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Abstract

Under some mild conditions on probability distribution P , if limn Pn = P
weakly then the sequence of zonoid depth functions with respect to Pn con-
verges uniformly to the zonoid depth function with respect to P .
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1. Introduction

The depth of a point in Rd with respect to a probability distribution in
the same Euclidean space quantifies the degree of centrality of the point with
respect to the distribution. A (possibly non-unique) point of maximal depth
is, in some sense, central with regard to the given distribution, while depth
decreases along rays emanating from that center. The lack of a natural order
in the multivariate Euclidean space together with the possibility of intro-
ducing a center-outward ordering of data points based on their depths have
provided data depth notions with quite some attention from the multivariate
statistics community.
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Among the numerous notions of data depth introduced in the statistical
literature in the last decades, see [1, 8, 11, 15] for particular notions of data
depth and some of their applications, the zonoid depth [2, 4] occupies a
prominent position, right after the best known data depths, which are Tukey’s
halfspace depth [13, 14] and Liu’s simplicial depth [6].

The zonoid depth with regard to the empirical probability of a sample of
size n assigns depth 1 to the average of all points from the data cloud, and
depth k/n to all points that can be obtained as either averages of k points
from the data cloud or as a convex combination of a set of such averages. For
a general population distribution, the zonoid depth is commonly introduced
in terms of its level sets, which are known as zonoid trimmed regions. These
zonoid trimmed regions can be as well obtained as a transformation of the
so-called lift zonoid [5] of a distribution P , which is a convex body in Rd+1

that characterizes probability distributions with finite first moment.
The uniform consistency of the empirical depth proves to be relevant

when establishing a multivariate order with regard to a data cloud. The
reason is that the interest is not only to estimate the depth of a point, but
the whole depth function, see Remark A.3 [15] for a brief discussion. Among
other particular applications, it has been used in Theorem 6.1 [9] to prove
the consistency of a sample quality index built to compare two distributions,
and in Proposition 3.1 [7] to support some distribution-free control charts
based on ranks induced by a notion of data depth.

The strong uniform consistency of the empirical halfspace depth was es-
tablished in pp. 1816–1817 [3], while the one of the simplicial depth under the
assumption of absolute continuity of the population distribution in Theorem
5 [6]. As for other depth functions, the uniform consistency of the empiri-
cal Mahalanobis depth holds for distributions with bounded second absolute
moment, and the one of the Majority depth for elliptical distributions, see
Remark 2.2 [9]. The pointwise strong consistency of the zonoid depth was
established in Theorem 7.1 (iii) [4]. In the current note, we prove the strong
uniform consistency of the zonoid depth.

The paper is organized as follows: Section 2 is devoted to some prelim-
inaries about convex geometry and zonoid depth, while our main result is
presented in Section 3.
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2. Preliminaries

A convex body is a compact convex set in the d-dimensional Euclidean
space with nonempty interior. The unit sphere in Rd is represented by Sd−1,
while 〈·, ·〉 stands for the scalar product.

Given a convex body K ⊂ Rd, its support function, hK : Sd−1 7→ R and,
subject to 0 ∈ K, its radius-vector function ρK : Sd−1 7→ R (see [10]) are
respectively given by

hK(u) = sup{〈x, u〉 : x ∈ K} ,

ρK(u) = sup{t ≥ 0 : tu ∈ K} .

The Hausdorff distance between two convex bodies K1, K2 ⊂ Rd is

dH(K1, K2) = sup
u∈Sd−1

|hK1(u)− hK2(u)| .

The standard notion of convergence for convex bodies is the Hausdorff one.
We say that the sequence of d-dimensional convex bodies {Kn}n converges
to the convex body K in the Hausdorff distance if limn dH(Kn, K) = 0 .

All probability measures P considered hereafter are defined on the general
d-dimensional Euclidean space equipped with the Borel σ-algebra and are
assumed to have finite first moment, that is,

∫
Rd ‖x‖dP (x) <∞.

The lift zonoid of P is a convex body in Rd+1 containing the origin of
coordinates and given by

Z(P ) =

{(∫
g(y)dP (y),

∫
yg(y)dP (y)

)
, s.t. g : Rd 7→ [0, 1] measurable

}
.

The zonoid depth of x ∈ Rd with respect to P is

ZD(x;P ) = sup{α ∈ (0, 1] : x ∈ α−1projα(Z(P ))} ,

where projα(Z(P )) is the projection of the intersection of Z(P ) with the
hyperplane {(α, x) : x ∈ Rd} to the last d coordinates. After multiplication
by α−1 this set is commonly referred to as zonoid trimmed region of level α of
P and denoted by ZDα(P ) = α−1projα(Z(P )). The family of convex bodies
{ZDα(P )}α∈(0,1] is decreasing on α, while ZD0(P ) is defined as the closed and
convex set cl(∪α>0ZDα(P )).

If a sequence of probability measures {Pn}n converges weakly to P , then
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• limn Z(Pn) = Z(P ) in the Hausdorff sense (Theorem 3.3 [5]);

• limn ZDα(Pn) = ZDα(P ) in the Hausdorff sense for any α ∈ (0, 1]
(Theorem 5.2 (i) [4]);

• if x lies in the interior of the convex hull of the support of P , then
limn ZD(x;Pn) = ZD(x;P ) (Theorem 7.1 (iii) [4]).

3. Main result

The zonoid depth of x ∈ Rd with respect to P is the supremum of all
0 < α ≤ 1 such that (α, αx) lies in the lift zonoid of P , and it is thus possible
to relate the zonoid depth with the radius-vector function of the lift zonoid.
For simplicity, for x ∈ Rd, we will hereafter write x = (1, x) ∈ Rd+1 and
u(x) = x/‖x‖ ∈ Sd .

Lemma 3.1. For any x ∈ Rd, we have

ZD(x;P ) = ρZ(P )(u(x))‖x‖−1 ≤ ρZ(P )(u(x)) . (1)

Proof. For any x ∈ Rd, we have αx ∈ projα(Z(P )) as long as αx = (α, αx) ∈
Z(P ). Finally and since the radius-vector function is only defined on Sd−1,
we normalize x in order to obtain

ZD(x;P ) = sup{α ∈ (0, 1] : (α, αx) ∈ Z(P )} = ρZ(P )(u(x))‖x‖−1 .

The inequality in (1) follows from ‖x‖ ≥ 1 for all x ∈ Rd.

Figure 1 illustrates graphically Equation (1) in Lemma 3.1.
We say that a probability distribution P on Rd satisfies condition (C) if

(C) the probability of any hyperplane that is tangent to the boundary of
the convex hull of its support is zero, or equivalently, P (∂H) = 0 for
every halfspace H with P (H) = 1.

Condition (C) is, e.g. satisfied by all probability distributions that asses
probability zero to any hyperplane, or by the smaller family of absolutely
continuous distributions.

Lemma 3.2. If P satisfies condition (C), then the next two statements hold
true:
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Figure 1: The shaded region is the lift zonoid of a uniform distribution on the unit interval.
The values of α and x considered in the graph are α = 1/2 and x = 3/4. The zonoid depth
evaluated at x is the supremum of all α such that (α, αx) is a point of the lift zonoid lying
in the line segment with extremes at the origin of coordinates and (1, x).

1. the boundary of its lift zonoid Z(P ) does not contain any line segment
with the origin in it,

2. for every 0 < α < β ≤ 1 there exists ε > 0 such that hZDα(P )(u) −
hZDβ(P )(u) ≥ ε for all u ∈ Sd−1.

Proof. In order to prove 1., assume that the boundary of Z(P ) contains a
line segment with the origin in it, then for some 0 < α ≤ 1 and some x ∈ Rd,
we have (β, βx) ∈ ∂Z(P ) for all 0 ≤ β ≤ α. Consequently x ∈ ∂ZDβ(P ) for
all 0 < β ≤ α and does also lie in the boundary of the union of the increasing
sequence of convex bodies ∪γ>0ZDγ(P ), so x ∈ ∂ZD0(P ). Theorem 5.5 in
[4] establishes that ZD0(P ) is the intersection of all closed halfspaces whose
probability is 1, so there must exist a closed halfspace H with x on its
boundary such that P (H) = 1. Note that ZD(x;P ) ≥ α implies that the
probability of the closure of the complementary halfspace to H must be
strictly positive. Therefore the probability of the intersection of the two
halfspaces is strictly positive, that is, P (∂H) > 0, which contradicts (C).

2. follows from 1. also by contradiction. Assume there exist 0 < α <
β ≤ 1 such that for every ε > 0 there exists u ∈ Sd−1 such that hZDα(P )(u)−
hZDβ(P )(u) < ε. After the continuity of the support function hZDα(P )(u) =
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hZDβ(P )(u) for some u ∈ Sd−1 and since ZDβ(P ) ⊂ ZDα(P ) there must exist

some point x ∈ Rd lying in the boundary of both zonoid trimmed regions.
Consequently we obtain αx, βx ∈ ∂Z(P ) which violates 1., so the assumption
cannot be valid.

Statement 2. in Lemma 3.2 means that, under (C), the family of depth-
trimmed regions is strictly decreasing on α, so for any 0 < α < β ≤ 1 there
exists an ε-envelope of ZDβ(P ) that is contained in ZDα(P ).

Remark 3.1. Condition (C) actually guarantees the continuity of the zonoid
depth as a function of x in Rd. Such continuity was established for the x’s
inside the convex hull of the support of P in Theorem 7.1 (ii) [4]. Whenever
(C) holds, the zonoid depth at the boundary of support is 0, as it is outside
the convex hull of the support.

Under condition (C) we prove the uniform convergence of a sequence of
zonoid depths of a converging sequence of probabilities. The main argument
we use here is, in essence, borrowed from Lemma 3.2 [12].

Theorem 3.1. If a probability P satisfies condition (C) and the sequence
{Pn}n converges weakly to P , we have that

lim
n

sup
x∈Rd
|ZD(x;P )− ZD(x;Pn)| = 0 .

Proof. For any 0 < ε < 1, we obviously have

sup
x∈Rd
|ZD(x;P )− ZD(x;Pn)|

= max{ sup
x∈ZDε/2(P )

|ZD(x;P )−ZD(x;Pn)|, sup
x/∈ZDε/2(P )

|ZD(x;P )−ZD(x;Pn)|} .

In first place, we will show that the last supremum is bounded by ε for
n large enough. After statement 2. in Lemma 3.2, the inclusion relation
ZDε(P ) ⊂ ZDε/2(P ) is strict and the convergence of the zonoid trimmed
regions ensures the existence of N1 such that ZDε(Pn) ⊂ ZDε/2(P ) for all
n ≥ N1, so

sup
x/∈ZDε/2(P )

|ZD(x;P )− ZD(x;Pn)| < ε for n ≥ N1 .

Let us now concentrate on ZDε/2(P ). Notice that ZDε/2(P ) ⊂ ZDε/4(Pn)
for all n ≥ N2 and some N2. Assume that there exists a sequence xn ∈
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ZDε/2(P ) with a subsequence satisfying |ZD(xn;P ) − ZD(xn;Pn)| ≥ ε for
all n, which after Lemma 3.1 guarantees |ρZ(P )(u(xn)) − ρZ(Pn)(u(xn))| ≥
ε. Due to the compactness of ZDε/2(P ), such a subsequence must have a
converging subsequence, which we will again denote as xn, converging to
some x ∈ ZDε/2(P ). Define

yn = ρZ(P )(u(xn))u(xn) ∈ ∂Z(P ) and zn = ρZ(Pn)(u(xn))u(xn) ∈ ∂Z(Pn) .

The compactness of Z(P ) and the convergence of {Z(Pn)}n to Z(P ) in the
Hausdorff distance guarantees the existence of a closed ball containing all
Z(Pn) and Z(P ), thus ρZ(Pn) and ρZ(P ) are uniformly bounded. It is therefore
possible to obtain converging subsequences of {yn}n and {zn}n whose limits
are respectively denoted as y and z. Notice that the first component of each
yn is at least ε/2, while the first component of each zn is at least ε/4, so
both of y and z are different from the origin of coordinates. Since ∂Z(P )
is closed, y ∈ ∂Z(P ), while the convergence of {Z(Pn)}n to Z(P ) in the
Hausdorff distance guarantees that z ∈ ∂Z(P ). Finally ‖yn−zn‖ ≥ ε implies
‖y−z‖ ≥ ε while both of them belong to a ray from the origin with direction
u(x), which contradicts 1. from Lemma 3.2.

As the next example shows, condition (C) cannot be omitted in Theo-
rem 3.1.

Example 3.1. For any x ∈ R, let δ{x} stand for the degenerated distribution
at x. Clearly the sequence of probabilities {δ{1/n}}n converges weakly to δ{0},
but for any n, we have supx |ZD(x; δ{1/n})− ZD(x; δ{0})| = 1.

Finally we obtain the strong uniform consistency of the empirical zonoid
depth.

Corollary 3.1. Given P with finite first moment and such that the proba-
bility of any hyperplane (that is tangent to the boundary of the convex hull of
the support of P ) is zero, the empirical zonoid depth is a strongly uniformly
consistent estimator of the population zonoid depth.
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