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article swarm optimization applied to solving and
ppraising the streaming-potential inverse problem
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ABSTRACT

Water flow in the subsoil generates electrical currents mea-
surable at the ground surface with the self-potential �SP�
method. These measured potentials, which result from hy-
droelectric coupling, are called streaming potentials and are
well correlated with the geometry of the water table. The par-
ticle swarm algorithm can be used to estimate the water-table
elevation from SP data measured at the ground surface. The
basic idea behind particle swarm optimization �PSO� is that
each model searches the model space according to its misfit
history and the misfit of the other models �particles� of the
swarm. PSO is a simple, robust, and versatile algorithm with
a very good convergence rate �typically before 3000 forward
runs�, and it can explore a large model space without being
time consuming. Based on samples gathered in a low-misfit
area, we have computed a fast approximation of the posterior
distribution of the water table, the electrokinetic coupling
constant, and the reference hydraulic head. Although PSO is
a stochastic search technique, our convergence results, based
on the stability of particle trajectories, specify clear criteria to
tune PSO parameters.

INTRODUCTION

Pumping tests are standards methods to estimate the physical
roperties of aquifers. For this purpose, groundwater flow is moni-
ored with in situ hydraulic-head measurements in a set of observa-
ion wells. However, areas of interest typically are sparsely sampled
y observation wells because of the high drilling costs. Consequent-
y, nonintrusive geophysical methods that can be implemented over
arge regions with dense measurements have gained interest in re-
ent years because they can provide complementary information.
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One of these methods that is particularly sensitive to groundwater
ow is the self-potential �SP� method. Indeed, the flow of groundwa-

er in a porous medium is responsible for a natural electrical field
alled the streaming potential. This effect results from an electroki-
etic phenomenon attributable to the drag of the excess charges
resent in the diffuse part of the electrical double layer near the wa-
er/mineral interface �Onsager, 1931�. The drag of excess charges by
he groundwater flow is responsible for a net source of electrical cur-
ent that polarizes the porous medium. The SP method passively
ecords this electrical field at the ground surface with nonpolarizable
lectrodes. Because the measurement is passive, the recorded sig-
als can be contributed by different natural electrical sources occur-
ing at depth.

The main sources are associated with the hydraulic pressure gra-
ient through the electrokinetic source �the source of interest in our
ase�, the electrochemical sources from ions diffused from concen-
ration gradients between two regions �Maineult et al., 2004�, redox
rocesses occurring in orebodies �Bigalke and Grabner, 1997�, con-
aminant plumes �Naudet et al., 2004�, corroded metallic casing in
oreholes, and measurement noise. To remove the influence of noise
nd static contributions, the SP survey should be conducted under at
east two different flow conditions, e.g., before and during a pump-
ng test. During the last 20 years, there has been renewed interest in
pplying this method in hydrogeology because it is directly sensitive
o groundwater flow, is economically efficient, and is easy to imple-

ent in the field.
Many publications show the potential to obtain pertinent hydrau-

ic information on subsurface flows from analyzing SP data �Bog-
slovsky and Ogilvy, 1973; Birch, 1998; Sailhac and Marquis, 2001;
evil et al., 2003; Darnet et al., 2004; Bolève, 2007; Minsley et al.,
007; Maineult et al., 2008�. These studies interpret directly the
treaming-potential anomalies in data space or invert the signals to
etermine a source model that predicts the data using the problem’s
nderlying physics �forward problem�.

July 2009; revised manuscript received 31 January 2010; published online 30
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STREAMING-POTENTIAL GOVERNING
EQUATIONS

We note here the equations governing the electrokinetic problem
n a water-saturated porous medium. In steady state and under iso-
hermal conditions, the electric flow �Je, in A /m2� is related to the
ydraulic pressure gradient ��P, in Pa� and the electric potential
radient ��V, in V� by the following coupling equation:

Je�� r�V�Cs� r� P, �1�

here � r is the rock conductivity �S/m� of the water-saturated po-
ous medium and Cs is the electrokinetic coupling coefficient �V/Pa�
f the saturated zone. This coefficient can be measured in the labora-
ory by applying fluid flow �P and measuring the induced electric
otential �V �e.g., Guichet et al., 2006�:

Cs�
�V

�P
�

��

�� f
. �2�

ere, � f and � are the conductivity and the dielectric constant of the
uid, respectively; � is the zeta potential within the double layer at

he interface between the rock and the fluid �Davis et al., 1978;
shido and Mizutani, 1981; Morgan et al., 1989�; and � is the dy-
amic viscosity of the fluid. Most of the time, values of the electroki-
etic coefficients in the saturated zone are negative �meaning that
ositive ions are carried in the flow direction�. We consider this coef-
cient to be homogeneous in the saturated zone and neglected in the
nsaturated zone. Indeed, the coupling coefficient is proportional to
he water saturation, so it should not be the same in the saturated
one and the unsaturated zone �Revil et al., 2004�. Nevertheless, in
his paper, we do not account for capillary fringes.

The fundamental equation connecting the electric streaming po-
ential V �in V� to the hydraulic pressure P is derived from the con-
ervation of the total electric flux Je defined in equation 1. In steady
tate and without direct electric current source, it is written as

� ·Je� � · �� r�V�Cs� r� P��0. �3�

This is Poisson’s equation for V, where the divergence of the hy-
raulic potential gradient is a primary electrokinetic source term.
itterman �1978� and later Fournier �1989� were the first to consider
olutions to Poisson’s equation. Revil et al. �2003� use Fournier’s
rst integral formulas to model the streaming potential caused by
quifers in tabular media. They show that in steady-state conditions,
he piezometric surface �i.e., the water table� can be assimilated

athematically to a dipole layer of charge with strength proportional
o the piezometric head, obtaining the expression for the electric po-
ential measured at an observation station Q located at the earth’s
urface:

V�Q��
C�

2�
�

��

�h�h0�
r .n

�r�3d� �
1

4�
�
�

E

�r�
.
�	

	
dV,

�4�

here n is the outward normal to the water table; h and h0 are, re-
pectively, the hydraulic heads at any point of the hydraulic head and
n a reference level; r is the vector from any source point in the hy-
raulic head to observation station Q; E���
 is the electrical
eld produced in the ground through the electrokinetic coupling; 	 is
he electrical resistivity of the rock �in ohm-m�; and C� �in mV/m� is
he electrokinetic coupling coefficient relating the hydraulic piezo-

etric head �h �m/s� to the electrical potential difference �V �in
V�. The relationship between Cs �equation 2� and C� is C��	 fgCs,
ith 	 f the mass density �in kg /m3� and g the gravity acceleration
ector �in m /s2�.

In this model, the distribution of the electric potential is the sum of
wo terms. The first term is related to the current density �primary
ource of polarization�, and the second one is related to electrical-re-
istivity contrasts in the ground �secondary source of polarization�.
o separate these contributions and focus on the electrokinetic
ource, different strategies can be performed. For example, electri-
al-resistivity tomography can be performed onsite to provide the
lectrical structure of the ground and incorporate the information
nto the inversion. To remove the other static contributions �elec-
rode noise, telluric noise, regional trend, etc.�, the SP survey must
e conducted under at least two different flow conditions, such as be-
ore and during the pumping test.

The primary source term is such that each element of the water ta-
le acts as a dipole of strength C��h�h0�. All of these dipoles con-
ribute to the streaming-potential signals recorded at Q, with
trength also depending on the distance between each dipole and Q.
n our case, the aim is to recover the depth of the water table and C�

rom the SP measurements performed at the ground surface. Thus,
he rest of the sources on the SP signal will be considered corrections
f the primary effect. In other words, the algorithm presented here
pplies to the part of the SP signal that results only from the electro-
inetic primary source, i.e., the streaming potential. We are particu-
arly focused on inverting SP anomalies associated with ground flow
rom pumping tests.

Several algorithms have been applied to invert SP data. Patella
1997� and Revil et al. �2003� use correlation integrals to locate SP
ources underground. Other theories, also based upon classical con-
olution integrals of potential field theory, invert SP data in the
avelet domain to identify location, intensity, and type of singulari-

ies of causative underground hydraulic flows �Gibert and Pessel,
001; Sailhac and Marquis, 2001�. Rizzo et al. �2004� invert the SP
ignal associated with pumping-test experiments using the theory of
reen’s functions, naming the new methodology electrography.
lso, Revil et al. �2003� use a simplex algorithm to invert Fournier’s

quation for an unconfined aquifer in a medium of constant electric
onductivity. Its main drawback is its very slow convergence. Mins-
ey �2007� and Sheffer and Oldenburg �2007� consider a heteroge-
eous electric-conductivity distribution, observed using electrical
esistivity tomography �ERT� to invert the electric Poisson equation
nd obtain a tomogram of SP source intensity. Typically, the pre-
erred method to perform these kinds of inversions is standard least
quares with Tikhonov regularization.

The hydrogeophysical community is increasingly interested in
uantifying the uncertainty of estimation. Bayesian approaches and
lobal-optimization methods are used to accomplish this task. Linde
t al. �2007� apply a Bayesian method using geostatistical tech-
iques to integrate SP and piezometric data to estimate the water ta-
le throughout a catchment. Jardani et al. �2009� propose an algo-
ithm to solve the SP inverse problem in a Bayesian framework. Ac-
ording to our knowledge, the use of global algorithms has been re-
tricted to genetic algorithms �Darnet et al., 2003�. The reason might
e that research has been focused on the underlying physical theory
nd solving the forward problem rather than on the inverse problem
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lgorithm itself. Nevertheless, both are critical to achieve good solu-
ions.

We present the application of the particle swarm optimization
PSO� algorithm to estimate the depth of the water table from SP
ata, expanding and clarifying the methodology presented in Naudet
t al. �2008�. We first detail how PSO works and present results of
ur recent research about the criteria used to tune PSO parameters to
chieve algorithm convergence. Afterward, the algorithm is tested
n synthetic and field SP data collected near a pumping well �Bog-
slovsky and Ogilvy, 1973�. Synthetic modeling shows us that the
opography of the cost function corresponds to a flat valley shape.
dditionally, we analyze the equivalences between the amplitude

nd dispersion of a Gaussian hydraulic head and the electrokinetic
oupling coefficient. We also show that PSO is very robust in the
resence of noisy data. The reason is that the inverse problem is not
olved as an optimization problem but as a sampling problem. When
pplied to field data, correlation length is a critical parameter to re-
over different families of geophysical models having different reg-
larity. Nevertheless, not all of them are compatible with borehole
ata.

GLOBAL OPTIMIZATION METHODS
AND SAMPLING

Most inverse problems can be written in discrete form as

d�F�m�, d�Rs, m�Rn, �5�

here d is the observed data, m is the vector containing the model
arameters, and F is the physical model. Given a particular observed
ata set d0, the goal of inversion is to find a set of reasonable parame-
ers m0 such that F�m0��d0. Usually this problem has no solution
r many solutions; thus, the solution of the inverse problem must be
onstructed �Parker, 1994; Tarantola, 2004; Aster et al., 2005�. The
nverse problem is then solved as an optimization problem — find-
ng m0 that minimizes the data-prediction error, expressed in a cer-
ain norm �d�F�m��p.

This optimization problem turns out to be ill posed for three rea-
ons. First, the forward model F is a simplification of reality. Second,
ata are noisy and only partially sample the domain of interest.
hird, most applications of inverse modeling do not include a priori
nowledge of physical constraints or the amount and quality of
vailable data in the inversion. These three points cause an inverse
roblem to be very different from any other kind of optimization
roblem because physics and data are involved in the cost function
d�F�m��p.

Although a variety of optimization algorithms exist in the scien-
ific literature, how to select the appropriate algorithm to solve an in-
erse problem remains an active subject of research. These methods
nvolve well-known techniques such as linear algebra, local and glo-
al optimization, Bayesian approaches, neural networks, Kalman
lters, kernel methods, and support vector machines. In addition,
nding the global minima of the error function is often complicated
y the presence of many local minima and/or the error-space topog-
aphy surrounding the global minima is very flat and oblong. Prima-
ily, the nature of error-space topography is dependent upon the for-
ard model, or physics. Additionally, data noise can increase the
resence of local minima and/or the size of the valley topography
see, e.g., Fernández Alvarez et al., 2008; Fernández Martínez and
edruelo González, 2008�.
Local-optimization methods are unable to discriminate among the
ultiple choices consistent with the end criteria and may land quite

npredictably at any point in that area. These pathologies are treated
hrough regularization techniques and the use of good prior informa-
ion and/or initial guesses.

Once the inverse problem is solved, an important issue is the mod-
l appraisal to quantify the uncertainty of the estimate. When using
ocal-optimization algorithms, the appraisal is usually done through
inearizing the inverse problem functional F. Bayesian approaches
nd Monte Carlo methods �Mosegaard and Tarantola, 1995; Scales
nd Tenorio, 2001� can solve the inverse problem in a different way,
mplicitly accomplishing the model-appraisal task. In this case, the
nverse problem is formulated such that the posterior probability dis-
ribution is sampled many times in a random walk, with a bias to-
ard increased sampling of areas of higher probability to approxi-
ate the whole posterior probability accurately �so-called impor-

ance sampling�. The drawback of such approaches is that they are
omputationally expensive and might not be feasible in case of slow
orward problems.

Posterior sampling techniques are closely related to global-opti-
ization algorithms, which can be used to provide a proxy for the

rue posterior distribution. In many practical situations, prior infor-
ation is unavailable, so global-optimization methods are a good al-

ernative for avoiding the strong dependence of the solution on noisy
ata and on the initial guess. Most of these techniques are stochastic
nd heuristic, and they try to sample the low-misfit region of model
arameters, i.e., region E of model space M containing the models
hat fit the observed data within a given tolerance.As mentioned, this
ampling procedure acquires the full sense in a Bayesian framework.
evertheless, independent of the name that practitioners use to clas-

ify the inversion procedure, the main mechanism involved is sam-
ling.

One of the peculiarities of global algorithms is that they do not try
o solve the inverse problem as an optimization problem but as a
ampling problem; thus, they do not need a prior model to stabilize
he inversion. In fact, the only prior information these algorithms
eed is to specify the search space, which can be very large if no prior
nformation is available. In a few cases, the space of solutions is so
arge that some form of regularization that constrains the solution
ampling to a range of geologically acceptable limits is necessary.

Global-optimization algorithms include well-known techniques
uch as genetic algorithms �Holland, 1992�, simulated annealing
Kirkpatrick et al., 1983�, PSO �Kennedy and Eberhart, 1995�, dif-
erential evolution �Storn and Price, 1997�, and the neighborhood al-
orithm �Sambridge, 1999a�. Some examples of the applications of
hese methods for finding and evaluating solutions to geophysical
nverse problems are provided by Stoffa and Sen �1991� and Fernán-
ez Álvarez et al. �2008� for genetic algorithms; Sen and Stoffa
1995� and Ma �2002� for simulated annealing; Shaw and Srivastava
2007�, Fernández-Martínez et al. �2008a�, Naudet et al. �2008�, and
anyi et al. �2009� for PSO; and Fernández-Martínez et al. �2009� for
ifferential evolution.

Under certain conditions, global algorithms can provide accurate
easures for model uncertainty. Mosegaard and Tarantola �1995�

sed simulated tempering to perform importance sampling of model
arameters with the Metropolis-Hastings algorithm. More recently,
ernández Álvarez et al. �2008� show numerically the ability of bi-
ary genetic algorithms to perform an acceptable sampling of the
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osterior distribution when used for exploration. The neighborhood
lgorithm can also be used to accomplish this task �Sambridge,
999b�.Although PSO has not been designed to perform importance
ampling, it provides a proxy for the posterior distribution for the
odel parameters in its exploitative form �Fernández-Martínez et

l., 2009�. Nevertheless, PSO has the main advantage of being a very
ast sampler and shows good balance between exploration and con-
ergence.

PARTICLE SWARM OPTIMIZATION

PSO is a stochastic evolutionary computation technique �Ken-
edy and Eberhart, 1995� that has been used successfully in many
ifferent engineering fields. It is inspired by the social behavior of
ndividuals �called particles� in nature, such as birds flocking and
sh schooling. Each particle samples the search space according to

ts own li�k� and its companions’g�k� searching experience.
The way the PSO algorithm is applied to solve an inverse problem

s very intuitive. A prismatic space of admissible geophysical mod-
ls M is defined:

� j �xji�uj, 1� j�n, 1� i�Nsize, �6�

here � j and uj are the lower and upper limits for the jth coordinate
f each geophysical model �called i�, n is the number of parameters
n the inverse problem, and Nsize is the swarm size. In PSO terminolo-
y, each geophysical model is called a particle, represented by a vec-
or whose length is the number of degrees of freedom of the inverse
roblem. Each particle has its own position on the search space and
elocity. The velocities are the parameter perturbations needed for
hese positions to find the solutions of the inverse problem.

The algorithm updates at each iteration the positions xi�k� and ve-
ocities vi�k� of each model in the swarm. The velocity of each parti-
le i at each iteration k is a function of three major components. The
rst is the inertia term, which consists of the old velocity vector of

he particle weighted by a real constant � called inertia. The second
s the social learning term, which is the difference between the global
est position found thus far in the entire swarm g�k� and the parti-
le’s current position. The third component is the cognitive learning
erm, which is the difference between the particle’s best position
ound so far, li�k�, and the particle’s current position.

These three components are represented numerically as

vi�k�1���vi�k��
1�g�k��xi�k���
2�li�k��xi�k��,

xi�k�1��xi�k��vi�k�1�, �7�

here PSO parameters �, ag, and a� are inertia and the local and glo-
al acceleration constants, respectively; 
1�r1ag and 
2�r2a� are
he stochastic global and local accelerations; and r1 and r2 are vectors
f random numbers uniformly distributed in �0, 1� to weight the glo-
al and local acceleration constants ag and a� of any coordinate parti-
le in the swarm. The total mean acceleration 
̄ � �ag�a�� /2,
long with the inertia constant �, plays an important role in the PSO
arameter selection to achieve convergence.

To summarize, the stepwise process for the PSO algorithm is as
ollows:

� Give as prior information a prismatic search space.
� Uniformly distribute an initial swarm of Nsize particles in the

search space and set their initial velocities to zero �usually�.
� Evaluate the misfit of the initial population, solving N for-
size
ward problems and determining the global best and previous
best of each particle.

� Draw the random numbers r1 and r2, and update the velocities
and positions of each particle of the swarm using formula 7.

� Iterate to point 3 until the maximum number of iterations is fin-
ished or some stop criteria are fulfilled.

SO physical model and generalized PSO

The PSO algorithm can be interpreted physically as a stochastic
amped mass-spring system �Fernández-Martínez et al., 2008b�.
SO corresponds to a particular discretization of the differential
quation:

x��t�� �1���x��t�� �
1�
2�x�t��
1g�t��
2l�t� .

�8�

quation 8 describes the continuous movement of each particle in
he swarm. PSO corresponds to a centered discretization in accelera-
ion,

x��t��
x�t��t��2x�t��x�t��t�

�t2 , �9�

nd a regressive �backward� schema in velocity,

x��t��
x�t��x�t��t�

�t
. �10�

his result allows us to propose the generalized PSO �GPSO� algo-
ithm �Fernández Martínez and García Gonzalo, 2008�, which is a
SO generalization for any time step �t:

v�t��t�� �1� �1����t�v�t��
1�t�g�t��x�t��

�
2�t�l�t��x�t��,

x�t��t��x�t���tv�t��t� . �11�

Using �t�1, equation 11 reduces to the PSO algorithm �equation
�. As a result of the random effect introduced by r1 and r2, the parti-
le trajectories must be considered as stochastic processes whose
rst- �mean� and second-order moments �variance and temporal co-
ariance� are important in understanding algorithm convergence.
The first-order stability region is the part of the ��, ag, a�� space

here the mean particle trajectories are stable. For the GPSO case,
he first-order stability region is

S1����, a�, ag�:1�
2

�t
� 1,0
̄ 
h

�
2�� �1��t�4

�t2 � . �12�

or any �t, this region generalizes the first-order stability region
ound for the PSO case �Clerc and Kennedy, 2002; Trelea, 2003�.

Choosing the PSO parameters ��, ag, a�� such that point ��, 
̄�
ies inside the first-order stability region causes the particle trajecto-
ies to converge toward the oscillation center o �k�:
i
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oi�k��
agg�k��a�li�k�

ag�a�

. �13�

The second-order stability region is the part of S1 where the sec-
nd-order moments E�xi

2�k��, E�xi
2�k�1��, and E�xi�k�xi�k�1��

emain stable. Fernández Martínez and García Gonzalo �2008� show
hat the second-order stability zone in the GPSO case can be written
s

2� ���, al, ag�:�1� 1, 0
̄ 
h�,

h�
12

�t

�1����2� �� �1��t�
4�4�� �1��t� ��2�2���2� �� �1��t�

,

�14�

here � �ag / 
̄ is the ratio between the global and total mean accel-
ration, and it varies in the �0, 2� interval. Low values of � with the
ame value of 
̄ imply that the local acceleration is bigger than the
lobal one and, thus, the algorithm is more explorative. The second-
rder stability region is embedded within the region of first-order
tability. The hyperbola of second-order stability 
̄ �
h marks the
imit where the variance of the trajectories conceived as stochastic
rocesses becomes unbounded. Thus, the region close to this line is
n area of high exploration capabilities �Fernández-Martínez et al.,
008b�.

Knowledge of both stability regions is very important to establish
ufficient conditions for the PSO convergence. If the inverse prob-
em is well posed, i.e., the global minimum is unique, a sufficient
ondition for convergence is that the oscillation center approach
ith iterations the global minimum and attract the particles toward

ts position. This is sure to happen when the PSO
arameters are chosen within the region of sec-
nd-order stability. Nevertheless, some ��, a�,
g� points are better than others to perform this
ask. In the case of multimodal functions, entrap-

ent in local minima is also possible. For this rea-
on, it is very important to have algorithms with a
ood balance between exploitation and explora-
ion.

ow to tune PSO parameters

As a result of numerical experiments with
enchmark functions and theoretical studies to
nderstand the PSO convergence, three popular
arameter sets have been proposed: Carlisle and
ozier’s point �2001�, ��, ag, a�� ��0.729,
.948, 2.041�; Clerc and Kennedy’s point �2002�,
�, ag, a��� �0.729, 1.494, 1.494�; and Trelea’s
oint �2003�, ��, ag, a�� ��0.6, 1.7, 1.7�.

Although by using these parameters the scien-
ific community could solve a variety of engineer-
ng problems �Poli, 2008�, tuning the PSO param-
ters has been a weak point in the application.
ernández Martínez and García Gonzalo �2008,
009� show that no optimal PSO parameters
which are highly dependent on the kind of cost
unction� exist. Instead, good PSO parameters are

Figure 1. Med
row� for the �a
minima� func
order stability
isks show the
ound for a broad range of cost functions in regions where PSO has a
igher probability to reach good solutions. Figure 1 shows contour
lots of the percentage of times the GPSO algorithm provides a solu-
ion located in the neighborhood of the global minimum after 100 it-
rations and the median errors �in this case, the position of the global
inimum is known� expressed on a logarithmic scale for the Rosen-

rock �flat valley topography� and Griewank �many local minima�
unctions. This numerical analysis is performed for a ��, 
̄� grid
hat includes the first-order stability region. The most successful
�, 
̄� points found in the literature are also shown. The points are
lose to the intersection of the upper limit of second order and the
edian of the stability triangle, 
̄ � �2� �1����t� /�t2. It is pos-

ible to show that along this line, the temporal correlation between
�t� and x�t��t� goes to zero very fast �typically before 10 itera-
ions�. In conclusion, good ��, 
̄� parameter sets are located on a re-
ion of maximum exploration inside the second-order stability re-
ion.

xploration versus exploitation

PSO can be viewed not as a unique algorithm but as a set of algo-
ithms that can be used for exploitation �looking for a unique global
inimum� and/or exploration �sampling the low-misfit region in the
odel space�. The design of the PSO version �explorative or exploit-

tive� depends on two major factors. The first factor is the ��, ag, a��
oint chosen. As explained, the greatest explorative behavior is
chieved when ��, ag, a�� is close to or even below the second-order
tability upper limit. Also, for the same total mean acceleration 
̄

�ag�a�� /2, choosing ag  a� makes the algorithm more explor-
tive.

The second factor is the �t parameter, which is a numerical con-
triction factor to achieve stability. It is possible to show analytically
hat the first- and second-order stability regions increase their size

or �logarithmic scale, top row� and percentage of successes �bottom
senbrock �flat valley topography� and �c, d� Griewank �many local
bserve the triangle of first-order stability, the hyperbola of second-
e median line of temporal uncorrelation between trajectories.Aster-
point; circles show the Clerc and Kennedy point.
ian err
, b� Ro

tions. O
, and th
Trelea
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nd tend toward ��  1,
̄ � 0� when �t goes to zero. In this case,
he exploration is increased around the global best solution. Con-
ersely, when �t is greater than one, the first- and second-order sta-
ility regions shrink in size and the exploration is increased in the
hole search space. This feature might help avoid entrapment in lo-

al minima and has inspired us to create the lime and sand algorithm
hat alternates values of �t greater and less than one, depending on
he iterations �Fernández Martínez and García Gonzalo, 2008�.

Based on these results, García Gonzalo and Fernández Martínez
2009� have designed a PSO algorithm where each particle in the
warm has different inertia �damping� and acceleration �rigidity�
onstants. This algorithm, the PSO cloud, exhibits good balance be-
ween exploration and exploitation. The results obtained for hard
enchmark functions in several dimensions using the PSO cloud are
etter than the reference misfits for PSO in the literature. This design
voids two main drawbacks of the PSO algorithm: tuning the PSO
arameters and clamping the velocities. The criteria for choosing the
loud points are not very rigid because points close to the second-or-
er convergence border achieve good results �low-misfit areas
hown in Figure 1�.

ow to input prior information

It is well established in optimization theory that different norms
nd penalizations defined in the cost function reveal different kinds
f solutions with different regularity. For instance, the �1-norm al-
ows searching for sparse and blocky solutions. Conversely, soft so-
utions can be found using the �2-norm, introducing as penalization
ome regularity requirements in the model.

In the PSO case, soft solutions are found in a very simple way by
moothing the global best, providing to the algorithm an attractor
ith a prescribed smoothness. Reference models can be input very

asily into the PSO algorithm through at least three different ways.
ne way is as a particle that is introduced occasionally into the

warm. If the reference model is compatible with the data, the refer-
nce model might influence the oscillation center. A second way is
hrough the misfit functional, including a regularization term:

c�m��w1�d�F�m��p�w2�m�mref�p�, �15�

here w1 and w2 are real weights. Finally, the model can be intro-
uced as an attractor 
3mref into the force term. There are two vari-
nts in this case: it can be considered as a third attractor term,

v�t��t�� �1� �1����t�v�t��
1�t�g�t��x�t��

�
2�t�l�t��x�t���
3�t�mref�x�t��,

x�t��t��x�t���tv�t��t�, �16�

r 
3�t�mref�x�t�� might replace the global best attractor
1�t�g�t��x�t�� at the end of the algorithm execution. In all three

ases, the reference model mref has to be a vector with the same di-
ensions as the swarm particles.
In the study case shown in the next section, no prior model was

sed, and the Euclidean was the norm for misfit calculations.

eculiarities of PSO design in the streaming-potential
ase

Although PSO is a general-purpose algorithm, its successful ap-
lication to real problems consists partly in understanding the phys-
cs involved in the forward problem and adapting the PSO algorithm
o the inverse-problem’s peculiarities.

In the SP inverse problem, the parameters optimized by the PSO
lgorithm are the piezometric heads hi, the electrokinetic coupling
oefficient C�, and the reference hydraulic head h0, which usually is
nknown. We assume that the resistivity structure is homogeneous
nd that the electrokinetic coupling coefficient is homogeneous in
he saturated zone. Thus, the number of parameters is nnode�2,
here nnode is the number of discretization nodes used to interpolate

he hydraulic head. This allows the problem not to be underdeter-
ined.
PSO constrains the search domain to optimize the parameters. For

he upper and lower limits of C�, it is recommended to use a very
road interval at the exploratory stages, such as 	�20, 20
 mV /m.
ased on the SPanomaly, it is also convenient to establish the sign of

he C� constant to improve search efficiency.
To establish the lower and upper limits for the piezometric levels,

e can establish a prismatic search space or we can use the semi-
mpirical relationship proposed by Revil et al. �2003�:

V�P�� �h�h0�C�. �17�

he upper and lower limits hmax and hmin, respectively, are therefore
efined as

hmin�P��h0�
V�P�
Cmax�

,

hmax�P��h0�
V�P�
Cmin�

. �18�

ote that formula 18 cannot be used when the variability associated
ith C� is very tight. This might happen when we want the value of

he electrokinetic parameter to be prescribed.
The PSO version used for SPoptimization has some important pe-

uliarities. First, when the number of parameters increases �from a
ner discretization of the water table�, better results are achieved by
iving greater weight to the global best than to the local best �the glo-
al leader must be the main attractor� to succeed in locating the glo-
al minimum area. Also, the best parameter sets move toward a re-
ion of higher inertias and lower total mean accelerations where the
emporal covariance between trajectories is positive �see Figure 1�.
nother peculiarity is that the SP inverse problem is ill posed, i.e.,
ery different geophysical models exhibiting very different spatial
orrelation lengths can account for the observed data within the
ame error tolerance. The hydraulic-head parameters are not spatial-
y independent; to improve the exploration/convergence task, the
lobal best is smoothed to allow for gradual changes in the water ta-
le. As we show in the field data case, an estimate of the global best
moothness length can be deduced from the autocorrelation function
f the SP data.

APPLICATION OF PSO TO SYNTHETIC
AND REAL DATA

The aim of this section is to test PSO performance on a synthetic
ata case for different levels of Gaussian noise and to analyze the to-
ography of the cost function to identify which kinds of pathologies
e might expect in the optimization process.
We first simulate the SP data associated with a pumping test in

teady-state conditions. Pumping in a well causes a depression cone
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f the water table. In response to steady-state pumping, a positive SP
nomaly is usually observed as a result of electrokinetic coupling.
or our synthetic cases, the water table is modeled by a Gaussian
unction:

h�x; A, � , xw��Ae��x � xw�2/2� 2
. �19�

n this case, A is the drawdown amplitude, � is the dispersion around
he central value A, and xw is where the pumping test is performed,
xed to 200 m. Here, the coupling coefficient has been set up to C�

�5 mV /m, and the reference hydraulic head h0 used to generate
he synthetic data is 45 m.

We use synthetic models to analyze the equivalences of the model
arameters �A, � , C�� by varying two of the three parameters at the
ame time and studying the algorithm performance as a function of
he noise level. For this case, the true model was �A, � , C���

20, 40,�5�. Figure 2a shows the topography of the error function in
he vicinity of �A, � �� �20, 40� when C� is set to the true value. To
roduce this contour plot, we calculate the forward problem for a lat-
ice of different points �Ak, � k� in the vicinity of the corresponding
rue model. The relative error between the prediction of true and per-
urbed models is calculated with the �2-norm. The error function has
valley shape around the global minimum area. Figure 2a also in-

ludes the 3% and 10% error isolines. The correlation between these
arameters is negative.

igure 2. Error function landscape for a Gaussian water table model
�20, 40�. �b� Drawdown amplitude/electrokinetic coupling coef

lectrokinetic coupling coefficient cross section near �� , C��� �40
ear �A, h0�� �20, 45�. �e� Drawdown dispersion/reference hydra
ead/electrokinetic coupling coefficient cross section near �h , C ��
0 �
Figure 2b shows the topography of the error function in the vicini-
y of �A, C��� �20, �5�, and Figure 2c shows the topography of the
rror function near �� , C��� �40, �5�. The correlation between
hese parameters is positive. Considering the size of the 10% error
egion shown in the three cases, the most important trade-off appears
o be between the drawdown amplitude and the coupling constant.
hese features might explain the existing trade-offs in real cases.
lso, with noisy real data, the valley increases in size and the pres-

nce of localized sinkholes might provoke entrapment in local mini-
a. Figure 2d-f explores the equivalences between h0, A, � , and C�.
he most important trade-off is with the amplitude of the water table.
he two relations with � and C� seem to be resolved quite well.
Figure 3 shows the results predicted for a synthetic case corre-

ponding to �A, � , C��� �20, 40, �5� when the data are free of
oise. The number of discretization points �pixels� for the hydraulic
ead has been set equal to the number of data points minus one. The
warm size and the number of iterations are set to 100. The search
pace is C�� 	�20, 1
, h� 	0.1, 30
. Figure 3 also shows the true
odel used to generate the synthetic SP data and the inverted model

aving the lower misfit. The SP observed anomaly is almost perfect-
y matched. The PSO methodology allows sampling-promising re-
ions of the model space, thus making a posteriori statistics. Figure
a also shows the median of the models found in the 10% error re-
ion and the lower and upper bounds, using the interquartile range
alculated from the posterior statistics. In this case, the true model is
loser to the lower bound. In other simulations that we have per-
ormed, the true model is within the lower and upper water-table

awdown amplitude/drawdown dispersion cross section near �A, � �
cross section near �A, C��� �20, �5�. �c� Drawdown dispersion/
. �d� Drawdown amplitude/reference hydraulic-head cross section
ad cross section near �� , h0�� �40, 45�. �f� Reference hydraulic-

5�.
. �a� Dr
ficient
, �5�

ulic-he
�45, �
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ounds. This depends on the value of C� found on the search, as
hown on the study of the equivalences.

Figure 3c and d shows the histogram of the coupling coefficient C�

nd the error curve for PSO as a function of the iterations. For this
ynthetic example, the mode is around �4.08 mV /m instead of the
rue value, C���5.00 mV /m. The value is consistent with the fact
hat the amplitude of the best model has been underestimated. PSO
eaches the region of low-misfit errors before 20 iterations �Figure
d�. These inversions have been carried using ��, ag, a��� �0.8,
.0, 1.8�, which gives slightly more weight to the global best than to
he local best. When using a cloud PSO algorithm, the convergence
ate is slower �the low-misfit region is reached at 50–100 iterations�
ecause of its bigger exploratory capabilities, but the posterior anal-
sis provides similar results. Finally, it is possible to observe that in
ome inversions the global-best solution does not perfectly repro-
uce the true model, even in the noise-free synthetic case. This can
esult because �1� the parameter space has not been thoroughly
earched and more algorithm iterations are needed or �2� trade-offs
xist between the model parameters. In this case, the inverted C� val-
e found is higher than the true one, causing a higher amplitude of
he hydraulic head �see Figure 2b�.

The algorithm also has been tested with measurements affected by
oise. Figure 4 shows the results with 20% white Gaussian noise.
he algorithm is quite robust in the presence of Gaussian noise with

igure 3. Synthetic SP case. �a� Observed and pre-
icted SP anomalies; no noise. �b� Synthetic water
able and predicted models. �c� Histogram of in-
erted C� values. �d� Error curve.
n estimate of C���3.95 mV /m. The insensitivity to the Gaussian
oise might be from the smoothing effect introduced in the PSO al-
orithm through the global best.All other features commented about
or the noise-free case remain valid.

SP measurements always show the presence of outliers, mainly
rom measurement errors and/or heterogeneities in the ground not
ccounted for in the geophysical forward model. Before any inver-
ion, it is common to filter the measurements first. With the PSO al-
orithm, this procedure could be avoided when Gaussian noise is
resent. Nevertheless, the presence of systematic and non-Gaussian
oise will presumably affect the algorithm’s performance; the mini-
um value of the misfit that can be reached will be higher because

hese errors cannot be taken into account by the mathematical
odel.
Finally, we illustrate the use of the algorithm with field data taken

rom work by Bogoslovsky and Ogilvy �1973�, corresponding to SP
ata collected near a pumping well. Although the details of this ex-
eriment are not available, it is a useful data set to model because it
as been studied by other workers �Revil et al., 2003; Darnet et al.,
004; Minsley et al., 2007�.

Figure 5 shows the SP profile collected over the pumping well and
he water-table elevations measured in several monitoring wells �in-
erse triangles�. The broad, positive SP anomaly is fairly symmetric
round the well position and, as expected with field data, some noise
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orrupts the signal. There is good agreement between the prediction
f the PSO algorithm and the water table measured in the monitoring
ells except at two points, which are very close to the lower and up-
er bounds deduced from the posterior analysis of the region on
odels of 20% error. The algorithm can find the region of low misfits

n 30 iterations. The coupling coefficient is estimated as C��

13.9 mV /m �Figure 5b�. This value is very close to the one ob-
ained by Revil et al. �2003� with the simplex algorithm �C��

14.2 mV /m�. Darnet et al. �2003� obtain C���0.8 mV /m, ap-
lying a genetic algorithm and taking into account the high electrical
onductivity of the pumping well’s metal casing. Minsley et al.
2007� do not include any effects from the well casings but use a re-
istivity model that approximates the unsaturated drawdown to in-
ert the SP data in terms of source locations. They did not estimate
he coupling coefficient.

To obtain the model presented in Figure 5, we use a correlation
ength of 10 points, as suggested by the autocorrelation function of
he SP data �Figure 6a�. The autocorrelation function provides the
patial correlation of the SPsignal considered as a 1D stochastic pro-
ess. We hypothesize that the hydraulic head and the SPsignal have a
imilar correlation length. This provides an initial guess for the hy-
raulic-head correlation distance that must be checked through the
nversion of the SPdata. In fact, the SPintegral equation 4 indicates a
moothing effect of the SP anomaly with respect to the hydraulic
ead.

The search space and the smoothing parameter are very important
n the search algorithm because the inverse solution is not unique. If
he search space is poorly designed, the algorithm will not find a low-

isfit region according to the numerical priors. The search space in
his case was C�� 	�20,�0.5
, and the search space for the hydrau-
ic head was designed using 15. The h0 parameter was fixed to
9.5 m, based on prior knowledge. If this value is not well known, h0

an be considered an additional parameter on the search. Figure 6b
hows the histogram of h0 when the search space is h0 � 	15, 25
.
he histogram mode is around 20 m.
As mentioned, the SPO inverse problem is very ill posed, i.e., it is

ossible to find different solutions because of the existing trade-offs
etween the different parameters. For instance, Figure 7 shows an-
ther solution found with 10 points of correlation length where C� is
stimated as �8.74 mV /m. The final misfit for this model is a bit
igher than in the previous case �around 16%�. The fact that the wa-
er table model has a higher value of C� seems to coincide with the
ougher appearance found for the hydraulic head when compared to
he solution in Figure 5. The correlation length is of paramount im-
ortance because it gives the water table the desired spatial correla-
ion. It is also possible to find rougher solutions �with four or six
oints of correlation length� that adequately fit the SP anomaly, but

Figure 4. Synthetic SP case with a 20% Gaussian
noise. �a� Observed and predicted SP anomalies.
�b� Synthetic water table and predicted models. �c�
Histogram of inverted C� values. �d� Error curve.
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he obtained water table does not fit the borehole data very well.
hen the correlation length decreases below six points, most of the

ydraulic-head models found by the PSO algorithm are close to the
oundaries of the search space, producing results that are not geo-
ogically plausible. For all of these simulations, the coupling param-
ter also had its mode in the interval 	�9,�8
 mV /m. Taking into
ccount these experimental results, the correlation length and the
oupling coefficient influence the smooth character of the water ta-
le: roughest solutions seem to be associated with higher coupling
onstants. Also, both parameters are quite well resolved because no
orrelation length nor coupling constant provides acceptable geo-
ogic solutions. Although there is no clear physical explanation for
his fact, it must be considered as another numerical illustration of
he ill-posed character of the SP inverse problem.

Finally, Figure 8 compares PSO with the results obtained by other
orkers using the simplex method with 1000 iterations �Revil et al.,
003� and the genetic algorithm �Darnet et al., 2003�. PSO and sim-
lex give very similar results, as expected, because of the values
ound for the coupling coefficients. Without knowing the details of
he experiment related to these SP data, such as pumping rate and re-
istivity distribution in the subsoil, it is difficult to calibrate and com-
are the results. Nevertheless, PSO seems to be very efficient in rap-
dly finding an acceptable solution for the water table and coupling
oefficient and in exploring the space of possible solutions.

igure 5. Estimate of the piezometric level from SP
ata observed by Bogoslovsky and Ogilvy �1973�
ith inverted C���13.9 mV /m. �a� SP observed

nd predicted profiles. �b� Predicted piezometric
evels with lower and upper bounds. �c� Histogram
f inverted C� values. �d� Error curve.
FINAL DISCUSSION

As with many other geophysical problems, the SP inverse prob-
em is ill posed. In the absence of prior information, local methods
rovide unstable solutions, which depend greatly on the initial
uess. In the case of streaming potential and by means of synthetic
odeling, we have shown that the topography of the prediction error

cost function� for the SP inverse problem corresponds to elongated
alleys with localized sinkholes when noise is present. This flat to-
ography also indicates the existing trade-offs between the model
arameters in the SP inverse problem. Thus, solving the SP inverse
roblem suffers from the same weakness as other inverse problems.
nstabilities can be solved through local optimization and regular-
zation techniques using good prior information. Bayesian ap-
roaches serve in these cases not only to look for the maximum a
osteriori model but for the posterior distribution itself. Prior infor-
ation is valuable and costly, and in many situations it is unavailable

ecause the geophysical method is performed in a very premature
hase of the hydrogeologic project and/or because the exploration is
un in countries where only very-low-cost methods can be used as a
esult of technological and economic constraints. In these cases,
ampling procedures can approach the solution and appraisal of the
nverse problem. Monte Carlo methods are very good at accomplish-
ng this task, but they also tend to be very inefficient and highly time
onsuming.
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Figure 6. �a� Experimental autocorrelation function
of SP data observed by Bogoslovsky and Ogilvy
�1973�. �b� Histogram of h0 inverted values.
Figure 7. Another solution for the Bogoslovsky and
Ogilvy �1973� SP data set. �a� SP observed and pre-
dicted profiles. �b� Predicted piezometric levels
with lower and upper bounds. In this case, C� is es-
timated as �8.9 mV /m.
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PSO is a simple algorithm that can find plausible solutions and
ample the model space according to some minimum prior require-
ents: the search space and the regularity required for the hydraulic-

ead model. PSO differentiates from other global methods in the fact
hat, although it is a stochastic search method, it is not heuristic. Tak-
ng into account its simplicity, robustness, and versatility �it can be
sed for exploitation and/or exploration purposes�, we recommend
hat the hydrogeophysical community dealing with this kind of in-
erse problems consider using it. We expect that the use of global al-
orithms in inversion, such as PSO, will increase the reliability of
he SP method in hydrogeologic investigations.
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