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Abstract

Motivation: With the advent of meta-‘omics’ data, the use of metabolic networks for the functional

analysis of microbial communities became possible. However, while network-based methods are

widely developed for single organisms, their application to bacterial communities is currently

limited.

Results: Herein, we provide a novel, context-specific reconstruction procedure based on metapro-

teomic and taxonomic data. Without previous knowledge of a high-quality, genome-scale meta-

bolic networks for each different member in a bacterial community, we propose a meta-network

approach, where the expression levels and taxonomic assignments of proteins are used as the

most relevant clues for inferring an active set of reactions. Our approach was applied to draft the

context-specific metabolic networks of two different naphthalene-enriched communities derived

from an anthropogenically influenced, polyaromatic hydrocarbon contaminated soil, with (CN2) or

without (CN1) bio-stimulation. We were able to capture the overall functional differences between

the two conditions at the metabolic level and predict an important activity for the fluorobenzoate

degradation pathway in CN1 and for geraniol metabolism in CN2. Experimental validation was con-

ducted, and good agreement with our computational predictions was observed. We also hypothe-

size different pathway organizations at the organismal level, which is relevant to disentangle the

role of each member in the communities. The approach presented here can be easily transferred to

the analysis of genomic, transcriptomic and metabolomic data.
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1 Introduction

Microbes are shaping the world and, by forming communities, are

causal of geochemical cycles (Mascarelli, 2009), human health

(Kinross et al., 2011), and biotechnological processes (Beloqui et al.,

2008). Thus, it is not surprising to find increasing interest in study-

ing how these consortia lead to function (Carter et al., 2012).

The analysis of microbial communities begins by assessing the

structure of the population, which is currently often achieved using

metagenomic data (Röling et al., 2010). The next step consists of

characterizing the metabolic capacity of the microbial community,

but this has proven to be a considerable challenge, even when using

metatranscriptomic data (Moran et al., 2013). This need has led to

the development of metaproteomics, by which at least the abundance

of metabolically active molecules can be detected (Seifert et al., 2013).

In parallel, methods for analysing these data have arisen and evolved.

From the outset, computational methods have been essential for

capitalizing on data to obtain clear and novel insights (Guazzaroni

and Ferrer, 2011). Traditional approaches described in the literature

typically map data for genes, proteins or metabolites onto well-known

pathways or Gene Ontology (GO) terms (Yamada et al., 2011). This

enables identifying molecular functions of identified proteins in light

of metabolic pathways. However, the high connectivity among biolo-

gical pathways has shifted the focus to networks (Letunic et al., 2008;

Palsson, 2009), which allows us to capture more global properties

(McCloskey et al., 2013). Molecular networks integrate different

pathways and constitute a more general framework for interpreting

‘omics’ data (Bordbar and Palsson, 2012).

On the single-species level, different computational methods

have been developed to analyse ‘omics’ data using genome-scale

metabolic networks. In particular, a number of approaches have

been specifically designed to incorporate gene and protein expres-

sion data (Jerby et al., 2010; Rezola et al., 2013) as well as metabol-

ite and flux levels (Pey et al., 2013; Zamboni et al., 2008) to

characterize context-specific metabolic phenotypes. Based on these

methods, novel insights into the metabolic organization of organ-

isms have been obtained (Vitkin and Shlomi, 2012) and more prac-

tical questions have arisen, such as how to improve the efficiency of

industrial biosynthetic processes (Agren et al., 2013; Boyle and

Silver, 2012; Curran and Alper, 2012; Poblete-Castro et al., 2013).

These approaches start from genome-scale metabolic networks,

which are reconstructed from the annotated genome of an organism

(Bachmann et al., 2013; Zomorrodi et al., 2012) and a reference

metabolic database as input information. Thiele and Palsson (2010)

described the steps for accurately building a metabolic network, which

can be time-consuming, easily taking from 6 months to 2 years. With

the aim of easing this process, the Model SEED provides an integra-

tive and automatic approach that substantially speeds up the time

required to obtain a first network draft (Henry et al., 2010).

For microbial communities, the reconstruction of metabolic net-

works is more complicated and faces new challenges. Ideally, each

organism can be represented by its own metabolic network and its

input/output metabolites define its possible interaction with other

members of the consortia. Should this information be available, re-

cently developed constraint-based modelling approaches could be

applied. In this situation, methods mentioned above to incorporate

‘omics’ data for single organisms could be extended to deal with

bacterial communities.

However, in complex bacterial communities the number of or-

ganisms could be extremely high, most typically lacking a high-qual-

ity, genome-scale metabolic network, which makes the

identification of shared components between organisms even more

complicated. For this reason, current approaches have been applied

to well-known microbial consortia, including only a limited number

of organisms, typically 2 or 3 (dos Santos et al., 2013; Khandelwal

et al., 2013; Zomorrodi and Maranas, 2012).

To overcome this issue, the use of a supraorganism or meta-

network has been proposed (Borenstein, 2012), which ignores boun-

daries for each organism, but models community-level metabolism.

In an early work (Greenblum et al., 2012), using a graph theoretical

approach, metagenomic data were used to reconstruct the human

gut microbiome metanetwork in different conditions, finding key

variations in patients with obesity and inflammatory bowel disease.

In this study, we exploit this metanetwork strategy and present a

novel computational procedure for obtaining a context-specific

metabolic network for a bacterial community using metaproteomic

data. In contrast with the work presented in Greenblum et al.

(2012), we did not use a graph-theoretical approach, but a con-

straint-based one, which takes into account stoichiometric relation-

ships. In particular, our approach takes some ingredients from the

mathematical optimization model presented in the Model SEED

(Henry et al., 2010). However, our approach is fundamentally differ-

ent: it is designed for bacterial communities, not for a single organ-

ism, and focuses on the usage of metaproteomic data, which directly

leads to a contextualized network that gives cohesion to identified

proteins. We also use the taxonomic assignment of the identified pro-

teins to favour the inclusion of enzymes annotated in the genomes of

those organisms in cases where such information is available.

Our approach is applied to draft the metabolic networks of two

different, naphthalene-enriched communities (Guazzaroni et al.,

2013) derived from an anthropogenically influenced, polyaromatic

hydrocarbon (PAH)-contaminated soil with (CN2) or without (CN1)

bio-stimulation with calcium ammonia nitrate, NH4NO3 and

KH2PO4 and the commercial surfactant Iveysol
VR

. Naphthalene, a

model PAH compound, is a common, persistent pollutant in crude oil

and industrial chemical manufactures that can be released into the en-

vironment (i.e. soils) through anthropogenic activities (Kästner, 2000).

Current treatments for naphthalene- and other PAH-contaminated

sites involve the use of bio-surfactants and additional electron ac-

ceptors as well as nitrogen sources (nitrate and ammonia) to improve

the bioavailability and bioremediation of these compounds. It has also

been observed that many bacteria are capable of degrading and grow-

ing on naphthalene (Guazzaroni et al., 2013; Lu et al., 2011), and

their activities might only be limited by environmental conditions.

Thus, gaining insight into the mechanisms underlying naphthalene

degradation can aid in the design of better remediation strategies.

2 Methods

Here, we present our computational procedure for determining a

functional, context-specific metabolic network for bacterial com-

munities using metaproteomic data. Based on a reference metabolic

database (Henry et al., 2010), we seek a functional network that in-

cludes the maximum number of measured proteins (highly likely set,

H) in a given sample. We may have evidence that some proteins are
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not expressed (lowly likely set, L) and, therefore, their participation

is minimized. Then, we complete the network using enzymes in the

database, preferably those annotated in active organisms in the com-

munity (medium likely set, M) (Guazzaroni et al., 2013).

We denote the set of enzymes from the reference database not

included in H, L and M as D, namely D involves the subset of non-

identified enzymes that are currently annotated for organisms not

present in the community. By linking proteins to reactions via

Enzyme Commission (EC) numbers (Bairoch, 2000), sets H, L, M

and D may also refer to reactions.

When we refer to a functional network, we mean a subset of re-

actions that are able to produce biomass at steady state under the

specified medium conditions. We describe these conditions in detail

and introduce the mathematical notation below.

We denote the sets of reactions and compounds in the reference

metabolic database as R and C, respectively. The set of reactions is

typically classified into reversible and irreversible reactions. For con-

venience, both reversible and irreversible reactions are divided into

two non-negative steps: forward and backward reactions. We define

the set B¼ {(f,b)j reaction f and reaction b are the reverse of each

other, f<b}. For each reaction i 2 R we define a flux variable, vi,

and a binary variable, zi, where zi¼1, if vi>0, 0 otherwise. We de-

note the stoichiometric coefficient associated with the metabolite i

2 C and reaction j 2 R as sij. This information is stored in the stoi-

chiometric matrix, S.

The steady-state assumption implies mass balancing and, there-

fore, the accumulation/depletion of metabolites inside the system is

not possible, as observed in Equation (1). The definition of the boun-

daries of the system is an important issue. As noted above, in complex

bacterial communities, the previous knowledge of shared input/output

metabolites is typically not available. For the sake of simplicity, we

only include boundaries for the whole community and remove boun-

daries between individual organisms. Therefore, we obtain a metanet-

work in which the identified proteins from various organisms in the

community are coexpressed. Using exchange reactions, we then define

metabolites that can be taken up from outside (the boundaries of) the

system (culture medium conditions) and those that can be excreted

outside (the boundaries of) the system, which may prevent the net-

work from utilizing unavailable nutrient sources.

Sv ¼ 0 (1)

As our aim is to obtain a metabolic network that supports

growth, we must define a biomass reaction. Given that we are using

a metanetwork strategy, the biomass reaction represents a consensus

equation for all organisms in the community. Note that determining

an appropriate biomass reaction is a challenging task, even for single

organisms (Feist and Palsson, 2010). However, using an existing

biomass reaction from a different organism is a common practice

(Nogales et al., 2008), as many constitutive compounds are shared

across a wide range of organisms. Equation (2) forces a minimum

flux through the biomass reaction (vbio).

vbio�1 (2)

As fluxes are non-negative, their lower bound is 0, as observed in

Equation (3). We also fixed a sufficiently large value for their upper

bounds.

0� vi�1000 8i 2 R (3)

As noted above, our approach takes some elements of the math-

ematical optimization model presented in the Model SEED (Henry

et al., 2010). However, our purpose is different, as we aim to obtain

a context-specific reconstruction for bacterial communities, not for

a single organism, based on metaproteomic data. Instead of a gen-

eral metabolic reconstruction, our aim is to build a network as spe-

cific to the observed phenotype as possible, given the measured data.

To this end, we include important technical differences. In particu-

lar, we use a 3-step iterative procedure based on linear programming

and mixed integer linear programming. We describe each of these

three steps below. A graphical summary of the complete workflow

of our approach can be found in Fig. 1.

2.1 Step 1: basic functional network
Due to regulatory effects, the experimental measurement of proteins

is not sufficient to guarantee their activity (Seifert et al., 2013). This

is typically observed in the conflicting trade-off between enzymes in

the H and L sets (Agren et al., 2012; Becker and Palsson, 2008;

Shlomi et al., 2008). In other words, the use of all enzymes in H may

involve a considerable number of enzymes in L, whose participation

in the reconstruction must be in general avoided (Åkesson et al.,

2004). For this reason, we prefer to leave the decision of selecting

enzymes in H and L to the optimization model, which incorporates

evidence from metaproteomic data in the objective function. This

allows metaproteomic data to influence the resulting network, with-

out directly constraining it.

The objective function is presented in Equation (4). In particular,

the flux activity is guided by its penalization, pi, and bonus, bi, terms,

similar to what is performed in the Model SEED (Henry et al., 2010).

minimise
X

i2R

ðpi � biÞvi (4)

where pi and bi are the sums of various concepts. Weights are

defined such that, by minimizing Equation (4), which is subject to

Equations (1)–(3), we obtain a functional metabolic network in

which fluxes in H will prevail, followed by those in M, then those in

D and, finally, those in L. As in the Model SEED (Henry et al.,

2010), we penalized reversibility changes and favoured the comple-

tion of KEGG modules that were substantially covered with meta-

proteomic data. Finally, in order to avoid the flux bias introduced

by the specific stoichiometric representation of each reaction

(Brochado et al., 2012), weights were rescaled using maximum flux

values obtained from flux variability analysis (Mahadevan and

Schilling, 2003). See Supplementary Material I for further details.

It should be noted that the introduction of continuous fluxes in

Equation (4), in contrast to the Model SEED (Henry et al., 2010),

which includes binary variables (z), does not guarantee the optimal

use of metaproteomic data, i.e. the reactions in H. The removal of

binary variables converts a highly expensive, mixed integer linear

Fig. 1. Proposed reconstruction workflow. The context-specific metabolic net-

work reconstruction algorithm starts from a database of reactions, experi-

mental (metaproteomic) data and knowledge about growth medium as input

data. It involves three steps: (i) construction of a basic network capable of

using the available nutrients to produce biomass; (ii) addition of alternative

pathways for biomass production and (iii) network expansion with pathways

not necessarily involved in biomass production

Metabolic reconstruction of two naphthalene degrading bacterial communities 1773
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program into a linear program, which can be easily solved; however,

optimal solutions obtained from linear programming are extreme

points, which, in conjunction with our minimization objective func-

tion, generate networks involving a limited number of degrees of

freedom. Through Steps 2 and 3 described below, we aim to further

exploit experimental evidence from protein expression data.

2.2 Step 2: alternative pathways for biomass production
Once Step 1 is solved, we obtain a list of active reactions, N1. In this

second step, we aim to capture alternative pathways for biomass

production that are not included in N1 using the reactions in H, but

not in L. To this end, we block each of the reactions in N1, one-

by-one, and resolve the linear program posed in Step 1, i.e. Equation

(4), which is subject to Equations (1)–(3). As a result, we obtain a

number, card(N1), of functional networks. The rule here is to merge

N1 with those networks that include additional reactions in H, but

not in L. Therefore, we obtain a functional network (N2) that makes

better use of the metaproteomic data for biomass production.

Note that the solution from Step 1 is the result of solving a linear

program, whose optimal solution is an extreme point, a solution

with zero degrees of freedom. For that reason, all the reactions

involved in N1 are necessary to produce biomass. As relevant alter-

native routes for biomass production are added into the model using

Step 2, the number of degrees of freedom of the resulting solution is

increased, while reducing the number of essential reactions/enzymes.

2.3 Step 3: network expansion
Once Step 2 is concluded, we may not have included all measured

enzymes in N2. We denote K as a particular set of these enzymes

that we aim to include in the reconstruction. Note that K will typic-

ally involve all enzymes from H that are not included in N2, possibly

obtaining a maximum use of the metaproteomic data. However, if

our purpose is to emphasize the metabolic differences between two

conditions under study, K could involve a subset of them, namely,

those that are differentially expressed. To achieve this goal, we ad-

dress one further optimization problem.

We begin from Equations (1) and (3). The constraint on biomass

production, Equation (2), is removed, as it is currently satisfied in

N2. We now make use of binary variables, zi. In particular,

Equation (5) relates v and z variables, where M is the maximum

flux, and the minimum (non-zero) flux is 1. Equation (6) prevents

reaction f and its reverse b from being active simultaneously.

zi� vi�Mzi 8i 2 R (5)

zf þ zb�1 8ðf ; bÞ 2 B (6)

Then, for each enzyme, j 2 K, we introduce a continuous vari-

able, ej, with a value between 0 and 1, as observed in Equation (7).

In Equation (8), if any of the set of reactions, Rj, that are associated

with enzyme j 2 K cannot be activated, then ej is necessarily 1; there-

fore, to maximize the use of the enzymes in K, we must minimize the

ej variables. This is achieved by amending the objective function as

in Equation (9). In particular, for the ej variables, we assign the max-

imum overall penalty, wj.

0� ej�1 8j 2 K (7)

X

i2Rj

zi þ ej�1 8j 2 K (8)

Minimise
X

i2R

pi � bið Þvi þ
X

j2K

wjej (9)

Equation (9), which is subject to Equations (1), (3), and (5)–(9), is

a mixed linear integer program and empirical evidence shows that it is

not an expensive problem (<100 s in the instances considered in

Section 3). Active reactions from this optimization problem are added

to N2 and define the final resulting metabolic network, N3.

3. Results

3.1 Reconstruction of the CN1 and CN2 functional

networks
The approach presented above was applied to draft the context-spe-

cific metabolic networks of two different naphthalene-enriched

communities, CN1 and CN2 (Guazzaroni et al., 2013). These com-

munities were obtained from an anthropogenically influenced,

PAH-contaminated soil with (CN2) or without (CN1) bio-stimula-

tion. Metaproteomic data from CN1 and CN2 constituted the input

information in our study (Guazzaroni et al., 2013).

In our analysis, we only considered proteins with an annotated

metabolic function, i.e. with an EC number, namely 570 out of

1234 measured proteins, collectively involving 327 unique EC iden-

tifiers. Based on the relative protein concentrations, we classified en-

zymes found in CN1 and CN2 (Guazzaroni et al., 2013) into the H,

L, M and K sets as follows (see Section 2). For one scenario, enzymes

listed in that sample were included in the H set, while enzymes that

did not appear in that sample, but did appear in the other scenario,

were included in the L set. As we were interested in obtaining net-

works that emphasized the differences between both scenarios, the

K set involved up-regulated enzymes in each scenario. In particular,

enzymes showing a 1.5-fold change in their relative protein concen-

trations in one sample compared with the other were considered up-

regulated.

Note that the relative protein concentrations were calculated as

previously described (Guazzaroni et al., 2013). Briefly, similar to

IBAQ values (Arike et al., 2012), protein intensities per sample

(CN1 or CN2) were calculated as the average peptide intensities in

the replicas. Obtained quantitative values were normalized by me-

dian division. Then, these protein intensities (per sample) were

summed and the relative concentration of an individual protein (per

sample) was calculated by dividing the protein intensities by the

summed protein intensities. Replicate values were finally averaged.

This approach should reflect the individual protein abundance in

each community proteome.

Using full-length and partial 16S rRNA gene sequences obtained

through a metagenomic approach (Guazzaroni et al., 2013), it was

found that 13 and 12 distinct species constituted the CN1 and CN2

communities, respectively, with only two species (Achromobacter

and Azospirillum) conforming to the common set (see

Supplementary Material I). While Azospirillum, Comamonas,

Achromobacter and Pseudoxanthomonas species dominated CN1,

Pseudomonas and Achromobacter species dominated CN2. This in-

formation was used to aid in the context-specific network recon-

struction process. In particular, the set of related genome

annotations for CN1 and CN2, which was established on the basis

of phylogenetic affiliations (Guazzaroni et al., 2013), was obtained

from the KEGG website. The enzymes (ECs) from these genome an-

notations, which were neither included in H nor L, were included in

the M set. Full details regarding these organisms and genome anno-

tations can be found in the Supplementary Material I.

The list of reactions and metabolites was downloaded from the

Model SEED database (Henry et al., 2010). The above enzyme lists

were translated into reaction lists using their EC numbers annotated

in this database. The D set comprised ECs (enzymes) from the

Model SEED database not included in H, M and L. When a reaction
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was associated with more than one EC belonging to different sets,

the reaction was assigned to the most favourable set. For example, if

a reaction could be catalyzed by one enzyme from H and one from

L, then the reaction was assigned to H.

A minimal medium based on naphthalene as the only carbon

source (as was used in the enrichment cultures; Guazzaroni et al.,

2013) was defined for the reconstruction process (see

Supplementary Material I). The biomass reaction was taken from a

Pseudomonas reconstruction that was provided by SEED

(rxn12834), as this specie plays a major role in CN2. We also used

annotated modules from KEGG.

The computation time for both CN1 and CN2 reconstruction

was <200 s. All computations were performed on a 64-bit Windows

XP machine with an Intel Core 2 CPU at 2.4 GHz and 8 GB of

RAM. The code was written in MATLAB and CPLEX was used to

solve the linear optimization problems.

The complete details of the reactions, metabolites, and enzymes

involved in the contextualized reconstruction of CN1 and CN2 can be

found in the Supplementary Material II. Note that randomly perturb-

ing the selected weights with a 10% uniform noise only changed a

few reactions, giving rise to very similar networks (see Supplementary

Material I). For CN1, we used 148 of the 206 enzymes from H and

21 enzymes from L, and we completed the network with 274 and 165

enzymes from M and D, respectively. Similarly, for CN2, we em-

ployed 259 of the 311 enzymes from H and 1 enzyme from L; and we

completed the network with 267 and 282 enzymes from M and D, re-

spectively. In both cases, the use of enzymes from H was remarkable,

corresponding to >70% of the measured data, which was increased

to �90% for up-regulated enzymes (K set). In contrast, the number of

enzymes in L required a more careful reading.

As noted above, there are reactions in the Model SEED database

that involve more than one EC number and are, therefore, catalyzed

by different enzymes. For example, if a reaction is catalyzed by one

enzyme from H and one from L, we assume that the flux through

this reaction is supported by the enzyme from H, which is consistent

with the experimental data. An inconsistency arises when reactions

that are exclusively catalyzed by enzymes in L are included in the re-

construction. We found four reactions of this type in CN1, which

collectively involved three enzymes of 21. In particular, two of these

inconsistent reactions in CN1 were associated with EC 2.5.1.9

(riboflavin synthase) and are required to produce FAD (flavin aden-

ine dinucleotide), an essential metabolite for biomass production.

The third reaction was linked to EC 2.4.1.227 and is required to

produce the peptidoglycan subunit of P. putida KT2440, which is

involved in biomass production. As this metabolite is specific for

Pseudomonas, which is not involved in CN1, the need for this en-

zyme is unlikely. The fourth reaction is associated with EC 3.5.1.18

and is activated to support up-regulated enzymes. There is only one

inconsistent reaction in CN2, which is associated with EC 2.7.7.38

and their activation is due to the same reason as for EC 3.5.1.18.

The inclusion of these enzymes in CN1 is not in accord with the evi-

dence from metaproteomic data, which may be attributed to three

possible causes: (i) incompleteness of the Model SEED database; (ii)

inaccuracy of the biomass reaction or (iii) a lack of resolution in the

metaproteomic data. To address this issue, further experimental evi-

dence is required.

With the resulting context-specific networks for CN1 and CN2,

we decided to evaluate how single-reaction deletions could hamper

their ability to produce biomass. CN2 turned out to be more resilient,

as only 22 single-reaction deletions prevented its biomass production

capacity, in contrast with 42 single-reaction deletions in CN1.

However, the overlap was significant, as 19 of those reactions

affected both networks. When deleting enzymes related to a given EC

number, 31 instances affected growth in CN2 and 42 in CN1, with

23 of them being the same in both cases. In addition, we substituted

naphthalene as the only carbon source with each of the compounds

present in the reconstructed networks. CN1 was able to take advan-

tage of 26 compounds to produce biomass, while CN2 exhibited the-

oretical ability to use 446 compounds. We conducted the same

analysis with the nitrogen, phosphorus and sulphur sources, finding

that CN1 could make use of 166, 114 and 34 compounds, respect-

ively, while CN2 could make use of 270, 212 and 104 compounds,

respectively. Although these results should be taken with caution,

they suggest that the metabolism of CN2 is more robust and varied

than CN1. The fact that the availability of substrates is promoted

during the bio-stimulation process used for obtaining a CN2 commu-

nity (Guazzaroni et al., 2013) might agree with this hypothesis.

3.2 CN1 and CN2 pathway analysis
To obtain a global picture of the pathways characterized in the CN1

and CN2 contextualized networks, we resorted to the use of KEGG

maps (see Supplementary Material I). In particular, to extract the

functional differences between CN1 and CN2, we compared the

KEGG maps using a score, Jp, derived from the Jaccard distance. In

particular, for each KEGG map, we first calculated the Jaccard

index, J, between CN1 and CN2, with J ¼ jA \ Bj=jA [ Bj, where A

and B represent the set of reactions involved in CN1 and CN2, re-

spectively, in a given KEGG map. Then, we determined the Jaccard

distance, Jd¼1� J, which measures the dissimilarity between CN1

and CN2 for a particular pathway. Finally, we multiplied the

Jaccard distance by the maximum between the number of reactions

that belonged to CN1, but not to CN2, and vice versa, i.e.

Jp ¼ Jd �max ðjA \ Bj; jA \ BjÞ. This score gives more importance to

pathways where the CN1 and/or CN2 networks show high coverage

and share few reactions. An illustration of this process can be found

in Supplementary Material I for the ‘Histidine metabolism’ KEGG

map (Supplementary Fig. S1). Functional differences between CN1

and CN2 can be analysed via Jp, where the higher the value of Jp,

the greater the difference between CN1 and CN2 and, hence, the

more relevant the pathway.

We ranked the KEGG pathways according to this measure for

the CN1 and CN2 metabolic networks. Table 1 shows some of the

top most different KEGG pathways between CN1 and CN2. We re-

peated the same analysis in two additional cases: (1) direct use of

metaproteomic data from CN1 and CN2, neglecting our network

reconstruction approach (‘Rank only metaproteomics’); (2) removal

of metaproteomic data, only considering CN1 and CN2 taxonomic

data and their annotated genomes in our network reconstruction ap-

proach (‘Rank taxonomics’). As observed in Table 1, substantial dif-

ferences can be found among them, which emphasize the effect of

our reconstruction approach, showing a clear contribution of prote-

omics to genomics data. The full details can be found in the

Supplementary Material I and III.

Table 1 shows clear differences between CN1 and CN2. The ge-

raniol degradation pathway (map00281) was predicted to be com-

pletely functional in CN2, but inactive in CN1. In CN2, enzymes

from H in this pathway were complemented with enzymes from M

and D. In contrast, in CN1, enzymes from H were discarded from

the reconstruction. On the other hand, the fluorobenzoate degrad-

ation pathway (map00364) was filled in to some extent in the CN1

reconstruction, whereas it was inactive in CN2. Note that these dif-

ferences between CN1 and CN2 cannot be easily obtained from the

other two cases considered (see ‘Rank only metaproteomics’ and

Metabolic reconstruction of two naphthalene degrading bacterial communities 1775

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/31/11/1771/2364849 by H
ospital U

niversitano C
entral de Asturias user on 31 January 2024

s
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btv036/-/DC1
ere below 
econds
s
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btv036/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btv036/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btv036/-/DC1
s
s
s
4
3
;
s
s
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btv036/-/DC1
-
,
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btv036/-/DC1
``
''
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btv036/-/DC1
`
'
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btv036/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btv036/-/DC1
`


‘Rank taxonomics’). This is particularly relevant since these differ-

ences between CN1 and CN2 are experimentally validated below,

which shows the predictive power and need of the approach pre-

sented here.

3.3 Experimental analysis of fluorobenzoate and

geraniol metabolism in CN1 and CN2
Given the high rank obtained by the fluorobenzoate and geraniol

degradation pathways and its specificity for CN1 and CN2, respect-

ively, we evaluated the correctness of these hypotheses. First, in sil-

ico stoichiometric analysis showed that CN1 was capable of

growing with fluorobenzoate as the sole carbon source, and the

same was observed for CN2 and geraniol, after some minor correc-

tions to the obtained networks. In particular, for CN1 to produce

biomass from fluorobenzoate, we needed to allow for the net pro-

duction of fluoride (F-), which is found in abundance in soils

(McQuaker and Gurney, 1977) and in bacterial cultures as cellular

degradation by-product (Hidde Boersma et al., 2004). In the case of

CN2 and geraniol, we needed to change the direction of reaction

rxn07886 (geranic acid CoA-transferase) in the SEED Database,

which converts geranic acid into trans-geranyl-CoA and was origin-

ally defined to act in the opposite direction. Based on KEGG

(map00281) and existing literature (Clemente-Soto et al., 2014), we

found that this reaction is commonly annotated in the direction pro-

posed. Note here that the opposite is not possible, i.e. the growth of

CN2 and CN1 on fluorobenzote and geraniol, respectively, as they

are not active in CN2 and CN1, respectively. It is important to clar-

ify that these issues come from inaccuracies in The SEED Model

database and not from the algorithm presented here. When doing

this modification prior to the reconstruction process, the resulting

networks directly grow on fluorobenzoate in CN1 and geraniol in

CN2.

Secondly, in order to discard that the relevance of fluoroben-

zoate in CN1 and geraniol in CN2 is an artefact derived from an in-

accurate biomass equation, we conduct a sensitivity analysis with

different existing biomass equations, finding that the major conclu-

sions achieved are conserved in most cases (see Supplementary

Material I for details).

Experimental validation assays were conducted to prove the ex-

tent of agreement with our computational predictions. For that, we

set up CN1 and CN2 enrichment cultures using previously described

conditions (Guazzaroni et al., 2013); instead of naphthalene as the

carbon source, geraniol and 3/4-fluorobenzoate (0.1% w/v) were

used, and samples were taken at different time points (see

Supplementary Material I). Fingerprinting by Gas Chromatography-

Mass Spectrometry (GC-MS) was used to confirm the presence of

the initial substrates as well as the existence of degradation inter-

mediates in both cultures. A careful inspection of the MS signatures

of the initial metabolites known to participate in geraniol

(map00281) and 3/4-fluorobenzoate (map00364) degradation (see

Supplementary Material I) confirmed the presence of 3/4-fluorocate-

chol in CN1 and citral and geranic acid in CN2. These findings dem-

onstrated that the fluorobenzoate-degradation pathway occurred or

was active in CN1, while the geraniol-degradation pathway is active

in CN2. This was also confirmed by measuring the OD600 of the en-

richment cultures at different time intervals (Fig. 2). As shown, CN1

grew only in the presence of fluorobenzoate (0.1% w/v), whereas

CN2 grew only in the presence of geraniol (0.1% w/v).

3.4 Contributions of bacteria to the CN1 and CN2

functional networks
We also attempted to quantify the contributions of particular sets of

microbes to the entire reconstructed, context-specific metabolic net-

work, where multiple proteins from multiple organisms are coex-

pressed. This is an important advance because the complement of

proteins used to metabolize recalcitrant pollutants and the specific

roles of different bacterial members within a consortium in pollutant

(or other potential carbon/energy sources) deconstruction are not

well explored.

As the population diversity and structures of the two enrichment

cultures were relatively low and well characterized, the taxonomic

affiliations of the proteins quantified in the shotgun metaproteomes

could be unambiguously established (Guazzaroni et al., 2013).

Based on this, for CN1 and CN2, we knew which members of the

community were actually expressing the enzymes used to catalyse

each reaction in H.

Table 1. Ranking of KEGG pathways after reconstruction using functional network data for CN1 and CN2

KEGGID Name CN1 CN2 Score Rank Rank (metaproteomics) Rank (taxonomics)

map00071 Fatty acid metabolism 4 27 19.5926 1 22 1

map00062 Fatty acid elongation 0 15 15 2 42 12

map00330 Arginine and proline metabolism 17 31 14.0541 3 19 10

map00540 Lipopolysaccharide biosynthesis 3 18 12.5 4 54 39

map00760 Nicotinate and nicotinamide metabolism 13 25 12.4667 5 24 31

map00230 Purine metabolism 42 57 12 6 5 23

map00281 Geraniol degradation 0 12 12 7 37 –

map00260 Glycine, serine and threonine metabolism 14 26 9.31034 8 33 21

map00400 Phenylalanine, tyrosine and tryptophan biosynthesis 12 24 8.61538 9 14 79

map00500 Starch and sucrose metabolism 5 10 8.35714 10 62 8

map00523 Polyketide sugar unit biosynthesis 0 8 8 11 20 6

map00620 Pyruvate metabolism 12 23 7.8 12 36 28

map00130 Ubiquinone and other terpenoid-quinone biosynthesis 2 9 7.2 13 2 7

map00364 Fluorobenzoate degradation 7 0 7 14 102 –

map00650 Butanoate metabolism 14 12 6.85714 15 43 33

The columns ‘CN1’ and ‘CN2’ indicate the number of reactions involved in CN1 and CN2 reconstructions active in the KEGG pathway under consideration.

The ‘Rank’ column indicates the position of KEGG pathways according to descending order of the obtained score. The ‘Rank (metaproteomics)’ column indicates

the rank obtained for KEGG pathways before the reconstruction process, namely with the score exclusively calculated from metaproteomic data of CN1 and

CN2. The ‘Rank (taxonomics)’ indicates the rank obtained after the reconstruction only with taxonomic data, i.e. with empty H, L and K sets

1776 L.Tobalina et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/31/11/1771/2364849 by H
ospital U

niversitano C
entral de Asturias user on 31 January 2024

,
i
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btv036/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btv036/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btv036/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btv036/-/DC1
-
s
s


To evaluate the role of each bacterial member in CN1 and CN2

at the functional level, we determined its contribution to each

KEGG map. The contribution was determined as the number of

times a bacterium appeared in a KEGG map divided by its total

number of active reactions. For this analysis, we only took into ac-

count the reactions in H and M that were involved in the CN1 and

CN2 reconstructed networks. As noted above, the taxonomic affili-

ation was known for the reactions in H. In contrast, for the reac-

tions in M, different members of the community might be involved

in a reaction. For simplicity, in these situations, if possible, we as-

signed an organism that was previously included in the KEGG map

via the reactions from H. Full details as to the taxonomic assignment

of reactions involved in the CN1 and CN2 metabolic networks can

be found in Supplementary Material IV.

Figure 3 shows the contribution of each organism found in both

CN1 and CN2 to each KEGG map. Pathways were reconstructed

for the most abundant populations, which included composite gen-

omes for populations closely related to sequenced strains of

Achromobacter, Azospirillum, Comamonas, Mesorhizobium,

Microbacterium, Planctomycetes, Pseudoxanthomonas,

Singulisphaera and Pseudomonas.

Identification of genes for naphthalene processing (map00626)

and metabolic reconstructions suggested Achromobacter followed

by Mesorhizobium and Pseudoxanthomonas in CN1 and mainly

Achromobacter in CN2 as key groups for naphthalene degradation.

In addition, we identified Achromobacter, Azospirillum, and

Comamonas in CN1 and Azospirillum as well as Pseudomonas in

CN2 as groups that might primarily metabolize low molecular

weight molecules produced from naphthalene. It could also be

observed that, while metabolic reconstructions indicated a central

role played by Achromobacter in naphthalene degradation, multiple

bacteria participated in the active pathways (see Supplementary

Material I for further details; Figs. S3–S5). A careful examination of

the data presented in Fig. 3 clearly leads to a different pathway

organization at the organismal level.

4 Conclusion

In this study, we present a novel computational procedure for ob-

taining a context-specific functional metabolic network for a

bacterial community using metaproteomic data. Our approach was

based on the mathematical optimization model presented in the

Model SEED (Henry et al., 2010). However, we adapt this model to

incorporate metaproteomic data and obtain a context-specific meta-

network in which the identified proteins from the multiple organ-

isms making up the community are coexpressed. To this end, we

also include important technical differences. In particular, we use a

3-step iterative procedure based on linear programming and mixed

integer linear programming.

Our approach is an alternative to previously reported methods

(dos Santos et al., 2013; Khandelwal et al., 2013; Zomorrodi and

Maranas, 2012), where the role of each organism is explicitly repre-

sented in a different metabolic compartment and, therefore, their re-

lationships can be directly analysed. These methods require the

genome-scale metabolic network of each organism in the commu-

nity as input data, which, in consortia involving a high number of

species as we have here, is typically not available; therefore, we turn

to a metanetwork approach, which involves several assumptions.

First, we need a consensus biomass equation that represents the

metabolic requirements of the community to support growth. With

metametabolomics approaches being developed, it is expected that

consensus biomass equations will be refined in the near future.

Second, a free exchange of metabolites between species is allowed,

as boundaries between individual organisms are not defined.

However, a metanetwork could serve as a basis to disentangle the

role of each organism in the community, as suggested in Section 3.4.

More sophisticated approaches need to be developed for this task,

for example, analysing the role of a single organism in the context of

the entire metanetwork.

Our approach was applied to draft the context-specific metabolic

networks of two different naphthalene-enriched communities

(Guazzaroni et al., 2013). Analysis of the resilience to single-reaction

elimination and the ability to grow on different sources suggests that

CN2 metabolism is more varied than CN1. Then, we used KEGG

maps to obtain a global picture of the reconstructed draft networks.

We were able to capture the overall functional differences between

Fig. 2. Growth curve of CN1 and CN2 enrichment cultures in Bushnell Hass

minimal medium in the presence of 0.1% (w/v) 3/4-fluorobenzoate and gera-

niol, respectively, at 30�C and 250 rpm. As shown, within the examined time

frame, no appreciable growth was observed in cultures of the CN1 and CN2

consortia in the presence of geraniol and fluorobenzoate, respectively Fig. 3. Heatmap showing the contributions of the most relevant bacterial

members of CN1 and CN2 to the KEGG maps. Relative contributions of each

of the 13 distinct species found to constitute the CN1 and CN2 communities

(Guazzaroni et al., 2013) are differentiated by a colour code. A high-resolution

image can be found in Supplementary Material V
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CN1 and CN2 at the metabolic level. We showed that CN1 and CN2

utilize different metabolic pathways to synthesize essential metabolites

for growth. In particular, we hypothesized an important role for the

fluorobenzoate degradation pathway in CN1 and for geraniol metab-

olism in CN2. Experimental validation was conducted and good

agreement with our computational predictions was observed.

On the other hand, we showed that these metabolic differences

lead to a different pathway organization at the organismal level. For

example, while naphthalene degradation (map00626) seems to be

supported by Achromobacter in both CN1 and CN2,

Mesorhizobium septentrionale and Pseudoxanthomonas japonensis

may be involved in an alternative pathway in CN1. In addition,

while metagenomic sequences outlined the broad metabolic capabil-

ities of the abundant populations present in an adapted community,

proteomics-guided metabolic reconstructions allowed us to focus on

the pathways that were actually expressed and refine the assignment

of roles for community members not only in naphthalene degrad-

ation but also in the assimilation of the low molecular weight com-

pounds produced from it.

These results show that network-based methods represent a

promising strategy for exploiting the value of data and the available

bioinformatics tools, allowing us to obtain a better understanding of

biological systems. As the available meta-omics data from scientific

studies at different levels are increasing, reconstruction procedures

will play an important role in disentangling contexts-specific meta-

bolic phenotypes. The approach presented here can be extended to

meta-genomic and meta-transcriptomic data and will clearly benefit

from the availability of meta-metabolomic data, mainly to address

the failure to detect all different enzymes (ECs) that catalyze differ-

ent reactions. Amending our approach to include these data is

straightforward.
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Kästner,M. (2000) Degradation of aromatic and polyaromatic compounds.

In: Rehm,H.J., and Reed,G. (eds) Biotechnology, Environmental

Processes.Wiley Vch, Germany, pp. 211–271.

Khandelwal,R.A. et al. (2013) Community flux balance analysis for microbial

consortia at balanced growth. PLoS ONE, 8, e64567.

Kinross,J. et al. (2011) Gut microbiome-host interactions in health and dis-

ease. Genome Med., 3, 14.

Letunic,I. et al. (2008) iPath: interactive exploration of biochemical pathways

and networks. Trends Biochem. Sci., 33, 101–103.

Lu,X.-Y. et al. (2011) Bacteria-mediated PAH degradation in soil and sedi-

ment. Appl. Microbiol. Biotechnol., 89, 1357–1371.

Mahadevan,R. and Schilling,C.H. (2003) The effects of alternate optimal solu-

tions in constraint-based genome-scale metabolic models. Metab. Eng., 5,

264–276.

Mascarelli,A.L. (2009) Geomicrobiology: low life. Nature, 459, 770–773.

McCloskey,D. et al. (2013) Basic and applied uses of genome-scale metabolic

network reconstructions of Escherichia coli. Mol. Syst. Biol., 9, 661.

McQuaker,N.R. and Gurney,M. (1977) Determination of total fluoride in soil

and vegetation using an alkali fusion-selective ion electrode technique. Anal.

Chem., 49, 53–56.

Moran,M.A. et al. (2013) Sizing up metatranscriptomics. ISME J., 7,

237–243.

Nogales,J. et al. (2008) A genome-scale metabolic reconstruction of

Pseudomonas putida KT2440: iJN746 as a cell factory. BMC Syst. Biol., 2,

79.

Palsson,B. (2009) Metabolic systems biology. FEBS Lett., 583, 3900–3904.

1778 L.Tobalina et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/31/11/1771/2364849 by H
ospital U

niversitano C
entral de Asturias user on 31 January 2024

s
s
s
s
s


Pey,J. et al. (2013) A network-based approach for predicting key enzymes ex-

plaining metabolite abundance alterations in a disease phenotype. BMC

Syst. Biol., 7, 62.

Poblete-Castro,I. et al. (2013) In-silico-driven metabolic engineering of

Pseudomonas putida for enhanced production of poly-hydroxyalkanoates.

Metab. Eng., 15, 113–123.

Rezola,A. et al. (2013) Selection of human tissue-specific elementary flux

modes using gene expression data. Bioinformatics, 29, 2009–2016.
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