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Abstract

Obstructive cholestasis causes hepatic cirrhosis and portal hypertension. The pathophysiological
mechanisms involved in the development of liver disease are multiple and linked. We propose
grouping these mechanisms according to the three phenotypes mainly expressed in the interstitial
space in order to integrate them.

Experimental extrahepatic cholestasis is the model most frequently used to study obstructive
cholestasis. The early liver interstitial alterations described in these experimental models would
produce an ischemia/reperfusion phenotype with oxidative and nitrosative stress. Then, the
hyperexpression of a leukocytic phenotype, in which Kupffer cells and neutrophils participate,
would induce enzymatic stress. And finally, an angiogenic phenotype, responsible for peribiliary
plexus development with sinusoidal arterialization, occurs. In addition, an intense cholangiocyte
proliferation, which acquires neuroendocrine abilities, stands out. This histopathological finding is
also associated with fibrosis.

It is proposed that the sequence of these inflammatory phenotypes, perhaps with a trophic
meaning, ultimately produces a benign tumoral biliary process — although it poses severe
hepatocytic insufficiency. Moreover, the persistence of this benign tumor disease would induce a
higher degree of dedifferentiation and autonomy and, therefore, its malign degeneration.

Background

Obstructive cholestasis is characterized clinically by jaun-
dice, discolored urine, pale stools and pruritus [1-3].
Obstruction of the biliary tree, either intrahepatic or extra-
hepatic, induces a characteristic pattern of early and late
liver morphologic features that can be attributed to the
evolution of an inflammatory response [3].

Hepatic inflammation is an important feature of cholesta-
sis liver disease in both humans [1] and experimental ani-
mals [4,5]. Inflammatory features of obstructive
cholestasis include portal tract edema [3], neutrophil
infiltration in the portal tracts [3,5], proliferation of the
biliary epithelial cells [1,3] and portal tract fibrosis
[1,3,6].
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The preferable localization of the inflammatory response
in the portal tract reflects the importance that this space
occupies in the development of the hepatic cholestasis
pathology. In this way, the main role of the portal tract in
hepatic inflammation is similar to that of the interstitial
space during inflammation of other organs or tissues
[7,8]. This is why both spaces, the portal tract and the
interstitium, can be considered similar to a certain extent.

The functional biliary tree in the interstitial
space

The biliary tree begins with the 'source of the bile', which
is the bile canaliculus, made up by the canalicular domain

Portal tract
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of adjacent hepatocytes [3]. Bile canaliculi form a network
of channels between hepatocytes and drain into the canals
of Hering (intrahepatic bile ducts) that are lined by hepa-
tocytes and cholangiocytes and also contain hepatic stem
cells [3,9-11].

The canals of Hering continue into the bile ductules,
which in turn drain into interlobular bile ducts, located in
the portal space (Figure 1). Bile ductules and interlobular
bile ducts are composed entirely of cholangiocytes. Inter-
lobular bile ducts then continue into progressively larger
ducts and finally drain into the extrahepatic biliary tract.
The extrahepatic biliary tract is grossly divided into the
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~ Canal of Hering
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Figure |

Portal space with
Interlobular bile ducts

Schematic 3D representation of a complex acinus according to Rappaport. Three portal tracts diverge from one
axis, made up of the bile duct, the hepatic arterial and portal venous branches. At the same time, several trabeculae or laminae
hepatis that are two cells thick arise from these three portal spaces and are oriented towards the efferent veins (central veins).
In the lower part of the drawing, the liver plates are covered by the sinusoidal endothelium and the space of Disse located
between both structures contains tissue fluid, which flows outwards into the lymphatics of the portal zones. The space of Disse
continues with the portal space, and they both make up the interstitial space of the acinus.
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common hepatic duct, the common bile duct, the cystic
duct and the gall bladder [3,9,11]. The intrahepatic and
extrahepatic biliary tract are supplied and nourished by a
network of fine vessels called the peribiliary vascular (or
capillary) plexus, derived from the hepatic artery [3,9].
The liver has a connective envelope, that inflexes at the
level of the hilum and follows ducts and vessels within the
organ until the periportal spaces. The periportal spaces
represent the center of the functional units of the organ.
From the portal tract, the blood supplies feed into vascu-
lar sinusoids that are bounded by laminae of hepatocytes
that finally drain into the efferent central vein [12].

Between the sinusoidal endothelium and the vascular
pole of the hepatocytes lies the space of Disse (perisinu-
soidal space) [12] (Figure 1). This space contains the
extracellular matrix (ECM) and hepatic stellate cells
(HSCs) (also referred to as Ito cells, lipocyte, perisinusoi-
dal or fat-storing cells), and constitutes the framework of
the acinus [6,12,13].

The composition of the ECM within the liver is not homo-
geneous. The connective tissue of the space of Disse is dif-
ferent from the connective tissue of the rest of the liver,
such as the external capsule, septa, periductal and perivas-
cular areas, and portal tracts [12]. Thus, two types of ECM
are present in the normal liver acinus, namely the ECM
sinusoidal tract in the space of Disse with HSCs, and the
ECM in the portal and central vein tracts, where myofi-
broblasts are present [12,14,15].

Therefore, both the space of Disse and portal-central vein
spaces, are considered to be interstitial spaces of the liver
acinus, with the functional ability to synthesize and to
degrade the ECM [12,15]. Thus, the ECM is not only a
scaffold, having a mechanical role in supporting and
maintaining tissue structures, but is also a complex and
dynamic meshwork influencing many biological cell
functions. The ECM has profound influences on the struc-
ture, viability and function of cells. However, it has also
been recognized that the effect of the ECM on cells
extends to immune and inflammatory cells [16]. Since the
biliary microcirculation moves immersed in the ECM of
the liver interstitial spaces, Disse and portal spaces, it is
not bold to propose that in obstructive cholestasis the
liver ECM plays a key etiopathogenic role.

Surgical experimental cholestasis

Obstructive jaundice causes a high rate of morbidity and
mortality in the human clinical field [17]. The serious
repercussions of cholestasis on the liver and on the sys-
temic level [1-3,17] have led to the creation of many
experimental models so as to better understand its patho-
genesis, prophylaxis, and treatment.
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Several surgical techniques for developing extrahepatic
cholestasis have been described, especially in the rat,
based on the section of the bile duct between ligatures
[18,19]. These techniques are models of reversible
obstructive jaundice, since they imply a high incidence of
recanalization of the extrahepatic biliary route, which can
be avoided by placing the duodenum and the distal part
of the stomach between the two ligated and sectioned
ends of the bile duct [19]. These macrosurgical techniques
of extrahepatic cholestasis, called bile duct ligation (BDL),
caused development of infected hilar biliary pseudocysts
by dilation of the proximal end of the bile duct. As a
result, the animals died during the first 2 weeks of the
postoperative period due to sepsis caused by multiple
abscesses in the intraperitoneal, hepatic and pulmonary
areas [20-22].

The hepatic parenchyma in the rat has four lobes: the right
lateral, middle, left lateral and caudate lobes, which in
turn have independent portal and arterial vascularization
and a separate biliar drainage [23] (Figure 2).

This anatomic feature makes it possible to resect the bile
ducts that drain the four lobes of the liver in continuity
with the common bile duct up to the beginning of its
intrapancreatic segment by means of a microsurgical tech-
nique [22,24]. First, the common bile duct is ligated and
sectioned close to its intrapancreatic portion. This maneu-
ver, which produces dilation of the extrahepatic biliary
tract, facilitates the posterior dissection of the common

Figure 2

Representation of the rat's liver made up of four
lobes: median (ML), left lateral (LLL), right lateral
(RLL) and caudate (CL). In the hilum, the relation
between the portal, arterial and biliary branches is appreci-
ated, as well as the inexistence of the gall bladder. CBD,
common bile duct; HA, hepatic artery; PV, portal vein.
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bile duct and the lobular biliary branches of the four
hepatic lobes.

Once the common bile duct is sectioned, it is shifted
upwards. The dissection and section between ligatures of
all the biliary branches that drain the hepatic lobes is pos-
sible by using a binocular operatory microscope (Zeiss,
OPMI 1-FR, Oberkochen, Germany). First, the biliary
branch of the caudate lobe and then the biliary branch of
the right lateral lobe are dissected, ligated and sectioned
close to the hepatic parenchyma (Figure 3). The upward
dissection of the extrahepatic biliary tract makes it possi-
ble to individualize, ligate and section the biliary
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Figure 3

Microsurgical technique of extrahepatic cholestasis
in the rat. The common bile duct and the lobular bile ducts
are sectioned between ligations. The dissection, ligation and
sectioning of the lobular bile ducts must be performed with-
out damaging either the portal or arterial vascularization of
these lobes. CL, caudate lobe; LLL, left lateral lobe; ML, mid-
dle lobe; RLL, right lateral lobe.
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branches draining the middle lobe and, finally, the same
procedure is followed with the biliary branch of the left
lateral lobe [22,24] (Figure 3).

An advantage of the microsurgical technique of extrahe-
patic cholestasis in the rat is the absence of large biliary
pseudocyst formation, which would explain why early
mortality is not present. It is possible that the absence of
the hilus pseudocyst in this microsurgical model of
cholestasis decreases the incidence of hepatopulmonary
infection and thus prevents mortality related to sepsis
[22,24].

The macrosurgical extrahepatic cholestasis in mice con-
sists normally in double ligation of the common bile duct
with 4-0 braided silk sutures and then, sectioning between
the ligatures. Finally, the cystic duct is ligated [25]. How-
ever, the microsurgical technique can be also applied to
mice. The mouse liver, just like the rat's, is composed of
four lobes, with the same names (Figure 4). The main dif-
ference is that the mouse liver has a gall bladder. That is
why, if BDL is performed, it is followed by a marked dila-

ML
LLL

Figure 4

Microsurgical technique for producing extrahepatic
cholestasis in mice. CBD, common bile duct with a long
ligature to facilitate handling; CL, caudate lobe; D, duode-
num; G, gall bladder; LLL, left lateral lobe; LM, medial lobe;
RLL, right lateral lobe.
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tion of the gall bladder, which may lead to perforation
and choleperitoneum [25].

Microsurgical extrahepatic cholestasis in the mouse also
consists in the resection of the four lobular bile ducts in
continuity with the common bile duct (Figure 4), but
cholecystectomy must be added. The dissection, ligation
and section of the bile ducts from the middle and left lat-
eral lobes are simplified if the dissection of the gall blad-
der and the cystic duct is performed beforehand (Figure
5).

The use of broad-spectrum prophylactic antibiotics and
weekly administration of vitamin K (8 mg.kg! intramus-
cularly) has been proposed to reduce the early death of
the animals [25-27]. In rats with microsurgical extrahe-
patic cholestasis, the weekly administration of antibiotics
and vitamin K makes it possible for rodents to survive
over 8 weeks.

In the long-term evolution, both macrosurgical (BDL)
and microsurgical experimental cholestasis models
develop hepatomegaly with a marked ductular prolifera-
tion and fibrosis, but the loss of normal liver architecture,
typical of cirrhosis, is seldom found [18,24,25,28]. In
relation to extrahepatic alterations, jaundice, choluria
[27,28], portal hypertension with enlarged spleen and
collateral portosystemic circulation [24,27-30], hepatic
encephalopathy [31,32] and ascytes [27] stand out. There-
fore, experimental extrahepatic cholestasis is not only a
good model for studying the hepatic pathology related to
biliary obstruction, but also for studying extrahepatic
complications.

However, the aim of this review is limited to coverage of
hepatic pathology related to obstructive cholestasis. The
etiopathogenic mechanisms described in its production
could be compared to those that play the main role in the
evolution of inflammatory response related to other inju-
ries. [7,8,33]. It is worth mentioning that in obstructive
cholestasis and other inflammatory conditions, the tissue
alterations mainly occur in the interstitial space. That is
why their alterations and their respective production
mechanisms are mainly referred to in this context.

The interstitial space and the inflammatory
response

The interstitial space always seems to be the battlefield for
inflammation, whether it is due to trauma [7,8,34], infec-
tion [8,34] or tumors [35-38].

The successive pathophysiological mechanisms that
develop in the interstitial space of tissues when they
undergo acute post-traumatic inflammation are consid-
ered increasingly complex trophic functional systems for
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Figure 5

Cholecystectomy during the production of extrahe-
patic cholestasis in mice. The gall bladder is grasped with
forceps near the fundus. The cystic artery is divided by
caught and then the mesentery is cut with scissors (on top).
The gall bladder is held in the left hand and the cystic duct is
cleared of soft tissue by gentle blunt dissection. Then, the
lobular bile ducts of the median and left lateral lobes (on bot-
tom) are sectioned between ligations.
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using oxygen [7,8,34]. Although their extent is apparently
different, the hypothetical similarity between local and
systemic responses to mechanical injury could be attrib-
uted to a general response mechanism to injury in the
body. This mechanism is based on the successive and pre-
dominant expression of the nervous, immune and endo-
crine pathological functions [7,8].

The nervous or immediate functional system has
ischemia/reperfusion and edema, which work by by diffu-
sion through the injured tissue. This trophic mechanism
has a low energy requirement that does not require oxy-
gen (ischemia), or in some circumstances the oxygen is
not correctly used, with subsequent development of reac-
tive oxygen and nitrogen species (ROS/RNS) (reper-
fusion) (Table 1) [7,8].

The immune or intermediate functional system produces
infiltration of the injured tissue by inflammatory cells,
especially by leukocytes. The immune cell residents in the
interstitial space of the affected tissues and organs are also
activated. Hence the capacity of these inflammatory cells
for extracellular digestion by enzyme release (fermenta-
tion) and intracellular digestion (phagocytosis) could be
associated with a hypothetical trophic capacity. Improper
use of oxygen persists in this immune phase. Also during
this phase the lymphatic circulation continues to play an
important role [7,8,34,39] (Table 1).

During the evolution of the nervous and immune phase
of the inflammatory response, the body looses its more
specialized functions and structures. In this progressive
deconstruction, depletion of the hydrocarbonate, lipid
and protein stores occurs, as well as successive dysfunc-
tion and posterior failure, apoptosis, autophagy or necro-
sis of the specialized epithelium (that is, gastrointestinal,
hepatic, pulmonary and renal). Although these alterations
are considered a harmless consequence of the inflamma-

Table I: Phases of the inflammatory interstitial response

http://www.fibrogenesis.com/content/1/1/6

tory response, they are also mechanisms through which
there is a redistribution of carbohydrates, lipids and
amino acids in the body. Consequently, the redistribution
of metabolic resources responds to the different trophic
requirements of the body as the inflammation progresses.
Nevertheless, consumption of the substrate deposits and
the dysfunction or failure of the specialized epithelia
could also represent an accelerated process of epithelial
dedifferentiation [40].

The hypothetical ability to involute or dedifferentiate
could constitute an effective defense mechanism against
injury since it could make retracing a well-known route
possible, (that is, the prenatal specialization phase during
the last or endocrine phase of the inflammatory
response). This specialization would require or return to
prominence of oxidative metabolism, and thus angiogen-
esis, in the affected epithelial organs, to create a capillary
bed that would make regeneration of the specialized epi-
thelial cells possible or for carrying out the repair through
fibrosis or scarring [7,8,34,39,41] (Table 1).

The liver interstitium in obstructive cholestasis

If we consider that the interstitial alterations produced
during the inflammatory response are common to differ-
ent conditions, the successive pathophysiological mecha-
nisms that develop in the interstitial space of the tissues
when they undergo acute traumatic inflammation [7,8]
would also be expressed in the liver interstitium when suf-
fering inflammation related to obstructive cholestasis.
Thus, in the experimental cholestatic obstructive inflam-
matory liver disease, three inflammatory phenotypes
would be expressed during its evolution: the ischemia/
reperfusion phenotype (nervous), the leukocyte pheno-
type (immune), and the angiogenic phenotype (endo-
crine).

Phase Response

I. Immediate or nervous
Edema

Ischemia/reperfusion

Oxidative and nitrosative stress

Il. Intermediate or immune

Activation of resident inflammatory cells

Infiltration by inflammatory cells
Toxin and bacterial translocation
Enzymatic stress

lll. Late or endocrine

Angiogenesis

Cell proliferation
Cell specialization
Energetic stress
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The hepatic interstitium shares both biochemical and
structural characteristics with other interstitial spaces of
the body. The molecules secreted by the cells occupying
the body tissues interact to create a complex network,
which constitutes the ECM. As there are many different
tissues in the body, there are also different organizations
of cells and matrices [42].

Phylogenetic data generated from recently completed
genome sequencing projects have shown that the mole-
cules of the ECM, especially those related to cell-matrix
adhesion are 'ancient and exquisitely conserved in multi-
cellular animals' [42,43]. In general, two classes of mole-
cules are produced by the ECM: fibrous proteins
(collagen, laminin and elastin) and glycosaminoglycans
(GAGs) that can be non-sulfated (hialuronic acid) and
sulfated [42]. Because of their high net negative charge,
GAGs and proteoglycans play pivotal roles in biological
processes, such as permeoselectivity of basement mem-
branes, activation of chemokines and cytokines, cell-cell
interactions and sequestration of growth factors [44,45].
This is the reason why their change has important impli-
cations in proinflammatory and anti-inflammatory activ-
ities [46-49].

Immediately after complete bile duct obstruction in the
rat, an intense increase (60%) in biliary ductal pressure is
produced [50] and this is quickly followed by pathologi-
cal ECM changes [51]. By contrast, biliary decompression,
by relieving mechanical stress, reverses liver lesions
induced by BDL [52,53]. These experiments reflect the
major importance that mechanical energy has in the etio-
pathogeny of liver injury in relation to biliary obstruction.

The response of the murine liver to the biliary obstructive
injury implies its transcriptional reprogramming favoring
the activation of genes regulating metabolism, cell prolif-
eration and matrix remodeling in a time-restricted and
sequential fashion [54]. Although there are a dominant
activation of metabolic genes in all phases following BDL,
from the immediate (1 day) to the later (21 days) phase,
involvement of specific pathways varied according to the
duration of obstruction [54]. Moreover, where some
genes are upregulated, (that is, genes related to disruption
of lipid metabolism and fibrosis) in the early stage of
cholestasis, other genes are downregulated, (that is, genes
involved in mechanisms of cell protection against the
accumulation of toxic bile acids) [55].

The three inflammatory phenotypes hypothetically
expressed in the murine liver interstitium during long-
term cholestasis induced by BDL could help to integrate
the etiopathogenic mechanisms that have been described.
These inflammatory phenotypes would associate the

http://www.fibrogenesis.com/content/1/1/6

genetic factors (up- and downregulated) with metabolic
and histological alterations.

The ischemia/reperfusion phenotype

After BDL, the liver rat suffers severe hemodynamic alter-
ations, both portal and arterial, to which the effects of
ischemia/reperfusion and oxidative stress can be attrib-
uted. The increase of vascular resistance in the liver portal
system related to extrahepatic cholestasis results in portal
hypertension [56,57] and liver ischemia, associated with
a deficient production of inducible nitric oxide synthase
(iNOS) and NO [58].

The biliary tree is nourished by the peribiliary plexus
[59,60] and around the smaller ducts the plexus gets pro-
gressively simpler and thinner [59]. That is why it could be
assumed that the increase in intraductal pressure with bile
duct dilatation in extrahepatic cholestasis could induce
compression of the peribiliary plexus and, consequently
bile tract ischemia. However, it has been described that
after the decrease in portal vein flow, an increase in
hepatic arterial blood flow or a 'hepatic arterial buffer
response' is produced [61]. Furthermore, after 2 weeks of
BDL in the rat, a significant peribiliary plexus prolifera-
tion is produced that is drained by small venules in both
the portal vein branches and hepatic sinusoids [59].
Ischemia/reperfusion injury has been in turn involved in
the pathogenesis of intrahepatic cholestasis [62].

Rats subjected to BDL could have excessive accumulation
of hydrophobic bile acids, which are considered the main
cause of hepatotoxicity [12]. They exhibited partial
impairment of mitochondrial electron transport chain
functions in the liver and oxidative stress [12,27]. Reten-
tion and accumulation of hydrophobic bile salts (that is,
tauro- and glicochenodeoxycholate) may decrease anti-
oxidant activities of hepatic catalase, glutathione peroxi-
dase, reduced glutathione (GSH) and superoxide
dismutase levels and induce hepatocyte necrosis by acti-
vating mitochondrial membrane permeability transition
[63-67] (Figure 6).

It is accepted that there is a strong correlation between
experimental obstructive jaundice and oxidative stress
[64,65,68]. However, BDL mainly impairs the liver ability
of antioxidant regeneration, especially at the mitochon-
drial level [66]. Thus, it has been demonstrated that treat-
ment with antioxidants improves the hepatic cellular
redox status [68,69]. Indeed, antioxidants have a protec-
tive effect on hepatocellular integrity and liver functions
by inhibiting reactive oxygen species formation
[66,67,69].

In summary, in this early stage of BDL the insufficient sup-

ply of oxygen suffered by the liver, related to hemody-
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Figure 6

Ischemia-revascularization and leukocytic pheno-
types during the evolution of obstructive cholestasis.
Predominance of oxidative stress with edema and enzymatic
stress with infiltration by leukocytes and Kupffer cell activa-
tion. AC: arterial capillar; B: bacteria; C: cholangiocyte; ECM:
extracellular matrix; HSC: hepatic stellate cell; KC: Kupffer
cell; LPS: lipopolysaccharide; MC: mast cell; N: Neutrophyl;
PM: portal myofibroblast; PP: peribiliary arterial plexus; RBC:
red blood cells; SC: stem cells; SS: sinusoidal space; Th;: T
cell h; Thi: intraepithelial lymphocyte.

namic alterations, as well the incorrect use of oxygen
derived from bile salt hepatotoxicity, would constitute the
essential factors that would induce the reduction of
hepatic energy metabolism. Consequently, the liver
reduces its functional capacity to meet tissue metabolic
needs.

Oxidative liver damage could decrease the intracellular
content of proteins participating in energy production
and membrane function, (that is, proteins regulating
water and ion transport) [66] inducing cellular and inter-
stitial edema. Also, increased hepatic lipid peroxidation, a
high oxidative stress marker [66], can occur with increased
membrane permeability, increased degradation of com-
ponents of the ECM and edema [70]. The accumulation of
fragments of GAG has been proposed as an important

http://www.fibrogenesis.com/content/1/1/6

mechanism for edema formation because of the
hydrophilic properties of GAGs, and particularly of
hyaluronan [49,70]. GAGs attract and entrap water and
ions, thereby forming hydrated gels, while permitting the
flow of cellular nutrients [42,49,71]. Under inflammatory
conditions hyaluronan is more polydisperse with a pre-
ponderance of lower-molecular forms, and favors edema-
tous infiltration of the tissues [49] as well as the interstitial
fluid flow and the tissue lymph pressure gradient [72].
Additionally, mechanical strain by bile tree dilatation
related to BDL can lead from mechanotransduction to
modifications in proteoglycans and GAGs remodeling the
interstitium [73,74]. Matrix stiffness and the mechanical
tension that results from cellular adhesion to stiff sub-
strates are instrumental in determining the phenotype of
many cells in culture [75].

Early mechanical stiffness has been described in the rat
CCl, model of fibrosis. This increase in liver stiffness
appears to result from matrix crosslinking, and possibly
other unknown variables, in addition to matrix quantity
[76]. Also, early changes in mechanical stiffness of the
liver could induce myofibroblast differentiation in early
liver diseases [76,77].

The myofibroblast function endows activated hepatic stel-
late cells with the ability to behave like smooth muscle
cells. Accordingly, activated stellate cells respond by con-
traction to vasoactive substances. Also, the subsequent
constriction potentially regulates the diameter of liver vas-
culature and affects hepatic blood flow and pressure [78].

The leukocyte phenotype

Acquiring an active immune phenotype through the
cholestatic liver involves both parenchymal (hepatocytes
and cholangiocytes) and non-parenchymal cells (sinusoi-
dal endothelial cells, Kupffer cells and hepatic myofibrob-
lasts); blood cells that migrate to the liver interstitium [77-
81]. However, the interstitial space seems to orchestrate
the inflammatory immune cell activity post BDL in the
rat.

In particular, ECM fragments and their receptors exhibit
important effects on inflammatory cells and therefore are
considered to be clearly implicated in the evolution of the
immune interstitial response [16,45,80]. Matrix metallo-
proteinase (MMPs) are a family of enzymes that degrade
components of the ECM and are expressed in the diseased
tissues that are inflamed [82], and are particularly present
in cholestatic liver injury [83,84]. The enzymatic destruc-
tion of the ECM causes the immediate release of the medi-
ators sequestered in its network [44,45]. Furthermore,
some fragments of the ECM are molecules that have
proinflammatory functions, which can enhance the
immune response by activating innate and acquired
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immune responses [80]. Fragments of ECM proteins and
hyaluronan have the ability to promote inflammation by
binding Toll-like receptors (TLR)-4 and TLR-2 [81], by
activating the transcriptional regulatory complex of
nuclear factor (NF)xB/IkBa and by production of proin-
flammatory cytokines (that is, TNFa, interleukin (IL)1p)
and chemokines that induce the activation and interstitial
recruitment of leukocytes [80].

Upon activation, T cells undergo polarization with differ-
ent cytokine profiles. Type 1 (Th1) produces interferon
(IFN)y and IL2 and type 2 (Th2) produces IL4, IL5, IL9,
IL10 and IL13. In particular, Th2 cytokines are mostly
involved in mediating allergic inflammation and chronic
fibroproliferative disorders [79].

The liver tissue macrophages, or Kupffer cells, are mainly
found in the periportal area of the lobule and, due to their
location, could play a key role in ischemia/reperfusion
injury [85]. But Kupffer cells are also involved in liver
inflammation mediated by cholestasis through the release
of biologically active substances that promote the immu-
nopathogenic process [86] (Figure 6). Kupffer cells are
clearly altered in biliary obstruction [86], with an
increased phagocytic ability and a marked proinflamma-
tory response to endotoxin and the lipopolysaccharide
binding protein (LBP), which are both increased in extra-
hepatic cholestasis [85-87]. The hypersensibility to endo-
toxin in cholestasis is the cause of increased
proinflammatory cytokine synthesis and increased lipid
peroxidation [88], with a worsening of apoptosis and trig-
ger progressing to necrosis [89]. However, depletion of
Kupffer cells aggravates hepatocellular necrosis and
inflammation in cholestasic mice [90]. The LPS-induced
proinflammatory response is downregulated by high-den-
sity lipoproteins (HDL) that decrease the hepatic proin-
flammatory signals, restores eNOS activity and lowers
portal pressure [91].

Neutrophils are key components of the initial inflamma-
tory response to liver cholestatic injury [92]. In experi-
mental extrahepatic cholestasis, neutrophil interstitial
infiltration occurs in early phases, 3 days after BDL
[5,93,94]. Biliary cells contribute to hepatic inflammation
by producing neutrophil chemoattractants [4]. In long-
term BDL, rats continue to show an important cell migra-
tion around the portal triad and the central vein, associ-
ated with a proinflammatory cytokine liver increase [95].
However, proinflammatory cytokines mediate a heteroge-
neous hepatocyte response to cholestatic stimuli, with
selective hepatocyte down regulation in the periportal
zone [96] (Figure 6).

Both cells, HSCs and myofibroblasts, present in the liver
interstitium have the ability to express an immune pheno-
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type. In particular, HSCs secrete a broad spectrum of
inflammatory mediators, (that is, chemokines, MCP-1
and RANTES). PAF (platelet activation factor), IL8 and
leukocyte adhesion molecules (ICAM-1, VCAM) are
required for the recruitment and activation of leukocytes
in the interstitium [6,13,14,97,98]. The homing of these
cells to the liver interstitial space is favored by HSCs since
these cells express MMPs, which enhance the degradation
of the extracellular matrix [14,97,98]. Therefore, HSCs
change the initial contractile phenotype to the immune
phenotype. It is considered that these phenotypes are
intricately related and even interdependent [97] (Figure
6).

Bacterial translocation is a complication of portal hyper-
tension that is capable of inducing proinflammatory
cytokines [99], and therefore is produced in BDL rats
[99,100]. Furthermore, bacterial translocation provides a
mechanism for the pathogenesis of bacterial infections in
experimental cholestasis [100]. Increased production of
TNFa may play an important role in the process of bacte-
rial translocation in rats with cirrhosis and ascitis because
TNFa blockade is able to downregulate it without increas-
ing the incidence of systemic infections [101].

It has been proposed that the immune response, with
expression of pro and anti-inflammatory mediators and
recruitment of immune cells, may differ over the course of
time of obstructive jaundice [102]. Thus, after the initial
proinflammatory immune response, a regulating anti-
inflammatory activity is established [80] in which T cells
and mast cells could participate [103-106]. Dendritic cell
differentiation in a cholestatic hepatic environment may
lead to Th2 polarization and secretion of IL4 and IL10,
rather than IFNy [107]. In the presence of extrahepatic bil-
iary obstruction, the activation of p38, c-Jun N-terminal
kinase (JNK) and extracellular signal-regulated kinase
(ERK) considered 'stress kinases' [108] would be pro-
duced. p38 MAP kinase in particular has been suggested to
regulate IL10 synthesis through activation of Sp1 tran-
scription factor rather than through the NFkB pathway
[109]. Since IL10 expression is significantly upregulated
14 days after BDL mice [102], anti-inflammatory media-
tors may modulate the production of proinflammatory
cytokines in long-term cholestasis, thus resulting in sus-
ceptibility to bacterial translocation and infection [102].
In this way, ECM molecules, like hyaluronan networks,
might serve as scaffolds to prevent the loss of ECM com-
ponents during inflammation and to sequester proin-
flammatory mediators. That is why a protective or
'counter-inflammatory' role has been suggested for the
highly crosslinked hyaluronan [46,47].

Jaundice is also an important mediator of the liver inflam-

matory response in this experimental model of cholesta-
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sis. Bilirubin is produced via reduction of heme-derived
biliverdin by biliverdin reductase [110]. Bilirubin has a
number of new and interesting biochemical and biologi-
cal properties [111]. In addition to having a protective
role against oxidative stress [111], bilirubin has antiapop-
totic and antimutagenic properties [112] as well as a
strong role as an immune modulator [113,114]. Thus, in
a mouse model of endotoxemia, a single dose of bilirubin
in addition to its antioxidant effects also exerts a strong
anti-inflammatory activity [114].

Cholestatic jaundice also occurs in the setting of sepsis
[114]. Liver abnormalities in sepsis include cholestasis
and hyperbilirubinemia. Hyperbilirubinemia particularly
develops in sepsis in the setting of bacteriemia and pre-
cedes positive blood cultures in a third of all cases [115].

The angiogenic phenotype

The late evolutive phase in the development of surgical
experimental liver cholestasis or endocrine phase is char-
acterized by the predominance of angiogenesis. Angio-
genesis is defined as the growth of new vessels from
preexisting ones [116].

Although the final objective of endothelial growth is to
form new vessels for oxygen, substrates and blood cells
(vascular phase), other functions could also be carried
out, like antioxidative and anti-immune properties,
before the new vessels are formed (prevascular phase)
[117,118).

Angiogenesis requires migration of endothelial cells into
the interstitial space with the subsequent proliferation
and differentiation into capillaries [118]. In BDL rats the
proliferation of bile ductules, like in liver organogenesis,
precedes the proliferation of the escorting microvessels.
After 1 week of BDL, despite the noticeable proliferation
of bile ducts, the peribiliary arterial plexus maintains its
normal architecture. By contrast, after 2 and 4 weeks of
BDL significant microvasculature proliferation is devel-
oped, extending from the peribiliary plexus of bile tracts
[59] (Figure 7).

The main role of the cholangiocyte function in angiogen-
esis post BDL has been corroborated, associating hepatic
artery ligation to cholestasis induced by BDL in the rat.
The liver suffers increased cholangiocyte apoptosis,
impaired cholangiocyte proliferation, decreased cholangi-
ocyte vascular endothelial growth factor (VEGF) secretion
and the disappearance of the peribiliary plexus. Interest-
ingly enough, cholangiocyte functions and, thus, the
integrity of the peribiliary plexus are prevented by treat-
ment with recombinant VEGF-A [119]. Likewise, in
human liver transplantation biliary regeneration occurs as
an initial proliferation of the epithelial compartment, fol-
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Figure 7

Angiogenic phenotype during the evolution of
obstructive cholestasis. Increase in the proliferation of
cholangiocytes with an important development of the peribil-
iar plexus and sinusoidal arterializations with hepatocytary
aplasia. AC: arterial capillar; C: cholangiocyte; ECM: extracel-
lular matrix;H: hepatocyte; M: myofibroblast; PP: peribiliary
arterial plexus; SS: sinusoidal space; ; Thy: T cell hy; Treg:
regulatory T cell.

lowed by the vascular compartment, which seems to be
supported by induced VEGF-A expression by the epithelial
compartment [120].

The ECM plays critical roles in most blood vessel forma-
tion processes. In the angiogenic process, ECM compo-
nents and their fragments provide direction for regulating
vessel cell migration, proliferation, differentiation and
survival [42]. Integrins are the major type of ECM receptor
in endothelial cells [121].

Mast cell hyperplasia is associated with the proliferation
of bile ductules during extrahepatic cholestasis [105,106].
These findings suggest that mast cells accumulating in the
portal triads may be involved in bile duct proliferation. At
the same time, the recanalization of the ligated common
bile duct led to an abrupt and transient increase in the
number of mast cells associated with a rapid increase in
the number of apoptotic biliary epithelial cells. These
findings suggested that liver interstitial mast cells may
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relate to the hepatic remodeling through the induction of
apoptosis [105].

In long-term extrahepatic cholestasis, the predominating
hepatic alteration is marked ductular proliferation with a
mild portal inflammatory infiltration and apoptosis
[122]. However, extrahepatic cholestasis also makes it
possible to create a model of biliary fibrosis in the long
term [122,123] (Figure 8). Hepatic fibrosis post BDL in
rodents is the consequence of an inflammatory process of
biliary origin [124,125]. Liver fibrosis is the excessive
accumulation of ECM proteins including collagen
[6,97,98]. A fundamental concept regarding the patho-
genesis of hepatic fibrosis is that the process represents the
body's wound-healing response to injury and is similar to
the response of other organs to recurrent injury [97]. HSC
activation is a key pathogenic feature that underlies liver
fibrosis because the resulting myofibroblasts are mainly
responsible for connective tissue reassembly [97,98,126].
Multiple and varied stimuli contribute to the induction
and maintenance of activation, including oxidative stress,
neurotransmitters (norepinephrine), the renin-angi-
otensin cascade, cytokines (IL4, IL13), chemokines and
growth factors, that is, transforming growth factor (TGF)-
B1 and connective tissue growth factor (CTGF)
[13,77,97,98,122,126,127]. HSCs are further stimulated
in a paracrine mode by invaded thrombocytes, polymor-
phonuclear leucocytes, mast cells and lymphocytes but
also by activated Kupffer cells, sinusoidal endothelial cells
and hepatocytes to transdifferentiate to myofibroblasts
[81,98,122]. HSCs in the liver could also originate from
the bone marrow and acquire the myofibroblast pheno-
type if the adequate, injurious microenvironment of the
liver is present [13,98] (Figure 7).

Figure 8

Periportal biliary proliferation that invades Rappa-
port spaces | and Il. Peribiliary fibrosis is observed (hema-
toxylin and eosin (H&E) stain, 50 X magnification).
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Hepatic myofibroblasts are the principal cell type respon-
sible for promoting the deposition of crosslinked fibrillar
collagen in the cholestatic liver [6,98]. The coexistence of
epithelial-mesenchymal transition from biliary epithelial
or hepatocyte cells has also been proposed
[13,15,128,129].

During the establishment of liver fibrosis, the persistence
of injurious agents and the inflammatory response are fol-
lowed by 'sinusoidal capillarization', which mainly con-
sists of the transformation of fenestrated hepatic
sinusoids into continuous capillaries, accompanied by the
deposition of a continuous basement membrane near the
endothelial cells and hepatocytes [106]. Mast cells in
fibrotic livers can also be involved in hepatic arterializa-
tion [106,130]. Capillarization hinders the normal
exchanges between plasma and hepatocytes and is the
main cause of worsening liver function [130]. In turn,
hepatic macrophages can regulate the influx of neu-
trophils, which may play a direct role in matrix degrada-
tion [131]. Also, infiltrating neutrophils seem to
accumulate preferentially near the proliferating bile duc-
tules and therefore they could influence the remodeling
biliary epithelial cells [131].

Oxidative and enzymatic stress would, respectively, be
produced during ischemia/reperfusion. Furthermore, leu-
kocyte phenotypes in experimental obstructive cholestasis
could be involved in the pathogenesis of bile duct epithe-
lial cell proliferation and in the looping and reduplication
of the duct and ductules [132]. Thus, it has been suggested
that the hepatoprotective effect of honey in BDL rats could
be attributed to both to their antioxidant and anti-inflam-
matory activities [132].

Intense biliary proliferation in the portal spaces character-
izes long-term extrahepatic microsurgical cholestasis in
the rat. The proliferating bile ducts invade zones 1 and 2
or Rappaport acinus, but not zone 3 or the pericentral
zone [28]. This is why it could be considered an 'atypical’
proliferation [11]. In essence, the pathophysiologic
response of the liver, when bile flow (extrahepatic
cholestasis) and/or portal venous (sinusoidal capillariza-
tion with portal hypertension) are impaired, is atrophy of
the involved hepatic area and hypertrophy of the unin-
volved area [133]. Histopathologically the atrophy-hyper-
trophy complex is characterized by septal fibrosis in the
atrophic liver with biliary piecemeal necrosis, apoptosis
and ductular proliferation [132,133] (Figure 7).

Cholangiocytes are considered biologically important epi-
thelia because of the diverse array of cellular processes in
which they participate, including transport of water, ions
and solutes [134]. The cholangiocytes have been pro-
posed to be the principle target cell for bile acids in the
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liver. Bile acids significantly alter cholangiocyte secretion,
proliferation and survival [135]. Thus, bile acids can
counteract the loss of bile ducts induced by cholinergic
denervation in the BDL rat [136]. However, during their
intense proliferation in obstructive cholestasis, proliferat-
ing cholangiocytes acquire the phenotype of neuroendo-
crine cells and secrete different substances including
neurotransmitters (serotonin) [137], neuropeptides (opi-
oid peptides such as met-enkephalin) [138-141], hor-
mones (prolactin) [142] and their receptors (estrogens)
[11] and growth factors, (that is, insulin-like growth factor
(IGF), platelet-derived growth factor (PDGF), hepatocyte
growth factor (HGF), TGFB and VEGF) [11,136]. A great
deal of evidence indicates that hepatic progenitor cell acti-
vation in the cholestatic liver is regulated by neural and
neuroendocrine factors in modulating non-malignant
and malignant cholangiocyte biology [136].

Microsurgical extrahepatic cholestasis decreases the liver
cytochrome ¢ oxidase activity [143]. Cytochrome oxida-
tion accounts for more than 90% of oxygen consumption
by living organisms on earth, and is essential for vital
organs such as the liver [144]. Therefore, changes in the
phenotype of bile ductule cells in association with a
decrease in cytochrome ¢ oxidase activity in the cholestatic
liver may be attributable to the lower energy requirements

Control

Figure 9
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of the neuroendocrine phenotype expressed by these cells
[143] (Figure 9).

Bile duct ligation in mice has been widely used to define
specific phases of acute and chronic injury and repair in
the different cellular compartments of the liver [145]. Bile
duct ligation elicits dynamic changes in mouse liver.
Acute liver injury, with necrotic and apoptotic cell death
and biliary infarcts, is followed by continuous tissue
repair, lymphocyte and Kupffer cell infiltration and accu-
mulation of collagen during the second week of postoper-
ative evolution. In this way, Kupffer cells abrogate liver
injury in mice by cytokine-dependent mechanisms that
include the production of IL6 [146]. It has been demon-
strated that endogenous hepatocyte growth factor (HGF)
is a reasonable strategy to attenuate hepatic inflamma-
tion, necrosis and apoptosis and it has regenerative poten-
tial against cholestatic hepatitis [147]. Growth hormone
(GH) administration also upregulates hepatocyte prolifer-
ation and attenuates fibrogenic response at day 28 of bile
duct ligation in mice. Therefore, this endocrine pathway is
a potential mechanism to modulate the liver repair
response to bile duct ligation [148]. In mice biliary
obstruction, as a model of liver repair response to biliary
injury, many targeted genes with metabolic-, profibrotic-
and proliferation-specific functions are likely involved in

Cholestasis

Significant inhibition of liver cytochrome oxidase activity after microsurgical extrahepatic cholestasis in the

rat.
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the acute phase of injury (first week) and in the chronic
phase (4 weeks) [149]. However, although cholangiocel-
lular proliferation occurs early in large bile ducts on days
2-3 and in small bile ducts on day 5, it only produces the
rupture of normal liver architecture in the chronic evolu-
tive stages [145]. In summary, these time-related changes
in extrahepatic cholestatic mouse are similar to those pre-
viously described in rat. Since mice are frequently used in
knockout studies, this experimental model could be very
useful to study novel mechanistic/molecular biology
insights into the pathobiology of obstructive cholestasis
in rodent models.

Depression of cholangiocyte mitochondrial respiration in
obstructive cholestasis could induce hypoxia-inducible
factor (HIF)1a activation and overexpression, by a similar
mechanism to one that has been described in tumor cells
[150,151]. This supposed overactivation of HIFla, sec-
ondary to the decrease in oxygen metabolism with
reduced ATP generation, induces the obtaining of energy
via other mechanisms. For example, cholangiocytes could
generate sufficient reduced nicotinamide dinucleotide
phosphate (NADPH) for their biological functions
through the continuous replenishment of Krebs cycle
intermediates [152]. By these anaplerotic mechanisms,
cholangiocytes could obtain sufficient energy not only for
the new functions acquired but also for proliferation
[152,153].

Conclusion

Given the plasticity of HSCs and hepatic parenchymal
cells (hepatocyte-cholangiocyte axis) it should be kept in
mind that while the cholestatic liver develops, they can
express the same phenotypes as the post-traumatic
inflammatory response [7,8] such as: an ischemic/reper-
fusion phenotype (hypoxic) a leukocytic phenotype (with
pro- and anti-immune response) and finally an ang-
iogenic phenotype with cholangiocyte proliferation and
fibrosis.

During these evolutive phases, it could be considered that
the cholagiocyte adopts a progressive metabolic complex-
ity (neuroendocrine), which is associated with a growing
structural complexity. Cholangiocytes proliferation is a
key mechanism capable of conditioning the evolution of
liver damage. In fact, proliferating cholangiocytes acquire
the phenotype of neuroendocrine cells and secrete differ-
ent substances that represent the tools of crosstalk with
other hepatic cells [11]. In this way, the activation of this
neuroendocrine compartment can result in the persist-
ence of the inflammatory response, which would increase
the chance for malignant cell transformation. Thus, this
‘atypical’ biliar proliferation seems to be able to induce an
inflammatory response in the remaining liver and
includes a concept of premalignancy [11].
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In essence, the cholestatic liver changes include fibroblas-
tic cells and extracellular matrix production, inflamma-
tion with an immune response, represented by
lymphocytes, macrophages and dendritic cells and finally,
angiogenesis, shown by newly formed blood vessels
[154]. Essentially, all of the elements that constitute the
inflammatory response participate in this 'host liver reac-
tion', which may have a trophic purpose for the develop-
ment of the stiffened biliary cholestatic liver. The
persistence of this inflammatory response through a
longer evolution would induce an 'atypical' ductular pro-
liferation with the development of a neuroendocrine
compartment [11,36-38] and, finally, a malignant cell
transformation as it occurs in humans by producing bil-
iary tract cancer (cholangiocarcinoma) [136].
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