2 : nN )−1 · RB(lnc, lnc)·
· ΓT (2 : nN , lnc)−1 · ΓT (2 : nN , lc) · ITBci(lc)

(10)

Where the subindex (ci) represents the current source that
is activated. It varies from 1, to the number of cut branches
(nc).

Using the voltages calculated in (10), each column of the
resistance matrix can be computed as follows:

RB
th(:, ci) = Γ(lc, 2 : nN ) · VT

ci(2 : nN ) (11)

The main diagonal of Thevenin resistance matrix (RB
th) will

contain the Thevenin resistances. This matrix, only needs to be
updated if the indices of cut branches change. It does not have
to be updated at each iteration. The algorithm to calculate this
matrix is labeled as branches Thevenin equivalent resistance
calculation (BTHRC) and its pseudocode is expressed in
Algorithm 2.

Input: Γ,RB , lc, lnc
Output: RB

th

1. for i = 1 to nc do
2. IBci = 0
3. IBci(i) = 1
4. Vci(2 : nN )← expr.(10)
5. RB

th(:, i)← expr.(11)
6. end for

Algorithm 2: BTHRC (Branches Thevenin Equivalent Resis-
tance Calculation Algorithm).

Finally, the correction terms for updating the currents
through the cut branches are calculated as:

∆ITB(lc) = (RB+th)
−1

Γ(lc, :) ·
(
V0
)T

(12)

Where RB+th is a diagonal matrix of size (nc, nc). The
terms in the diagonal are calculated by the addition of the
cut branch resistances (RB) and the Thevenin equivalent
resistances (Rth). Again, the super-index (0) indicates that
the voltages were obtained from the C-BFS algorithm. The
currents through the cut branches are updated using the
correction term:

ITB(lc) =
(
I0
B(lc)

)T
+ ∆ITB(lc) (13)

From now on, this current correction procedure will be
labeled as Cut Branch Correction Algorithm (CBC). Its pseu-
docode can be analyzed in Algorithm 3.

Input: Γ,RB , lc, lnc,V0,RB
th

Output: IB(lc)

1. ∆IB(lc)← expr.(12) Cut branch current corr. term
2. IB(lc)← expr.(13) Cut branch current correction

Algorithm 3: CBC (Cut Branch Correction Algorithm).

In algorithm 4 the combination of the core BFS algorithm
(C-BFS) with the branches Thevenin equivalent resistance
calculation (BTHRC) and cut branch correction procedure
(CBC) is represented. The three combined algorithms will be
denoted as Meshed Networks with Constant Current Loads
Backward/Forward Sweep Algorithm (MNCCL-BFS).

Input: Γ,RB , lc, lnc, Vslack, IN
Output: IB ,V(2 : nN )

1. IB(lc)← 0
2. V← Vslack
3. RB

th ← BTHRC() Algorithm 2
4. for i = 1 to maximum number of iterations do
5. IB(lnc)← C-BFS() Algorithm 1
6. if expr.(7) is true then
7. break
8. else
9. IB(lc)← CBC() Algorithm 3

10. end if
11. end for

Algorithm 4: MNCCL-BFS (Meshed Networks with Constant
Current Loads Backward/Forward Sweep Algorithm).

C. Nodal currents correction

Until now, the currents demanded or injected in the nodes
(trains or substations) were assumed as constant. However,
as it was mentioned in previous sections, the nodal currents
(trains or substations) are defined as voltage dependent current
sources. At every instant, the train will try to inject or
absorb a given power (P ∗t ). Still, the real power injection or
absorption (Pt) will be constrained by the squeeze control
or the overcurrent protection. These two controls create a
non-linear but also non-smooth (non-differentiable) voltage-
dependent piecewise defined characteristic (see Fig. 2).

Usually, this situation is solved using an if-then approach.
Depending on the previous iteration voltage, an interval of
the piecewise defined characteristic is selected. However,
sometimes the new obtained voltage is out of the previously
selected interval, so a new iteration is required. In addition,
when the slope of the squeeze control or the overcurrent
protection characteristic is too high, the algorithm can iterate
in an infinite loop between two non-adjacent segments. The
correct solution cannot be reached because is in the segment
situated in the middle.

To overcome this obstacle, the authors propose a method
based on the Thevenin equivalent. The method calculates the
Thevenin equivalent of the network from the point of view of
each train (or substation). For calculating the Thevenin voltage
the MNCCL-BFS will be used, the nodal currents will be set
sequentially to zero and thus, the obtained voltage in the node
with zero nodal current will be the thevenin voltage.

The procedure to calculate the Thevenin equivalent
impedance of the network from the point of view of the
nodal loads (trains/substations), is similar to the one described
in the previous subsection. Unitary current sources will be
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connected sequentially between all nodes (except the slack
node) and ground. The obtained voltages will be the columns
of the equivalent resistance matrix. The algorithm used for
this purpose is again the MNCCL-BFS. In this case, as it
happened with the CBC algorithm, the slack voltage can be
set to zero because only the induced voltages derived from
the injected currents are needed. This procedure is labeled
as nodes Thevenin resistance calculation (NTHRC) and its
pseudocode is detailed in Algorithm 5.

Input: Γ,RB , lc, lnc
Output: RN

th

1. VN ← 0
2. IB(lc)← 0
3. for i = 2 to nN do
4. IN ← 0
5. IN (i)← −1
6. VN ←MNCCL-BFS()
7. RNi

th ← VN (i)
8. end for

Algorithm 5: NTHRC (Nodes Thevenin equivalent resistance
calculation).

For calculating the Thevenin equivalent voltage of the
network from the point of view of the nodal loads
(trains/substations), the MNCCL-BFS will be used. The nodal
currents will be set sequentially to zero and thus, the ob-
tained voltage in the node with zero nodal current will be
the Thevenin voltage. This algorithm is labeled as nodes
equivalent Thevenin voltage calculation (NTHVC) and its
pseudocode can be observed in Algorithm 6.

Input: Γ,RB , Vslack, I0
N , lc, lnc

Output: VN
th

1. VN ← Vslack
2. IB(lc)← 0
3. for i = 2 to nN do
4. IN ← I0

N

5. IN (i)← 0
6. VN ←MNCCL-BFS()
7. V Ni

th ← VN (i)
8. end for

Algorithm 6: NTHVC (Nodes Thevenin equivalent voltage
calculation).

The Thevenin voltages and resistances are calculated for
all nodes containing a voltage dependent load or generator.
Then, an equivalent circuit like the one depicted in Fig. 4b)
is obtained for each of those nodes. Usually, if the node
is demanding power and the voltage is too low, the power
demand is reduced due to the overcurrent protection. If the
node is injecting power into the DC network and the voltage
is too high, the injected power is reduced by the squeeze
control. In both cases, the load/generator characteristic is a

VS2 VS3

PS1 =

= PS2

PS3

segment 3segment 2segment 1
P = PS2 + kS2 · (V − VS2)

P = PS3 + kS3 · (V − VS3)

P = PS1 + kS1 · (V − VS1)

V

P = f(V, Psi)

Fig. 6: Generic piecewise defined power load.

piecewise-defined function that may have several segments.
In the specific case represented in the figure 6 it has three
segments.

Each segment is characterized by its power and voltage. The
characteristic voltage of a segment is defined as the lowest
voltage of the segment, and it is labelled as (VSi), being
i the index of the segment. The characteristic power of a
segment is the one associated with its characteristic voltage
and it is denoted by (PSi). The characteristic voltage of the
first segment must be defined as a voltage lower than the
minimum catenary voltage (zero, for instance). To select the
active segment, the Thevenin equivalent circuit is used (see
Fig. 4b)). The algorithm checks all the segments starting from
the highest index one until the condition (14) is fulfilled.
Then the catenary voltage of the node under analysis (Vi),
is determined by means of expression (15). kSi represents the
slope of the segment. This expression is derived from the basic
analysis of the circuit represented in Fig. 4b).

PSi ≤
(Vth − VSi) · VSi

Rth
(14)

Vi = (1/2)(Vth − kSiRth+

+
√

(kSiRth − Vth)2 + 4Rth(PSi − VSikSi))
(15)

Finally the actual injected or demanded power is obtained
with the active segment characteristic equation (see Fig. 6 and
expression (16)).

Pi = PSi + kSi · (Vi − VSi) (16)

Once the power Pi and the voltage Vi are determined, the
load can be treated as a constant current load. The power flow
in the next iteration can be solved again using the MNCCL-
BFS algorithm. The pseudo-code of the algorithm to correct
the nodal currents injections can be observed in Algorithm 7.

The integration of the nodal current correction algorithm
(NCC) with the meshed network with constants current loads
backward/forward sweep algorithm (MNCCL-BFS), allows to
solve meshed networks with non-smooth voltage-dependent
piecewise defined loads or generators. The nodal currents
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Input: Γ,RB , Vslack, I0
N , lc, lnc,P = f(V),RN

th

Output: IN
1. VN

th ← NTHVC()
2. for j = 2 to nN do
3. for i = nS to 1 do
4. if expr.(14) is true then
5. segment i is active
6. Vi(j)← expr.(15)
7. Pi(j)← expr.(16)
8. IN (j)← Pi(j)/Vi(j)
9. break

10. end if
11. end for
12. end for

Algorithm 7: NCC (Nodal currents correction).

are initialized in the first iteration assuming a plain voltage
profile. Then, the MNCCL-BFS algorithm is used to update
the voltage profile and the branch currents. Finally, the nodal
currents will be corrected using the NCC algorithm. The
updated nodal currents will be used as a new input for the
MNCCL-BFS algorithm. The process is repeated until the stop
criteria or the maximum number of iterations is reached. The
stop criteria is expressed as:∣∣∣∣IN (2 : nN )− I0

N (2 : nN )
∣∣∣∣ ≤ ε (17)

In Algorithm 8, the combination of these two algorithms
is described. The new algorithm is labeled as (MNVDL-
BFS) (Meshed Networks with Voltage dependent Loads Back-
ward/Forward Sweep Algorithm).

Input: Γ,RB , lc, lnc, Vslack,P = f(V)
Output: IB ,V(2 : nN ), IN (1)

1. RN
th ← NTHRC()

2. IN (2 : nN )← P(Vslack)/Vslack
3. for i = 1 to maximum number of iterations do
4. IB ,V←MNCCL-BFS() Algorithm 4
5. I0

N (2 : nN )← IN (2 : nN )
6. IN (2 : nN )← NCC() Algorithm 7
7. if expr.(17) is true then
8. break
9. end if

10. end for

Algorithm 8: MNVDL-BFS (Meshed Networks with Voltage
dependent Loads Backward/Forward Sweep Algorithm).

IV. ALGORITHM PERFORMANCE ANALYSIS

The algorithm was first validated using a previously devel-
oped software package [1], [2], [12]. The previous software
solves the same problem but using the well-known trust-region
dogleg algorithm [25]. The initial conditions are the same for
both methods:

N6 N2 N7 N3 N8

N9 N4 N10 N5
N11

N12 N13 N14

N15

N16

N17 N18 N19 N20

B16

B17 B5B6 B7 B18
B19

B8

B9 B10 B20

B21

B11

B12 B13

B22

B23 B24 B14 B15 B25

Fig. 7: Test System no2 Meshed DC traction network.

• Plain voltage profile (1 p.u.) in all nodes.
• Zero for all branch currents.
• Currents at rated voltage for all nodal currents.
The algorithm was implemented using MATLAB. All tests

were conducted in a conventional personal computer with a
processor Intel(R) Core(TM) i7-2670QM CPU @ 2.20GHz
and 4GB of RAM.

To analyze the performance of the algorithm, four test
batteries of 105 cases/battery are presented. The rated voltage
of the DC system is 750V in all cases. The catenary and the
rail resistance are assumed to be 7mΩ/km and 3.5mΩ/km in
all cases. It is also assumed, that each train has a perfect
connection to ground so the rail resistance is added to the
catenary resistance. The method described in [21] was used
for obtaining the equivalent impedance of the substations as a
function of their rated power and the power transformer short
circuit voltage. The line lengths oscillates between 2 and 3 km
in the three systems. All the trains have a maximum traction
power demand and a maximum regenerated power capacity of
1MW. The reference power for all trains and cases in a battery
test is uniformly distributed between the maximum traction
power and the maximum regeneration capacity (±1MW).

This section is structured as follows. First the behavior of
the algorithm will be evaluated in two small scale systems by
means of three test batteries. Then the convergence and the
accuracy of the proposed algorithm are evaluated by means
of the test battery 4. This test battery is performed in a large
network based in a real topology.

A. Analysis of the algorithm behaviour in small networks

The test battery no1 was carried out using the Test System
no1 in Fig. 1, while the test batteries no2 and no3 were
effectuated using the Test System no2 in Fig. 7. The substations
rated power and short circuit voltage in Test System no1 and
2 were considered as 3MW and 5% respectively.

The results obtained in the batteries no1, no2 and no3
are represented in Fig. 8. In the first and the third battery
tests (rows 1 and 3 of Fig. 8) , the squeeze control is
activated at 775V and the maximum catenary voltage is set
to 780V, the overcurrent protection is activated at 725V being
the minimum catenary voltage 720V. This set up generates
extremely stressed scenarios. In test battery no2 (row 2 of Fig.
8), the squeeze control is activated at 850V and the maximum
catenary voltage is set to 900V. The overcurrent protection is
activated at 700V and the minimum catenary voltage is set to
650V.
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Fig. 8: Proposed algorithm performance indices. Row 1 represent the test battery 1 with Test System no1. Rows 2 and 3
correspond to the test batteries 2 and 3 with Test System no2. Column 1 (a, e and i) represents the computation time in
seconds. Column 2 (b, f and j) represents the sum of all demanded (positive) or available for regenerate (negative) power in all
trains, while column 3 (c,g and k) represents the sum of the real injected or absorbed power by all trains. Finally in column
4 (d,h and l), all voltages obtained in all cases and in all nodes of the system can be observed.

1) Test battery no1: The mean time spent for simulating
each instant was 0.0161s and the standard deviation 0.0031s.
Comparing these results with those provided by the previous
derivative based software package, it can be observed that the
mean time is reduced in more than 90%. With the previous
software the mean time per case was 0.31s with a standard
deviation of 0.16s. Comparing Fig. 8b) and c), it can be
observed that this case is quite stressed. Fig. 8b) represents
the sum of the total power that all trains try to inject or
absorb into the network. In some cases, the three trains try
to inject the maximum power or absorb the maximum power
at the same time (±3MW). However, as it was explained
in previous sections, because the squeeze control and the
overcurrent protection, not always the train is able to inject
or absorb the required power. This effect can be observed
in Fig. 8c), where the real injected or absorbed power is
represented. The maximum real injected or absorbed power
by all trains in a single instant is around 1MW. The stress
in the network can be also noticed analyzing 8d) where the
histogram of voltage in all nodes and all cases is depicted.
There are more than 105 node voltages near the minimum,
this is an indicator of overcurrent protection activation. There
are more that 105 nodes with a voltage near the maximum,
indicating the activation of the squeeze control.

2) Test battery no2: It is applied to the scheme represented
in Fig. 7. In this case the network is more complex and
the mean simulation time is 0.0366s. The time reduction
comparing with the derivative based method is about 95%.

This is a non-stressed network due to the relaxation of the
maximum and minimum voltages up to the real values. In
this case, the histograms of the sum of the total demanded
or absorbed power (Fig. 8f)) and the actual injected power
(Fig. 8g)) are similar. There are also nearly zero nodes with
the maximum or the minimum voltages (900V and 650V
respectively) as it can be observed in Fig. 8h).

3) Test battery no3: It corresponds to the same topology
used for the test no2. However, in this case, the maximum and
minimum voltages were set to 780V and 720V respectively to
created a extremely stressed network. The sum of the maxi-
mum demanded power oscillates between -5MW and 5MW
(see Fig. 8j)), while the actual demanded power oscillates
between -2.5MW and 2.5MW. More than 40% of the nodes
are in the voltage band where the squeeze control or the
overcurrent protection is active. In this test case the mean
time to solve an instant was 0.0887s. With the derivative based
method, the mean time was 0.96s, but in more than 25% of
the instants the convergence was not achieved. The proposed
method is not only faster but also more stable.

B. Analysis of the algorithm behaviour in large networks

The 105 cases of the Test battery no3 were conducted using
the network depicted in Fig. 9. This topology is based on a
64 nodes real commuter network. It has 40 stations, 10 of
them connected to the AC system (the slack node in this
specific case of study). The number of operative trains is 24.
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Fig. 9: Test System no3 Real large conmuter topology.
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Fig. 10: The node voltage error of BFS-based method relative
to derivative based software results.

In Fig. 9, the slack and the 10 lines connecting the slack to
the substations are not represented. However, these 10 lines
create 9 loops, transforming the radial topology in a weakly
meshed one. The rated power of each substation and the power
transformer short circuit voltage are assumed to be 15MW and
5% respectively. This scenario tries to simulate a real one, so
the squeeze control is activated at 850V and the maximum
catenary voltage is set to 900V. The overcurrent protection is
activated at 550V and the minimum catenary voltage is set to
500V. In Fig. 10, the maximum voltage error in all nodes
except the slack, between the proposed algorithm and the
derivative based one considering the 105 cases is represented.
As it can be observed the maximum error is always lower than
1.1 ·10−7 (p.u.). The selected threshold (ε) for the stop criteria
expressed in the expression (17) is 10−6.

The convergence of this method will be demonstrated by
means of empirical methods [26]–[31]. The evolution of the
error with respect to the time, the number of iterations and
other parameters described in the following paragraphs have
been analyzed for a large number of test batteries. In Figs.
11 and 12, the convergence in this specific test battery can be
analyzed and compared with the derivative based algorithm
convergence.

In Fig. 11a) and b) the cumulative percentage of solved
cases as a function of the number of iterations is depicted.
In terms of iterations, the derivative method is more effective

because most of the cases are solved in a lower number of
iterations. However, the analysis of this single parameter is
not determinant.

In Fig. 11c) and d) the mean, maximum and minimum error
versus the iteration number are represented for the proposed
method and the derivative based one respectively. For calcu-
lating the maximum error at the iteration i (Max.Errori), the
expression (18) is used. Ai represents the set of all active cases
at iteration i, avoiding to compute those cases that already
converged in previous iterations. n (Ai) represent the number
of active cases.

Max.Errori =

∑
j∈Ai

|Max.Errorj |

n (Ai)
(18)

The minimum and the mean error in Fig. 11c) and d) are
computed in the same way, only the active cases at each
iteration are considered for calculating the values.

The maximum, minimum and mean time invested at each
iteration are represented in Fig 11e) and f). For the proposed
method the mean time per iteration is very homogeneous and
close to the minimum (see Fig 11e)). The standard deviation
of the time invested at each iteration is very low (0.29ms
according Table I), and only a few iterations present times
higher than 10ms. When comparing with the time per iteration
in the derivative based method (see Fig. 11f)), it can be
observed that the mean time per iteration is higher higher than
10ms in most of the iterations and there are some iterations
with a maximum time higher than 30ms. Again for calculating
these times per iteration, only the active cases have been
considered. At this point it can be stated that the derivative
based method needs more iterations. However, each iteration
is much faster in the proposed BFS based method.

Fig. 12 represents the algorithm behavior with respect to the
time. In Fig. 12a) the cumulative solved cases (in percentage)
versus the time can be compared for both methods. Then, in
Fig. 12b) the mean error of the active cases versus the time
is compared for both algorithms. In this figure, the advantage
of the proposed method in terms of time saving is notable.

Finally, In Table I, the behavior of both algorithms, the
derivative based and the BFS based is summarized and com-
pared. The derivative based method invest a mean number

BFS based Derivative
method based method

Minimum total time (ms) 8.66 24.38
Mean total time (ms) 16.25 44.38
Maximum total time (ms) 58.31 185.90
Total time (Std.Dev.) 6.36 14.30
Minimum number of iterations 4 3
Mean number of iterations 6.99 4.40
Maximum number of iterations 17 13
Number of Iterations (Std.Dev) 2.33 1.58
Minimum time per iteration (ms) 1.96 6.14
Mean time per iteration (ms) 2.30 10.41
Maximum time per iteration (ms) 5.46 38.64
Time per iteration (Std.Dev.) 0.29 2.00

TABLE I: Summary of the comparison between the two
methods.
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Fig. 11: Convergence behaviour of the proposed algorithm compared with the derivative based one in terms of error per iteration
and time per iteration.

of iterations of 4.4, while the BFS based mean number of
iterations is nearly 7. However, the iterations in the BFS based
algorithm are much faster, 2.3 ms versus 10.41 ms in the
derivative based. The total mean time for solving one instant
with the new algorithm is 16.25ms. The time saving with
respect to the previous software is more than 270%.

V. CONCLUSSIONS

A modified Backward/Forward based power flow algorithm
for solving weakly meshed DC traction networks with trains
equipped with regenerative braking system was proposed and
evaluated in this paper. The main contributions of this work
deals with the compact matrix formulation of the algorithm
and the ability for solving meshed power systems with non-
smooth voltage-dependent loads or generators. This last fea-

ture allows the authors to simulate the important effect in the
network of the squeeze control and the overcurrent protection
of the trains. Comparing the proposed BFS based algorithm
with the traditional derivative based one, the authors can
determine that the proposed algorithm is equivalent in terms of
accuracy, but much more robust and faster. From the analysis
of the results, it can be stated that the proposed BFS based
methods for solving DC traction networks have been revealed
as very effective.
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