Hierarchical classification using SVM

J. Diez, J.J. del Coz

Machine Learning Group - Artificial Intelligence Center
University of Oviedo at Gijon
http://www.aic.uniovi.es/MLGroup
{jdiez, juanjo}@aic.uniovi.es

Abstract. In hierarchical classifications classes are arranged in a hierar-
chy represented by a tree forest, and each example is labeled with a set of
classes located in paths from roots to leaves or internal nodes. In other
words, both multiple and partial paths are allowed. A straightforward
approach to learn these classifiers consists in learning one binary classi-
fier per node of the hierarchy; the hierarchical classifier is then obtained
using a top-down evaluation procedure. In this paper, we present a new
approach where node classifiers are learned by binary SVMs weighted
according to the hierarchy structure and the loss function used to mea-
sure the goodness of the classifiers. The result is a collection of modular
algorithms that are competitive with state-of-the-art approaches. More-
over, the benefits of the modularity include the possibility of parallel
implementations, and the use of all available and well-known techniques
to tune binary classification SVMs.

1 Introduction

Many real-world domains require automatic systems to organize objects into
known taxonomies. For instance, a news website, or a news service in general,
needs to classify latest articles into sections and subsections of the site [1, 2, 3,
4, 5]. Although most applications deal with textual information, in [6, 7] it is
described an algorithm to classify speech data into a hierarchy of phonemes.

This learning task is usually called hierarchical classification and differs from
multiclass learning in: 1) the whole set of classes has a hierarchical structure
usually defined by a tree, and 2) each object must be labeled with a set of
classes consistent with the hierarchy: if an object belongs to a class, then it
must belong to any of its ancestors.

The aim of hierarchical classification algorithms is to learn a model that can
accurately predict a set of classes; notice that these subsets have in general more
than one element, and they are endowed with a subtree structure. These subtrees
may have more than one branch, in this case we say that there are multipaths in
the labels, and subtrees may not end on a leaf, that is they include partial paths.

Roughly speaking, the algorithms available in the literature can be arranged
in two groups: those that take a local point of view, and those that learn a model
from a global perspective. Local algorithms learn a model for each node of the

hierarchy using different approaches; a hierarchical classification of an object
is then obtained by evaluating local classifiers in a top-down procedure until a
model fails to include that node on its attached class. The algorithms presented in
[1, 6, 7, 3] belong to this group. On the other hand, the hierarchical classification
can be seen as a whole rather than a series of local learning tasks. The idea is to
optimize the global performance all at once. This position is adopted in [2, 4, 5].

In this paper we will present a learning algorithm for hierarchical classifi-
cation with multiple and partial paths. The algorithm adopts a local strategy;
the motivations are the following. First, somehow hierarchical learning is similar
to multiclass classification, and in this context the combination of binary (local
in this case) classifiers obtain similar results that those attained by approaches
that try to learn a model to classify at the same time all classes [8]. Second, it
is not enough clear how the global performance of a hierarchical classifier can
be benefited by a bad performance of the local classifier attached to a node of
the hierarchy, specially in multiple partial path situations. Third, in several pa-
pers about hierarchical classifications a simple combination of SVM (frequently
called HSVM) is used as baseline algorithm in comparisons; the results are not
too unfavorable for this baseline.

In this paper we improve the vanilla version of HSVM in a couple of directions.
We study the options available to decompose hierarchical classifications into a
set of binary SVM, one for each node (class) of the hierarchy. And we add some
weighting schemes that improve the performance of the classifiers to reach a
very high level. In addition to the performance obtained, the advantages of local
algorithms for hierarchical classification are derived from their modularity. They
can be straightforwardly implemented in a parallel platform to obtain a very fast
learning method. They are simple and can be built with one’s favorite SVM, with
some easy adaptations; therefore, we can improve the overall performance of the
classifier using well-known techniques available to tune binary SVMs.

The paper is organized as follows. The next section introduces formally hi-
erarchical learning and the notation used throughout the rest of the paper. The
third section is devoted to explain in detail the learners devised from the decom-
position strategies and weighting schemes. Finally, the last section reports some
experiments with benchmark and artificial datasets conducted to compare the
algorithms presented in this paper with other state-of-the-art algorithms.

2 Hierarchical classification

In hierarchical classification we have a set of classes arranged according to a
known taxonomy. Formally, we have a tree 7 with r nodes (one for each class).
In fact, we could start from a forest of trees F, but then we would add an
artificial root node to joint in a tree the whole set of classes; therefore, in the
following we will consider that our hierarchy is represented by a tree 7. In this
context, training tasks are defined by a training set S = {(x1,y1),- .., (Tn,Yn)},
where each example is described by an entry represented by a vector x; of an
input space X, and a vector y; of an output space Y C {—1,+1}". We will

interpret each output y; as a subset of the set of classes {1,...,r}: y;; = +1 if
and only if the i*" example belongs to the ;' class. In the following, we will use
the symbol y; both as a vector and as a subset when no confusion can arise. We
will assume that all sets of classes of) respect the underlying hierarchy:

Yy, €)Y, yi; =+1=>Vkeanc(j), vir=+1; (1)

where anc(j) stands for the set of ancestors of node or class j including j.

A straightforward approach to learn these kind of tasks may consists in learn-
ing a family of models {wy,...,w,} one for each node (class) of 7. Then, an
entry « will be assigned to all classes j such that (+1 = sign({w;,z)))'. But
this procedure may lead to inconsistent predictions with respect to 7. To avoid
them, as in [3], a top-down prediction procedure can be used. So, an entry can
only be assigned to a class j if previously it was classified into its class parent,
par(j); therefore, an entry not assigned to a class, automatically, will not be
assigned to any of its descendants.

2.1 Loss functions

To complete the specification of the hierarchical learning task, we need to decide
which loss function will be used to measure the goodness of the hypothesis
learned. A first option may be to employ the zero-one loss:

10/1(?/,?//) =y# y/]. (2)

The problem is that using this loss function it is not possible to capture any
difference between very wrong predictions and nearly correct ones. Thus, in a
real-world application hopefully, an expert in the field could provide us with a
antisymmetric square loss matrix L where each component L;; expresses the
cost of classifying an object of class j as an object of class k. In practice, at most
the available information could be reduced to have, for each class j, the costs
of having false positives (fp(j)) and false negatives (fn(j)) [2]. Thus, we can
define

Wy, y)= D foG)+ > fp(). (3)

Jjey—y’ Jj€y'—y

Nevertheless, in the experiments reported below, as in [4, 5, 2] we always assume
that all costs have value 1, and so we obtain a loss function that only reflects the
cardinal of the symmetric difference of a pair of subsets of classes: the number
of different elements. In symbols:

T

la(y,y) = Z[yj yl=1W -y Uy—y)l =y eyl (4)

! For ease of reading, we omit the threshold terms b;; in any case, they can be easily
included by adding an additional feature of constant value to each x;

In [4], Rousu et al. have proposed other loss functions, weighting the classes
according to the proportion of hierarchy that is in the subtree T'(j) rooted by
j, or sharing the relevance of each node between its siblings starting with 1 for
the root. It is easy to see that these loss functions are particular cases of the
framework presented in this section.

3 HSVM: Hierarchical SVM

In this section we are going to present an approach to learn hierarchical classifica-
tions based on the use of weighted binary classifications. Following the notation
of the previous section, we assume that we have available a learning task spec-
ified by a training set S and real functions fp and fn to compute the costs of
false positives and negatives of classes respectively. First we will discuss possible
strategies to decompose the learning task into local binary classifications: one for
each class. Then we will detail two ways to specify weighted versions according
to the structure of the hierarchy and the loss function.

3.1 Training datasets for binary classification tasks of nodes

If the models w; are going to be learned from binary classification tasks, we
must specify the set of training examples that must be used. Basically, when we
try to learn a model for class j we have three different options:

— All entries of S will be considered and, like in multiclass learning when we
are using the strategy one-vs-rest, the subset of positive (POS) and negative
(NEG) examples will be given by

— We learn to distinguish between those examples that belongs to j or to any
of its siblings. Formally,

POS = {(CZ Yy = +].} NEG = {il)Z : yi,par(j) = +1} — POS. (6)

— The same idea of the preceding option, but we will consider only those exam-
ples that, following the top-down prediction strategy, have been assigned
to the parent of j. We assume that all examples belong to the root class in
any case. Thus, in symbols

POS ={z; : yij = +1 A (Wyar(j), ;) > 0}
NEG = {wi : <wpar(j)awi> > 0} — POS. (7)

Apparently, the third choice could be more adequate than the other two, since
it follows a similar procedure during learning and prediction stages. On the other
hand, it produces a slower learning phase than that of the other options given
that they can compute all necessary models in parallel, while the third option
must wait for parent models to fix the datasets. Notice that, the fastest choice
is the second one because training datasets are smaller and permit the biggest
degree of parallelism.

3.2 Costs of training examples for binary classifications

For each node or class j different from the root of the hierarchy, we have defined
a binary classification task in section 3.1. Despite the strategy followed to define
the subset of positive and negative entries, now we are going to define a cost s;
for each example x; of POSU N EG. The aim is to learn a discrimination model
w; where the impact of each entry will be proportional to that cost. In other
words, we solve the optimization problem (see, for instance, [9])

1
min 7<wj,wj>+C Z Si - &ijs (8)
2
z;€EPOSUNEG
s.t. y,-j<'wj,a:i> > 1-— gija &j > O7 Vi : x; € POSUNEG.

The costs will be different for positive and negative entries depending of the
class of the example and the target class j. So, if (x;,y;) € S is such that x; is
in POS for class j, we define

S = Z fn(k)’ (9>

keT(j)Ny:

where T'(j) is the subtree of the hierarchy rooted by j. The idea is to highlight
the number of classes of @; that conceptually belong to class j, that is, the classes
of y; placed at or below j. On the other hand, for negative entries, we define

si= > (k). (10)

k€anc(j)—yi

Given that the members of class j must belong to all ancestors of j, the idea of
Eq. 10 is to penalize misclassifications of entries that are not only negatives for
class j, but also for some of its ancestors.

The graphs of Figure 1 illustrate with an example the assignment of costs
detailed above.

3.3 Balanced learning

In the optimization problem Eq. 8, PO.S and N EG sets may be very unbalanced,
for instance, when we are using the first decomposition strategy of section 3.1, or
if the number of siblings and their descendants is high. Thus, to adjust the weight
of false positives and false negatives, following [10] we set a new optimization
problem

1 _
min §<wj,wj>+c+' Z si- &y +C . Z S; + &ijs (11)
i:x;€POS i, ENEG
s.t. yij<wj,:ci> > 1_51’]” gij >0, Vi:x;e POSUNEG

where, using Eq. 9 and Eq. 10,

Ct= > s, C =)Y s (12)

e, ENEG iz, EPOS

Fig. 1. If we are trying to learn a model for class 5 (ws), the cost of a positive ex-
ample (z;,y;) with y; = {1,2,3,5,8,9,10} (see graph (a)) is the sum of penalties for
making false negatives classes {5,8,9,10}. On the other hand, the cost of a negative
(x:,{1,3,6,7}), see graph (b), is the sum penalization (false positives) due to {2,5}

The idea is to balance the potential total cost of false positives and false neg-
atives. Then the ratio of the regularization parameters CT and C~ must be
inverse to the ratio of class sizes, where the size of the examples is its cost.

Additionally, we investigated if the possible benefits of balancing (as stated
in Eq. 12) were due to the presence of costs or they were a consequence of
the balancing itself. Thus we will use, in the experiments reported in the next
section, a version with all costs s; = 1 for all 4.

4 Experimental results

For testing the hierarchical SVMs presented in this paper, we have carried out
some experiments in order to compare their performance with two state-of-the-
art learners that use different approaches. The algorithms used were H-M?-/4 of
Rousu et al. [4], and HRLS of Cesa-Bianchi et al. [3]; while the first one searches
for a global optimum loss (in this case the loss function I 4 of Eq. 4), HRLS takes
a local point of view and it incrementally learns a linear-threshold for each node
of the hierarchy of classes.

The comparison was done with a couple of benchmark information retrieval
(IR) datasets. Thus, in addition to the loss functions ly,; (Eq. 2), [a (Eq. 4), we
employed the performance measures: precision, recall, and F1.

The implementation of H-M3-[5 was provided by the author, and the scores
of HRLS were taken from [4], where it is reported that the algorithm was imple-
mented according to published descriptions of its authors. The implementation
of the versions of HSVM were done modifying slightly Joachims’ SV MPef [11];
this SVM implementation provided us with an excellent base due to its linear
complexity. In all cases, when it was needed, we set the regularization parameter
C =1 and we used a linear kernel.

We tested two types of HSVMs. On the first hand we compared each of the
three options (detailed in section 3.1) to decompose hierarchical classifications
into a series of binary classifications tasks. So we used the subscript a for the
option that uses all entries of the training set in all cases; s stands for the option
that distinguishes between siblings; and finally p means the third option, where
only are considered examples predicted to belong to parent classes. The second
dimension of versions was the kind of weighting scheme used. Thus, we built
versions without any weighting at all, or using only costs (¢) (Eq. 8), or using
costs balancing (cb) (Eq. 11); we finally tested a weighted scheme that uses
balancing without costs, that is, with all costs s; = 1 (b).

Additionally, in order to test the performance of HSVMs in the presence of
an increasing percentage of examples with multipath, we built a collection of
artificial datasets specially devised for that purpose.

4.1 Results on IR datasets

We used two well-known datasets in information retrieval?>. The documents were
represented as bag-of-words and the features were scaled with their inverse doc-
ument frequency, in fact with the variant TFIFD [12, 13].

From the first dataset, REUTERS Corpus Volume 1 (RCV1) [14], following
[4], 7500 documents were collected and 5000 were separated for testing purposes.
The 'CCAT’ family of categories (Corporate/Industrial news articles) was used
as the label hierarchy. This hierarchy represents a tree with maximum depth 3
and with a total of 34 nodes. The tree is quite unbalanced: there are 18 nodes
residing in depth 1, 14 nodes in depth 2 and one node in depth 3. In this dataset,
approximately 8% of examples have multiple partial paths; that is, these exam-
ples were classified into classes that are not in the same path from the root.

The WIPO-alpha was published by the World Intellectual Property Organi-
zation [15], and it is the second dataset used in these experiments. We used D
section of the hierarchy. This section contains 1730 documents, and 358 of them
were separated as test set. There are 188 nodes in the tree organized as follows:
7 in depth 1, 20 in depth 2, and 160 in depth 3. In this dataset there are no
examples classified into more than one path.

The left hand side of Table 1 depicts the scores obtained in RCV1 in the
conditions described above. The key loss is [, since this is the optimization
target; on the other hand, from an IR point of view F1 is the most relevant
measure. In both measures HRLS outperforms H-M?>-14 . In the field of HSVM
variants, s and p versions achieve better results than the one-vs-rest (a) variants;
however, HSVM, ; reaches the scores of H-M3-[5in [4 and slightly better in F1.
With respect to weighting schemes, balances (b) seem a bit better than costs
(¢), although with similar scores. In [o both HSVM, and HSVM,, outperform
H-M3-14 , even without any weighting; to reach the score of HRLS we need the
balanced releases. In F1 any weighting outperform both HRLS and H-M3-1 4 .

? These datasets can be downloaded from http://users.ecs.soton.ac.uk/cjs/downloads

Table 1. Prediction losses lo/1, la, precision P, recall R and F1 on REUTERS and
WIPO datasets. All scores are given as percentages, but the values of the column
labeled by la that are the average of Eq. 4 across the test set

REUTERS Corpus Vol. 1 WIPO-alpha
| on la P R F1 | lgn Ila P R FI1

HSVM, 329 0.612 94.7 583 72.2 86.0 1.830 93.2 585 71.9
HSVM,,. | 34.0 0.599 929 60.5 73.3 85.2 1.682 91.8 63.6 75.2
HSVM,,; | 30.2 0.574 90.5 64.6 75.4 71.5 1.606 88.6 68.7 77.4
HSVMg,,e0 | 30.5 0.581 89.9 64.5 75.1 73.2 1.615 88.5 68.6 77.3

HSVM, 29.8 0.571 92.2 63.4 75.1 76.3 1.743 90.5 63.1 74.3
HSVM,. | 29.8 0.555 89.6 66.9 76.6 71.2 1.592 88.1 69.6 77.8
HSVM,, | 27.8 0.553 88.4 68.3 77.0 66.8 1.637 854 71.2 77.7
HSVM, ., | 28.0 0.563 87.7 68.1 76.7 66.8 1.634 853 714 778

HSVM, 29.9 0.573 92.5 63.0 74.9 76.8 1.749 90.5 62.8 74.2
HSVM,,. | 30.0 0.556 90.3 66.2 76.4 71.0 1.578 88.7 69.3 77.9
HSVM,, | 27.8 0.550 88.9 68.0 77.1 66.8 1.634 858 709 77.6
HSVM,, | 28.1 0.560 88.1 68.0 76.7 66.5 1.634 855 71.2 77.7

H-M3-14 27.1 0.574 91.0 64.1 75.2 70.9 1.670 90.3 65.3 75.8
HRLS 28.1 0.550 91.5 654 76.3 72.1 1.690 88.5 66.4 75.9

The scores in WIPO-alpha dataset are shown in the right hand side of Table
1. We can see bigger differences in this dataset than in RCV1. Again, versions
of HSVM that use costs and/or balances attain better scores than those without
any weighting, and better than H-M?®-I, and HRLS. In contrast with RCV1
results, in this case, the best result is found in HSVM,, ., not in HSVM,, .

In general we see that the scores of HSVM, and HSVM,, are quite similar,
although the later seems that is able to slightly correct some mistakes of HSVMj .
The strategy one-vs-rest (a) usually performs worse than s and p. With respect
to weighting schemes, they reveal very useful both in costs or balances.

4.2 Artificial datasets

In order to test the ability of our approach to handle multiple paths, we devised
an artificial dataset following a tree hierarchy. The tree has 44 nodes organized
as follows: 3 in depth 1, 7 in depth 2, 9 in depth 3, 12 in depth 4, and 12 in
depth 5. There are leaves at any depth, but in depth 0 and 1. All non-leaf-
nodes have 2 or 3 children. We intended to simulate, in the artificial examples,
a representation of the type bag-of-words. Therefore, we associated a number p;
of features to each node j; and the values in features were generated following
a uniform distribution between —1 and +1, but negative values were eliminated
to achieve a sparse dataset. Examples were assigned to a node when the sum
of the features attached to it exceed a given threshold p;. We force the positive

0.16
0.14

0.12
0.1

—< 0.08["

0.06

0.04

96

0.02

0 5 10 15 0 5 10 15
% of multiple partial paths % of multiple partial paths

Fig. 2. Performance of the HSVM, ¢ (solid line) and HSVM; ¢ (dash-dot line) when
the percentage of multiple partial paths in examples is increased. HSVM, ., and
HSVM; o achieved exactly the same results

attribute values in order to ensure that we have 40 examples per node for training
set and 20 per node for test set. We created artificial datasets with 0, 5, 10 and
15 pecentage of examples with multiple partial paths®. The parameters used in
the experiment were: p; = 50 and p; = p;/0.7 for all j.

Figure 2 shows the performance of HSVM, 5 , HSVM, o, and HSVM,, o ,
when the percentage of multiple partial paths is increased. HSVM; o, and
HSVM,, ., reached exactly the same scores, and as it could be expected, they had
better performance than HSVM,, ., . It is important to notice that HSVM; ., (and
HSVM,, o,) increased its {4 in only 0.0305 classes failed per example, while
the percentage of multiple partial paths had been increased from 0% to 15%.
HSVM,, » had also a good performance, since its {4 only was incremented in
0.0697. On the other hand, the behavior in F'1 was quite parallel: HSVM; ., and
HSVM,, ., outperform HSVM, , but all had good resistance to the increase in
the percentage of multipaths.

5 Conclusions

We have presented a learning method for hierarchical classifications tasks based
on the use of learning local binary classifications: one for each node of the hierar-
chy. This approach is well known and it is acknowledged to achieve competitive
results with other approaches [1, 3]. In the experiments reported in section 4, we
also confirm the good scores of this naive approach. The novelty of this paper is
the use for hierarchical classification of weighting schemas in binary classifiers.
We have studied two aspects: the decomposition of hierarchical tasks into
binary classifications, and the definitions of weights suggested by both the hi-
erarchy and the loss function. The conclusion is that it is possible to obtain a

3 A Matlab function for generating artificial datasets in this way can be downloaded
from (http://www.aic.uniovi.es/MLGroup/DataSets/GenerateArtificial.m)

very competitive learning method, comparable with state-of-the-art algorithms
(3, 4].

Additionally, in general the decomposition strategies have the advantage of
modularity. So, it is possible to have fast parallel implementations for hierarchical
classifications. Besides, each binary classification could be learned using well-
known SVM implementations, and one could tune the regularization parameters
or the kernels employed. Notice that if the application field is different from
textual information, the choice of the right kernel may be a crucial point in the
performance of any classification task.

Acknowledgments The research reported in this paper has been supported in
part under Spanish Ministerio de Educacién y Ciencia (MEC) grant TIN2008-
06247. The authors would like to thank Juho Rousu for the source code of his
algorithm and Thorsten Joachims for the source code of SVM;;4 and SV Mpe, .

References

[1] Dumais, S.T., Chen, H.: Hierarchical classification of web content. In: Proceedings
of the 23"¢ SIGIR, NY, USA, ACM Press (2000) 256-263
[2] Cai, L., Hofmann, T.: Hierarchical document categorization with support vector
machines. In: Proceedings of the 13" CIKM, NY, USA, ACM Press (2004) 78-87
[3] Cesa-Bianchi, N., Gentile, C., Zaniboni, L.: Incremental algorithms for hierarchi-
cal classification. JMLR 7 (2006) 31-54
[4] Rousu, J., Saunders, C., Szedmak, S., Shawe-Taylor, J.: Kernel-based learning of
hierarchical multilabel classification models. JMLR 7 (2006) 1601-1626
[5] Cai, L., Hofmann, T.: Exploiting known taxonomies in learning overlapping con-
cepts. In: Proceedings of the 20" IJCAL (2007) 708-713
[6] Dekel, O., Keshet, J., Singer, Y.: Large margin hierarchical classification. In:
Proceedings of the 21°¢ ICML. (2004) 209-216
[7] Dekel, O., Keshet, J., Singer, Y.: An efficient online algorithm for hierarchical
phoneme classification. In: Proceedings of 1°* International Workshop on Machine
Learning for Multimodal Interaction. (2005) 146-158
[8] Hsu, C.W., Lin, C.J.: A comparison of methods for multiclass support vector
machines. IEEE Transactions on Neural Networks 13(2) (2002) 415-425
[9] Fan, H., Ramamohanarao, K.: A weighting scheme based on emerging patterns
for weighted support vector machines. In: Proceedings of IEEE International
Conference on Granular Computing. (2005) 435- 440
[10] Morik, K., Brockhausen, P., Joachims, T.: Combining statistical learning with
a knowledge-based approach - a case study in intensive care monitoring. In:
Proceedings of the ICML. (1999) 268-277
[11] Joachims, T.: Training linear svims in linear time. In: Proceedings of the 12th
SIGKDD, NY, USA, ACM Press (2006) 217-226
[12] Joachims, T.: Text categorization with support vector machines: learning with
many relevant features. In: Proceedings of 10** ECML, (1998) 137-142
[13] Salton, G., Buckley, C.: Term weighting approaches in automatic text retrieval.
Information Processing and Management 24(5) (1988) 513-523
[14] Lewis, D.D., Yang, Y., Rose, T.G., Li, F.: Rcvl: A new benchmark collection for
text categorization research. JMLR 5 (2004) 361-397
[15] WIPO: http://www.wipo.int/classifications/en (2001)

