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Abstract Quality of Experience (QoE) is of critical importance in streaming video services, because the
traditional Quality of Service (QoS) cannot represent the quality perceived by viewers. This work evaluates
several objective quality metrics under realistic bursty packet loss conditions in the network, with the
support of a packet loss model. Alignment of reference and streamed video sequences (with different levels
of spatial-temporal information) are also explored as a technique to prevent inaccurate computation of
objective metrics due to frame loss. Finally, the correlation between subjective and objective metrics for
each motion level and the computing time of metrics are analysed. The most suitable objective metrics
to characterize the real degradation in the quality perceived by viewers, for both off-line and real-time
assessment, are proposed. The integration of motion, busty packet loss, sequence alignment after frame loss
and computing time of metrics are the main contributions of this research work.

Keywords video streaming; packet loss; subjective and objective video quality metrics; quality of
experience

1 Introduction

Quality is an important subjective concept. Like everything related to human perceptions, it can be said
to be related to the level of satisfaction with an experience. In the case of streaming video services, if
the end user is not satisfied by his experience, the utility of the service decreases. Thus, prediction and
measurement of the quality perceived by viewers must be studied in depth. Providing streaming video
services at different quality levels is one of the most important business models in current technology.
Lossy encoding techniques are necessary to keep the network requirements of these services within specified
limits. Lossy methods introduce degradation and distortions depending on the selected encoding parameters.
Thus, user satisfaction must be correlated with encoding parameters to provide a satisfactory level of quality
without using more resources than strictly necessary.

In addition to encoding parameters, impairments introduced by the network (such as packet loss) can
lead to quality degradation. Previous work such as [1] has shown that packet loss patterns tend to be
bursty; that is, the probability of packet loss is not randomly distributed but depends on previous losses.

Francisco J. Suárez (�)
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Fig. 1 Video Quality Assessment classification

This can be represented with finite-state stochastic models adapted to the parameters and characteristics
observed in traffic traces obtained under realistic conditions [2] [3].

Traditional Quality of Service (QoS) is based on network metrics such as jitter, throughput, packet loss,
corrupted packets, and latency. Two approaches can be considered: the reservation of network resources
by applications, and the differentiation between services carried out by network hardware such as routers.
The main problem with classic QoS is the heterogeneous nature of multimedia services in the Internet,
which complicates the identification of the most suitable metric for each case. In addition to network
features, other aspects such as codecs, compression, video source, or the nature of the content must be
taken into account. In [4] it is concluded that the classical approach is no longer valid when considering
services oriented to the end user. Although network metrics are still important, they can no longer provide
a faithful representation of the quality perceived by the user. As a result, a new vision should be introduced:
Quality of Experience (QoE).

QoE is meaningful only within the mind of the user; it is qualitative rather than quantitative, built
from different factors and human behaviours that together provide a final level of perceived satisfaction. A
measure of the quality perceived by viewers can be obtained through a wide variety of assessment methods.
These methods are classified as subjective or objective. The former involve the participation of viewers and
require time and resources. The latter can be implemented on computing devices and automated, although
they are not as reliable as their subjective counterparts. There is some consensus in the classification of
existing methodologies to assess video quality, with minor differences between the most prominent authors.
In this section, we follow the classification presented in [5] and shown in figure 1.

Subjective methods are based on the selection of a small representative group of people exposed to a
variety of video qualities in a controlled situation. Their opinions are registered on a scale that measures
relative degradation or absolute quality. Closely related is the concept of Mean Opinion Score (MOS),
which is the most common level of satisfaction for a given resource as interpreted by an average user on a
numerical scale.

Objective methods represent human perception to predict the MOS in an automated way. There are
three main classes:

– Full Reference (FR) methods insert reference signals alongside the tested signals to improve the esti-
mation. They are usually more precise, but need more resources to process the extra workload.

– Reduced Reference (RR) methods insert features extracted from the reference signal instead of the
reference itself. They introduce a reasonable overhead and are an intermediate state between FR and
NR methods.

– No Reference (NR) methods only take into account the degraded signal, and are therefore adequate
when the reference, or information about it, is not available.

FR and RR objective methods are further classified as follows:

– Traditional point-based metrics (FR only) are traditional mathematical metrics (PSNR, MSE) calcu-
lated comparing the reference and the noisy/degraded sequences in the luminance or colour components.

– Natural Visual Characteristic models extract statistical and visual features from the sequences. Some
of these models use traditional point-based metrics as their foundation.

– A third group of metrics model the Human Visual System (HVS) (e.g., modelling the visual masking
effects that occur in the eye) operating in the pixel or frequency domains of the video sequences (e.g.,
through DCT transform).
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The objective of our work is to correlate subjective and objective metrics when video sequences are
received by viewers under realistic packet loss conditions in the network. As a result, the objective metrics
most suited to characterize the real degradation observed by viewers will be fixed.

The remainder of this paper is organized as follows. Section 2 is an overview of the related work. Section
3 describes the packet loss model that supports the emulation of realistic bursty packet loss conditions in
the network. Section 4 introduces the technique of sequence alignment used to prevent inaccurate compu-
tation of objective metrics due to frame loss. Section 5 details the experimental framework for the quality
assessment. Section 6 presents and analyses the results of the assessment. Finally, section 7 presents our
conclusions and outlines future work.

2 Related work

Several works have been published that measure the influence of packet loss on video quality. The effects of
the main network impairments (packet loss and jitter) on the perceptual quality of the video are analysed by
emulation in [6]. The author concludes that the effects are similar. In fact, jitter could be mostly translated
to extra packet loss when analysing the effects of network impairments. The impact of packet loss on MPEG
streams transmitted over the Internet is measured in [7]. In [8] the results of an exhaustive experiment to
detect the possible artifacts that may appear in an MPEG-2 video due to packet loss is presented. The
results relate the number of frames affected by packet loss to the number of frames in the final degraded
sequence that present artifacts, highlighting the nature and quantity of these artifacts. The effects of packet
loss on video-chat applications [9] and HDTV [10] are also analysed.

The literature also includes exhaustive analyses of video traffic over Internet in streaming systems [11],
conferencing systems [12], or IPTV systems [13] where packet loss rates and patterns are detailed. These
patterns can be used to emulate packet loss in further experiments under realistic conditions with the
support of a suitable packet loss model.

In recent years, much work has been focused on designing new and efficient approaches to quality assess-
ment, to obtain reliable, simple, global metrics to represent perceived quality of multimedia services. There
are also studies that compare and classify these proposed metrics. The studies developed by the Video Qual-
ity Experts’ Group (VQEG) [14] are among the most relevant and recognized, included as recommendations
of the International Telecommunication Union (ITU). In [5], a more recent extensive classification, compar-
ison, and review of FR and RR objective video quality assessment methods are presented. A comparison
of objective quality metrics for video scalability can also be found in [15].

As our work is a comparison of FR an RR objective video quality metrics, this background review
focuses mainly on these metrics. The most simple metrics in this category are those originally developed
for analysis of still images. Although these metrics only consider spatial quality degradation in video
frames, they can be complemented with temporal aspects for video quality prediction. PSNR (Peak Signal
to Noise Ratio) is one of the most popular metrics because of its simplicity and direct mathematical
interpretation. The original video sequence is the reference, and the streamed (degraded) video sequence
is considered as noise, the metric representing the level of degradation between the two. This metric is
currently adopted as the reference metric for performance comparisons in video quality assessment (VQA).
SSIM (Structural SIMilarity), presented in [16], is based on the comparison of the luminance, contrast and
structural components of both the reference and degraded sequences. The MS-SSIM (Multi-scale SSIM)
metric [17] is based on the previous SSIM metric. The authors argue that the perceptual evaluation of a
given image varies with the parameters that depend on the signal, the visualization environment, and the
particular characteristics of the observer. Thus, a single-scale method seems to be appropriate only for a
limited set of specific settings. A multi-scale method is proposed as a more convenient way to consider these
parameters. The NQM (Noise Quality Measure) [18] measures the effect of additive noise on the human
visual system. A degraded image is modelled as an original image subjected to linear frequency distortion
and noise injection. A complementary metric, DM (Distortion Measure), is also defined. The NQM takes the
following into account: the variation in contrast sensitivity with distance, image dimensions, and spatial
frequency; variation in the local luminance mean; contrast interaction between spatial frequencies and
contrast masking effects. The UQI [19] (Universal Quality Index) is a mathematically defined metric that
models any image distortion as a combination of three factors: loss of correlation, luminance distortion,
and contrast distortion. VIF (Visual Information Fidelity) [20] approaches the image quality assessment
problem as an information fidelity problem. It is an image information measurement that quantifies the
information that is present in the reference image and how much of this reference information can be
extracted from the distorted image.

When the image quality metrics described above are applied to the VQA, the metrics are computed
for each frame and finally aggregated into a single value. The aggregation or pooling strategy [21] assigns
weights to the frames in order to correlate the quality scores of viewers. The average score of all the frames
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is the basic pooling strategy [22]. An example of this kind of video quality metrics is VSSIM [23], the
metric based on SSIM specifically designed for video. It leads to a quality measurement that aggregates
SSIM metric measurement from all sampling windows in all frames. Lower weights are given to frames with
dark regions, because they attract fewer fixations, and to high motion frames, where distortion perception
competes with the motion perception. Other VQA works based on image quality metrics are VIF for
video [24] and PSNR for 3D video [25].

A second group of FR and RR objective quality metrics are those specifically designed for video quality
assessment, taking into account aspects of both spatial and temporal domains. The DCT-VQM (Discrete
Cosine Transform-Video Quality Metric) metric [26] (based on Watson’s proposal in [27]) operates in the
frequency domain of the sequences through a DCT. It takes into account the decrease in human visual
sensitivity at high spatial and temporal frequencies. The VQM [28] is a different metric supported by the
General Model. The model utilizes reduced-reference parameters extracted from spatial-temporal regions
of the video sequence. It includes associated calibration techniques that comprise a complete automated
objective video quality measurement system. The calibration of the original and processed video streams
includes spatial alignment, valid region estimation, gain and level offset calculation, and temporal align-
ment. The General Model contains seven independent parameters, four based on features extracted from
spatial gradients of the Y luminance component, two based on features extracted from the chrominance
components, and one based on the product of features that measure contrast and motion, both of which are
extracted from the Y luminance component. The metric was included in two International Telecommunica-
tion Union (ITU) recommendations. A recent highly competitive metric is MOVIE (MOtion based Video
Integrity Evaluation index) [29]. Quality is evaluated in space and time using motion information from the
reference video sequence, and the spatial and temporal quality scores are pooled to obtain an overall video
integrity index score. MOVIE is also related to SSIM and VIF metrics, but is a very complex and com-
putational intensive quality metric. PEVQ (Perceptual Evaluation of Video Quality) [30] is a recent, very
precise, patented algorithm, divided into four blocks. The first block, pre-processing, is responsible for the
spatial and temporal alignment of the reference and the impaired signal. The second block calculates the
perceptual difference of the aligned signals. The third block classifies the previously calculated indicators
and detects certain types of distortions. Finally, in the fourth block, all the appropriate indicators accord-
ing to the detected distortions are aggregated, forming the final result - the mean opinion score (MOS).
A family of RR VQA algorithms, that vary in the amount of reference information required for quality
computation, is presented in [31]. Finally, recent works deal with VQA under packet loss influence, e.g., the
algorithm with low computational cost in [32], the packet layer model for VQA in [33] and the perceptual
model in [34].

Although not directly related to this work, there are also several recent works dealing with NR metrics,
more suitable for real time monitoring of video quality [35] [36] [37] [38] [39] [40] [41] [42] [15]. They
propose QoE models and metrics considering system parameters like the packet loss rate and application
level parameters like sender bitrate, frame rate, and content type.

In the context of the packet loss impact on video quality assessment, [43] addresses the problem of frame
desynchronization due to packet loss in video sequences evaluated with objective metrics. Since FR and RR
objective metrics are calculated by comparing corresponding frames in the original and degraded sequences,
this desynchronization generates incorrect metric scores. The authors highlight the fact that almost no
previous work considers this problem and proposes a frame-matching algorithm, extending the Peak Signal
to Noise Ratio(PSNR) metric to include the effects of packet loss. The new metric is called MPSNR and is
validated through subjective assessment. Another work that considers frame synchronization is [44]. Once
the frames are synchronized, several pooling strategies can be adopted to weigh the video frames when
computing the quality metric [21] [22].

Many of the most widely referenced and adopted methods regarding subjective assessment are proposed
by the International Telecommunication Union (ITU), e.g., [45]. Taking into account the related work and
to the best of the authors’ knowledge, there is further need to compare the quality prediction of FR and
RR objective metrics with the opinion of the end users. The comparison should consider different motions
in video content and realistic bursty packet loss conditions. With the study we would achieve a better
understanding of the degradation in the QoE due to packet and frame loss, and how objective metrics
reflect that degradation.

3 Packet loss model

The simplest packet loss model is the Bernoulli model, which is only able to represent uncorrelated losses
and whose only parameter is loss probability. Because of its simplicity, it is not suitable to represent packet
loss in real networks.
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Fig. 2 Gilbert model

Fig. 3 Four state Markov model

One of the first and most referenced models to represent bursty losses was proposed by Gilbert in [46].
The Gilbert Model is based on a Markov chain and has two states, a zero loss state G (Good) and a lossy
state B (Bad). No errors occur in the G state, and the loss probability in the B state (loss density within
the burst) is 1-h. Two other parameters, p and r, represent the transition probability between states G and
B. A graphical representation of the Gilbert model is shown in figure 2.

The Gilbert model was extended in [47] by Elliot. The Gilbert-Elliot model introduces a new parameter
(1 − k) that represents the loss probability when the system is in G state. Thus, it is possible to have loss
events in both states G and B (note that the Gilbert-Elliot model is equivalent to the Gilbert Model when
k = 1). This model is able to represent systems that have one state in which the loss rate is low (packet
losses in this state can be considered independent) and another state where loss probability is relatively
high (bursty loss).

Another model (4 state Markov) is implemented in the patch available for the Linux kernel [48]. It is
based on the previous models and is the combination of two 2-state Markov models that represent two
periods: a burst period (similar to the previous B state) and a gap period (similar to the G state). The
resulting 4 states, shown in figure 3, have a specific physical meaning: packet received successfully(1), packet
received within a burst (2), packet lost within a burst (3), and isolated packet lost within a gap (4). This
model uses transition probabilities between states as parameters to characterize the packet loss process.
These parameters are not closely related to quantities that have an understandable meaning for an end
user, so a set of five equivalent and more intuitive parameters are defined for the model: loss probability,
mean burst length, loss density within the burst, isolated loss probability, and mean good burst length.
An interesting feature of this model is that through manipulations and assumptions (e.g., no correlation
between losses occurred during burst periods), the initial set of five input parameters can be reduced to
represent the Gilbert-Elliot, Gilbert and Bernoulli models.

Gilbert models have been widely used for emulation of packet loss during transmission in IP networks.
When used together with real traffic traces, the results show that these simple models fit the observed loss
patterns, as stated in recent works [2] [3].
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To achieve valid results and generate packet loss traces that resemble real networks, the input parameters
for the model must be realistic and obtained from real traces in previous work. Research conducted to obtain
data from recent studies of traces to feed a five parameter model gave poor results. Thus, for this work, a
compromise between simplicity and accuracy was chosen, opting for a simplification of the original 4-State
Markov model with two parameters. This simplified model is equivalent to a Gilbert model with h = 0
(Simple Gilbert). The two-parameter 4-State Markov is identified by the transition probabilities p and r, or
by the loss parameters PLoss and E(B), where PLoss is the packet loss probability and E(B) is the average
loss burst length. Equation 1 defines the correspondence between the two pairs of parameters.

p =
PLoss

E(B)(1 − PLoss)
and r =

1

E(B)
(1)

The simplicity of the selected model has the disadvantage of somewhat lower accuracy, but the advantage
of managing only two very intuitive parameters. This makes it much more feasible to find studies of real
network traces to obtain data to feed the model.

4 Sequence Alignment

Video sequences streamed through lossy transport networks tend to lose frames in the process, as explained
in [43]. This generates a critical problem when calculating FR and RR metrics. Metrics usually compare
sequences of reference and streamed video frame to frame, but if the degraded sequence has lost frames,
both sequences became miss-aligned, causing inaccuracies in quality metrics calculations. Both high and low
quality degraded sequences tend to produce low quality scores that can seriously influence the correlation
with the perceptual quality assessed by viewers. Thus, the degraded sequences must be aligned with the
original sequence.

VQA studies based on metrics that were originally developed for image quality assessment do not
usually consider sequence alignment. Even recent top ranked metrics specifically developed for VQA, like
VQM, PEVQ or MOVIE, do not explicitly handle frame loss despite their complexity. Thus, in this work
we address the sequence alignment problem explicitly.

Figure 4 compares the computing of metrics with and without alignment. Frames in the reference
sequence are consecutively numbered and the frames in the streamed sequence are identified with their
original numbers. If there is no alignment, frame loss is not analysed. In consequence, the frames of the
sequences are incorrectly compared. Metrics are calculated by comparing the first frame of the streamed
video with the first frame of the reference video, and then comparing the second frames of the streamed
and the reference videos, and so on. Thus, the frame in the streamed sequence received after the lost frame
(F(i+ 2)) is compared with the frame (F(i+ 1)) in the reference sequence. The same gap is introduced in
the comparative of subsequent frames. Additional frame loss, both consecutive and isolated, increases the
gap in the comparatives, making metrics’ calculation less accurate.

Sequence alignment requires a previous matching of the frames in the streamed sequence with the frames
in the reference sequence. Thus, the matching process helps to locate the correct frame for comparison.
The International Telecommunication Union (ITU-T) has recently proposed an improved PSNR calculation
algorithm to address the problem of constant delays in a processed video [49]. Although it did not consider
the problem of frame loss in the processed video, its approach to finding the corresponding frame could be
used. In this work, we use the matching process proposed in [43], where the similarity between the streamed
video and the reference video is used to find the correct match. The proposal assumes that the sum of PSNR
of all frames in a streamed video is at its maximum when all the frames are correctly matched with the
corresponding frames in the reference video. The dynamic programming algorithm 2 is used to obtain the
maximun PSNR value of the streamed video sequences and also finds the optimum match of the frames in
the streamed video to the frames in the reference video. The time complexity of the matching algorithm
is O(gn), where n is the number of frames in the streamed video and g is the total number of frames lost.
This time complexity can be reduced to values close to the time complexity O(n) of the traditional PSNR
through the heuristic algorithm detailed in [43].

OPT (i, j) = max[psnr(i, j) +OPT (i− 1, j − 1), OPT (i− 1, j)] (2)

Once the sequences are aligned, we propose two alternatives for frame comparison. The first and simplest
compares the matched frames directly, ignoring the corresponding lost frames in the reference sequence.
The second alternative takes into account the common way of playing a streamed video, where the frame
that precedes a lost frame is ”frozen” until the arrival of the next frame. This implies comparison of a
frame in the streamed sequence (Fi) not only with the matched frame in the reference sequence (Fi), but
also with the frame or frames in the reference sequence that were lost just after (Fi+1 in this example).
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Fig. 4 Sequence alignment

5 Experimental framework

Figure 5 resumes the experimental framework for computing and evaluating video quality metrics. The
VLC (VideoLan Client) application [50] was used as a streaming server and video streaming client. The
streaming server was configured to use the Real Time Streaming Protocol (RTSP) when transmitting the
test video streams. Finally, the packet loss model was implemented in a network emulator, the NetemCLG
patch for the Linux Kernel [48]. In the following subsections, each part of the framework is detailed.

5.1 Objective quality metrics

The selection of FR objective metrics for comparison in our study is based on the non patented character of
the metrics and the public availability of tools and software for computing them. Finally, eight metrics have
been selected, six originally designed for image quality assessment: PSNR, SSIM, MS-SSIM, NQM, UQI
and VIF; and two specifically designed for video quality assessment: DCT-VQM and VQM. The metrics
originally developed for still image analysis are computed using the Python Visual Quality Metric Package
(PyMetrikz) [51]. The Moscow State University Video Quality Measurement Tool (MSU VQMT) [52] allows
us to compute the DCT-VQM metric. Finally, the matlab based Visual Quality Metric (VQM) software of
the Institute of Telecommunication Sciences (ITS) in the US National Telecommunication & Information
Administration (NTIA) [53] was configured to compute the VQM metric with our test video sequences.
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Fig. 5 Experimental framework

Table 1 Full set of values for parameters of the packet loss model

PLoss 0.1% 0.25% 0.5% 1% 2.5% 5%

E(B)

1.0 1.0 1.0 1.0 1.1 1.2
1.1 1.1 1.1 1.1 1.2 1.3
1.2 1.2 1.2 1.2 1.3 1.4
1.3 1.3 1.3 1.3 1.4 1.5
1.4 1.4 1.4 1.4 1.5 1.6
1.5 1.5 1.5 1.5 1.6 1.7

Table 2 Reduced set of values for parameters of the packet loss model

PLoss 0.25% 1% 2.5% 5%

E(B)

1.0 1.0 1.2 1.3
1.3 1.3 1.4 1.5
1.5 1.5 1.6 1.7

5.2 Parameters of the packet loss model

A representative packet loss model is implemented in our test environment to faithfully represent realistic
network conditions. These conditions have been extracted from the related work in the video traffic analyses
[11] [12] [13] which were previously commented on above. From the results of these works and our first tests
with the streaming environment, we reach the following conclusions.

– Values of PLoss > 5% completely degrade the video sequence and produce the lowest perceptual quality
possible with many visible artifacts. The streams often block suddenly in the middle of the transmission.

– E(B) is approximately within the range of 1− 2 for most of the lost packets, increasing with the packet
loss rate.

Taking these conclusions into account, a total of 36 values, 6 PLoss and 6 for E(B), were selected for the
parameters of the packet loss model, as shown in table 1. Most of the values are in the region of PLoss ≤ 1%
because the decrease in perceptual quality caused by an increase in packet loss is more pronounced when
packet loss is low. In addition, the central point of E(B) increases with PLoss. As detailed later, a more
compact set of values, shown in table 2, will also be used in order to reduce the number of experiments.

5.3 Video sequences

The video sequences selected are cartoons, where the complexity of the video objects is low and viewers
assessment is clearly linked to the video artefacts caused by network impairments.
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Table 3 Spatio-Temporal information of sequences

High Medium Low

TIscene 46.5410 54.5922 17.8479
µTIn 17.6871 2.8905 1.8155

σ2
TIn

75.4723 26.2917 6.0946

SIscene 122.5812 117.2555 89.7910
µSIn 85.9009 76.4562 87.6395

σ2
SIn

125.3617 206.0620 0.6432

Table 4 Video sequences specification

Video codec H.264/MPEG-4 AVC
Bitrate 800 Kbps

Frames per second 25 fps
Resolution HVGA (480x320)

Container format AVI
Length ∼ 1 min.

Because the quality degradation caused by packet loss increases with the motion level, spatio-temporal
information was also used to select the video sequences. Repositories of standard video sequences like ITS

Standard Video Sequences and Video Trace Library were analysed in order to select the sequences, but only
one cartoon with few motion changes was found. Finally, the sequences were recorded from TV.

Three different sequences - with high, medium and low motion levels - were chosen, selecting sequences
that show scenes with similar conditions of color, luminance, etc. Thus, the parameter that differs in each
of the sequences is the spatio-temporal information level. The three sequences can be downloaded from [54]
and the spatio-temporal information of the sequences is measured with the metrics proposed in [45]:

Spatial Information (SI): Level of detail of the sequence, that is, the complexity of its elements.

SIn = stdspace[Sobel(Fn)] (3)

SIscene = maxtime(SIn) (4)

Equations 3 and 4 are used to calculate the spatial information of sequences. Fn is the n-th frame of the
sequence. The global SI level of a sequence (SIscene) is the maximum of the SI levels of its frames. Sobel
refers to a Sobel filter for edge detection.

Temporal information (TI): Motion level of a sequence over time, that is, the dynamism of its elements.

Mn(i, j) = Fn(i, j) − Fn−1(i, j) (5)

TIn = stdspace[Mn(i, j)] (6)

TIscene = maxtime(TIn) (7)

Equations 5, 6 and 7 are used to calculate temporal information about sequences. The TI level of a
frame TIn is the standard deviation of Mn, where Mn is the pixel plane that comes from removing the
luminance component of frame Fn−1 from the luminance component of frame Fn. The SI and TI of the
selected sequences are shown in Table 3 (µ and σ2 are the mean and variance of the SI and TI for all
frames of the sequence). The final specifications for the video sequences are listed in table 4.

The length of the sequences is determined from the number of packets needed for the loss model to
converge, that is, to show the loss behaviour expected from the input parameters. Sqngen [48] is a loss
sequence generator, developed with the network emulator, to evaluate the behaviour of the various loss
models before implementing them. It provides statistical information (mean, variance, and standard devia-
tion) after generating a series of sequences with certain input parameters, helping to check the convergence
of the loss model with the number of packets. The Sqngen tests (with an increasing number of packets)
allowed us to find a threshold of 4000 packets for the model to converge. With this number of packets, the
average value of all 95% confidence intervals is 0.013 for packet loss probability and 0.011 for average loss
burst length among all the video sequences generated in the experimental plan detailed below.

The packet size corresponds to the Maximum Transmission Unit of Transmission Control Protocol (TCP
MTU, 1500 bytes) and the video bitrate is 800 Kbps, so the time to send 4000 packets can be calculated.
Taking into account that not all the data in the packets corresponds to video information, the length of
time of the video sequences which guaranties more than 4000 packets is about a minute.
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5.4 Subjective assessment methodology

To obtain subjective data, the Degradation Category Rating (DCR) method (introduced in [45]) was used. Due
to the high number of different sequences (many different quality levels), we used the extended degradation
scale (from 1 to 9) as proposed in appendix V of the recommendation. The viewers must evaluate the
perceived quality in the degraded sequence when compared to the reference sequence. A score of 1 means
the highest degradation (minimum quality) and 9 means no perceived degradation at all (maximum quality).
Ten viewers participated in the experiment (a number within the range suggested by the recommendation):
6 men and 4 women, 20-29 years old, most of them with university degrees and a relationship with the
media world. The sequences were presented to them in pairs (the reference along with the degraded) in
sessions of 30 minutes, with 15 minutes of break time between each session. The results of the subjective
experiment captured the perception of viewers, and once correlated with the objective metrics, allowed us
to estimate the QoE with network impairments.

The subjective scores given by the viewers for the video sequences in the training set ranged from 1 to
9, covering the full scale. This shows that we chose degraded sequences covering a wide range of quality.
The average value of all 95% confidence intervals for the scores among all the sequences in the training set
was 0.45 on the 1-9 scale and hardly varied with the motion level. This small confidence interval indicates
a very good agreement among the viewers.

5.5 Evaluation metrics

The Pearson Correlation Coefficient (PCC), the Linear Correlation Coefficient (LCC), and the Outlier Ratio
(OR) were the metrics used to evaluate and compare the selected objective quality metrics. The PCC

coefficient represents the strength of the linear relationships between two variables. The PCC between
variables X and Y can be calculated with equation 8, where an absolute value of 1 means a perfect
relationship, and 0 means no relationship at all.

PCC =

∑N
i=1(Xi −X)(Yi − Y )√∑N

i=1(Xi −X)2
√∑N

i=1(Yi − Y )2
(8)

In our study, PCC represents the correlation or level of linear relationship between the objective and
the subjective data. It is important to have a strong linear relationship to derive subjective information
from objective data. Using a linear regression (least squares), we modelled the subjective data with a
third degree polynomial. The regression function provided a formal way to predict subjective scores from
objective scores. The LCC represents the PCC between the original subjective data and the output of
non-linear cubic polynomial regression. High values of this coefficient mean that the approximation fits the
observed subjective data very well; that is, that the predictions obtained from the regression function are
reliable. Finally, we obtained the OR that is defined as the percentage of the number of predictions outside
the range ±2σdcr, where σdcr is the standard deviation of the subjective data OR = N ′/N , N ′ is the number
of predictions outside the range and N is the total number of predictions.

5.6 Experimental plan

Taking in account the number of selected metrics (8), sequence alignment alternatives (3), motion sequences
(3), and values for packet loss probability (6), and the average loss burst length (6), the total number of
experiments to carry out can be obtained. If the influence of the sequence alignment is also explored, the
total number of experiments is 5184. This number of experiments is too high to be practical, because some
metrics are computationally intensive and the test video sequences are long. For this reason, the experiments
were carried out in two phases.

In the first phase only three PSNR-based metrics were evaluated: a traditional PSNR without sequence
alignment; a ”modified” PSNR with previous sequence alignment and frame comparison of type A (M-
PSNR-A); and a modified PSNR with previous sequence alignment and frame comparison of type B (M-
PSNR-B). The objective in this phase was to fully understand the influence of sequence alignment, video
motion, and packet loss on PSNR, commonly used as a reference metric for comparison with other metrics.
For each test video sequence (high, medium, and low motion), each metric was computed for the full
combination of parameters (36) of the packet loss model, resulting in 324 experiments in total. The pooling
strategy adopted was the simple mean of the frame scores, since this is the most suitable for long test
videos, as stated in [22]. Finally, the PCC coefficients for each metric and motion were calculated. Phase I
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Table 5 Correlation of PSNR-based metrics for motion scenarios

Motion Metric PCC CI(95%)

High
PSNR 0.6849 0.4591 - 0.8270
M-PSNR-A 0.9198 0.8468 - 0.9585
M-PSNR-B 0.9201 0.8474 - 0.9587

Medium
PSNR 0.9057 0.8211 - 0.9510
M-PSNR-A 0.8834 0.7811 - 0.9391
M-PSNR-B 0.8832 0.7808 - 0.9390

Low
PSNR 0.8478 0.7191 - 0.9199
M-PSNR-A 0.8562 0.7335 - 0.9244
M-PSNR-B 0.8553 0.7320 - 0.9239

Aggregated
PSNR 0.7516 0.6551 - 0.8232
M-PSNR-A 0.7825 0.6959 - 0.8460
M-PSNR-B 0.7799 0.6925 - 0.8441

ends with the selection for each motion level, of the PSNR-based metric with the best PCC. These selected
metrics will be the reference metrics in the next phase.

In the second phase, the comparison of all the selected metrics was carried with and without sequence
alignment. Thus, the influence of sequence alignment on the performance of the metrics could be analysed.
To reduce the number of experiments in this phase, the combinations of parameters of the packet loss model
were reduced from 36 to 12, as shown in table 2. This reduced set of values was selected ensuring very
similar values of the PCC for the PSNR-based metrics to those obtained for the full set. The number of
experiments in this phase was 504, making 828 experiments in total for both phases instead of the original
5184.

6 Results

The evaluation of the selected video quality metrics was carried out following the experimental plan in the
two phases detailed above. In each phase, the results were analysed independently for each motion level in
video sequences and also for the aggregation of the video sequences. Aggregation helps to understand the
behaviour of the metrics for any kind of video. Correlation for the aggregation of video sequences is always
lower than correlation for a specific motion level.

6.1 Phase I: Initial evaluation of PSNR-based metrics

Table 5 shows the PCC values and corresponding 95% confidence intervals for the three reference PSNR-
based metrics, computed from the full set of values of the packet loss model. As indicated above, the results
are presented independently for each level of motion in video sequences and also for the aggregation of the
video sequences. Correlations clearly increased with the level of motion in video. For high motion, both
alternatives of the modified PSNR had correlations much higher than the traditional PSNR, highlighting
the importance of sequence alignment. For low motion, the modified PSNRs had correlations slightly above
the traditional PSNR. For medium motion, correlations of modified and traditional PSNRs were also very
close but, surprisingly, the correlation of traditional PSNR was above. Finally, for aggregation of sequences,
the modified PSNRs had correlations slightly above traditional PSNRs. In summary, the sequence alignment
seems to be critical only for high motion, and much less important for low and medium motion levels. In all
cases, the two alternatives of the modified PSNR have very similar correlations, and so the type of frame
comparison does not seem to be relevant for the level of frame loss in the test video sequences. Finally,
we selected the traditional PSNR and the M-PSNR-A (with the simplest frame comparison) to be the
definitive reference metrics in the next evaluation phase.

6.2 Phase II: Comparison of all the selected metrics

In this phase a comparison of all the selected metrics was carried out with and without sequence alignment.
Figure 6 shows the PCC and LCC values of the eight selected metrics for high motion sequences. The
PCC values are represented for both the traditional metrics without sequence alignment, and the modified
metrics with sequence alignment (noted as ”mod” in the figure), while the LCC values are represented only
for modified metrics. Traditional PSNR and M-PSNR-A, as indicated in the first phase, are the reference
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Fig. 6 Correlation of objective quality metrics for hight motion

metrics. The strong linear relationships between all the metrics is because network impairments introduced
in high motion sequences were magnified and easier to detect both for viewers and for the metrics. For a
better comparison of metrics, the curves were built in decreasing order of the PCC values of the modified
metrics. All the modified metrics, with sequence alignment, have higher correlations than the corresponding
traditional metrics without sequence alignment. This is consistent with the results in the first evaluation
phase. The slope of both PCC curves are almost opposite, so the behaviour of metrics drastically changed
with sequence alignment for this level of motion. The correlation increased with sequence alignment 55.7%
for the best metric and 28.3% on average for all the metrics. Modified versions of NQM, PSNR, and VQM
are the metrics with the best correlations for this level of motion, with similar high values above 0.95. All
the other metrics have correlation values above 0.91. The LCC values are between 0.95 and 0.96 for seven
of the eight metrics.

Figure 7 shows the PCC and LCC values of the metrics for low motion video sequences. These values
are quite low in general if compared with the high motion scenario. The low dynamism of the scenes in
low motion sequences helps the codec to predict video frames, even under frame loss, so degradation is
lower. The viewers are able to detect the slight degradation differences, but the objective metrics are not.
This is reflected in the low correlation of the metrics. Only two metrics, the modified versions of UQI and
VIF, have correlation values above 0.91, the rest are below 0.87. It is interesting to note the low correlation
values of the two ”native” video quality metrics, DCT-VQM and VQM. The correlation of metrics increases
with sequence alignment for three metrics, decreases for four metrics, and does not change for one metric;
on average the differences are negligible. The LCC values are also at their maximum for the best correlated
metrics, with values around 0.92.

Figure 8 shows the PCC and LCC values of the metrics for medium motion video sequences. In general,
correlation values have intermediate values between those corresponding to high and low motion. The curves
were built in decreasing order of PCC values for the traditional version of the metrics. With regard to the
influence of sequence alignment on correlation, the slightly worse correlation of a modified PSNR in the
first evaluation phase is confirmed here for the modified versions of all other metrics, with a decrease of
3.1% on average. The curves are quite plain in this scenario, with low differences between correlations. The
traditional DCT-VQM has the highest correlation, with a value close to 0.93, but is quite remarkably the
lowest correlation of VQM. The LCC values, around 0.94 for most of the metrics, correspond to traditional
metrics.

Figure 9 shows the PCC and LCC values of the metrics for the aggregated sequences. All the metrics
(except VQM) have a higher correlation with sequence alignment, with an increase of 19.5% for the best
metric and 11.9% on average for all the metrics. The best PCC value, the only one above 0.8, and the best
LCC value above 0.85, also correspond to the modified version DCT-VQM, followed by modified versions
of PSNR and NQM.

Finally, the curves in 10 represent the Outlier Ratios corresponding to the best correlated metrics for
each motion and the aggregated sequences.
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Fig. 7 Correlation of objective quality metrics for low motion

Fig. 8 Correlation of objective quality metrics for medium motion

Figure 11 shows the best PCC values of the metrics for each motion level in video sequences and also for
the aggregated video sequences. An additional curve, with an independent scale on the right, represents the
approximate relative computing times for the metrics. The time of the modified version of the PSNR, with
value 1, is the reference time. The curves were built in increasing order of computing time. The metrics
with the best correlation values, the modified versions of the DCT-VQM and PSNR, are also the fastest
to compute. Table 6 summarizes our proposal of metrics for off-line and real-time assessment. In the table,
the modified versions of metrics are denoted with a M− prefix.

7 Conclusions and future work

In this paper, we have explored the influence of important aspects that affect the correlation between objec-
tive and subjective video quality metrics in a QoE assessment: motion level in video sequences with bursty
packet loss and sequence alignment after frame loss. As expected, the results showed higher correlations
with the level of motion in video sequences. Furthermore, sequence alignment strongly increased correla-
tions for high motion videos, making it a mandatory technique for this common kind of video. On the other
hand, the technique did not change correlations for low motion videos and slightly decreases correlations for
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Fig. 9 Correlation of objective quality metrics for aggregated sequences

Fig. 10 Outlier ratios of polynomial predictions

Table 6 Proposed metrics for Off-Line and Real-Time assessment

Motion Computing Metric PCC LCC OR

High
Off-Line M-NQM 0,9582 0,9597 0
Real-Time M-PSNR 0,9538 0,9570 0

Med.
Off-Line DCT-VQM 0,9290 0,9460 0
Real-Time DCT-VQM 0,9290 0,9460 0

Low
Off-Line M-UQI 0,9067 0,9173 0,1667
Real-Time M-PSNR 0,8598 0,8944 0,0833

Aggregated
Off-Line M-DCT-VQM 0,8137 0,8551 0,2778
Real-Time M-DCT-VQM 0,8137 0,8551 0,2778
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Fig. 11 Correlation and computing time of the objective quality metrics

medium motion videos. Finally, taking into account the relative computing times of the metrics, the most
suitable objective metrics to characterize the quality scores from viewers, both for off-line and real-time
assessments, were proposed. Future work is focused on assessing new objective metrics and exploring the
potential of standard video sequences in publicly available databases for packet loss analysis.
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51. Garćıa, P.: Python Visual Quality Metric Package (PyMetrikz). ”https://bitbucket.org/kuraiev/pymetrikz”. Uni-

versity of Brasilia. Accessed 23 January 2015
52. Moskow State University (MSU) Video Quality Measurement Tool. ”http://compression.ru/video/quality_

measure/video_measurement_tool_en.html”. MSU Graphics & Media Lab (Video Group). Accessed 23 January 2015
53. Visual Quality Metric (VQM). ”http://www.its.bldrdoc.gov/resources/video-quality-research/software.aspx”.

Institute of Telecommunication Sciences (ITS), US National Telecommunication & Information Administration (NTIA).
Accessed 23 January 2015

54. Test video sequences. ”http://www.atc.uniovi.es/personal/fran/papers/SuarezFJ13-videos.rar”. Computer En-
gineering Group at University of Oviedo. Accessed 23 January 2015

Author Biographies
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