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Abstract
We discuss the rigorous characterization of the
electron density Laplacian of crystals in terms of
its topological properties: critical points (CPs),
zero flux surfaces, and accumulation and deple-
tion basins. Comparison with the atomic shell
structure is exploited to characterize the numerous
core critical points so that the important effort is
applied to the more significant valence structure.
Efficient algorithms are adapted or newly devel-
oped for the main tasks of topological study: find-
ing the critical points, determining the 1D and 2D
bundles of (3,−1) and (3,+1) CPs, and integrat-
ing well defined properties within the accumula-
tion and depletion basins. As an application of the
tools and concepts developed we perform a quan-
titative analysis of chemical bonding on group IV
semiconductors, mainly devoted to the properties
of the diamond phase but also including the main
effects of allotropy influences on these elements.
The topological analysis of the Laplacian provides
a complementary and very different image than
the topology of the electron density. Whereas
the Laplacian graphs show a qualitative agreement
with Lewis classical model, the basin population
analysis excludes direct quantitative relationships
with Lewis pair and octet rules. In addition to the
expected core and valence basins, all group IV ele-
ments show very important interstitial basins, that
accumulate a large number of electrons and domi-
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nate the compressibility behavior of the crystals.

1 Introduction
The Quantum Theory of Atoms in Molecules
(QTAIM) has been in use for some three decades
now to determine chemical bonding properties as
true observables of the electron wavefunction.1–8

QTAIM studies are mainly based on the topolog-
ical analysis of the electron density, ρ(rrr), partic-
ularly the characterization of its critical points (ρ-
CP), and the integration of every kind of quantum
observable within the attraction basin of atomic
nuclei. Both, theoretical and experimental electron
densities have been the subject of such scrutiny
and, in fact, QTAIM is the mainstream technique
for the experimental analysis of chemical bond-
ing.3,9

The name Quantum Chemical Topology (QCT)
has been proposed by Popelier10–12 to include the
growing collection of methods inspired in the sem-
inal work of Bader.1 Studies based on the topo-
logical analysis of ρ , ∇2ρ , the electron localiz-
ing function (ELF),13 the source function,14 the
momentum density,15 the electron pair density,16

and many other similar properties would be in-
cluded under the umbrella of QCT. Beyond shar-
ing many common techniques and language, the
development of QCT is becoming a revolutionary
perspective in the old quest for the chemistry holy
grail: obtaining every bit of information regard-
ing chemical bonding that exists in the experimen-
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tally or computationally available part of the wave-
function, with no recourse to unfounded simplifi-
cations. In other words, providing a strict physical
foundation to the chemical bonding.

The value of the Laplacian of the electron den-
sity, ∇2ρ(rrr), on the ρ-CP’s has been used to dis-
tinguish between shared- and closed-shell bond-
ing cases.17 The Laplacian has also been instru-
mental in characterizing hydrogen bonding,18–21

predict sites of nucleophilic and electrophilic at-
tack as well as the reactivity propension,22 used to
follow chemical reactions,23,24 and to distinguish
between Lewis nucleophilic and acidic zones of
a molecule,25,26 to name just some of its most
prominent roles.

The electron density Laplacian has also received
a lot of recent attention from the community of
developers of exchange and correlation function-
als. Quantum Monte Carlo investigations on the
strongly inhomogeneous electron gas,27,28 later
extended to small molecules29 and crystals,30

have shown that “the nonlocal contributions to
[the exchange-correlation energy density] contain
an energetically significant component, the mag-
nitude, shape, and sign of which are controlled by
the Laplacian of the electron density”.27

Such an important role sharply contrast with the
fact that only a very small number of articles have
been devoted to the full topological characteriza-
tion of the electron density Laplacian6,11,31–34 and
none of them has examined condensed matter sys-
tems. The full topological characterization of a
three dimensional (3D) scalar field like ∇2ρ(rrr)
requires, in our opinion, being able to complete,
at least, three different tasks: (1) localizing ef-
ficiently the critical points (L-CP’s in this case);
(2) tracing the 1D (field lines) and 2D (inter-basin
surfaces) regions that start or end on the first and
second order saddle points; and (3) integrating lo-
cal properties within the 3D basins of the Lapla-
cian maxima and minima. Whereas the first capa-
bility is included in the AIMPAC package35 since
the eighties and from this on many other molecular
topological codes, Popelier’s MORPHY36 (since
the 2001 version) is the only code that currently
offers the three capabilities.

This article is devoted to the complete char-
acterization of the electron density Laplacian in
solids. In the next section we examine the mean-

ings and usages that are associated to the Lapla-
cian. Section 3 considers briefly the consequences
of the cusps that the non-relativistic electron den-
sity shows at the nuclear positions under the Born-
Oppenheimer approximation. Section 4 reviews
the atomic shell structure that markedly influences
the Laplacian topology in molecules and solids.
This analysis of the shell structure will prove de-
terminant for the difficult task of finding and clas-
sifying the abundance of critical points that can be
found. Section 5 introduces the algorithms that we
have adapted or created to complete the full topo-
logical analysis of the Laplacian. The analysis and
discussion of our results in a representative set of
crystals is the subject of section 6. We have se-
lected the group IV elements for the first applica-
tion of the new techniques: the examination of the
five, C–Pb, elements on the same diamond phase
will let us determine the influence of the number
of electron shells, whereas the characteristic al-
lotropy of these elements provides a window to the
effect of crystal geometry on the topological prop-
erties. The article ends with a discussion of the
main outcomes of our analysis and the prospect of
the possible role of the presented techniques on the
Quantum Chemical Topology studies.

2 Meaning of the Laplacian of
the electron density

The most immediate meaning of the Lapla-
cian comes from the geometrical interpretation:
∇2ρ(rrr) provides the local curvature of the elec-
tron density at rrr. Hence, if ∇2ρ(rrr) < 0 the elec-
tron density at rrr is larger, on average, than in
the differential region surrounding this point. In
other words, the electron density is locally en-
hanced or accumulated at rrr. Similarly, the elec-
tron density is locally depleted at those points
where ∇2ρ(rrr) > 0. This role is consequence of
the Laplacian being the trace of the Hessian or cur-
vature matrix: HHH(rrr) = ∇∇∇⊗∇∇∇ρ(rrr). Accordingly,
∇2ρ(rrr) represents the accumulated curvature of
the three dimensional neighborhood of rrr.

This geometrical role of the Laplacian is stressed
in the following equation, included by James C.
Maxwell37 in his Treatise on Electricity and Mag-

2



netism (1873):

ρ(rrra)−ρav(rrra) =−
τ2

10
∇

2
ρ(rrra)+O(τ4), (1)

where ρav(rrra) represents the average value of the
electron density for all the points within a sphere
of radius τ centered on rrra, and O(τ4) is a small
term of the order of τ4. This equation led Maxwell
to propose calling L(rrr) = −∇2ρ(rrr) the “concen-
tration of ρ at the point rrr, because it indicates the
excess of the value of ρ at that point over its mean
value in the neighborhood of the point”.37

The use of L(rrr) instead of ∇2ρ(rrr) has also been
customary in the QTAIM literature at least since
1984.38 Looking for a more intuitive comparison
with the behavior of the density, maxima in L(rrr)
represent maximal concentration of density in a
similar way to maxima in ρ(rrr) that represent the
maximal accumulation of electronic charge which
are typical of nuclei. We will adhere to this tra-
dition and our topological characterization will
be referred from now on to L(rrr) rather than to
∇2ρ(rrr).

The importance of the Laplacian for the QTAIM
theory is further evidenced by the fundamental re-
lationships in which it appears. Of tantamount im-
portance is the local virial relationship:17,39,40

h̄2

4m
∇

2
ρ(rrr) = V (rrr)+2G (rrr), (2)

where G (rrr) is the kinetic energy density and V (rrr)
is the electronic potential energy density. G (rrr) is
everywhere positive and V (rrr) is everywhere neg-
ative, so the sign of ∇2ρ(rrr) indicates which of the
two contributions to the local virial theorem domi-
nates at every point. Acidic regions, characterized
by ∇2ρ(rrr) > 0 show a kinetic energy dominance,
whereas regions of basic character, ∇2ρ(rrr) < 0,
show the dominance of the electronic potential en-
ergy.

Requiring that the virial relationship holds in an
arbitrary region Ω leads to the QTAIM characteri-
zation of atomic basins by bounding zero flux sur-
faces:

∇∇∇ρ(rrr) ·nnn(rrr) = 0, (3)

where nnn(rrr) is the normal vector to the surface at rrr.

When and only when Ω is defined in this way then∫
Ω

∇
2
ρ(rrr)drrr =

∮
S(Ω)

∇∇∇ρ(rrr) ·nnn(rrr)drrr = 0. (4)

In a similar way, ∇2ρ can be shown to be
the connection between different, but equally
grounded, forms of the kinetic energy density. For
instance1,41

K (rrr) = G (rrr)− h̄2

4m
∇

2
ρ(rrr), (5)

where

K (rrr) =− h̄2

4m
{∇2 +∇

′2}Γ(1)(rrr,rrr′)
∣∣
rrr′→rrr, (6)

G (rrr) =
h̄2

2m
(∇∇∇ ·∇∇∇′)Γ(1)(rrr,rrr′)

∣∣
rrr′→rrr, (7)

and Γ(1)(rrr,rrr′) is the non-diagonal one-electron
density matrix. Only when Ω satisfies the zero
flux condition K (Ω) = G (Ω) and, in general, all
the different forms of defining locally the kinetic
energy density yield equivalent results.

The Ω regions defined in terms of the zero-flux
surface condition constitute the electron density
basins and represent the fundamental partition of
the molecular and crystalline space according to
the QTAIM theory. Atomic attraction basins, con-
taining a single nuclear ρ-CP, and minima repul-
sion basins, containing a single cage ρ-CP, are
two alternative partitions that exhaustively divide
the crystal into non-overlapping regions. Both are
made, in fact, by joining appropriately primary
bundles, mathematically defined as the space re-
gion made of the gradient lines joining together a
particular nucleus with a particular cage ρ-CP.42

This partitioning of space is not exclusive of the
electron density. Any differentiable C2 scalar field
provides a partition with similar topological prop-
erties, including L(rrr). We define, for instance,
the accumulation basins and the depletion basins
as the regions bounded by zero flux surfaces of
∇∇∇L(rrr) and associated to maxima and minima of
L(rrr), respectively. The electron density, however,
stands alone as the only partition that guarantees
the correct behavior of all quantum mechanical op-
erators on the local level. As a consequence, we
will be able to integrate, within the L(rrr)-basins, lo-
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cal properties, like the volume and charge, but not
such non-local properties as the kinetic energy.

3 The Laplacian and the nu-
clear cusps in the electron
density

It is well-known that non-relativistic Born-
Oppenheimer electron densities exhibit a singu-
larity or cusp at the fixed nuclear positions.43 This
is a consequence of the infinite asymptote of the
Coulomb potential due to a fixed point-like nu-
cleus. This singularity, that would preclude the
existence of derivatives, including ∇2ρ(rrr), at the
nuclear positions is usually discarded by assum-
ing the mapping of a smooth function identical in
value and properties to ρ(rrr) except that the cusps
are eliminated and substituted by some rounded
shape.1

It should be noticed, however, that the cusps are
removed if nuclei are modelled as small but finite-
size particles, as it is routinely done in atomic44

and solid-state relativistic calculations.45,46 Cusps
would also disappear if the electron density is the
result of some statistical ensemble where the nu-
clear motion is taken into account.

4 Topological structure of
L(rrr) = −∇2ρ(rrr) and the
atomic-like shell structure

L(rrr) induces a complete partition of the space into
distinct and complementary regions by means of
the gradient vector field, ∇∇∇L(rrr), described in terms
of the critical points, rrrc:

∇∇∇L(rrrc) = 000, (8)

which can be classified by the rank and signature
of the Hessian matrix:

HHH(rrrc) = ∇∇∇⊗∇∇∇L(rrrc). (9)

Table 1 gives a summary of the type and properties
of the regular (i.e. 3D) and degenerated (2D or 1D)
critical points of L(rrr), and establishes the notation

for the rest of the paper. We have decided to keep
the same denominations already popular when de-
scribing the topology of ρ(rrr). If confusion is pos-
sible, we will refer to ρ-CP or L-CP to distinguish
between the critical points of both scalar fields.

Both, the electron density and the L(rrr) scalar
fields inherit their basic structure directly from the
atoms. The electron density, peaked at the nuclear
position, is formed by a collection of exponential
arcs (one for each electronic shell, see Figure 1-
left) connected by regions of larger curvature.

The shell structure is far more clearly revealed
by the L(r) function (see Figure 1-right). Starting
from the nucleus, L(r) shows a succession of max-
ima, zeros, minima and zeros that we have labelled
as K+, KK, K− (for the 1s electrons), KL, L+, LL,
L− (the 2sp shell), LM, M+, MM, M− (the 3spd
shell), and so on. These features in the radial L(r)
function correspond to spheres of degenerate criti-
cal points in the 3D L(rrr) field for the isolated atom.
The spherical symmetry is broken by the influ-
ence of the neighbor atoms in a molecule or solid,
but there is a neat difference between the effects
shown by the core and valence shells. Whereas
the internal shells keep unaltered the distance to
the nucleus of their topological spots, the outer-
most shell loses to a large part its atomic origin
and it is determined by the competition between
the neighbor atoms, like it happens to the electron
density itself.

Figure 1 also shows that the core region experi-
ences a negligible relative modification due to the
environment as well as the relativistic effects, both
on ρ(r) and L(r). It is only the valence region that
suffers the significant changes.

The association of the Laplacian of the electron
density and the atomic shell structure was first for-
mulated by Bader et al.17,50 Ref. 50, in particular,
started the association of an electronic shell with a
pair of spherical shells of alternating charge con-
centration and charge depletion, later accepted by
most researchers. These initial studies, performed
on light elements of the main groups, were later
extended to heavier atoms by Sagar et al.,51 Shi
and Boyd52 and Kohout et al.53 Those works have
shown that, using Bader’s definition, the Laplacian
of ρ fails sometimes to resolve the valence from
the inner shells, a problem that starts to occur in
some elements of the fourth row of the periodic ta-
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Table 1: Rank and signature, (r,σ), of the Hessian matrix can be used to classify the different types of
critical points. The common name and the usual abbreviation is indicated as the third and fourth column,
respectively. AD and RD are the dimensions of the attraction and repulsion basins, respectively, created
by the critical point.

(r,σ) type name abbrev. AD RD
(3,−3) maximum nucleus NCP 3D 0D
(3,−1) saddle-1 bond BCP 2D 1D
(3,+1) saddle-2 ring RCP 1D 2D
(3,+3) minimum cage CCP 0D 3D
(2,−2) 2D-maximum 2D 0D
(2,+0) 2D-saddle 1D 1D
(2,+2) 2D-minimum 0D 2D
(1,−1) 1D-maximum 1D 0D
(1,+1) 1D-minimum 0D 1D
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Figure 1: Radial structure of the electron density (left) and L(r) (right) of Ge. The results from a non-
relativistic Hartree-Fock atomic calculation,47 a relativistic Dirac-Fock atomic calculation,44,48,49 and
a relativistic FPLAPW calculation of the diamond phase of germanium are shown in both plots. The
latter treats core states fully relativistically while the scalar relativistic approximation is used for valence
states.49 The points K+, L+, . . . are the maxima of L(r) and K−, L−, . . . are the minima. Notice the log
scale of the left plot. Similarly, an arctangent scale is used on the right plot, transforming the (−∞,+∞)
range of L(r) into [−1,1], with a minimal distortion of the region close to zero, the most significative one
from a chemical bonding perspective.
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ble and becomes more common as we progress to
heavier elements. This was a common argument
for the introduction of the Electron Localization
Function (ELF),13 that shows similar properties to
L(rrr) but maintains the core-valence difference up
to the sixth row, at least. Following Eickerling and
Reiher,54 authors of the most extensive analysis to
date of the Laplacian of relativistic multiconfigu-
rational atomic calculations, we consider that all
topological features of L(r) should be considered:
maxima, minima and zeros. For elements Z > 18
the assumed valence electronic shell is not observ-
able as a local maximum in the positive region of
L(r), but the maximum remains even though in the
negative region.

In any case, our main interest regarding the shell
structure lies in the possibility of knowing in ad-
vance how a spherical shell will contribute to the
topology of L(rrr) in a molecule or crystal. This will
help us in classifying and naming the large num-
ber of L-CP’s that typically occur. The number
and type of L-CP’s in a unit cell is restricted by the
Morse relationship,

n−b+ r− c = 0, (10)

where n, b, r, and c are the number of NCP, BCP,
RCP and CCP, respectively, per unit cell. The de-
generacy of an atomic spherical shell is broken by
the potential due to the neighbor atoms. In the case
of core shells the resulting L-CP’s move negligi-
bly in the radial direction, and the radial curvature
of L(rrr) also changes negligibly. Moreover, the L-
CP’s produced by the symmetry breaking of a core
shell are topologically equivalent to a polyhedron
and the Euler relationship must be fulfilled:

vertices− edges+ faces = 2. (11)

When the core shell corresponds to a maximum
of L(r), the radial curvature is negative and the
breaking of atomic symmetry can only produce
NCP, BCP, and RCP, but not (3,+3) points. In
this case, NCP’s are the vertices, the 1D repulsion
basins of BCP’s form the edges, and the 2D re-
pulsion basins of RCP’s are the faces of the poly-
hedron. Accordingly, the radial maximum in L(r)
produces:

n+−b++ r+ =+2, (12)

a contribution of +2 to the global Morse sum.
Contrarily, a core minimum of L(r), with a posi-
tive radial curvature, decomposes into CCP’s (ver-
tices), RCP’s (edges), and BCP’s (faces) but no
NCP’s. Their contribution to the Morse sum is,
therefore

−b−+ r−− c− =−2. (13)

Table 2 shows the mean radii of the mostly
spherical shells for C–Pb in their cubic diamond
phase. The K+ position is essentially coincident
with the nucleus and it is considered to remain a
single point, although the behavior of the electron
density at the nucleus depends, on relativistic cal-
culations, of the type of model used to describe
the nuclear charge. From our point of view it is
enough to consider that the unsplitted K+ point
contributes +1 to the Morse sum. Each pair of
successive minimum plus maximum radial shells
compensate to produce a null net Morse contribu-
tion. A last, uncompensated radial minimum shell
would change the global core contribution from
+1 to −1. This is what happens in C, Si, Ge, and
Pb, but not in Sn, according to Table 2. Anyway,
the consideration of what constitutes a core and
what a valence shell depends upon the criterion
used to accept that two Laplacian critical points
have the same distance relative to the nucleus.

Our description in this section is not specific
of the L(rrr) function, but it can be applied to any
scalar field showing an atomic shell structure. The
ELF function comes immediately to mind, but
many other similar fields can also be included.

5 Implementing the topological
analysis of the electron den-
sity Laplacian in crystals

The rich literature exploring the topology and
properties of the Laplacian in molecules or for
light elements has been discussed in previous sec-
tions. However, to the best of our knowledge, this
is the first article devoted to the full topology of
L(rrr) in crystals and addressing solids with arbi-
trarily heavy elements. The reason behind this
apparent neglect rests in the extreme behavior of
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Table 2: Mean radius of the spherical shells, diamond structure. The small horizontal lines mark the end
of the core shell structure.

C Si Ge Sn Pb
K+ 0 0 0 0 0 K+

KK 0.16844 0.07018 0.02915 0.01729 0.00804 KK
K− 0.23042 0.09600 0.03992 0.02381 0.01134 K−
KL 0.84696 0.27785 0.10452 0.06248 0.03426 KL
L+ 0.98123 0.32665 0.12327 0.07362 0.04015 L+

LL 0.47154 0.17100 0.10058 0.05363 LL
L− 0.59910 0.21708 0.12735 0.06825 L−
LM 1.59407 0.40355 0.21606 0.11223 LM
M+ 1.83266 0.46067 0.24758 0.12846 M+

MM 0.61172 0.31794 0.16148 MM
M− 0.74538 0.38810 0.19615 M−
MN 2.03817 0.65597 0.29462 MN
N+ 0.73175 0.33214 N+

NN 0.92299 0.41801 NN
N− 1.09627 0.49510 N−
NO — NO
O+ 0.96772 O+

OO — OO
O− 1.11951 O−

RNN/2 1.45931 2.22190 2.31464 2.65579 2.88807

the L(rrr) scalar function. In this section, we de-
scribe the important modifications and new tech-
niques that must be introduced in the usual QCT
algorithms when analyzing L(rrr). The principles
and methods that will be described can be readily
generalized to other scalar fields showing atomic
shell structure, such as the ELF13,55 and the non-
interacting electrons pressure,56 for instance.

As described previously, L(rrr) displays a shell
structure around the atoms: there exist regions sur-
rounding the nuclei that present large value fluc-
tuations, specially near the nucleus. If the atom
were isolated, L(rrr) would have a strict spheri-
cal symmetry. After the formation of the crystal,
L(rrr) is distorted, acquiring the symmetry of the
local point group. However, the shell structure is
maintained and the distortion is small, specially in
the core region. The heavier elements show the
sharpest oscillations. As an example, the value of
L(rrr) in the Pb atom varies more up to 14 orders
of magnitude between the K+ (L ≈ 108) and L−
(L ≈ −106) radial extrema. This example shows
clearly the necessity for specialized algorithms to
deal with shell-structured scalar fields.

The topological characterization of a scalar field
f (rrr), rests on three main tasks: the integration of
the trajectories of ∇∇∇ f , the localization of all the
critical points of f , and the integration of prop-
erties on the attractor basins. The computational
bottleneck is the latter by far.

Starting with the seminal work by Biegler-
König,57,58 a number of methods have been devel-
oped to deal with the problem of locating the inter-
attractor surface (IAS) and integrating the prop-
erty densities.34,59–62 Most of them, however, are
density-specific and not suitable for generic scalar
fields, where the basins have different shapes11

and geometrical properties. In the case of light
molecules, Popelier has successfully applied a col-
lection of strategies, including a specialized octree
algorithm,34 to the calculation of the basin proper-
ties of L(rrr).

In this work, we have preferred to adopt the old
and simple but robust bisection technique. Several
reasons have lead us to use it: (a) the algorithm is
general enough to deal with any basin shape, pro-
vided there are no multiple crossings of the ray and
the IAS, and even that can be taken into account;

7



(b) it is reasonably efficient if the gradient paths
are traced sensibly (see below); and (c) it allows
arbitrary precision of integration by increasing the
number of rays, with an error given by the cuba-
ture employed and the precision of the IAS. Bisec-
tion depends on the efficiency of the gradient path
tracing, and its performance is independent of the
scalar field, so the three above mentioned tasks of
the QCT study reduce to two core routines: tracing
gradient paths and finding the whole set of critical
points.

5.1 Source of the L(rrr) function
First, let us examine the technical details of the
analysis of L(rrr) in solids. The L(rrr) field is a
quantum-mechanical observable and, as such, its
features and the insights gained from its analysis
are independent of the method used in its determi-
nation. In practice, however, both theory and ex-
periments have shortcomings and the L(rrr) field is
obtained only as an approximation, and is subject
to the limitations of the determination method.

Our approach to L(rrr) in this article is based
on the full-potential (linearized) augmented plane-
waves method (FPLAPW)63,64 as implemented in
WIEN2K.45,46 In the FPLAPW method, the real
space is partitioned into regions, roughly corre-
sponding to the core and valence zones of the
solid. These regions are: the muffin tins, non-
colliding spheres centered around each atom, and
the interstitial space, that fills the rest of the crys-
tal. The basis functions (APW or LAPW) and the
density are split, behaving differently in each re-
gion. In particular, the density is expressed as:

ρ(rrr) =

{
∑LM ρLM(r)Y M

L (r̂) rrr ∈ Sα ,

∑KKK ρKKKeiKKK·rrr rrr ∈ I.
(14)

In the muffin tin of the α nucleus (Sα ), with radius
Rmt, the density is expressed as a spherical har-
monics (Y M

L ) expansion referred to its correspond-
ing center (the position of the nucleus), while in
the interstitial region (I), ρ is written as a plane-
wave expansion, where KKK is a reciprocal lattice
vector. The Laplacian of the density has a simi-

lar form:

∇
2
ρ(rrr) =

{
∑LM fLM(r)Y M

L (r̂) rrr ∈ Sα ,

−∑KKK K2ρKKKeiKKK·rrr rrr ∈ I,
(15)

with

fLM(r) = ρ
′′
LM +

2
r

ρ
′
LM−

L(L+1)
r2 ρLM, (16)

where primes represent differentiation in the radial
coordinate. In both expressions, the expansion is
carried not to the infinite set of local spherical har-
monics and plane waves, but it is included only up
to certain cut-off values Lmax and Kmax. This trun-
cation creates discontinuous gaps on the muffin tin
surface that need to be dealt with by the topologi-
cal algorithms. The absence of continuity in ρ(rrr)
and L(rrr) is thus a basic, inescapable feature of the
FPLAPW densities.

How does the lack of continuity at the muffin tin
surface affect the results of the analysis? We have
found that the discontinuity is invisible to both
the CP localization method and to the gradient
path tracer, provided there are no spurious critical
points on the muffin tin surface. This applies for
both the density and its Laplacian. The spurious
CPs trap gradient path integrations in an anoma-
lous way and, being the consequence of a discon-
tinuous gap, their number do not fulfill the Morse
sum criterion. Tuning of the calculation parame-
ters seems to be the only way around the problem,
being most sensitive to the variation of RmtKmax
and Rmt. A very large value of Lmax could, in prin-
ciple, be effective but it is not possible to go be-
yond a hard-coded 10 value without a severe re-
programming of many parts of the WIEN2K 45,46

code.
There is a further consequence of the disconti-

nuity that must be taken into account. The discon-
tinuity introduces a surface term in the integral of
L(rrr) over the unit cell. Using Gauss theorem, it
can be expressed as a flux of the density gradient
across the muffin surfaces:∫

cell
L(rrr)drrr =−∑

α

∮
Sα

(∇∇∇ρα −∇∇∇ρi) ·dSSS, (17)

where α runs over the atoms in the cell, ρi and
ρα are the density function forms in the intersti-
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tial and the α muffin (eq. 14) respectively. This
result has two important consequences: the G and
K forms of the kinetic energy are not equivalent,
the one entering the total energy expression being
G ;65,66 and the integral of L(rrr) within the topolog-
ical (∇∇∇ρ) basins is not zero. Note that, although
the sum in equation 17 can be easily computed
to correct the integral of L over the cell, it is not
possible to do the same to the atomic expectation
values of L, except in the cases where no muffin
crosses the interatomic surface.

In order to test our algorithms, we have selected
a set of systems, containing an assortment of bond-
ing characters and structures. These are listed in
Table 3, along with their main calculation con-
ditions. The number of k-points in the full first
Brillouin zone (1BZ) was chosen so that the en-
ergy converged to the precision of the code in all
the crystals but the metallic (Li, Mg, Na, Pb and
Sn). The FPLAPW calculations have been done
using the Perdew-Burke-Ernzerhof67 GGA func-
tional. We have used the RUNWIEN text inter-
face68 to WIEN2K to carry out the calculations
and a modified version of CRITIC 69 to perform the
QTAIM analysis.

All the crystals in the Table 3 have been exam-
ined for the existence of spurious CPs by means
of a direct and simple test: a number of nθ × nφ

points are uniformly distributed in spheres of radii
Rmt− ε and Rmt + ε around each atom, with ε =
10−3 bohr. Consequently, one of the spheres is in-
side the muffin tin and the other is in the interstitial
region. Every point in the inner sphere has a coun-
terpart in the other one, at a distance 2ε . The radial
component of the gradient of the scalar field, fr,
is then computed at each pair of points. Spurious
CPs exist whenever a pair of points differ in the
sign of their fr. The calculation conditions were
then modified for each crystal until some combi-
nation produced a density and Laplacian free from
discontinuities on all tested directions. This ex-
tense exploration of calculation parameters has re-
vealed that, in these systems, the occurrence of
spurious CPs does not depend on the number of
k-points, but it is affected heavily by the values
of RmtKmax and Rmt. In most cases, the electron
density was correct under a wide range of calcula-
tion conditions and it was the Laplacian the func-
tion posing real difficulties to the QTAIM analysis.

The process of finding good parameters for III-V
elements was specially painstaking, as no pattern
for the occurrence of trouble was apparent.

5.2 Navigation in the L(rrr) surface
Now, we describe the computational details of the
analysis of L(rrr). The first step is the computa-
tion of the shell structure of the scalar field around
each atom. On bonding, the inner shells of L(rrr)
are largely unaffected, while the valence shells are
distorted to accommodate the environment. The
position of the radial maxima and minima are de-
termined by bracketing and golden section search
in a number of rays emerging from the nucleus
and uniformly distributed. The resulting shells are
classified into: (a) valence shells, distorted by the
chemical environment and possibly not fulfilling
the shell Euler sum and (b) core shells, resembling
the atomic shells and fully closed. The innermost
core shells do not convey any chemical informa-
tion and are the most difficult to treat from the
point of view of the algorithms. Therefore, for the
heavier elements, we define an effective nucleus,
that is composed of the real nucleus and a number
of shells up to, and including, a X− shell, where
X = K,L, .... The structure within this effective
nucleus is ignored by the algorithms, except that
their actual contribution to the Morse sum is ac-
counted for. The election of a shell that is a radial
minimum as the frontier makes the effective nu-
cleus a basin of L(rrr), easy to integrate as a sphere.

The localization of the critical points of L(rrr) is
based on the Newton-Raphson (NR) method with
two modifications to take into account the shell
structure of L(rrr). Firstly, the same seeding scheme
as in the electron density is used.42,69 Namely, the
irreducible wedge of the WS cell (IWS) is built
by applying the local symmetry of the origin to
the full WS cell. The IWS is split into disjoint
tetrahedra and each of them undergoes a barycen-
tric subdivision process to determine the starting
points for the NR exploration. This method al-
lows the rapid localization of the symmetry-forced
CPs of L(rrr). This scheme is inherently suited for
solids, and far superior in efficiency to its molecu-
lar counterparts based on the search between pairs,
triplets and quartets of atoms. In this particular
scalar field, this strategy allows the localization of
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Table 3: Test cases for the evaluation of the algorithms related to the analysis of L(rrr). All the geome-
tries correspond to the experimental structures,70,71 with the exception of the diamond phase of Pb, that
was optimized using FPLAPW and a Perdew-Burke-Erzenhof exchange-correlation functional, to a cell
parameter of a = 13.339 bohr.

Crystal Phase RmtKmax k-points (1BZ) Rmt,1 Rmt,2
AlN Blende 9.0 1000 1.77 1.30
AlN Wurzite 9.0 1000 1.77 1.30
AlP Blende 9.0 4000 1.50 2.10
BN Blende 10.0 1000 1.45 1.20
BP Blende 10.0 2000 1.59 2.00
C Graphite 9.0 60000 1.20
C Diamond 9.0 60000 1.30
GaN Blende 9.0 1000 1.70 1.40
GaN Wurzite 9.0 1000 1.70 1.40
GaP Blende 11.0 1000 2.00 2.00
Ge Diamond 11.0 8000 2.21
Li BCC 9.0 60000 2.20
Mg HCP 9.0 60000 2.90
NaCl Rock salt 9.0 60000 2.30 2.30
Na BCC 9.0 60000 2.20
Pb Diamond 10.0 60000 2.30
Pb FCC 10.0 60000 2.30
Si Diamond 11.0 8000 2.21
Sn Diamond 10.0 8000 2.30
Sn Tetragonal 10.0 14000 2.60
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all the valence CPs, but requires high subdivision
levels to locate the shell CPs. Therefore, we have
added a new set of seed points, placed at the spher-
ical shells of each atom, so as to locate the in-shell
CPs.

The second necessary modification to NR con-
sists of switching to spherical coordinates near the
nuclei, at distances lower than the largest core
shell. When the NR sequence of points falls into
one of the inner shells, the transformation to spher-
ical coordinates effectively decouples the radial
from the in-shell (angular) coordinates. The Hes-
sian matrix is thus approximately blocked. Special
care must be taken regarding the numerical errors
in the computation of the elements of the gradient
( fi, i = r,θ ,φ ) and the Hessian ( fi j, i, j = r,θ ,φ ).
The radial components ( fr and frr) are much larger
than the ones involving the angular coordinates, so
that the transformation of derivatives from carte-
sian (xk’s) to spherical (si’s) coordinates:

∂

∂ si
= ∑

k

∂

∂xk

∂xk

∂ si
, (18)

∂ 2

∂ si∂ s j
= ∑

k

∂

∂xk

∂ 2xk

∂ si∂ s j

+∑
kl

∂ 2

∂xk∂xl

(
∂xl

∂ si

)(
∂xk

∂ s j

)
, (19)

is subject to cancellation errors. In FPLAPW den-
sities, a workaround to this problem is calculating
the non-radial terms of the gradient and Hessian
in the muffin tin by using an expression of L(rrr)
where the spherical term L= 0,M = 0 has not been
summed. This eliminates the dominant spherical
contribution to the value of L(rrr), and prevents the
cancellation errors in the transformation to spheri-
cal coordinates.

Additionally, a modified stop criterion for NR is
necessary in the shells. Usually, a CP is located
whenever |∇∇∇ f (rrr)| < ε where ε is customarily set
to 1× 10−12 a.u.. However, it is too difficult to
find a radial component of the gradient below that
threshold, because of the rapidly oscillatory char-
acter of L(rrr) in the core region. Therefore, when in
core shells, the norm of the gradient is calculated
using only the angular coordinates.

The topologies of the test cases have been deter-
mined with the modified NR method. All the CPs

of L(rrr) have been located in less than two min-
utes on a typical desktop PC (see Table 4). The
topologies fulfill the global and shell Morse con-
ditions. If smaller effective nuclei are considered,
the success of the modified NR algorithm in the in-
nermost shells varies with the atom involved. For
example, all the CPs of Ge are located, even if the
effective nucleus is shrunk to only one shell, but
this is not possible for chlorine (both in NaCl and
in Cl2), for which the K−, L+ and L− shells do
not fulfill the local Morse sum using the default
parameters of our modified NR. Popelier32 and
Gatti72 have published finding the full topology of
L(rrr) by using the eigenvector-following method,73

which we have also implemented using a trans-
formation to spherical coordinates in core shells,
as described above. By comparing to our modi-
fied NR method, we have found that eigenvector-
following does not improve on the results of our
method in terms of efficiency or success in locat-
ing CPs of L(rrr), so we have opted for the simpler
NR approach.

5.3 Integration on the L(rrr) basins
The other fundamental task in the analysis of L(rrr)
is the integration of gradient paths (GP). The basin
integration method that we have chosen is bisec-
tion so the purpose of tracing of gradient trajec-
tories boils down to two tasks: (a) locating the
terminal points of the paths originating at a given
gradient source and (b) depicting the behavior of
the gradient vector field. In both of them, the pri-
mary concern is not the extreme accuracy of the
paths but the computational efficiency, for GP trac-
ing is the bottleneck of the integration of atomic
properties. Consequently, we have chosen a sim-
ple explicit Euler method and included some mod-
ifications, similar to those introduced in the NR
method, to provide for the special shell structure
of L(rrr).

As in NR, the integration of the GPs near the
nuclei is done in spherical coordinates. For suf-
ficiently inner shells, the adaptive step shrinks to
the point of making the navigation impracticable,
even with high order one-step methods. To avoid
this problem, we have eliminated the radial co-
ordinate from the GP tracing algorithm, provided
several conditions are met: (a) the trajectory is
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Table 4: Summary of the analysis of L(rrr) in the tests cases. The full topology of L(rrr) is shown in n|b|r|c
format. Each of these fields is of the form x(y) where x and y are the number of CPs in the asymmetric and
conventional unit cells respectively. All the topologies fulfill the global and shell Morse sum conditions.
The cpu times correspond to a typical desktop PC. The computational cost increases in lower symmetry
systems (e.g. wurtzite) because more NR search seeds are used.69

Crystal Phase L(rrr) topology ttop(s)
AlN Blende 4(52)|6(152)|6(144)|5(44) 32.0
AlN Wurzite 7(26)|13(76)|14(74)|8(24) 97.1
AlP Blende 5(56)|8(192)|8(192)|5(56) 31.4
BN Blende 3(48)|6(128)|7(128)|6(48) 15.6
BP Blende 6(92)|8(216)|8(184)|6(60) 19.7
C Graphite 4(20)|10(70)|10(70)|5(20) 29.5
C Diamond 2(64)|4(224)|5(208)|3(48) 9.7
GaN Blende 4(52)|6(152)|6(144)|5(44) 25.3
GaN Wurtzite 7(26)|14(78)|13(72)|6(20) 90.7
GaP Blende 5(56)|7(168)|7(168)|5(56) 16.0
Ge Diamond 2(40)|3(176)|4(192)|3(56) 10.6
Li BCC 2(28)|4(120)|4(114)|3(22) 3.6
Mg HCP 4(14)|8(56)|7(58)|3(16) 2.5
NaCl Rock salt 4(64)|6(200)|5(200)|3(64) 5.6
Na BCC 2(14)|6(78)|4(112)|1(48) 6.4
Pb Diamond 2(40)|3(96)|3(96)|2(40) 15.4
Pb FCC 2(28)|3(96)|3(112)|3(44) 4.0
Si Diamond 4(168)|6(352)|6(256)|3(72) 11.6
Sn Diamond 2(40)|3(176)|4(192)|3(56) 15.8
Sn Tetragonal 2(20)|6(80)|7(104)|4(44) 19.8
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traversing one of the known shells, (b) the shell
has the correct curvature ( frr > 0 if the trajectory
goes downwards, frr < 0 if upwards), (c) the step
size is smaller than 10−3 bohr, and (d) the absolute
value of the radial curvature ( frr) is greater than a
certain value (in the L(rrr) scalar field, this value
is 1 a.u.). For safety, the radial coordinate is op-
timized whenever the Newton-like step | fr/ frr| is
greater than 10−3 bohr. For core shells, this is sel-
dom the case, as they remain approximately spher-
ical on bonding. The radial coordinates are consid-
ered again whenever one of the above conditions,
except (c), is not met, thereby taking into account
the possibility of partial shells of L(rrr).

If only the ending critical points of the GPs are
needed, we have found that the use of β -spheres
(the atomic trust spheres74) accelerates the assign-
ment of the terminal atom by 4–6 times. The β -
spheres are centered around each atom, with their
radii being initially set to 75% of the distance of
the atom to its closest bond critical point. The
election of this radii follows from the ready avail-
ability of the complete list of CPs. When a GP
enters a β -sphere, the terminal atom is automat-
ically assigned to the owner of the sphere. This
method prevents the expensive tracing of the gra-
dient path near the nucleus, where the step size
shrinks to prevent the gradient path from bounc-
ing around the critical point. The case where one
of the IAS retraces into one of the β -spheres is
rare but possible, and a clear indication of this sit-
uation is the basin limit being assigned incorrectly
to the surface of a β -sphere. Should this happen,
the β -sphere radius is decreased by a factor and
the basin limit is recalculated. We have checked
that, in all the systems we examined, the value of
the integrated atomic properties is not affected by
the use of β -spheres.

6 Topological analysis of group
IV allotropes

As a first application of the newly developed topo-
logical tools we are going to analyze the diamond
phase of the group IV elements: from C to Pb. We
will also examine, as a term of comparison, some
allotropes that compete in stability with the dia-
mond phase or are even the most stable phase un-

der normal pressure and temperature: the graphite
phase of C, the white or β−Sn, and the fcc or α-
Pb.

6.1 Electronic structure calculations
The electronic structure of all the crystals has been
obtained from FPLAPW calculations using the
WIEN2K 45,46 code with the new RUNWIEN text in-
terface.68 All calculations have been done using
the Perdew-Burke-Ernzerhof67 exchange and cor-
relation functional. Care has been taken to con-
verge the calculations with respect to all relevant
internal parameters, in particular the muffin tin ra-
dius (RMT), the number of planewaves used as ba-
sis set (controlled by RKMAX), and the grid used
to integrate the first Brillouin zone (controlled by
KPTS). Table 5 shows the value of these essential
parameters used in our calculations. It is important
to notice that our requirements are somewhat dif-
ferent from those of a typical WIEN2K calculation.
In most cases the FPLAPW codes are run using a
muffin tin zone as large as possible to diminish the
computational effort. In our case we have to play
carefully with the parameters to avoid, as much as
possible, the discontinuity of the electron density
and its derivatives at the muffin boundaries.

Table 5: WIEN2K calculation parameters used for
the topological analysis.

Crystal KPTS RKMAX RMT
C 60000 9.0 1.30
C (graphite) 60000 9.0 1.20
Si 8000 11.0 2.21
Ge 5000 11.0 2.10
Sn 8000 10.0 2.30
Sn (white) 14000 10.0 2.60
Pb 60000 10.0 2.70
Pb (fcc) 60000 10.0 2.30

We have determined the equilibrium properties
of the crystals, as a check of the calculations, and
the most relevant results are collected on Table 6.
In general, the equilibrium cell lengths are ob-
tained within 1–2% of the experimental values,
and the bulk moduli within 3% for the light ele-
ments and 10% for Sn and Pb. We have not in-
cluded the graphite equilibrium geometry as it is
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well known that typical GGA functionals are de-
fective in their representation of intermolecular in-
teractions and the graphene sheets are too loosely
bound.

Table 6: Calculated (first row) and experimental
(second row) equilibrium properties.

Crystal a (Å) c (Å) B (GPa)
C 3.5827 444.3

3.568 444.0
Si 5.4797 91.2

5.4307 99.2
Ge 5.5934 75.1

5.6574 77
Sn 6.6563 49.1

6.49 53
Pb 7.0589 28.7
Sn (white) 5.9213 3.2280 63.7

5.8197 3.1749 57.9
Pb (fcc) 5.0550 36.0

4.9502 43.2

C and Si are predicted to be semiconductors in
the diamond phase, with an indirect band gap of
4.13 eV and 0.58 eV, respectively. These band
gaps are significantly smaller than the experimen-
tal values of 5.5 and 1.1 eV, following the well
known trend of DFT GGA calculations. Ge and Sn
in the diamond phase, and the graphite phase of C
have a null band gap in our calculations, as it can
be observed in Figure 2, but the Fermi level occurs
in the limit of two bands, so the electronic den-
sity of states (DOS) is essentially zero at the Fermi
level. White Sn and the fcc and diamond phases of
Pb are completely different, with the Fermi level
occurring in a energy region with a large DOS that
confers a clear metallic behavior to these crystals.

The wave functions that we will analyze in the
next sections correspond to the calculations per-
formed at the experimental geometry. We have
also examined the topological properties of the
wave functions obtained from DFT LCAO calcu-
lations with the CRYSTAL code,75,76 but, given that
the results are essentially equivalent, they will not
be discussed again.

6.2 Topology of the electron density
Table 7 and Table 8 describe the position and
main properties of the critical points of the elec-
tron density for the diamond and non-diamond
crystal structures of C–Pb. One of the most rel-
evant observations is that all the diamond struc-
tures show the same topology, with a single type
for each of n, b, r, and c critical points (NCP,
BCP, RCP, and CCP, respectively), all of them
occupying symmetry-defined positions within the
unit cell. Once revealed this uniformity, the prop-
erties of the CP’s clearly show important differ-
ences for each element. The electron density at
the nuclear position shows a markedly correla-
tion with the atomic number: ρn = 0.11378Z3.7415,
with a linear correlation coefficient of corr(ρ,Z) =
99.4%, similar to the law cited by Bader1 for
non-relativistic calculations. The properties at the
BCP are particularly significant. The electron
density at the BCP decreases as the cubic cell
length increases: ρb = 6.412656a−2.57024 (corr =
−99.5%). The BCP Laplacian shows a well de-
fined trend in the C–Pb sequence, increasing from
the negative −0.551 44 e/bohr5 of C, typical of
a highly covalent bond, to the small but positive
+0.030 82 e/bohr5 of Pb, closed-shell like and
similar to the values found in many metals. This
negative/positive ∇2ρb difference separates C, Si
and Ge on the covalent side, and Sn and Pb on the
closed-shell group.

The non-diamond allotropes offer some fine as-
pects for contrast and comparison to the above
crystals. Graphite, for instance, shows two dif-
ferent types of C-C BCP’s: a strong bond that
keeps together the graphene sheets, and a much
weaker BCP gluing together the sheets. The first
BCP has a larger electron density and a more neg-
ative Laplacian than the diamond structure, close,
in fact, to the values shown by the C-C BCP in
benzene. The β -Sn and α-Pb structures show a
markedly difference in topology with respect to
their diamond crystals: the BCP is weaker (smaller
ρb and more positive ∇2ρb) and the electron den-
sity is globally flatter77 ( f = ρc/ρb is 21.4% in
β -Sn and 37.7% in α-Pb versus 2.7% and 2.5% in
their respective diamond structures).

All together, we can see that the crystalline
structure has a strong influence on the electron
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Figure 2: Band structure and density of states (DOS) for the diamond phases of C–Pb, graphite C, white
Sn, and fcc Pb. The WIEN2K GGA calculations correspond to the experimental geometry, when available,
and to the predicted equilibrium geometry otherwise.
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Table 7: Topology of the electron density for the diamond structures. Wyckoff positions correspond to the
Fd3̄m group. All values in atomic units.

CP Wyck. Position ρ(rrrc) ∇2ρ(rrrc)

C 8a (1/8,1/8,1/8) 1.282 17×102

b 16c (0,0,0) 0.240 05 −0.551 44
r 16d (1/2,1/2,1/2) 0.215 07 +0.105 22
c 8b (3/8,3/8,3/8) 0.013 23 +0.075 95
Si 8a (1/8,1/8,1/8) 1.893 60×103

b 16c (0,0,0) 0.083 69 −0.123 44
r 16d (1/2,1/2,1/2) 0.005 59 +0.013 53
c 8b (3/8,3/8,3/8) 0.003 24 +0.008 97
Ge 8a (1/8,1/8,1/8) 3.125 82×104

b 16c (0,0,0) 0.075 02 −0.035 56
r 16d (1/2,1/2,1/2) 0.004 36 +0.010 21
c 8b (3/8,3/8,3/8) 0.002 57 +0.006 52
Sn 8a (1/8,1/8,1/8) 1.891 22×105

b 16c (0,0,0) 0.054 27 +0.002 70
r 16d (1/2,1/2,1/2) 0.002 60 +0.005 10
c 8b (3/8,3/8,3/8) 0.001 48 +0.003 15
Pb 8a (1/8,1/8,1/8) 2.965 23×106

b 16c (0,0,0) 0.038 85 +0.030 82
r 16d (1/2,1/2,1/2) 0.001 66 +0.002 58
c 8b (3/8,3/8,3/8) 0.000 99 +0.001 62

Table 8: Topology of the electron density for the non-diamond allotropes. The Wyckoff positions corre-
spond to the space groups P63/mmc (graphite), I41/amd (white Sn), and Fm3̄m (α-Pb).

CP Wyck. Position ρ(rrrc) ∇2ρ(rrrc) x
C1 2b (0,0,1/4) 1.283 33×102

C2 2c (1/3,2/3,1/4) 1.283 25×102

b1 2a (0,0,0) 0.005 88 +0.017 67
b2 6h (x,2x,1/4) 0.301 99 −0.887 98 0.83316
r1 6g (1/2,1/2,0) 0.004 10 +0.014 00
r2 2c (2/3,1/3,3/4) 0.022 71 +0.134 76
c 4f (1/3,2/3,x) 0.003 40 +0.013 17 0.47142
Sn 4a (0,0,0) 1.891 28×105

b1 4b (0,0,1/2) 0.028 38 +0.017 23
b2 8c (0,1/4,1/8) 0.037 51 +0.012 22
r1 8d (0,1/4,5/8) 0.013 03 +0.017 33
r2 16f (x,1/4,1/8) 0.008 05 +0.013 97 0.29807
c 16g (x,x,0) 0.008 03 +0.013 91 0.28456
Pb 4a (0,0,0) 2.964 93×106

b 24d (1/4,1/4,0) 0.017 88 +0.022 22
r 32f (x,x,x) 0.012 87 +0.015 18 0.31837
c1 8c (1/4,1/4,1/4) 0.012 08 +0.013 61
c2 4b (1/2,1/2,1/2) 0.006 74 +0.009 04
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density topology, and that a clear group trend can
be observed only after we examine the different
elements on a common crystal phase.

6.3 Topology of the L(rrr) field
One of the most remarkable aspects of the topol-
ogy of the L(rrr) field is that the total number of crit-
ical points increases heavily with the atomic num-
ber of the atoms involved but the overall complex-
ity, once the core CP’s are discounted, does not
follow this trend but rather it appears to depend on
the nature of the bonding and, in general, it tends
to diminish in going from the light to the heavy
elements. This effect is evident in the topologies
presented in Table 9 and Table 10. The L(rrr) are
grouped into core subshells when their distance to
the closest atomic nucleus is quite close to the min-
ima and maxima of the radial L(r) function. The
core character of those CP’s can be confirmed by
the fact that the attraction basins of all core NCP’s
form a small sphere, as it will be discussed later.

The L(rrr) critical points (L-CP’s) can be classi-
fied into core, valence and interstitial. A core sub-
shell is formed by the breaking of one minimum
or maximum of the atomic radial L(r) function, all
CP’s in the subshell keep an almost identical dis-
tance to the originating nucleus, and the number of
CP’s fulfill the Euler relationship (eq. 11). In addi-
tion, the attraction basins of the set of core NCP’s
form a small sphere around the nucleus, as it will
be discussed later.

Valence L-CP’s are originated from the outer-
most, or perhaps the two outermost extrema of the
atomic L(r) radial function. The distance to the
nucleus, however, is not so closely maintained as
in the core case, and some CP’s can be displaced
towards the interatomic space, or even merged
with the CP’s from other nuclei, so the Euler re-
lationship is not necessarily fulfilled by a valence
subshell.

Interstitial L-CP’s, finally, cannot be assigned
to a single atom, but they lie well into the inter-
atomic space. Interstitial NCP’s, typically have a
negative L value, at difference from core and va-
lence NCP’s. In other words, interstitial NCP’s
do not show an increased concentration of electron
density relative to their differential neighborhood.
This counterintuitive property turns to be one of

the most prominent features of interstitial regions.
——————————————————-

6.3.1 Graphs for the L(rrr) topology

The complexity of the L(rrr) topology is difficult
to examine without an appropriate map. Aray
et al.78–82 and Popelier et al.6,11,31,33 have taken
great advantage of special chemical graphs for that
purpose. Drawing a significant L-graph is not triv-
ial nor automatic, but it involves some creative
decisions about what information is relevant and
what should be left out to avoid cluttering.

Figure 3 and Figure 4 shows our interpretation
of the relevant L(rrr) topology for the diamond and
non-diamond structures. Some of the most rele-
vant features correspond to the organization of the
valence L-BCP’s and the bond paths that connect
them to the NCP’s. Many of those L-bond paths
are quite curved lines. In particular, bond paths
that connect NCP’s in the same subshell, and thus
equidistant to the generating nucleus, are almost
circular arcs. This sharply contrast with the ρ-
bond paths, that are typically straight lines and do
only curve away from the internuclear axis in such
cases as the occurrence of steric stress or electron
deficient bonding.1

Another striking difference between the L and
ρ graphs is that while the five elements, C to Pb,
shows identical ρ-graph in the diamond phase,
their L-graph can be grouped into three quite dif-
ferent models. C and Si form the first model, that
closely resembles a prototypical Lewis image for
covalent bonding: each atom is surrounded by a
curved tetrahedron frame with NCP’s at the ver-
tices. Each NCP is then connected through a L-
bond path to the NCP of a nearest neighbor (NN)
atom. As a consequence, the middle point between
two NN atoms (the 16c Wyckoff position in Ta-
ble 7 and Table 9) is simultaneously a ρ-BCP and
a L-BCP. Furthermore, this double BCP occurs in
a region of significant local charge accumulation,
thus completing the characterization of the C and
Si L-graph as a prototype of covalently bonded
system.

This Wyckoff 16c position has the key to char-
acterize the three types of L-graphs in the diamond
structure. The second type is shown by Ge and Sn,
where the 16c point continues to be a ρ-BCP but it
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Table 9: Topology of the L(rrr) field for the diamond structures. The left part of the table resumes the type
(t) and number (n) of CP’s included in the core and those in the whole crystal unit cell. Last is the identity
of the last core subshell. The right part of the table is a detailed description of the valence CP’s, classified
into: valence, bond (a kind of valence CP placed in the line between two atoms bonded by the ρ(rrr) field),
and interstitial (I, not recognizable as belonging to any single atom or pair of atoms). In the case of Pb,
the algorithm fails to detect a RCP of multiplicity 96 in the L− core shell, but the complete topology can
be recovered from the invariance laws that rule shell and cell CP’s.

core: t, n total: t, n type/Wyckoff rrrcp ρ(rrrcp) ∇2ρ(rrrcp) x coord. z coord.
C n 1 8 3 48 n I 8b (3/8, 3/8, 3/8) 0.013 24 +0.075 95

b 1 32 5 208 n val 32e (x,x,x) 0.277 42 −0.895 63 0.042 41
r 1 48 4 224 b bond 16c (0,0,0) 0.240 05 −0.551 44
c 1 32 2 64 b I 96g (x,x,z) 0.067 70 +0.172 08 0.078 94 0.840 82
last K− b I 16d (1/2, 1/2, 1/2) 0.021 51 +0.105 22

b val 48f (1/8, 1/8,x) 0.213 00 −0.197 58 0.269 23
r val 32e (x,x,x) 0.178 75 +0.030 93 0.210 77
r I 96h (x, x̄,0) 0.067 27 +0.173 36 0.137 86
r I 48f (1/8, 1/8,x) 0.080 81 +0.184 42 0.374 41
c I 32e (x,x,x) 0.078 47 +0.206 77 0.254 24

Si n 2 40 4 80 n I 8b (3/8, 3/8, 3/8) 0.003 24 +0.008 97
b 3 112 7 288 n val 32e (x,x,x) 0.086 56 −0.138 22 0.024 69
r 3 128 7 400 b bond 16c (0,0,0) 0.083 69 −0.123 44
c 2 64 4 192 b I 96g (x,x,z) 0.020 75 +0.027 13 0.189 91 0.822 96
last L− b I 16d (1/2, 1/2, 1/2) 0.055 89 +0.013 54

b val 48f (1/8, 1/8,x) 0.051 04 −0.009 31 0.301 72
r val 32e (x,x,x) 0.036 73 +0.017 55 0.231 47
r I 96h (x, x̄,0) 0.021 51 +0.027 49 0.364 84
r I 48f (1/8, 1/8,x) 0.022 02 +0.027 93 0.386 10
r I 96g (x,x,z) 0.021 23 +0.027 99 0.058 03 0.360 72
c I 96g (x,x,z) 0.021 46 +0.027 99 0.322 40 0.628 91
c I 32e (x,x,x) 0.021 52 +0.028 79 0.257 43

Ge n 3 72 5 96 n I 8b (3/8, 3/8, 3/8) 0.002 57 +0.006 52
b 5 192 7 304 n bond 16c (0,0,0) 0.075 02 −0.035 56
r 5 208 6 304 b I 96g (x,x,z) 0.025 51 +0.029 23 0.065 84 0.868 20
c 3 96 3 96 b I 16d (1/2, 1/2, 1/2) 0.004 36 +0.010 21
last M− r I 96h (x, x̄,0) 0.025 55 +0.029 27 0.286 01

Sn n 4 104 6 128 n I 8b (3/8, 3/8, 3/8) 0.001 48 +0.003 15
b 8 304 10 416 n bond 16c (0,0,0) 0.054 27 +0.002 70
r 7 336 8 432 b I 96g (x,x,z) 0.022 12 +0.018 93 0.057 79 0.884 87
c 4 144 4 144 b I 16d (1/2, 1/2, 1/2) 0.025 98 +0.005 01
last N− r I 96h (x, x̄,0) 0.022 10 +0.018 99 0.400 13

Pb n 5 136 6 144 n I 8b (3/8, 3/8, 3/8) 0.000 99 +0.001 62
b 10 384 11 400 b I 16d (1/2, 1/2, 1/2) 0.001 66 +0.002 58
r 8 416 9 432 r bond 16c (0,0,0) 0.038 85 +0.030 82
c 5 176 5 176
last O−
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Table 10: Topology of the L(rrr) field for the non-diamond allotropes. See description in Table 9.

core: t, n total: t, n type/Wyckoff rrrcp ρ(rrrcp) ∇2ρ(rrrcp) x coord. z coord.
graphite n 2 4 5 20 n I 4f (1/3, 2/3,z) 0.003 48 +0.012 72 0.482 23

b 2 12 10 70 n val 6h (x,2x, 1/4) 0.323 37 −1.132 02 0.881 25
r 2 12 10 70 n val 6h (x,2x, 1/4) 0.322 96 −1.126 87 0.785 52
c 2 8 4 20 b I 6h (x,2x, 1/4) 0.301 99 −0.887 98 0.833 29
last K− b I 4f (1/3, 2/3,z) 0.068 83 +0.113 31 0.628 53

b I 12k (x,2x,z) 0.071 78 +0.117 92 0.175 76 0.860 34
b val 12k (x,2x,z) 0.179 63 −0.096 52 0.393 24 0.680 88
b I 2c (1/3, 2/3, 1/4) 0.022 71 +0.134 76
b val 12k (x,2x,z) 0.180 45 −0.091 11 0.064 66 0.182 65
b I 4e (0,0,z) 0.068 60 +0.114 73 0.128 69
b I 6g (1/2,0,0) 0.004 10 +0.014 00
r val 6h (x,2x, 1/4) 0.210 27 −0.015 96 0.544 96
r I 12j (x,y, 1/4) 0.079 57 +0.235 37 0.560 98 0.667 06
r val 6h (x,2x, 1/4) 0.210 88 −0.020 57 0.121 58
r val 4f (1/3, 2/3,z) 0.166 11 −0.084 69 0.670 25
r val 4e (0,0,z) 0.164 37 −0.076 57 0.170 07
r I 12k (x,2x,z) 0.074 52 +0.118 05 0.206 44 0.640 14
r I 12k (x,2x,z) 0.074 67 +0.118 47 0.118 31 0.860 22
r I 2a (0,0,0) 0.005 88 +0.017 67
c I 6h (x,2x, 1/4) 0.092 22 +0.252 29 0.475 98
c I 6h (x,2x, 1/4) 0.092 10 +0.251 88 0.190 86

β -Sn n 4 52 7 80 n I 16g (x,x,0) 0.008 03 +0.013 91 0.285 99
b 11 144 15 208 n bond 8c (0, 1/4, 1/8) 0.037 51 +0.012 23
r 10 144 13 184 n bond 4b (0,0, 1/2) 0.028 38 +0.017 23
c 4 56 4 56 b I 16h (0,y,z) 0.014 33 +0.017 03 0.199 36 0.518 18
last N− b I 16h (0,y,z) 0.021 95 +0.018 52 0.098 24 0.497 51

b I 16f (x, 1/4, 1/8) 0.008 05 +0.013 97 0.296 43
b I 16h (0,y,z) 0.022 07 +0.018 92 0.212 11 0.362 60
r I 8d (0, 1/4, 5/8) 0.013 03 +0.017 34
r I 16f (x, 1/4, 1/8) 0.019 99 +0.020 12 0.138 57
r I 16g (x,x,0) 0.020 38 +0.018 88 0.422 20

α-Pb n 5 132 7 144 n I 4b (1/2, 1/2, 1/2) 0.006 74 +0.009 04
b 9 336 10 368 n I 8c (1/4, 1/4, 1/4) 0.012 08 +0.013 61
r 9 336 10 360 b I 32f (x,x,x) 0.012 72 +0.015 29 0.336 65
c 5 136 5 136 r I 24d (0, 1/4, 1/4) 0.017 88 +0.022 22 0.833 29
last O−
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Figure 3: L-graphs for the diamond structures (top: C and Si; middle: Ge and Sn; bottom: Pb). The
very large black spheres contain the nuclei and most of the core structure. Far smaller, L-CP’s can be
discriminated by the size and color of the spheres that represent them: NCP’s are large and dark (red),
BCP’s smaller and dark (green), RCP’s small and light (light blue), and CCP’s large and light (yellow). L
bond paths are sometimes represented by thin golden lines. The Pb-diamond graph shows the L ring path,
created by the RCP lying in the middle of two nearest neighbors Pb atoms, as a discontinuous line of very
thin spheres (pink).
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Figure 4: L-graphs for the non-diamond structures (upper row: graphite; lower row: white Sn, and fcc
Pb). The zenithal view of graphite shows the crystal unit cell using thick cylinders. The Pb-fcc graph
shows the equivalent RCP surface and the graph lines that form this surface.
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is now a L-NCP, connected through L bond paths
to six other equivalent 16c positions. At the same
time, the outermost valence shell of each atom is
now made of a tetrahedron of CCP’s rather than
NCP’s.

Pb diamond phase shows the third kind of L-
graph. The Pb core is quite large and the only
non-core NCP’s have moved into the interstitial re-
gion. The 16c position is now a ring CP and cor-
responds to a corner in which four interstitial NCP
basins intersect. The valence electron density has
been maximally delocalized and transferred to the
interstitial region.

The non-diamond phases behave like their dia-
mond equivalents. C shows again in the graphite
phase a covalent pattern, with two bonded NCP’s
along the internuclear axis, the ρ-BCP and the L-
BCP occurring at the same position, within a re-
gion of increased electron density concentration.
Of course, rather than a tetrahedral pattern, NCP’s
form now a flat triangle surrounding each C nu-
cleus. In Mulliken terms, the sp3 arrangement has
been converted into a sp2 one. White Sn and fcc Pb
also show the same pattern as their corresponding
diamond phases.

As described in section 4, the shape of the va-
lence electron density is affected by the relativistic
treatment of the crystal. To measure the sensitivity
of L-graphs to this effect, we have recalculated Sn
and Pb in both diamond and experimental phases
without the scalar relativistic correction. The L
topology of Sn is unaffected in the diamond phase,
while the changes in the β -Sn phase are minor: a
L-BCP bonding two interstitial maxima and a L-
RCP are displaced to a lower symmetry position,
without any significant consequence on the pre-
ceding discussion. The effect is more pronounced
on both phases of Pb. In the fcc phase, a number of
new CP appear, the most important of them being a
new interstitial maximum at the (0,1/4,1/4) (24d)
position. In the diamond phase, the 16c maximum
reappears, resulting in Pb having a graph equiva-
lent to Ge and Sn. The greater effects of the rela-
tivistic corrrection in heavier elements couples in
this case with the well-known lability of the topol-
ogy of ρ (and hence L) in metals:83 the flatness
of the interstitial part induces that even small den-
sity changes rearrange the valence topology com-
pletely.

Far less important is the effect of changing the
exchange-correlation functional. The topologies
of all the crystals examined are unaffected when
calculated at the LDA level.

6.3.2 Local properties of the L-NCP basins

The number, arrangement, and properties of
NCP’s is the central issue of the L(rrr) topology.
The L-graphs analyzed previously fail to commu-
nicate the shape, size, and relative importance of
the NCP basins. All L-NCP’s in the diamond
phase are placed along the cube diagonal, i.e.
along the (x,x,x) crystal direction. We have taken
advantage of this coincidence to produce the il-
lustration in Figure 5. The plots show clearly the
difference between the three types of L-graphs de-
scribed in the previous subsection (6.3.1). The
twin L-NCP’s between two NN atoms observed
on C and Si, get converted into a single NCP at
the NN midpoint on Ge and Sn, and finally the
internuclear axis is simply the common edge of
four interstitial NCP’s on Pb.

Figure 5 is also a qualitative demonstration of
the growing importance of the interstitial NCP as
the atomic number increases. The core region in-
creases too and, more interesting, the core sub-
shells form concentric spheres that surround the
atomic nucleus. That a given shell keeps the spher-
ical shape typical of a free atom can be seen as the
ultimate evidence that it belongs in the core. Con-
trarily, a significant deformation from sphericity
is a direct proof of the participation of the corre-
sponding electrons in the valence chemical bond-
ing.

Going beyond the qualitative requires integrat-
ing properties within the L basins. In this regard it
must be clear that there is a fundamental difference
between the space partition induced by ρ(rrr) and
the partition due to L(rrr). All kind of quantum me-
chanical observables can be integrated within the
basins determined by the zero flux of ρ(rrr) condi-
tion (eq. 3). This is not true for the basins deter-
mined by the topology of L(rrr) and, for instance,
it is not correct to determine the contribution of
a L-NCP basin to the kinetic energy. There is no
problem, however, with the integration of strictly
local properties like the volume, charge, electro-
static field, or multipolar moments.
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Figure 5: From left to right: L-NCP basins of C, Si, Ge, Sn, and Pb in the diamond phase. All plots are
made in the same scale, and use the same viewpoint, so the apparent relative size corresponds to the actual
size of the basins. The two small spheres appearing in all the plots correspond to the atomic core regions;
between them we can find the single or double "bond" L-NCP, absent in the case of Pb; the uppermost
basin is, in all cases, the interstitial L-NCP.

Table 11 presents the volume and electronic pop-
ulations of the L-NCP basins. We have classified
the basins into five different groups according to
its properties: nucleus, core, valence, bond, and in-
terstitial. The nucleus can include some L-NCP so
internal that we have preferred not to distinguish
them from the atomic position. The "valence"
L-NCP’s correspond to the twin maxima situated
along a NN internuclear axis. They are charac-
terized by a positive value of L(rrr) and belong,
accordingly, to the region called VSCC (Valence
Shell Charge Concentration) by Bader.1 The sin-
gle "bond" L-NCP, situated midway between NN
atoms, can have a positive (Ge) or negative (Sn)
L(rrr) value. The last type of L-NCP’s, finally, are
disconnected from the L-graphs of nuclei, belong
to the interstitial region and have, in all cases, a
negative L(rrr) value.

This classification of L-NCP basins is quite rel-
evant for the analysis of the local properties. The
nuclear and core L-NCP’s occupy a very small vol-
ume but contain a significant number of the elec-
trons. Valence (C and Si) and bond (Ge and Sn)
NCP’s occupy a part of the cell and contain some
2–3 electrons for each NN pair of atoms. The in-
terstitial NCP’s, finally, represent most of the cell
volume and contain an electron population that
grows from 0.7 e in C and Si to a shocking 12 e
per NCP in Pb.

The important electron population of interstitial
regions is not particular to crystals, but it was

already observed by Malcolm and Popelier34 in
molecules like NH3 and H2O. This fact, which
Malcolm and Popelier elude to interpret, is one of
the problematic features if we try to explain the L
populations in terms of a simple Lewis model.

In a classical Lewis description, each C in the
diamond structure uses four electrons to form the
same number of covalent bonds to its NN, remain-
ing two nonbonding electrons on each C core. Our
topological analysis of L(rrr) shows a small excess
of 0.08 e involved per C on each covalent bond, but
a donation of 0.71 e per C towards the interstitial
space.

The comparison with the Lewis model is even
worse in Si. Now each Si atom uses 1.5 e to form
each of its four covalent Si-Si bonds. The donation
to the interstitial space is quite similar to the dia-
mond case, however, 0.66 e per Si atom. Ge and
Sn also accumulate an extra number of electrons
on the NN internuclear space: 3.16 e (Ge) and
2.33 e (Sn) rather than the two electrons expected
for a classical Lewis single covalent bond. The
donation to the interstitial space is significantly in-
creased: 3.93 e in Ge and 5.26 e in Sn. Finally, Pb
lacks the features that could be described as cova-
lent bonds. Contrarily, all the electrons removed
from the nuclear and core regions now belong to
the interstitial zone: a record 11.96 e per Pb atom.

It is tempting to explain this behavior of group
IV elements as successive steps in the conver-
sion from covalent to metallic bonding. The
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small population of the interstitial zones, similar
to the values previously reported for some covalent
molecules,34,34 could be regarded as the minimal
background. Some more cases, and more diverse
crystals and molecules, should be analyzed before
this conjecture can be accepted, however.

The changes induced by the scalar relativis-
tic treatment of valence electrons are apparent
by comparing the Sn and Pb results to its non-
relativistic counterparts. It was mentioned in sec-
tion 4 that the L-graphs are not compatible, so the
comparison is not direct. However, several obser-
vations can be made about these differences: (1)
The shell radii are contracted – the nucleus plus
the inner shells loses approximately 0.1 electrons
in Sn, and almost 1 electron in Pb; (2) The bond
basins shrink and lose electrons, the charge smear-
ing out to the interstitial basins.

The effect of changing the exchange-correlation
potential is, again, not as significant. The cores are
almost unaffected, with a difference in core popu-
lation that peaks at 0.03 electrons in Pb, with an
analogous behavior of the outer core basins. Re-
garding the valence and interstitial basins, LDA
assigns less charge to the valence and bond basins,
with slightly larger and more populated interstitial
basins than GGA. The differences between both
functionals increase on advancing to the heav-
ier elements of the group. Exchange-correlation
and relativistic effects are certainly interesting and,
hopefully, will be addressed in a future work, once
the utility of the present methodology is estab-
lished.

The comparison between the two different
phases of C, Sn and Pb opens an important win-
dow for analyzing the transferability of L-NCP
basin properties among distinct structures and
compounds. Diamond and graphite are very dis-
similar in their bonding pattern and cell volume
per atom (38.3 vs. 59.0 bohr3, respectively), but
the nuclear L-NCP is almost identical in both
crystals (Q: 0.9875 vs. 0.9882 e, V : 0.0512
vs. 0.0512 bohr3), the single bond L-NCP has
a similar number of electrons per C atom (4.31 vs.
4.04 e) even though this region occupies a larger
volume in the more dense diamond phase than
in the less dense graphite (20.6 vs. 17.7 bohr3)
and, finally, the larger differences occur between
the corresponding interstitial L-NCP (Q: 0.71 vs.

0.96 e, V : 17.6 vs. 41.3 bohr3).
This scheme is repeated on Sn and Pb. The trans-

ferability of properties between different struc-
tures is almost exact for the nuclear and core L-
NCP basins. Bond and valence L-NCP show sig-
nificant regularities, although we need a larger set
of compounds to extract the organizing principles.
The interstitial L-NCP basins, the most unexpected
topological feature of the Laplacian, is also the
most variable element, and much study is required
before its role can be clarified.

6.3.3 Local compressibilities of the L-NCP
basins

The tetrahedral arrangement of covalently bonded
C atoms has been usually called to explain the ex-
treme hardness of diamond. The same arrange-
ment, however, does not explain the large hardness
differences between the isostructural group IV el-
ements. We can gain some insight into the phe-
nomenon by determining the contribution of the
several L-NCP basins to the elastic properties. We
will follow the method proposed by Martín Pendás
et al. on the analysis of ρ(rrr)84,85 and recently ap-
plied by Recio et al. to the ELF function.86

The static compressibility (κ) and bulk modulus
(B) of a crystal are defined as

κ =
1
B
=− 1

V

(
∂V
∂ p

)
. (20)

Using in these definitions the partition of the
cell volume into L-NCP basin contributions, V =

∑ΩVΩ, we can write84

κ = ∑
Ω

fΩκΩ and
1
B
= ∑

Ω

fΩ

1
BΩ

, (21)

where fΩ =VΩ/V is the fraction of the cell volume
occupied by the Ω basin, and

κΩ =
1

BΩ

=− 1
VΩ

(
∂VΩ

∂ p

)
. (22)

The local compressibility of a basin is thus de-
fined in the same way that the compressibility of
the whole cell, and the global value of the crystal
is the result of averaging the local compressibili-
ties in such a way that the contribution of a basin
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is proportional to the volume fraction of the basin
in the crystal cell.

To determine the local compressibilities of the
group IV crystals we have followed the static
model, in which the vibrational entropy is ne-
glected by assuming a temperature of zero Kelvin,
and the zero point vibrational energy is also ne-
glected. Under these conditions the pressure is
given by

p =−
(

∂A
∂V

)
T
≈−

(
∂E
∂V

)
, (23)

where V and E are the cell volume and energy,
result from the quantum mechanical calculation,
and A = E +Avib(T,V ) ≈ E would have been the
Helmholz free energy.

The actual sequence of calculations goes as fol-
lows. First, some 11–15 points of the E(V )
curve are determined, with the volume bracketing
a range of ±10% around the experimental geom-
etry. Once verified that this range effectively con-
tains the equilibrium volume, the pressure is ob-
tained from eq. 23, using a polynomial or a Birch-
Murnaghan function to fit the calculated E(V )
points. Simultaneously, a topological analysis is
performed on each wave function and the volumes
of the L-NCP basins are determined. The V (p) and
VΩ(p) data are used to evaluate the crystal and the
local compressibilities, with a polynomial fitting
to the data being again instrumental in obtaining
the derivatives. The results from this analysis are
presented in Table 12.

The results in Table 12 provide an excellent con-
firmation of the classification of the L-NCP’s. Nu-
clear and core NCP’s fill a small fraction of the cell
volume and, more significantly, have a very small
compressibility, less than 1% of the value of κ for
the whole crystal. In sharp contrast, the values of
κΩ for the valence, bond, and interstitial L-NCP’s
are of the same order of magnitude than κ , smaller
in the case of valence and bond regions and larger
in the case of interstitial ones.

Restricting our analysis to the diamond phase,
the extreme hardness of C is the consequence
of the small compresibility of all the L-NCP re-
gions. C and Si show a similar contribution bal-
ance, fval = 54–55% and fI = 46–44%, but the
κΩ values are several times larger in Si than in C.

Ge and Sn show both the progressive increase in
the coefficient of the interstitial zone and the in-
crease of the κΩ values for all the zones. Finally,
the soft metal character of Pb is almost exclusively
due to the large and quite compressible interstitial
regions.

Graphite shows clearly the importance of the
crystalline structure. Compared with the diamond
phase, graphite presents an interstitial zone larger
and more compressible. The atomic number, how-
ever has a similar or larger influence, so the search
for truly hard compounds can be restricted to the
lightest elements. A topological partition of the
shear modulus could be of interest as it would
show the graphene sheets hard compared to the
larger compressibility perpendicular to the sheets.
We are working towards achieving a practical way
of partitioning the elastic constants of arbitrary
crystals.

β -Sn and α-Pb, being significatively more dense
than their diamond allotropes, show also a larger
value for the bulk modulus, discarding the exclu-
sive influence of the tetrahedral coordination on
the hardness of group IV elements. To be fair in
this conclusion we should remember that β -Sn and
α-Pb show a metallic rather than covalent behav-
ior and the hardness of single crystals is mostly
controlled by the shear and not by the bulk modu-
lus.

Diamond and non-diamond phases agree, any-
way, on the fundamental importance of the inter-
stitial regions in determining the bulk modulus and
compressibility of crystals.

7 Conclusions and perspectives
for future work

The topology of L(rrr) is far more complex than
the topology of ρ(rrr). First, L(rrr) retains the shell
structure inherited from the isolated atoms. Sec-
ond, the range of L(rrr) goes from −∞ to +∞, giv-
ing rise to maxima, for instance, with L < 0 and
others with L > 0, both having a different chem-
ical interpretation. Third, L(rrr) has more critical
points than ρ(rrr), and their number increases heav-
ily with the atomic number of the element. Fourth,
L-basins tend to be more irregular, and the source
or sink point of the basin can be separated from the
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geometrical center, thus leading to a more difficult
integration of the basin properties.

Taking advantage of the shell structure is impor-
tant in designing and adapting efficient algorithms,
like the radial navigation method presented in sec-
tion 5. It is also particularly important for sim-
plifying the analysis and presentation of the L(rrr)
topology by removing unimportant core features
in a controlled way. Basin plots (Figure 3) and
L-graphs (Figure 5) have been found to be funda-
mental instruments to understand the organization
and qualitative importance of the topological fea-
tures of L(rrr).

The electron density Laplacian provides a per-
spective that complements and is not directly
available from the electron density. This is
clearly observed in the group IV diamond phases.
Whereas all, C to Pb, elements show identical
topology for ρ(rrr), the analysis of L(rrr) evidences
deep differences between the three groups formed
by C and Si (the covalent group), Ge and Sn
(the semilocal group), and Pb (the most delocal-
ized one). This difference between the elements
is transferred to other phases, showing the domi-
nant influence of the nature of the element on L(rrr),
rather than the effect of the crystal geometry, more
akin to influence the ρ(rrr) topology.

Our topological methodology is mature enough
for application to general crystals. Further work
should now be directed to examine the ρ(rrr) and
L(rrr) topologies in a diverse set of crystal types
with an objective pointed towards solving some of
the puzzles observed on group IV crystals. In par-
ticular, the role of interstitial regions and the con-
trast between the Lewis model and the real elec-
tron population on each basin.
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