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A three dimensional in SILICO model for the simulation of inspiratory and expiratory airflow
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A three-dimensional, computational fluid dynamics model of the human respiratory system is put forward for consideration.
This in silico model is based on existing state-of-the-art geometric approximations. As a complete simulation of the geometry
would have unaffordable high computational costs, the model is composed of a single path of air from the mouth to the 16th
bronchial generation, truncating the symmetrical branches that were not included. The innovation housed in this model is the
development of a function that is applied to the truncated branches, which contemplates the behavior of the airflow within
those branches, by copying cell by cell the velocity vectors existing in the symmetrical face of the developed branch. This
model can reproduce the complete airflow process: inspiration and expiration cycles, through simulation in unsteady flow
conditions. In normal breathing the air velocity varies within a narrow range, with steady changes. Therefore the model
has been validated simulating a spirometry maneuver, in which an inspiration and expiration are performed in the most
demanding conditions in order to obtain a wide speed range with faster variations.

Keywords: computational fluid dynamics; human respiratory system; inhalation; exhalation; spirometry

1. Introduction
For decades, mathematical models that reveal the morphol-
ogy and workings of the human respiratory system have
been developed. The first approaches were mainly focused
on a mathematical description of the airways that make up
the system.

The most commonly used anatomical model of the
lower airways was developed by Weibel (1963). In this
unidimensional model, the directions of bifurcation are
indicated, designating the trachea as the first airway (gen-
eration 0) and assumed that each airway leads to two sym-
metrical branches (regular dichotomy). Weibel described
a minimum of 23 bronchial generations up to the alve-
olar sacs, specifying lengths and diameters. Alternative
approaches based on Weibel’s morphology, which enhance
the description of the lungs, have been proposed. The most
notable are the work by Horsfield and Cumming (1968)
who introduced some asymmetries in the model, modify-
ing the diameter of the airways and the branching angles;
and the morphology developed by Hammersley and Olson
(1992) which is suitable for the smaller airways (from
generations 6 to 12).

Other research work carried out focus on detailed math-
ematically descriptions of the airways: Sauret, Goatman,
Fleming, and Bailey (1999) and Hegedüs, Balásházy, and
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Farkas (2004) and Schmidt, Zidowitz, Kriete, Denhard,
Krass, and Pietgen (2004) proposed high-resolution mod-
els of morphologically lifelike airways up to the fifth
bronchial generation; Kitaoka, Takaki, and Suki (1999)
and Tawhai and Burrowes (2003) proposed algorithmic
techniques to describe the geometry of the lower airways.

More recently, the use of computational fluid dynamics
(CFD) modeling techniques and the increased calculation
capacity of computers have facilitated the modeling and
simulation of the airflow throughout the airways. However,
few studies to date have attempted to simulate the flow in
the whole airway or even through the conducting airways:
it can be deduced from the basic morphology of Weibel
(1963) that the number of paths for the airflow in the con-
ducting airways is equal to 2 to the power of 23, i.e., more
than 8 million individual flow segments. A computational
resolution of the complete flow at all scales with pinpoint
accuracy would require a mesh size of the order of sev-
eral billions of elements, making it impossible to simulate
withexisting computer capabilities.

A first attempt to solve this problem was made by
Nowak, Kadake, and Annapragada (2003). Nowak used a
series of increasingly smaller models of the airways. An
entry boundary condition obtained from a simulation of the
section immediately above was applied to each section of
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the airways. One of the difficulties that arises in this type
of sequential procedure is that the output boundary condi-
tion at the end of each section must be prescribed before
running calculations. The authors found that an equal mass
division in the outlets was more appropriate as a boundary
condition than a constant pressure value. A similar method-
ology was applied by Zhang, Kleinstreuer, and Kim (2008)
to simulate a model based on Weibel’s model. Although
both studies represented a significant advance in the simu-
lation of the airflow in the lungs, this sequential procedure
does not allow a full-flow coupling at all levels.

Later, researchers opted for a partial resolution of the
airway geometry to perform a continuous 3D Computa-
tional Fluid Dynamics (CFD) simulation. In these cases
only a reduced number of the flow paths were taken into
account, providing identical conditions at the areas that
were not modeled.

The first significant approach to apply a reduction in
the number of resolved flow paths was the work of Gemci,
Ponyavin, Chen, Chen, and Collins (2008), which uses the
seventeen-generation lung model of Schimdt et al. (2004).
The authors studied the inhalation process in a reduced
number of resolved flow paths from trachea (generation
0) up to the terminal bronchioles (generation17), through
quasi steady-state simulations. An equal and constant pres-
sure condition at all flow outlets (corresponding to areas
not modeled)has been used.

The current state of the art for CFD simulations is
the use of partially resolved models of the lung airways,
in which some branches are removed (truncated) from
the airway tree at different levels of the scale. The trun-
cated branches are substituted by boundary conditions.
The challenge is to provide realistic conditions for these
geometries.

In keeping with such criteria, Walters and Luke (2010)
uses Weibel’s morphology and the anatomical data of
Hammersley and Olson, truncating 50% of the airway
paths in each generation from the second generation
(bronchi)to the twelfth generation (bronchioles) to cre-
ate steady state simulations of the inhalation process. The
truncations were executed in the middle of the branch seg-
ment and a calculated value of static pressure was used
as a boundary condition. This pressure value is obtained
using a probabilistic approach using pressure data from
resolved flow paths. In another paper (Walters, Burgreen,
Lavallee, Thompson, & Hester, 2011), the authors continue
the investigations of the airflow in steady state conditions
using the same static pressure calculation approach for
truncated branches in a CT based model. Later on, Walters,
Burgreen, Hester, Thompson, Lavallee, Pruett, and Ford-
Green (2012), using the same model, presents the results
obtained in a complete breathing cycle using unsteady-
state simulations, where boundary conditions at truncated
branches are prescribed based on an presupposed mass
flow split at each bifurcation (it assumes uniform velocity
profile).

Figure 1. Velocity vectors in the exit of the truncated branch
(marked in blue colour) and its symmetrical face in the opened
airway (marked in green colour).

Another approach to simplify the complete lung model
is to define a single-path model. This was indicated by
Spencer, Schroeter, and Martonen (2001) as a way to
optimize computational costs in simulations with realistic
airway surface features. Longest also demonstrated that the
approach including a stochastic individual path (SIP) CFD
model from the secondary bronchi to the terminal bronchi-
oles (Tian, Longest, Su, Walenga, & Hindle, 2011) permits
accurate studies of the transport and deposition of pharma-
ceutical aerosols from inhalers (Tian, Hindle, & Longest,
2014). The authors specify mass flow rate boundary con-
ditions at truncated outlets, based on a presupposed even
split of the air flow at each bifurcation.

Following the single-path approach, this paper endeav-
ors to provide an investigation that includes a model
combining existing CT- based geometries of the upper air-
ways (nose, mouth and throat) with a designed single-path
model from the trachea up to the terminal bronchioles. The
branches aresymmetric, based on the geometries proposed
by Weibel and Kitaoka. This symmetrical state allows the
use of a boundary condition for each simulation step that
imposesthe same velocity vector field in the truncated-
branches as in the developed branches through which the
air-flow passes (Figure 1). This boundary condition is
considered much more realistic than predefined flow-rate
values or pre-calculated pressure conditions. The model is
validated with a complete spirometry test which represents
the most demanding conditions for unsteady simulations of
both the inhalation and exhalation cycles.

2. DEVELOPED MODEL
2.1. The basis
For the elaboration of the three-dimensional airway model,
the model proposed by Kitaoka et al. (1999) is combined
with Weibeĺs model (1963).

Weibel’s classic model indicates the bifurcation modes,
designing the trachea as the first airway (order 0) and
assuming that each airway generates two new branches
(regular dichotomy). Thus, the left and right main bronchi
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Figure 2. Airway scheme.

are order 1 and so on. There are at least 23 airway gener-
ations until reaching the alveolar sacs. In accordance with
this model, there is one order 0 generation (20 = 1), 2 air-
ways of order 1 (21 = 1), 4 airways of order 2 (22 = 4),
etc. Therefore there are 223 airways of order 23; the num-
ber of ramifications increases exponentially to a total of
8,388,608 (223). Figure 2 shows a scheme of these airways.

The diameter of each ramification diminishes according
to the formula dn = d0·2−1/n, n represents the generation
order and d the diameter. This relationship is maintained
up to generation 16 at the end of the conductive zone.
From generation 17 to 23 there are only small changes in
the dimensions of the airways, because they are more or
less alveolized. In Weibeĺs model the spatial disposition of
the branches was not taken into account, therefore it only
allows one-dimensional modeling of the lung.

Kitaoka et al. (1999) brought about the design of a real-
istic three dimensional model of the lung, with nine basic
rules:

- Rule 1: Branching is dichotomous.
- Rule 2: The parent branch and its two daughter

branches lie on the same plane, called the
branching plane.

- Rule 3: The volumetric flow rate through the parent
branch is conserved after branching; that is,
the sum of the flows in the daughter branches
is equal to the flow in the parent branch.

- Rule 4: The region supplied by a parent branch is
divided into two daughter regions by a plane
called the “space-dividing plane.” The space-
dividing plane is perpendicular to the branch-
ing plane and extends out to the border of the
parent region. There is a supplementary rule
(rule 4a) for correcting the space division
scheme whenever the space in that region
requires it.

- Rule 5: The flow-dividing ratio “r” is set to be equal
to the volume-dividing ratio, defined as the
ratio of the smaller daughter region to that of
its parent. Figure 3 illustrates these rules.

Figure 3. Three dimensional model of the lung proposed by
Kitaoka.

- Rule 6: Diameters and branching angles of the two
daughter branches are determined by sub-
stituting r from rule 5 into the following
equations.

With no symmetry:

d1 = d0r1/n, d2 = d0(1 − r)1/n

cosθ1 = 1 + r4/n − (1 − r)4/n

2r2/n ;

cosθ2 = 1 − r4/n + (1 − r)4/n

2(1 − r)2/n

With symmetry:

θ1 = θ2; r = 1/2; d1 = d2 = d02−1/n; cosθ = 2( 2
n −1)

Where:

- d is the airway diameter
- subindex 0 for mother branch
- subindexes 1 and 2 for daughter branches
- n is a constant called diametrical exponent (for laminar

flow its value is 3 and for turbulent flow its value is
2.6)

There is a supplementary rule (rule 6a) to correct the
branching angle according to the shape of the daughter
region.

- Rule 7: The length of each daughter branch has a
value three times its diameter. There is a
supplementary rule (7a) to correct the length
according to the shape of the region.

- Rule 8: If branching continues in a given direction,
the daughter branch becomes the new parent
branch, and the associated branching plane is
set perpendicular to the branching plane of
the old parent. There is a supplementary rule
(8a) to correct the rotation angle according to
the shape of the region.
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- Rule 9: The branching process in a given direc-
tion stops whenever the flow rate becomes
less than a specified threshold or the branch
extends beyond its own region.

2.2. Geometric model
The geometric model used is composed of a conduc-
tive airway model designed following Weibel’s (1963)
and Kitaoka’s et al. (1999) symmetrical cases, as well
as existing upper airways models. It was developed up
to the 16th bronchial generation (end of the conductive
airways) because, according to Weibel’s model, from the
17th generation to the end, the airways are alveolized. The
development of the geometry of the alveolar units is much
more complex and is beyond the scope of this work.
a) Conductive airways model

The numerical model of the conductive airways was
designed to be as realistic as possible while avoiding pro-
hibitive computational costs when it is simulated. There-
fore the model has been simplified in two ways:

1. Considering a model of a single active branch:
when the trachea divides into the two main bronchi,
the model will continue through the right main
bronchus while the pathway through the left main
bronchus will be “truncated.” When the right main
bronchus bifurcates into the right upper bronchus
and the intermediate bronchus, the model will con-
tinue through the intermediate bronchus and the
upper right bronchus will be “truncated,” and so
on. This kind of model was researched and devel-
oped by Walters and Luke (2010) and Walters et al.
(2012) and has proven to be effective to simulate the
entire lung, saving time and computational costs.

2. Overlooking the changes in the diameter of the air-
way in accordance with the respiratory-cycle phase.

The diameter and the length of the airways were
deduced from the relations proposed by Weibel (1963) and
Kitaoka et al. (1999):

d = 0.018−0.388n; l = 0.012−0.92n if n ≤ 3

d = 0.013−(0.2929−0.00624n) n; l = 0.025−0.17 n if n > 3

Being, d the airway diameter, n the generation order
and l the airway length.

A summary of the main geometric dimensions in the
branches is presented in Table I.A (see Annex).

With this data and other restrictions from Weibel’s
(1963) and Kitaoka’s et al. (1999) model, the geometry was
constructed using the commercial software Ansys Gambit
2.4.6. The numerical model of the lung, composed ofan
open branch (or single path), is shown in Figure 4. The
complete morphology of the lung can be generated from

Figure 4. Geometric model of the lung.

the numerical model. This can be done by establishing
symmetry at each of the truncated branches.
b) Upper airways model

Once the model has been designed up to the 16th
bronchial generation, the next step is to complete the con-
ductive airway by adding the upper airway components:
nose, mouth and throat (larynx and pharynx).

The nose is constructed using the simplified geometri-
cal model used in Castro-Ruiz (2003) obtained from CT
images of a thirty-year-old woman. The volume of each
duct of the nose is 19,568 mm3. Figure 5 shows the model
used (right image) and seven coronal cuts (left image), with
the following areas:1: 482 mm2, 2: 205 mm2, 3: 164 mm2,
4: 198 mm2, 5: 154 mm2, 6: 33 mm2and 7: 13 mm2. The
perimeter of the cuts allows the construction of the lon-
gitudinal surfaces using the following distances between
sections:1 − 2: 18 mm, 2 − 3: 10 mm, 3 − 4: 36 mm, 4 − 5:
16 mm, 5 − 6: 17 mm and 6 − 7: 7 mm.

The mouth and throat are a reproduction of the Sta-
pleton model (Stapelton, Guentsch, Hoskinson, & Finlay,
2000) constructed by using simple geometric shapes. The
advantage of this approach is that extremely high mesh res-
olutions are not needed near the walls to resolve all the
small airway irregularities.

The geometry of the mouth used is shown in Figure 6.
In the left image seven coronal cuts in the mouth model
(right image) are shown. The areas are: 1: 503 mm2, 2: 471
mm2, 3: 574 mm2, 4: 638 mm2, 5: 653 mm2, 6 and 7: 257
mm2. The distances between sections are: 2–3: 25 mm, 3–
4: 25 mm, 4–5: 30 mm, 5–6: 4 mm and 6–7: 11 mm. The
walls of the mouth are smoothly joined with the walls of
the pharynx. The shape of the tongue changes while speak-
ing or swallowing. This model has a flat tongue in the
foremost part of the mouth.

The throat geometry is more complicated because its
three points of entry (two nasal passages, the choanae; and
the mouth passage, the fauces) become a single conduct
(the pharynx) whose output is the trachea. Inside this con-
duct is the epiglottis, a cartilage separating the trachea from
the esophagus. The epiglottis is smoothly attached to the
trachea. The epiglottal folds form a tube with a diameter of
approximately 18 mm.
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Figure 5. Geometry of the nose.

Figure 6. Geometry of the mouth.

Figure 7. Geometry of the throat.

Figure 7 represents the throat model (right image)
divided intosections (left image). The pharynx includes
cross sections from 7 to 15, with the corresponding areas:7:
393 mm2, 8: 391 mm2, 9: 392 mm2, 10: 458 mm2, 11: 572
mm2, 12: 658 mm2, 13: 752 mm2, 14: 1020 mm2 and 15:
964 mm2.The larynx includes cross sections from 1 to 6
with the corresponding areas:1: 254 mm2, 2: 126 mm2, 3:
242 mm2, 4: 315 mm2, 5: 370 mm2 and 6: 395 mm2.

The entire geometric airways model is presented in
Figure 8.

2.3. Numerical model
Once the geometry has been done, the next step is to cre-
ate the numerical model. This is determined by dividing,
or meshing, the geometry into different cells in which the
flow equations must be solved. Therefore a mesh will be
applied, choosing the appropriate cell type.
a) Meshing

Figure 8. Geometric airways model.

The model of the lung was meshed with tetrahe-
dral cells because of their favorable adaptation to com-
plex geometries. The size of the tetrahedrons diminishes
while descending from high-order to low-order genera-
tions. Before meshing the volumes a boundary layer mesh
was built using structured meshing in order to obtain a
better description of the boundary layer in the numerical
calculations. The size of the tetrahedrons was consistent
with the size of the boundary layer cells.

The total size of the grid is about 106 cells. A quality
analysis of the mesh yielded very satisfactory results, indi-
cating a magnitude of the equitize skew below 0.6 for 98%
of the cells in the mesh. This parameter shows the shape of
the cells formed. Values near 0 indicate more regular cells,
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which have a higher probability of obtaining satisfactory
results.

Figure 9 shows an example of the surface mesh at some
branches with a detail of the boundary layer mesh that
includes numerical information needed for its definition.
The boundary mesh has equal number of cells for each
branch as the number of rows (6rows) and other dimen-
sionless parameters are evenly set throughout the model.

b) Flow equations
The equations that describe a fluid (air in this case) in

movement can be deduced from the mass and momentum
conservation laws. Applying these conservation laws to an
incompressible fluid element, the Navier-Stokes equations
are obtained:

Continuity:
∇ · �v = 0

Momentum:

ρ
d�v
dt

= −∇p + ρ�g + μ∇2�v
where:

- �vis the air velocity.
- p is the air pressure.
- μ is the dynamic viscosity of the air.
- ρis the air density
- �g is the constant gravity

Resolving these equations by using a turbulence model,
the values of pressure and velocity of the fluid in each cell
may be obtained.
c) Boundary conditions

To solve the flow equations in the inhalation and exha-
lation cycles, a set of boundary conditions have been
selected.

 

Figure 10. UDF for truncated branch.

- Mouth (model inlet) and 16th bronchial generation
(model outlet): values of static pressure, total pres-
sure (sum of static and dynamic pressures) or flow
rate conditions have been used depending on the test
carried out.

- Truncated branches conditions: these need a special
boundary condition because the same conditions
which were imposed at the inlet and outlet of the
model cannot be applied. This special condition must
unwaveringly represent the effect of the branches
removed. A user-defined function (UDF) is used to
impose a symmetric operation of two branches. This
UDF obtains the velocity vector field at each open
branch (either in inhalation or exhalation) from the
calculations, and prescribes the same vector field in
the corresponding truncated branch (Figure 10). This
methodology is repeated repeatedly until reaching
convergence in the flow field.

d) Solution parameters
The numerical calculations were resolved with the

commercial code Ansys Fluent 6.3.26. This code was used
to solve the unsteady Reynolds-averaged Navier-Stokes

Figure 9. Surface meshes at some branches: a detail of the boundary layer mesh.
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equations (URANS) by the finite volume method, convert-
ing them from differential equations into their numerical
analogues (Eulerian method).

The solutions were obtained, assuming air with a
constant density 1.225 kg/m3 and dynamic viscosity
1.9 × 10−5 kg/m s.

The SIMPLE (Semi-Implicit Method for Pressure
Linked Equations) algorithm was used to resolve the cou-
pling between pressure and velocity fields, the same solver
used by Walters in his research (Walters & Luke, 2010
and Walters et al., 2012). Thediscretization of the spatial
and temporal derivatives for the velocities in the equations
was carried out by means of second-order schemes. The
PRESTO! discretization scheme was used for the pressure.

Since the flow in human airways is both laminar and
turbulent, with transition zones, the turbulence model cho-
sen for this work is the shear stress transport k- ω (SST k-
ω), which is the best suited to these conditions. While the
standard k-ω turbulence model performs better than k-ε in
the near wall region, it is worse in the far field; this is why
the shear stress transport formulation has been selected:
it combines the best of both (Versteeg & Malalasekera,
2007). The SST k-ω model is defined by the following two
equations:

∂

∂t
(ρk) + ∂

∂xi
(ρkui) = ∂

∂xj

(
�k

∂k

∂xj

)
+ G̃k − Yk + Sk

∂

∂t
(ρω) + ∂

∂xi
(ρωui) = ∂

∂xj

(
�ω

∂ω

∂xj

)
+ Gω − Yω

+ Dω + Sω

Where k is the turbulence kinetic energy; ω is the spe-
cific dissipation rate; ρ is the air density; G̃k represents the
generation of turbulence kinetic energy due to mean veloc-
ity gradients; Gω represents the generation of ω; �k and �ω

represent the effective diffusivity of k and ω respectively;
Yk and Yω represent the dissipation of k and ω due to tur-
bulence; Dω represents the cross-diffusion term and Sk and
Sω are user-defined source terms.

3. SIMULATION METHODOLOGY
The designed model has been validated by two tests: a first
test in which a real spirometry is introduced in the model
and a second test used to check the results obtained in the
first one. A forced spirometry test has been used for the
evaluation of the model as it presents the maximum varia-
tions of flow rate possible. Therefore the model is tested in
the most challenging conditions.

Different forced spirometry tests of individuals without
obstructive pulmonary diseases were performed to obtain
data under realistic conditions. The spirometry that best
matched the ERS (European Respiratory Society) quality
criteria was chosen (Miller, Hankinson, Brusasco, Bur-
gos, Casaburi, Coates, Crapo, Enright, van der Grinten,

 

Figure 11. Relationship between flow rate and time from the
chosen spirometry.

Figure 12. Normal and simplified spirometry.

Gustafsson, Jensen, Johnson, MacIntyre, McKay, Nava-
jas, Pedersen, Pellegrino, Viegi, & Wanger, 2005). The
spirometry data was obtained using a spirometer model
CPFS/D USB, with a MedGraphicspreVentTMpneumo-
tachometer and BREEZESUITETM diagnostic software
(Medical Graphics Corporation 2004, 350 OakGrove Park-
way, St. Paul, Minnesota 55127–8599).

In a spirometry test the spirometer measures pressure dif-
ferences in a venturi tube during the test period. Then a
software tool calculates the time evolution of the mean
velocity and the flow rate. The relationship between the
flow rate and time isrepresented in Figure 11. From this
data, the portion corresponding to the forced spirometry
corresponds to the data obtained between seconds 11.32
and 19.09.

For calculation purposes the original spirometry has
been simplified, reducing the number of points from 777 to
37 and adjusting the new curve (Figure 12). The number of
points has been reduced to include the important changes
in the inlet flow so that the simulation is not overburdened
with irrelevant tasks.

To reproduce the same conditions as in a real spirome-
try, the boundary conditions values used/adopted imposed
were:
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Figure 13. The graph on the left shows the option with a con-
stant time step (variable flow rate step), the graph on the right
shows the option with a constant flow rate step (variable time
step).

- Mouth (inlet): flow rate varying over time using the
detailed function, and atmospheric pressure. During
the respiratory cycle (inhalation and exhalation) the
inlet of the model, the source of the trachea, is set
at atmospheric pressure. In fact, it is slightly lower
as it has to pass through the mouth. However, this
does not affect the calculations.In order to apply the
values of the flow rate obtained in the spirometryto
the model, it was necessary to design a user-defined
function (UDF) as Ansys Fluent has no established
functions to simulate time-dependent variables. Due
to the non-uniformity of the breathing cycle and in
order to include all the representative points, this UDF
must include a subroutine to adapt the magnitude of
the time step to a calculated percentage of change in
the flow rate (adaptive time step). This value is also
calculated by the UDF using the data of the number of
steps defined and the spirometry function (Figure 13).
The UDF automatically changes the conditions from
inhalation to exhalation.

- 16th bronchial generation (outlet): a static pressure in
the inhalation cycle and a total pressure (sum of
static and dynamic pressures) in the exhalation cycle
(Figure 14).

Finally, to check the previous test and the results found,
the unsteady pressure function obtained was set as the
inlet boundary condition at the 16th bronchial generation.
Figure 15 shows the new boundary conditions employed:

- Mouth (inlet): static pressure on the exhalation cycle and
a total pressure on the inhalation cycle.

- Sixteenth bronchial generation (outlet): a total pressure
(sum of static and dynamic pressures) varying over
time using the same function (UDF) that was used to
introduce the variable flow rate in the previous test.

The convergence criterion established was to reduce
the scaled residuals for all the variables below 10−5.One

Figure 14. Boundary conditions imposed in the first test.

Figure 15. Boundary conditions established at the checking test.

thousand steps were used. A maximum of 1,400 itera-
tions were required in order to ensure the convergence of
the results at each time step. The spirometry maneuver in
forced conditions was covered in 1000 flow steps with the
corresponding time adaptations.

4. RESULTS AND DISCUSSION
With these values the time required for each simulation was
5 days working in parallel on a computer with an I-7 pro-
cessor of 8 cores. The results of the tests provide data of
the lung that cannot be obtained with a real forced spirom-
etry. For example, Figure 16 shows static pressure obtained
at the 16th bronchial generation of the lung as result of
the first test. It is compared with the boundary condition
used (unsteady flow rate obtained from the chosen forced
spirometry test) finding that the static pressure curve at the
16th bronchial generation obtained has a similar tendency
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to the one of the flow rate curve. This indicates a suitable
performance of the numerical model.

Upon further examination and checks carried out, it was
noticeable how different variables (pressures and veloci-
ties) have similar values in both cases, meaning that the
solutions are unique and representative for the inhalation
and exhalation cycles. For example, Figure 17 shows that
the maximum velocity occurs at time 0.23 s, being 38.02
m/s the value obtained experimentally and 37.04 m/s the
simulated value. Therefore, the maximum error is less
than 2.6%.

The contours of the instantaneous static pressure and
velocity vector field during inhalation are shown in
Figure 18 and Figure 19. It can be observed that the magni-
tude of the pressure drops from the mouth (zero pressure)
to the narrow area close to the glottis where a mini-
mum of about -3.6E-3 Pais obtained. This corresponds to
an increase in velocity from 0 m/s (in the mouth) to a
maximum value of around 45 m/s in the mentioned area.
After this section, the air velocity descends in the trachea,
and from the trachea the velocity increases again up to a
maximum value around 35 m/s at the third level and there-
fore a reduction in the static pressure is produced. For the
following generations the velocity decreases as the lung

Figure 16. Unsteady flow rate established at the mouth in the
simulation whilst static pressure is obtained in the 16th bronchial
generation.

Figure 17. Real and simulated velocities at the mouth.

Figure 18. Pressure contours at maximum inhalation flow rate
(Pa).

Figure 19. Velocity vector field at maximum inhalation flow
rate (m/s).

surface increases, though there is no appreciable variation
in terms of pressure.

The contours of the instantaneous static pressure during
exhalation are shown in Figure 20. As one may observe,
the magnitude of the pressure diminishes while ascend-
ing from the lowest generation to the trachea, where a
magnitude of zero pressure is reached (i.e., atmospheric



196 A.F. Tena et al.

Figure 20. Pressure contours at maximum exhalation flow rate
(Pa).

conditions). The symmetry of the velocity field at the bifur-
cations may also be noted. As expected, the velocity has
maximum values in the area close to the glottis and the
3rd level (around 50 m/s). The velocity decreases from the
third level to the trachea as the surface of the lung increases
in the flow direction (Figure 21) while from other levels to
third the velocity gradually increases since there is an over-
all decrease in the lung’s surface. This explains the reduced
pressure in the different zones (Figure 20, Figure 21). These
results comply with those already quoted Sbirlea-Apiou,
Katz, Caillibotte, Martonen and Yang (2007) and Gemci,
Ponyavin, Chen, Chen & Collins (2008).

Using post processing data, two typical parameters
that describe turbulence modeling: y+ and a Reynolds
number (Re), have been obtained. With regard to the near-
wall resolution, the average value of y+ obtained was
0.91. Reynolds numbers in the range of 0–8700 for nor-
mal breathing and 0–47,000 for spirometry tests were
found. The maximum values correspond to the condi-
tions in the trachea (diameter of 0.018 m) with velocity
ranges of between 0–7 m/s (normal breathing) and 0–38
m/s (spirometry test) respectively.

5. CONCLUSION
This paper reveals a three-dimensional in silico CFD model
of the human airways designed following Weibel’s and
Kitaoka’s symmetrical models as well as existing upper
airways models. It consists of a single air pathfrom the
mouth to the 16th bronchial generation in addition to a user-
defined-function (UDF) that represents the effect of the
branches that were not contemplated. The UDF copies cell
by cell the velocity vectors existing in the cross section of

Figure 21. Velocity vector field at maximum exhalation flow
rate (m/s).

a developed branch to the symmetrical truncated one while
consolidating simulation. This approach permits a contin-
uous unsteady simulation of the respiratory system both
in the inspiration and the exhalation cycles, using limited
computational resources, making it affordable.

In the investigations, in order to achieve a fully reli-
able CFD simulation, the airway model was meshed using
106 tetrahedral cells, which offer satisfactory results with a
suitable adaptation to the geometry. The model has been
validated using flow data of a real forced spirometry.
This involved introducing the flow rate values through the
model inlet (mouth) with a user-defined function designed
for this purpose. The results were very lifelike values of
pressure and velocity at all airways levels. These results
were checked by applying the reverse conditions to the
model (total pressure in the outlet of the model at 16th
bronchial generation) thereby obtaining similar results to
those of the spirometry test.

Further research work could be carried out with the
model obtained in order to investigate specific diseases,
such as chronic bronchitis and lung emphysema, as well
as the study of the deposition of pollutants or drugs in the
airways.
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Annex

Table I.A. Geometric dimensions of the lung branches.

Gen Diameter (m) Length (m) Branches (m2) Total (m2)

0 1.800000E-02 1.200000E-01 2.5447E-04 2.5447E-04
1 1.221142E-02 4.782228E-02 1.1712E-04 2.3424E-04
2 8.284380E-03 2.485314E-02 5.3903E-05 2.1561E-04
3 5.620225E-03 1.686068E-02 2.4808E-05 1.9847E-04
4 4.451270E-03 1.266542E-02 1.5562E-05 2.4899E-04
5 3.512926E-03 1.068537E-02 9.6923E-06 3.1015E-04
6 2.807205E-03 9.014874E-03 6.1893E-06 3.9611E-04
7 2.271429E-03 7.605532E-03 4.0522E-06 5.1868E-04
8 1.860991E-03 6.416519E-03 2.7201E-06 6.9634E-04
9 1.543866E-03 5.413392E-03 1.8720E-06 9.5847E-04
10 1.296864E-03 4.567088E-03 1.3209E-06 1.3526E-03
11 1.103061E-03 3.853092E-03 9.5563E-07 1.9571E-03
12 9.500025E-04 3.250718E-03 7.0883E-07 2.9033E-03
13 8.284568E-04 2.742516E-03 5.3905E-07 4.4159E-03
14 7.315347E-04 2.313764E-03 4.2030E-07 6.8862E-03
15 6.540636E-04 1.952042E-03 3.3599E-07 1.1010E-02
16 5.921409E-04 1.646869E-03 2.7538E-07 1.8048E-02
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