
Rectifying Classifier Chains for
Multi-Label Classification

Robin Senge1, Juan José del Coz2 and Eyke Hüllermeier1
1:Department of Mathematics and Computer Science, University of Marburg, Germany

2:Artificial Intelligence Center, University of Oviedo at Gijón, Spain

Abstract
Classifier chains have recently been proposed as
an appealing method for tackling the multi-label
classification task. In addition to several em-
pirical studies showing its state-of-the-art perfor-
mance, especially when being used in its ensem-
ble variant, there are also some first results on
theoretical properties of classifier chains. Con-
tinuing along this line, we analyze the influ-
ence of a potential pitfall of the learning pro-
cess, namely the discrepancy between the fea-
ture spaces used in training and testing: While
true class labels are used as supplementary at-
tributes for training the binary models along the
chain, the same models need to rely on estima-
tions of these labels at prediction time. We elu-
cidate under which circumstances the attribute
noise thus created can affect the overall predic-
tion performance. As a result of our findings,
we propose two modifications of classifier chains
that are meant to overcome this problem. Exper-
imentally, we show that our variants are indeed
able to produce better results in cases where the
original chaining process is likely to fail.

1 Introduction
Multi-label classification (MLC) has attracted increasing
attention in the machine learning community during the
past few years. Apart from being interesting theoretically,
this is largely due to its practical relevance in many do-
mains, including text classification, media content tagging
and bioinformatics, just to mention a few. The goal in MLC
is to induce a model that assigns a subset of labels to each
example, rather than a single one as in multi-class classifi-
cation. For instance, in a news website, a multi-label classi-
fier can automatically attach several labels—usually called
tags in this context—to every article; the tags can be help-
ful for searching related news or for briefly informing users
about their content.

Current research on MLC is largely driven by the idea
that optimal predictive performance can only be achieved
by modeling and exploiting statistical dependencies be-
tween labels. Roughly speaking, if the relevance of one
label may depend on the relevance of others, then labels
should be predicted simultaneously and not separately.
This is the main argument against simple decomposition
techniques such as binary relevance (BR) learning, which
splits the original multi-label task into several independent
binary classification problems, one for each label.

Until now, several methods for capturing label depen-
dence have been proposed in the literature. They can be
categorized according to two major properties: (i) the size
of the subsets of labels for which dependencies are modeled
and (ii) the type of label dependence they seek to capture.
Looking at the first property, there are methods that only
consider pairwise relations between labels [5; 6; 14; 19]
and approaches that take into account correlations among
larger label subsets [12; 13; 17]; the latter include those
that consider the influence of all labels simultaneously [2;
8; 11]. Regarding the second criterion, it has been proposed
to distinguish between the modeling of conditional and un-
conditional label dependence [3; 4], depending on whether
the dependence is conditioned on an instance [3; 11; 13;
16] or describing a kind of global correlation in the label
space [2; 8; 19].

In this paper, we focus on a method called classifier
chains (CC) [13]. This method enjoys great popularity,
even though it has been introduced only lately. As its
name suggests, CC selects an order on the label set—a
chain of labels—and trains a binary classifier for each la-
bel in this order. The difference with respect to BR is
that the feature space used to induce each classifier is ex-
tended by the previous labels in the chain. These labels are
treated as additional attributes, with the goal to model con-
ditional dependence between a label and its predecessors.
CC performs particularly well when being used in an en-
semble framework, usually denoted as ensemble of classi-
fier chains (ECC), which reduces the influence of the label
order.

Our study aims at gaining a deeper understanding of
CC’s learning process. More specifically, we address an
issue that, despite having been noticed [4], has not been
picked out as an important theme so far: Since informa-
tion about preceding labels is only available for training,
this information has to be replaced by estimations (com-
ing from the corresponding classifiers) at prediction time.
As a result, CC has to deal with a specific type of attribute
noise: While a classifier is learnt on “clean” training data,
including the true values of preceding labels, it is applied
on “noisy” test data, in which true labels are replaced by
possibly incorrect predictions. Obviously, this type of noise
may affect the performance of each classifier in the chain.
More importantly, since each classifier relies on its prede-
cessors, a single false prediction might be propagated and
possibly even reinforced along the whole chain.

The contribution of this paper is twofold. First, we ana-
lyze the above problem of classifier chains in more detail.
Using both synthetic and real data sets, we design exper-
iments in order to reveal those factors that influence the
effect of error propagation in CC. Second, we propose and

evaluate modifications of the original CC method that are
intended to overcome this problem.

The rest of the paper is organized as follows. The next
section introduces the setting of MLC more formally, and
Section 3 explains the classifier chains method. Section 4
is devoted to a deeper discussion of the aforementioned pit-
falls of CC, along with some first experiments for illustra-
tion purposes.1 In Section 5, we introduce modifications
of CC and propose a method called nested stacking. An
empirical study, in which we experimentally compare this
method with the original CC approach, is presented in Sec-
tion 6. The paper ends with a couple of concluding remarks
in Section 7.

2 Multi-Label Classification
Let L = {λ1, λ2, . . . , λm} be a finite and non-empty set
of class labels, and let X be an instance space. We con-
sider a MLC task with a training set S = {(x1,y1), . . . ,
(xn,yn)}, generated independently according to a prob-
ability distribution P(X,Y) on X × Y . Here, Y is the
set of possible label combinations, i.e., the power set of
L. To ease notation, we define yi as a binary vector
yi = (yi,1, yi,2, . . . , yi,m), in which yi,j = 1 indicates the
presence (relevance) and yi,j = 0 the absence (irrelevance)
of λj in the labeling of xi. Under this convention, the out-
put space is given by Y = {0, 1}m. The goal in MLC is
to induce from S a hypothesis h : X −→ Y that correctly
predicts the subset of relevant labels for unlabeled query
instances x.

The most straightforward and arguably simplest ap-
proach to tackle the MLC problem is binary relevance (BR)
learning. The BR method reduces a given multi-label prob-
lem with m labels to m binary classification problems.
More precisely, m hypotheses h1, h2, . . . , hm are induced,
each of them being responsible for predicting the relevance
of one label, using X as an input space:

hj : X −→ {0, 1} (1)

In this way, the labels are predicted independently of each
other and no label dependencies are taken into account.

In spite of its simplicity and the strong assumption of la-
bel independence, it has been shown theoretically and em-
pirically that BR performs quite strong in terms of decom-
posable loss functions [3], including the well-known Ham-
ming loss:

LH(y,h(x)) =
1

m

m∑
i=1

[[yi 6= hi(x)]] (2)

The Hamming loss averages the standard 0/1 classification
error over the m labels and hence corresponds to the pro-
portion of labels whose relevance is incorrectly predicted.
Thus, if one of the labels is predicted incorrectly, this ac-
counts for an error of 1

m . Another extension of the standard
0/1 classification loss is the subset 0/1 loss:

LZO(y,h(x)) = [[y 6= h(x)]] (3)

Obviously, this measure is more drastic and already treats
a mistake on a single label as a complete failure. The ne-
cessity to exploit label dependencies in order to minimize
the generalization error in terms of the subset 0/1 loss has
been shown in [3].

1This section is partly based on [15]

3 Classifier Chains
While following a similar setup as BR, classifier chains
(CC) seek to capture label dependencies. CC learns m
binary classifiers linked along a chain, where each classi-
fier deals with the binary relevance problem associated with
one label. In the training phase, the feature space of each
classifier in the chain is extended with the actual label in-
formation of all previous labels in the chain. For instance,
if the chain follows the order λ1 → λ2 → . . . → λm, then
the classifier hj responsible for predicting the relevance of
λj is of the form

hj : X × {0, 1}j−1 −→ {0, 1} . (4)

The training data for this classifier consists of instances
(xi, yi,1, . . . , yi,j−1) labeled with yi,j , that is, original
training instances xi supplemented by the relevance of the
labels λ1, . . . , λj−1 preceding λj in the chain.

At prediction time, when a new instance x needs to be la-
beled, a label subset y = (y1, . . . , ym) is produced by suc-
cessively querying each classifier hj . Note, however, that
the inputs of these classifiers are not well-defined, since
the supplementary attributes yi,1, . . . , yi,j−1 are not avail-
able. These missing values are therefore replaced by their
respective predictions: y1 used by h2 as an additional input
is replaced by ŷ1 = h1(x), y2 used by h3 as an additional
input is replaced by ŷ2 = h2(x, ŷ1), and so forth. Thus,
the prediction y is of the form

y =
(
h1(x), h2(x, h1(x)), . . .

)
Realizing that the order of labels in the chain may influence
the performance of the classifier, and that an optimal order
is hard to anticipate, the authors in [13] propose the use of
an ensemble of CC classifiers. This approach combines the
predictions of different random orders and, moreover, uses
a different sample of the training data to train each member
of the ensemble. Ensembles of classifier chains (ECC) have
been shown to increase predictive performance over CC by
effectively using a simple voting scheme to aggregate pre-
dicted relevance sets of the individual CCs: For each label
λj , the proportion ŵj of classifiers predicting yj = 1 is
calculated. Relevance of λj is then predicted by using a
threshold t, that is, ŷj = [[ŵj ≥ t]].

4 The Problem of Attribute Noise in
Classifier Chains

The learning process of CC violates a key assumption of
supervised learning, namely the assumption that the train-
ing data is representative of the test data in the sense of be-
ing identically distributed. This assumption does not hold
for the chained classifiers in CC: While using the true label
data yj as input attributes during the training phase, this in-
formation is replaced by estimations ŷj at prediction time.
Needless to say, yj and ŷj are not guaranteed to follow
the same distribution; on the contrary, unless the classifiers
produce perfect predictions, these distributions are likely
to differ in practice (in particular, note that the ŷj are de-
terministic predictions whereas the yj normally follow a
non-degenerate probability distribution).

From the point of view of the classifier hj , which uses
the labels y1, . . . , yj−1 as additional attributes, this prob-
lem can be seen as a problem of attribute noise. More
specifically, we are facing the “clean training data vs. noisy
test data” case, which is one of four possible noise scenar-
ios that have been studied quite extensively in [20]. For CC,

this problem appears to be vital: Could it be that the addi-
tional label information, which is exactly what CC seeks
to exploit in order to gain in performance (compared to
BR), eventually turns out to be a source of impairment?
Or, stated differently, could the additional label informa-
tion perhaps be harmful rather than useful?

This question is difficult to answer in general. In partic-
ular, there are several factors involved, notably the follow-
ing:

• The length of the chain: The larger the number j − 1
of preceding classifiers in the chain, the higher is the
potential level of attribute noise for a classifier hj . For
example, if prediction errors occur independently of
each other with probability ε, then the probability of a
noise-free input is only (1− ε)j−1. More realistically,
one may assume that the probability of a mistake is
not constant but will increase with the level of attribute
noise in the input. Then, due to the recursive structure
of CC, the probability of a mistake will be reinforced
and increase even more rapidly along the chain.

• The order of the chain: Since some labels might be
inherently more difficult to predict than others, the or-
der of the chain will play a role, too. In particular,
it would be advantageous to put simpler labels in the
beginning and harder ones more toward the end of the
chain.

• The accuracy of the binary classifiers: The level of
attribute noise is in direct correspondence with the ac-
curacy of the binary classifiers along the chain. More
specifically, these classifiers determine the input dis-
tributions in the test phase. If they are perfect, then the
training distribution equals the test distribution, and
there is no problem. Otherwise, however, the distribu-
tions will differ.

• The dependency among labels: Perhaps most interest-
ingly, a (strong enough) dependence between labels
is a prerequisite for both, an improvement and a de-
terioration through chaining. In fact, CC cannot gain
(compared to BR) in case of no label dependency. In
that case, however, it is also unlikely to loose, because
a classifier hj will most likely2 ignore the attributes
y1, . . . , yj−1. Otherwise, in case of pronounced la-
bel dependence, it will rely on these attributes, and
whether or not this is advantageous will depend on the
other factors above.

In the following, we present two experimental studies that
are meant to illustrate the above issues. Based on our dis-
cussion so far and these experiments, two modifications of
CC will then be introduced in the next sections, both of
them with the aim to alleviate the problems outlined above.

4.1 First Experiment
Our intuition is that attribute noise in the test phase can
produce a propagation of errors through the chain, thereby
affecting the performance of the classifiers depending on
their position in the chain. More specifically, we expect
classifiers in the beginning of the chain to systematically
perform better than classifiers toward the end. In order to
verify this conjecture, we perform the following simple ex-
periment: We train a CC classifier on 500 randomly gen-
erated label orders. Then, for each label order and each

2The possibility to ignore parts of the input information does
of course also depend on the type of base classifier used.

2 4 6 8 10

0.
00

0.
04

0.
08

0.
12

label position

po
si

tio
n-

w
is

e
re

la
tiv

e
in

cr
ea

se
 o

f c
la

ss
ifi

ca
tio

n
er

ro
r

BR - all
CC - emotions
CC - scene
CC - yeast-10

Figure 1: Results of the first experiment: position-wise rel-
ative increase of classification error (mean plus standard
error bars). The yeast-10 data set used here is a reduced
yeast data set containing only the ten most frequent labels
and their instances.

−1.0 −0.5 0.0 0.5 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

label 1

x1

x2

−1.0 −0.5 0.0 0.5 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

label 2

x1

x2

−1.0 −0.5 0.0 0.5 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

label 3

x1

x2

−1.0 −0.5 0.0 0.5 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

label 1

x1

x2

−1.0 −0.5 0.0 0.5 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

label 2

x1

x2

−1.0 −0.5 0.0 0.5 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

label 3

x1

x2
Figure 2: Example of synthetic data: the top three labels
are generated using τ = 0, the three at the bottom with
τ = 1.

position, we compute the performance of the classifier on
that position in terms of the relative increase of classifica-
tion error compared to BR. Finally, these errors are aver-
aged position-wise (not label-wise). For this experiment,
we used three standard MLC benchmark data sets whose
properties are summarized in Table 1 (shown in Section 5).

The results in Figure 1 clearly confirm our expectations.
In two cases, CC starts to loose immediately, and the loss
increases with the position. In the third case, CC is able to
gain on the first positions but starts to loose again later on.

4.2 Second Experiment
In a second experiment, we use a synthetic setup that was
proposed in [4] to analyze the influence of label depen-
dence. The input space X is two-dimensional and the un-
derlying decision boundary for each label is linear in these
inputs. More precisely, the model for each label is defined
as follows:

hj(x) =

{
1 aj,1x1 + aj,2x2 ≥ 0

0 otherwise
(5)

The input values are drawn randomly from the unit circle.
The parameters aj,1 and aj,2 for the j-th label are set to

aj,1 = 1− τr1, aj,2 = τr2 , (6)

5 10 15 20 25

1.
05

1.
10

1.
15

1.
20

tau = 0 (high label dependence)

number of labels

(s
ub

se
t 0

/1
 lo

ss
)

/ B
ay

es

5 10 15 20 25

1.
45

1.
55

1.
65

tau = 0 (high label dependence)

number of labels

(H
am

m
in

g
lo

ss
)

/ B
ay

es

BR
CC
ECC

5 10 15 20 25

1.
05

1.
15

1.
25

1.
35

tau = 1 (low label dependence)

number of labels

(s
ub

se
t 0

/1
 lo

ss
)

/ B
ay

es

5 10 15 20 25

1.
5

1.
6

1.
7

1.
8

1.
9

2.
0

tau = 1 (low label dependence)

number of labels

(H
am

m
in

g
lo

ss
)

/ B
ay

es

Figure 3: Results of the second experiment for τ = 0
(top—high label dependence) and τ = 1 (bottom—low la-
bel dependence).

with r1 and r2 randomly chosen from the unit interval. Ad-
ditionally, random noise is introduced for each label by in-
dependently reversing a label with probability π = 0.1.
Obviously, the level of label dependence can be controlled
by the parameter τ . Figure 2 shows two example data sets
with three labels. The first one (pictures on the top) is gen-
erated with τ = 0, the second one (bottom) with τ = 1.
As can be seen, the label dependence is quite strong in the
first case, where the model parameters (6) are the same for
each label. For the second case, the model parameters are
different for each label. There is still label dependence, but
certainly less pronounced.

For different label cardinalities m ∈ {5, 10, 15, 20, 25},
we run 10 repetitions of the following experiment: We cre-
ated 10 different random model parameter sets (two for
each label) and generated 10 different training sets, each
consisting of 50 instances. For each training set, a model is
learnt and evaluated (in terms of Hamming and subset 0/1
loss) on an additional data set comprising 1000 instances.

Figure 3 summarizes the results in terms of the average
loss divided by the corresponding Bayes loss (which can
be computed since the data generating process is known);
thus, the optimum value is always 1. Apart from BR
and CC, we already include the performance curve for
the method to be introduced in the next section (NS); this
should be ignored for now. Comparing BR and CC, the
big picture is quite similar to the previous experiment: The
performance of CC tends to decrease relative to BR with
an increasing number of labels. In the case of low label de-
pendence, this can already be seen for only five labels. The
case of high label dependence is more interesting: While
CC seems to gain from exploiting the dependency for a
small to moderate number of labels, it cannot extend this
gain to more than 15 labels.

5 Nested Stacking
A first very simple idea to mitigate the problem of attribute
noise in CC is to let a classifier hj use predicted labels
ŷ1, . . . , ŷj−1 as supplementary attributes for training in-
stead of the true labels y1, . . . , yj−1. This way, one could
make sure that the data distribution is the same for training
and testing. Or, stated differently, the situation faced by a
classifier during training does indeed equal the one it will
encounter later on at prediction time. Since then a clas-
sifier is trained on the predictions of other classifiers, this
approach fits the stacked generalization learning paradigm
[18], also simply known as stacking.

5.1 Stacking versus Nested Stacking
The idea of stacking has already been used in the context of
MLC by Godbole and Sharawagi [8]. In the learning phase,
their method builds a stack of two groups of classifiers. The
first one is formed by the standard BR classifiers: h1(x) =
(h11(x), . . . , h

1
m(x)). On a second level, also called meta-

level, another group of binary models (again one for each
label) is learnt, but these classifiers consider an augmented
feature space that includes the binary outputs of all models
of the first level: h2(x,y′) = (h21(x,y

′), . . . , h2m(x,y′)),
where y′ = h1(x). The idea is to capture label dependen-
cies by learning their relationships in the meta-level step.
In the test phase, the final predictions are the outputs of the
meta-level classifiers, h2(x), using the outputs of h1(x)
exclusively to obtain the values of the augmented feature
space.

Mimicking the chain structure of CC, our variant of
stacking is a nested one: Instead of a two-level architec-
ture as in standard stacking, we obtain a nested hierarchy
of stacked (meta-)classifiers. Hence, we call it nested stack-
ing (NS). Moreover, each of these classifiers is only trained
on a subset of the predictions of other classifiers. Like in
CC,mmodels need to be trained in total, while 2mmodels
are trained in standard stacking.

5.2 Out-of-Sample versus Within-Sample
Training

To make sure that the distribution of the labels
ŷ1, . . . , ŷj−1, which are used as supplementary attributes
by the classifier hj , is indeed the same at training and pre-
diction time, these labels should be produced by means of
an out-of-sample prediction procedure. For example, an
internal leave-one-out cross validation procedure could be
implemented for this purpose.

Needless to say, a procedure of that kind is computation-
ally complex, even for classifiers that can be trained and
“detrained” incrementally (such as incremental and decre-
mental support vector machines [1]). In our current ver-
sion of NS, we therefore implement a simple within-sample
strategy. In several experimental studies, we found this
strategy to perform almost as good as out-of-sample train-
ing, while being significantly faster. In fact, methods such
as logistic regression, which are not overly flexible, are
hardly influenced by excluding or including a single ex-
ample.

5.3 A First Experiment
To get a first impression of the performance of NS, we re-
turn to the experiment in Section 4.2. As can be seen in
Figure 3, NS does indeed gain in comparison to CC with
an increasing number of labels; only if the labels are few,
CC is still a bit better. This tendency is more pronounced

in the case of strong label dependency, whereas the differ-
ences are rather small if label dependence is low.

To explain the competitive performance of CC if the
number of labels is small, note that replacing “clean”
training data y1, . . . , yj−1 by possibly more noisy data
ŷ1, . . . , ŷj−1, as done by NS, may not only have the pos-
itive effect of making the training data more authentic. In
fact, it may also make the problem of learning hj more dif-
ficult (because the dependency y1, . . . , yj−1 → yj might
be “easier” than the dependency ŷ1, . . . , ŷj−1 → yj). Ap-
parently, this effect plays an important role if the number
of labels is small, whereas the positive effect dominates for
longer label chains.

5.4 Subset Correction
Our second modification is motivated by the observation
that the number of label combinations that are commonly
observed in MLC data sets is only a tiny fraction of the
total number |Y| = 2m of possible subsets; see Table 1,
which reports the value |YD|2−m, where YD is the set of
unique label combinations contained in the data D, as the
“observation rate” in the last column. Moreover, if a label
combination y has an occurrence probability of ε > 0, then
the probability that it has never be seen in a data set of size
n reduces to (1 − ε)n. Thus, by contraposition, one may
argue that such a label combination is indeed unlikely to
exist at all (at least for large enough n).

Our idea of “subset correction”, therefore, is to restrict a
learner to the prediction of label combinations whose exis-
tence is testified by the (training) data. More precisely, let
YS denote the set of label subsets y that have be seen in
the training data S. Then, given a prediction ŷ produced
by a classifier h, this prediction is replaced by the “most
similar” subset y∗ ∈ YS :

y∗ ∈ argmin
y′∈YS

LH(ŷ,y′) (7)

Thus, y∗ is eventually returned as a prediction instead of
ŷ. If the minimum in (7) is not unique, those label combi-
nations with higher frequency in the training data are pre-
ferred.

In principle, the Hamming loss could of course be re-
placed by other MLC loss functions in (7). Its use here is
mainly motivated by the fact, that it is used for a similar
purpose, namely decoding, in the framework of error cor-
recting output codes (ECOC). As such, it has been applied
in multi-class classification [?] and lately also in MLC [9;
7].

6 Nested Stacking vs. Classifier Chains
In this section, we compare NS and CC, both with and
without subset correction, on real MLC benchmark data.
As can be seen in Table 1, the data sets differ quite sig-
nificantly in terms of the number of attributes, examples,
labels, cardinality (number of labels per example) and the
observation rate.

Logistic regression was used as a base learner for binary
prediction in all MLC methods [10]. Unlike [13], we do
not apply any threshold selection procedure; instead, we
simply used t = 0.5 for deciding the relevance of a label. In
fact, our goal is to study the behavior of CC and NS without
the influence of other factors that may bias the results.

Since CC’s main goal is to detect conditional label de-
pendence, we used example-based metrics for evaluation.

In addition to Hamming and subset 0/1 loss introduced ear-
lier, we also applied the F1 and Jaccard index defined, re-
spectively, as follows (note that these are accuracy mea-
sures instead of loss functions):

F1(y,h(x)) =
2
∑m

i=1[[yi = 1 and hi(x) = 1]]∑m
i=1([[yi = 1]] + [[hi(x) = 1]])

(8)

Jaccard(y,h(x)) =

∑m
i=1[[yi = 1 and hi(x) = 1]]∑m
i=1[[yi = 1 or hi(x) = 1]]

(9)

The value for a test set is defined as the average over all
instances. The scores reported in Tables 2 and 3 were esti-
mated by means of 10-fold cross-validation, repeated three
times. We used a paired t-test for establishing statistical
significance on each data set.

Table 4: The effect of subset correction in terms of sta-
tistical significance. The corresponsing loss/accuracy val-
ues can be found in Tables 2-3. � (�) means that NSSC

(CCSC) is significantly better (worse) than NS (CC) at level
p < 0.01 (↑ and ↓ at level p < 0.05) in a paired t-test.

NS vs. NSSC

no. m Hamming Subset 0/1 Jaccard F1

1 159 � � � �
2 6 � � �
3 53 � � � �
4 27 �
5 5 � � � �
6 101 � � �
7 45 � � ↑ �
8 7 � � � �
9 6 � � � �
10 22 � � �
11 14 � � � �

CC vs. CCSC

no. m Hamming Subset 0/1 Jaccard F1

1 159 � � � �
2 6 ↑
3 53 � � � �
4 27 �
5 5
6 101 � � � �
7 45 � � �
8 7 � � � �
9 6 ↓ � �
10 22 � � �
11 14 � � �

Looking at the comparison between CC and NS (without
subset correction) as shown in Table 2), the first thing to
mention is the strong performance of NS in terms of Ham-
ming loss (8 significant wins and 3 losses). In terms of
their properties, the three data sets on which NS looses do
indeed seem to be favorable for CC: Since slashdot, med-
ical and genbase all have a rather low Hamming loss, the
danger of error propagation is limited. Thus, the results are
completely in agreement with our expectations.

For Jaccard and F1, the picture is not as clear. In both
cases, NS wins 6 times. Again, like for Hamming loss, NS

Table 1: Properties of the data sets used in the experiments.
no. Data set Attributes Examples Labels Cardinality Observation Rate
1 bibtex 1836 7395 159 2.40 3.9E-45
2 emotions 72 593 6 1.87 4.0E-1
3 enron 1001 1702 53 3.38 8.3E-14
4 genbase 1185 662 27 1.25 2.3E-7
5 image 135 2000 5 1.24 6.0E-1
6 mediamill 120 5000 101 4.27 2.5E-27
7 medical 1449 978 45 1.25 2.6E-12
8 reuters 243 7119 7 1.24 1.9E-1
9 scene 294 2407 6 1.07 2.3E-1
10 slashdot 1079 3782 22 1.18 3.7E-5
11 yeast 103 2417 14 4.24 1.2E-2

Table 2: Experimental results of NS and CC on benchmark data sets. � (�) means that NS is significantly better (worse)
than CC at level p < 0.01 (↑ and ↓ at level p < 0.05) in a paired t-test.

F1 JACCARD INDEX
no. m CC NS CC NS
1 159 0.1697±.0071 0.1747±.0077 � 0.1098±.0060 0.1133±.0064 �
2 6 0.5883±.0534 0.6028±.0500 ↑ 0.5003±.0521 0.5144±.0514 ↑
3 53 0.3483±.0191 0.3729±.0214 � 0.2474±.0163 0.2693±.0178 �
4 27 0.9863±.0090 0.9854±.0085 ↓ 0.9804±.0115 0.9789±.0109 ↓
5 5 0.5556±.0284 0.4780±.0299 � 0.5196±.0271 0.4460±.0278 �
6 101 0.5326±.0054 0.5619±.0053 � 0.4280±.0052 0.4459±.0052 �
7 45 0.6462±.0331 0.6444±.0340 0.5828±.0343 0.5804±.0356

8 7 0.8599±.0128 0.8570±.0116 � 0.8336±.0138 0.8302±.0129 �
9 6 0.5969±.0403 0.6031±.0348 0.5745±.0405 0.5766±.0344

10 22 0.3278±.0185 0.3259±.0186 0.2747±.0176 0.2726±.0180

11 14 0.5836±.0182 0.6068±.0172 � 0.4848±.0198 0.4990±.0183 �

HAMMING LOSS SUBSET 0/1 LOSS
no. m CC NS CC NS
1 159 0.0724±.0020 0.0672±.0016 � 0.9837±.0052 0.9833±.0052

2 6 0.2367±.0268 0.2169±.0253 � 0.7578±.0575 0.7477±.0633

3 53 0.1233±.0051 0.1050±.0051 � 0.9565±.0135 0.9510±.0133 ↑
4 27 0.0019±.0011 0.0020±.0010 ↓ 0.0408±.0211 0.0443±.0213 ↓
5 5 0.2104±.0127 0.1962±.0119 � 0.5857±.0269 0.6468±.0249 �
6 101 0.0303±.0004 0.0291±.0004 � 0.8752±.0049 0.8969±.0048 �
7 45 0.0248±.0031 0.0249±.0031 0.5890±.0425 0.5934±.0463

8 7 0.0506±.0046 0.0483±.0043 � 0.2454±.0173 0.2499±.0175 ↓
9 6 0.1470±.0143 0.1397±.0124 � 0.4918±.0434 0.5019±.0355 ↓
10 22 0.0908±.0027 0.0913±.0028 ↓ 0.8652±.0185 0.8678±.0198

11 14 0.2242±.0093 0.2069±.0087 � 0.8104±.0229 0.8469±.0231 �

outperforms CC on data sets with many labels (bibtex, en-
ron, mediamill) or a relatively high Hamming loss (yeast),
whereas CC is better for data sets with only a few labels
(image, reuters) or with high accuracy (genbase).

The picture for CC and NS with subset correction (de-
noted CCSC and NSSC , respectively) is quite similar (Ta-
ble 3), although the performance differences tend to de-
crease in absolute size. On subset 0/1 loss, for which
the original CC performs quite strong and typically out-
performs NS, the corrected version NSSC even achieves 3
significant wins over CCSC .

To analyze the effect of subset correction in more detail,
Table 4 provides a summary of a comparison of Table 2 and
Table 3. Interestingly enough, subset correction yields im-
provements on almost every experiment, regardless of the
performance measure, and most of these improvements are
even significant. More specifically, counting the number of
significant wins, subset correction appears to be most ben-

eficial for subset 0/1 loss and least beneficial for Hamming
loss. In fact, for Hamming loss, subset correction looses for
data sets with only a few labels (reuters, scene, yeast and
image) and a relatively high observation rate. Comparing
NS and CC, the former seems to benefit even more from
subset correction than the latter, except for Hamming loss,
on which NS is already strong in its basic version. In terms
of subset 0/1 loss, however, significant improvements can
be seen on every single data set. In light of the simplicity
of the idea, these effects of subset correction are certainly
striking.

7 Conclusions
This paper has thrown a critical look at the classifier
chains method for multi-label classification, which has
been adopted quite quickly by the MLC community and is
now commonly used as a baseline when it comes to com-
paring methods for exploiting label dependency. Notwith-

Table 3: Experimental results of NSSC and CCSC on benchmark data sets. � (�) means that NSSC is significantly better
(worse) than CCSC at level p < 0.01 (↑ and ↓ at level p < 0.05) in a paired t-test.

F1 JACCARD INDEX
no. m CCSC NSSC CCSC NSSC

1 159 0.2026±.0119 0.2090±.0113 � 0.1528±.0099 0.1582±.0100 �
2 6 0.5905±.5905 0.6132±.6132 � 0.5027±.0521 0.5239±.0525 �
3 53 0.3843±.3843 0.4016±.4016 � 0.2821±.0190 0.3005±.0238 �
4 27 0.9843±.9843 0.9838±.9838 0.9807±.0129 0.9802±.0125

5 5 0.5557±.5557 0.5315±.5315 � 0.5197±.0272 0.4972±.0304 �
6 101 0.5328±.0054 0.5610±.0052 � 0.4282±.0052 0.4457±.0050 �
7 45 0.6220±.6220 0.6231±.6231 0.5898±.0435 0.5900±.0460

8 7 0.8624±.8624 0.8639±.8639 0.8367±.0142 0.8382±.0126

9 6 0.5921±.5921 0.6105±.6105 � 0.5739±.0423 0.5873±.0370 �
10 22 0.3271±.3271 0.3248±.3248 0.2843±.0186 0.2818±.0202

11 14 0.5889±.5889 0.6141±.6141 � 0.4890±.0200 0.5104±.0200 �

HAMMING LOSS SUBSET 0/1 LOSS
no. m CCSC NSSC CCSC NSSC

1 159 0.0282±.0008 0.0270±.0006 � 0.9592±.0080 0.9568±.0082 ↑
2 6 0.2363±.0268 0.2190±.0266 � 0.7555±.0581 0.7404±.0652 ↑
3 53 0.0819±.0023 0.0766±.0030 � 0.9491±.0130 0.9346±.0156 �
4 27 0.0019±.0012 0.0019±.0012 0.0332±.0176 0.0337±.0172

5 5 0.2104±.0127 0.2199±.0140 � 0.5855±.0270 0.6027±.0277 �
6 101 0.0302±.0004 0.0291±.0003 � 0.8750±.0049 0.8925±.0051 �
7 45 0.0210±.0025 0.0210±.0027 0.5017±.0465 0.5037±.0514

8 7 0.0513±.0049 0.0506±.0042 0.2403±.0177 0.2391±.0167

9 6 0.1479±.0147 0.1441±.0130 ↑ 0.4802±.0449 0.4815±.0386

10 22 0.0840±.0026 0.0842±.0028 0.8348±.0186 0.8380±.0201

11 14 0.2243±.0093 0.2089±.0097 � 0.8073±.0230 0.8097±.0237

standing the appeal of the method and the plausibility of its
basic idea, we have argued that, at second sight, the chain-
ing of classifiers begs an important flaw: A binary classi-
fier that has learnt to rely on the values of previous labels in
the chain might be misled when these values are replaced
by possibly erroneous estimations at prediction time. The
classification errors produced because of this attribute noise
may subsequently be propagated or even reinforced along
the entire chain. Roughly speaking, what looks as a gift at
training time may turn out to become a handicap in predic-
tion.

Our results have shown that the problem of error prop-
agation is highly relevant, and that it may strongly impair
the performance of CC. In order to avoid this problem, the
method of nested stacking proposed in this paper uses pre-
dicted instead of observed label relevances as additional at-
tribute values in the training phase. Our experimental stud-
ies clearly confirm that, although NS does not consistently
outperform CC, it seems to have advantages for those data
sets on which error propagation becomes an issue, namely
data sets with many labels or low (label-wise) prediction
accuracy.

There are several lines of future work. First, it is of
course desirable to complement this study by meaningful
theoretical results supporting our claims. Second, it would
be interesting to investigate to what extent the problem of
attribute noise also applies to the probabilistic variant of
classifier chains introduced in [3]. Last but not least, given
the interesting effects that are produced by the simple idea
of subset correction, this approach seems to be worth fur-
ther investigation, all the more as it is completely general
and not limited to specific MLC methods such as those con-
sidered in this paper.

References
[1] Gert Cauwenberghs and Tomaso Poggio. Incremen-

tal and decremental support vector machine learning.
Proc. NIPS, pages 409–415, 2001.

[2] W. Cheng and E. Hüllermeier. Combining instance-
based learning and logistic regression for multilabel
classification. Machine Learning, 76(2-3):211–225,
2009.

[3] K. Dembczyński, W. Cheng, and E. Hüllermeier.
Bayes optimal multilabel classification via probabilis-
tic classifier chains. In ICML, pages 279–286, 2010.

[4] K. Dembczyński, W. Waegeman, W. Cheng, and
E. Hüllermeier. On label dependence and loss
minimization in multi-label classification. Machine
Learning, To appear, 2012.

[5] A. Elisseeff and J. Weston. A Kernel Method for
Multi-Labelled Classification. In ACM Conf. on Re-
search and Develop. in Infor. Retrieval, pages 274–
281, 2005.

[6] J. Fürnkranz, E. Hüllermeier, E.L. Mencı́a, and
K. Brinker. Multilabel classification via calibrated la-
bel ranking. Machine Learning, 73:133–153, 2008.

[7] Johannes Fürnkranz and Sang-Hyeun Park. Error-
correcting output codes as a transformation from
multi-class to multi-label prediction. In Proc. Dis-
covery Science, pages 254–267. 2012.

[8] S. Godbole and S. Sarawagi. Discriminative methods
for multi-labeled classification. In Pacific-Asia Conf.
on Know. Disc. and Data Mining, pages 22–30, 2004.

[9] Tomasz Kajdanowicz and Przemysław Kazienko.
Multi-label classification using error correcting out-

put codes. International Journal of Applied Mathe-
matics and Computer Science, 22(4):829–840, 2012.

[10] C.-J. Lin, R. C. Weng, and S. S. Keerthi. Trust re-
gion Newton method for logistic regression. Jour-
nal of Machine Learning Research, 9(Apr):627–650,
2008.

[11] E. Montañés, J. R. Quevedo, and J. J. del Coz. Ag-
gregating independent and dependent models to learn
multi-label classifiers. In Proc. ECML/PKDD, 2011.

[12] J. Read, B. Pfahringer, and G. Holmes. Multi-label
classification using ensembles of pruned sets. In IEEE
Int. Conf. on Data Mining, pages 995–1000. IEEE,
2008.

[13] J. Read, B. Pfahringer, G. Holmes, and E. Frank.
Classifier chains for multi-label classification. Ma-
chine Learning, 85(3):333–359, 2011.

[14] R. E. Schapire and Y. Singer. Boostexter: A boosting-
based system for text categorization. In Machine
Learning, pages 135–168, 2000.

[15] Robin Senge, Juan Jos del Coz, and Eyke
Hüllermeier. On the problem of error propagation in
classifier chains for multi-label classification. In Con-
ference of the German Classification Society, 2012.

[16] G. Tsoumakas, I. Katakis, and I. Vlahavas. Mining
multi-label data. In Data Mining and Knowledge Dis-
covery Handbook, pages 667–685. 2010.

[17] G. Tsoumakas and I. Vlahavas. Random k-Labelsets:
An Ensemble Method for Multilabel Classifica-
tion. In Proc. ECML/PKDD, LNCS, pages 406–417.
Springer, 2007.

[18] D. H. Wolpert. Stacked generalization. Neural Net-
works, 5:214–259, 1992.

[19] M.-L. Zhang and Z.-H. Zhou. Multilabel neural net-
works with applications to functional genomics and
text categorization. IEEE Trans. on Knowl. and Data
Eng., 18:1338–1351, 2006.

[20] X. Zhu and X. Wu. Class noise vs. attribute noise: a
quantitative study of their impacts. Artificial Intelli-
gence Review, 22(3):177–210, 2004.

