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Abstract: 

The calculation of dynamic stresses plays a crucial role in the fatigue design and fatigue life 

prediction of structures. However, the uncertainty in the structural dynamic properties, i.e.,  

stiffness, mass and damping, as well as the necessary use of simplified loading models, are the 

main sources of uncertainty in fatigue. In this work, a procedure for estimating dynamic stresses 

is proposed based on the real responses of the structure under dynamic loadings and the modal 

parameters of the structure, i.e., natural frequencies, damping ratios and mode shapes. The 

proposed methodology was validated by experimental tests in a simply-supported glass beam 

and a rectangular glass plate pinned-supported at 3 corners, both subject to dynamic random 

loads. The estimated stresses are compared with those measured with strain gages attached to 

some points of the structures. The estimated stresses are in good agreement with those provided 

by the strain gages which demonstrates that the methodology can be used to estimate more 

accurate stress time-histories. 
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1 Introduction 

Fatigue is one of the ultimate limit states that has to be verified in structures and mechanical 

components. In fatigue design, remaining fatigue life and fatigue retrofitting, the main sources of 

uncertainty are the fatigue material characterization and the real hot spot stress time histories. 

Fatigue analysis can be required at the design stage, during construction or in actual use. When 

the structure is in service, fatigue analysis can be applied to calculate performance, to compare 

with earlier calculations or to make decisions about the serviceability of the structure (fatigue 

retrofitting, out of service). Planning, testing and evaluation of fatigue data is a recursive subject 

appearing in the existing literature on which laboratories and research groups dealing with 

fatigue design are interested on. 

As regarding the fatigue material characterization, no specific model seems to be generally 

accepted by the community, although the S-N field and the Miner Rule finds good acceptance 

both by the academic milieu as well as by research groups concerned with industrial applications 

[1, 2].  

With respect to the stress time-histories, the uncertainty is considerably high because the results 

are mainly influenced by inaccuracies of the analytical or numerical model of the structure and 

by the use of simplified load models which does not represent, with the needed accuracy, the 

load characteristics (variable amplitude, random nature, frequency bandwidth, sequence effect, 

etc.) A numerical model of the structure, e.g. a Finite Element Model (FE;), is generally used to 

estimate the stresses but the stiffness, mass and damping properties of the structure can only be 

estimated in an approximate way. With respect to the loading, the real loads acting on structures 

such as wind, traffic, sea waves, etc., usually excites several modes of the structure so a broad 

band frequency fatigue process occurs and the simplified loading models commonly used are not 
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able to reproduce with accuracy the real loading [3, 4, 5]. Moreover, sometimes the load 

spectrum is changed after a number of years by a modified use of the structure, which differs 

from the initial expectations [6] and the load spectrum must be evaluated again. 

Since the main difficulties in fatigue design are due to inaccuracies in the dynamic properties of 

the structure and its broad band response, it seems reasonable to combine modal analysis with 

analytical models in order to reduce the uncertainties in the time stress-histories of the fatigue 

process [7, 8, 9, 10]. 

Modal analysis techniques are commonly used to determine the modal parameters of a system 

and have been applied for many years in mechanical and civil engineering applications [11, 12, 

13]. Operational modal analysis (OMA) is now an alternative to Classical modal analysis (CMA) 

since in OMA the testing is normally performed by just measuring the responses under the 

natural or operational conditions, i.e. the structure is excited by loads such as wind loads, wave 

loads, traffic loads, etc., which can be considered an important advantage in medium and large 

structures where the use of artificial excitation devices may be expensive or impractical [14, 15, 

16].  

Due to the fact that testing of the structure is carried out under its operational loads conditions, 

the normal service of the structure does not need to be interrupted during the data measurements 

so it is an adequate technique for health monitoring and, it allows as a better understanding of the 

random loading fatigue process and, subsequently, a reliable stresses estimation. 

In this work, it is presented a methodology to estimate stresses in any arbitrary point of the 

structure which combines a numerical model, correlated and updated using operational modal 

analysis, and the experimental accelerations measured at several discrete points of the structure. 
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The fundamentals of the modal based stress estimation method lie, on one hand, in the correct 

modal identification and expansion of the mode shapes of the structure and, on the other hand, in 

the measurement of the responses of the structure under the real loading conditions.   

The technique can be applied to a finite time segment or it can be implemented to estimate 

strains in real time. The proposed methodology was validated by experimental test in a simply-

supported glass beam and a rectangular glass plate pinned-supported at 3 corners. The estimated 

time-history stresses were compared with those measured with strain gages attached to some 

points of the structures. The estimated stresses are in good agreement with the experimental 

results which demonstrates that the methodology can be used to improve the fatigue design 

reliability.  

2 State of the Art 

The first studies in this field appear in the 80’s when modal analysis strain techniques, i.e. using 

strain gage sensors, began to be used to improve or complement the knowledge about the 

dynamic behaviour of a structure [17, 18]. The benefits of modal strain based methods are 

significant since the results can be directly related with stresses and, consequently, with the 

integrity evaluation of a structure subject to random dynamic loading processes such as fatigue 

[19]. 

The improvement of numerical analysis applications and codes, such as the finite element 

method, allowed to combine strain modal analysis with numerical models. In this way, the 

studies conducted by Massé and Pastorel [20] report the analysis of wind turbines blades where 

aerodynamic loads were, firstly, frequency decomposed and, then, applied to a numerical model 

to obtain the stress distributions. Okubo and Yamaguchi [21] proposed a different methodology 

for the estimation of the dynamic operational strains based on the use of a transformation matrix 

that relates strain and displacement mode shapes; identified from a previous modal analysis of 
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the structure. A similar process was proposed by Gun-Myung [22] but expanding the strain 

estimation to un-measured points.  

Although nowadays numerical models are widely used in structural calculation, analytical 

models can be used in some simple cases such as beams where, e.g. bending Euler-Bernoulli 

equations can be combined with acceleration responses in order to estimate the modal stresses or 

strains. In this area, Ciora [23] presented a method for the determination of pipeline dynamical 

stress using the signals of two accelerometers and the Euler-Bernoulli bending theory where a 

periodical approximation for the continuous transversal motion under vibration conditions in the 

pipeline was used. A similar process was proposed by Chan-Jung et al. [24] where dynamic 

strain responses are predicted using a method based on the classical beam theory and the 

measured accelerations.  

At the end of the 90’s, OMA adds a new dimension to the modal based stress methods since only 

the responses of a structure are needed to identify the modal parameters [25]. This can be 

considered an advantage in the stress estimation problem of random fatigue processes where, in 

general, the forces are unknown (wind, sea waves, traffic, temperature changes, etc.). 

The studies of Graugaard et al. [26] and Hjelm et al. [27] introduced operational modal analysis 

in the modal stress based methods. The authors proposed a method that combines a finite 

element model and the modal parameters of the structure identified with OMA, to predict the 

stresses on a structure. This methodology was applied and validated successfully by the authors 

in lattice structures. In this direction, Fernández et al. [28] also presented a similar method for 

beam structures where the modal strain mode shapes are obtained using the Euler-Bernoulli 

theory and the mode shapes identified with OMA. More recently, Papadioti et al. [29] proposed a 

modal based method using the operational responses of the structure for estimating damage 

accumulation due to fatigue. The authors predicted the stress responses with a high fidelity finite 

element model using vibration measurements from a limited number of sensors and different 
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prediction methods, i.e. Kalman filter or modal expansion. The proposed stress estimations 

methods were validated using simulated data from a chain-like spring-mass model and a small-

scale model of a vehicle structure. 

With respect to the measurement techniques, nowadays a great number of different sensors such 

as accelerometers, LASER sensors, LVDT, etc. can be used to measure the response of the 

structure under different loading conditions. If the modal testing is carried out with 

accelerometers, the sensors used for modal identification can also be utilized to measure the 

response. The mode shape accuracy can be improved using surface response methods such as 

digital image correlation [30] or laser scanner [31]. 

3 Theory 

In this work, the methodology to estimate stresses is presented for beam and Kirchoff plate finite 

elements.  

3.1 Bending Elements Formulation 

A variety of structures working in bending conditions can be modeled with beam elements, see 

Fig. 1. If the Euler-Bernoulli theory is assumed, the bending moment and the curvature can be 

related by the equation: 

 � ! "#$"#% = &! (1)  

where � is the Young’s modulus,  ! is the second moment of the cross section about y axis, $ =
$(')  is the vertical displacement (see Fig. 1) and &!  is the bending moment. As we are 

interested in stresses, Navier’s Law can be applied and in a section located at distance % the 

stresses can be determined by: 
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�( ) =

!"

#$

% (2)  

where % is the distance from the neutral axis to the point of interest in the section. Eqs. (1) and 

(2) can be combined and the following relation between stress and curvature is obtained: 

 
�( ) = −'%

*+,

*+ 
 (3)  

Due to the practical difficulties to measure the real curvature, an approximation can be 

introduced using the finite element method, so that the displacement in any arbitrary point of the 

beam element, see Fig. 1, can be obtained as [32]: 

 
,( ) = {- 

/( )} {, 
/} (4)  

where {- 
/( )}  and {,/}  are vectors containing the element shape functions, e.g. Hermité 

polynomials, and the nodal displacements corresponding to the element 0, respectively.  

Taking into account that the second derivative of Eq. (4) is the curvature, and introducing the 

time dependent displacement vector, {,/(1)} in Eq. (3), the following expression is obtained: 

 �( , 1) = −' {- 
/"( )}{, 

/(1)} %    (5)  

where superscript “ 44” indicates second derivative with respect to  . An useful consequent step is 

to introduce modal-superposition [33], so that the vector {, 
/(1)}, can be expressed in terms of 

the mode shapes of the structure, [5 
/], by means of the modal coordinates, {6(1)}, as follows: 

 
{,/(1)} = [5/]{6(1)} (6)  

The introduction of the the modal coordinates in the stress estimation process is of great interest 

because they can be used to expand the displacements to non-measured points. Finally, if Eq. (6) 

is substituted in Eq. (5), the expression to determinate the stress time-histories at each point of 

the beam element is given by: 
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 �( , !) = −# {% &"( )}[*&]{+(!)} -     (7)  

If several elements are used to model the structure, an assembly process should be used to obtain 

the whole structure stress distribution.  

3.2 Kirchoff Plates Formulation 

A similar methodology as that proposed for beams can be used for plates. The strains and the 

small transverse (out-of-plane) displacement .( , /) in a Kirchoff thin plate (see Figure 2) are 

related by the equation [34]: 

 

0 12134235 = −- 
⎩⎪⎪
⎨
⎪⎪⎧

:;.: ;:;.:/;
2 :;.: :/⎭⎪⎪

⎬
⎪⎪⎫

 (8)  

where z is the distance to the neutral surface. 

If a finite element model is introduced, the displacement in any arbitrary point of a plate element 

is given by [34]: 

 .( , /) = [% &( , /)] {.&} (9)  

Where [N &( , /)] is a matrix containing the shape functions and {.&} is a vector containing the 

displacements and rotations of the nodes A.B , C2 , C3D. If expression (10) is now substituted in Eq. 

(9), the strain vector in the element is given by: 

  F 12( , /)13( , /)423( , /)G = −- [H&( , /)] {. &} (10)  

Where [H&( , /)] is the strain matrix of the element which contains the second derivatives of the 

shape functions, i.e.: 
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[ !(", #)] =
⎩⎪⎪
⎨
⎪⎪⎧ *+*"+*+*#+

2 *+*"*#⎭⎪⎪
⎬
⎪⎪⎫ [0 !(", #)] (11)  

Now, if modal-superposition is considered, the strains of the plate element can be expressed as: 

  3 45(", #, 6)47(", #, 6)857(", #, 6)9 = −; [ !(", #)] [<!] {>(6)} (12)  

where the product [ ] [<!]  represents the curvatures of the mode shapes. Finally, the stresses at 

any point of the plate element can be obtained by: 

  3 ?5(", #, 6)?7(", #, 6)@57(", #, 6)9 = −; [A] [ !(", #)] [<!] {>(6)} (13)  

where A is the constitutive matrix that depends on the material properties, which for an isotropic 

material is given by: 

  [A] = B1 − D+ E1 D 0D 1 00 0 1 − D2 G (14)  

with B and D being the Young’s modulus and the Poisson ratio, respectively. 

4 Methodology 

In this section we detailed the different steps needed to apply successfully the proposed stresses 

based method. 

4.1 Experimental Mode Shapes of the Structure 

As it was detailed in the introduction, the modal parameters of the structure that define its 

dynamic behaviour must be identified, specially the experimental mode shapes of the structure, 
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[ϕ]��, since the responses of the structure must be decomposed using the modal-superposition 

technique (see Eq. (6)). Either classical modal analysis or operational modal analysis can be used 

to identify the modes. Taking into account that random loads, such as natural forces, e.g. wind or 

sea waves, are not easily measured, operational modal analysis (OMA) results in an 

advantageous technique to obtain the modal parameters of the structure. Frequency Domain 

Decomposition (FDD) [35] or Stochastic Subspace Identification (SSI) [36] techniques can be 

used to identify the modes. Although modal identification implies to obtain not only the mode 

shapes but also natural frequencies and damping ratios, it is remarkable that in this stress 

estimation process, these modal parameters (natural frequencies and damping ratios) are not 

necessary since they will be implicitly in the response of the structure by means of the modal 

coordinates.  In any case, the identification of frequencies and damping ratios provides always  

relevant information about the dynamic behaviour that could be used for additional stages, e.g. 

finite element model up-dating or health monitoring of the structure. 

4.2 Modal Coordinates 

Once the experimental mode shapes of the structure are obtained, the modal coordinates can be 

calculated using modal-superposition, see Eq. (6). Since the responses of the structure are 

usually measured with accelerometers, the acceleration modal coordinates are obtained from 

 { ̈(")}#$ = [%]#$
&' 

{+̈}#$    (15)  

Where subscript “ex” indicates experimental data and [ϕ]���� represents the inverse matrix of the 

experimental mode shapes. The pseudoinverse must be used if the matrix [ ]!"
  is not square. 

Then, the displacement modal coordinates, {q(t)}��, are determined using time or frequency 

domain integration techniques [37].  

Although the stress estimation method was developed in the theory section using the mass 

normalized mode shapes of the structure, [ ], arbitrary normalized or un-scaled mode shapes, 
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[�], can also be used without loss of accuracy. The mass normalized mode shapes [ϕ] and the 

un-scaled mode shapes [ψ] are related by [38]: 

 ["] = [�] [$]   (16)  

 where [�] is a diagonal matrix containing the scaling factors [39, 40]. 

Now, if Eq. (16) is substituted in Eq. (6), it results in: 

 {  
"(#)} = [$ 

"][�]{%(#)}    (17)  

or, alternatively: 

 {  
"(#)} = [$"]{%∗(#)}    (18)  

where {q∗(t)} = [α]{q(t)} are called here un-scaled modal coordinates, which can be estimated 

by means of the expression: 

 {%∗(#)} = [$"]*+{ ,(#)}   (19)  

4.3 Mode Shapes Expansion 

The experimental mode shapes are only known at the measured DOF's, usually translational 

DOF's. If we want to estimate stresses in any arbitrary point of a finite element using Eqs. (7) 

and (13), the mode shape components at all the DOF's of the element (translations and rotations) 

must be known. This implies that the experimental mode shapes have to be expanded to the un-

measured DOF’s. As an example, in the bending case, we can measure all or part of the DOF’s 

corresponding to the displacements of the structure (see Fig. 1), however it is not possible (or it 

is very difficult) to measure the rotations. Thus, at least an expansion to the rotational DOF’s 

will be necessary.  
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The expansion process can be carried out by different ways depending on the type of the 

structure (beam, plate, three dimensional, etc.), the number of DOF's measured in the 

experiments, the type of structure as well as the complexity of the model (analytical or 

numerical) considered to model the structure (beam or plate elements in opposite to hexaedric 

elements, etc.) [12]. The following expansion techniques have been proposed in the literature: 

a) Fitting of experimental mode shapes. For simple cases such as beam-like structures (or 

even plates), mathematical functions that represents adequately the mode shapes such as spline 

curves or Fourier series [41] can be used to fit the experimental mode shapes.  According to Eqs. 

(7) and (13), the displacements and rotations at the nodes of each element are needed and they 

can be obtained directly from the fitted mathematical function in those necessary points. The 

continuity of the function and of its first derivative must be assured. An alternative consists of 

determining the strain mode shapes directly from the fitted function (second derivate) at the 

points where the stresses are going to be estimated. 

In general, these methods require a regular fine measurement grid in the testing process, mainly 

if high order modes are going to be fitted. With this technique, the use of analytical models or 

the assembly of a finite element model of the structure is avoided [41]. 

b) Analytical mode shapes. Another way of avoiding the assembly of a finite element model is 

to use the mode shape equations corresponding to analytical models, which are reported in the 

literature for the most common one-dimensional (beams) and two-dimensional (shell-plates) 

under different support conditions [42], from which the strain mode shapes are derived. 

c) Numerical mode shapes. A more general method consists of using a finite element model 

of the structure. With this technique, the numerical mode shapes are used to expand the 

experimental mode shapes to the un-measured DOF’s. It is assumed that the experimental mode 

shapes, can be expressed as a linear combination of the numerical mode shapes [43]: 
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 [ !"#
$ ] = [ %&

$ ] ∙ [(] (20)  

where subscripts ‘ex’ and ‘FE’ indicates experimental and numerical mode shapes, respectively, 

superscript ‘m’ indicates measured DOF’s and [�] is a transformation matrix. Due to the fact that, 

in general, a low number of modes are identified in the experimental model compared with those 

that can be extracted from the numerical model, the matrix [�] has to be estimated from the 

limited information given by the truncated set of experimental modes by: 

 [�] = [ !"
# ]$ [ &'

# ] (21)  

where  ( )*
+ ,

$
 is the pseudo-inverse of [ )*

+ ]. The pseudo-inverse can be computed by singular 

value decomposition or by the corresponding least square solution: 

 [ !"
# ]$ = ([ !"

# ]- [ !"
# ],

./
 [ !"

# ] (22)  

Then, the experimental mode shapes can be expanded to the un-measured degrees of freedom by 

means of the expression: 

 [ &'
0#] = [ !"

0#] ∙ [�]   (23)  

where superscript ‘um’ indicates un-measured DOF’s. The same expression can be used with un-

scaled mode shapes resulting in a different [T] matrix. 

4.4 Stress Estimation 

Finally, the stresses can be estimated using equations (7) and (13) when mass scaled mode 

shapes are used in beam and Kirchoff plates elements, respectively. If un-scaled mode shapes are 

going to be used, the stresses can be determined after substituting  Eq. (19) in Eqs. (7) and (13), 

respectively, i.e.: 
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  �( , !) = −# {% &"( )} [*& ]{+∗(!)} ℎ     (24)  

for bending elements and 

 / �0( , 1)
�2( , 1)302( , 1)4 = −5 [6] [7&( , 1)] [*&] {+∗(!)} (25)  

 for kirchoff plate elements. 

5 Experimental program 

5.1 Simply supported glass beam 

A monolithic glass beam with a 100 x 6 mm rectangular section and 1 m long was tested in the 

lab in simply supported configuration. A Young’s modulus # = 72 GPa and a Poisson ratio : =
0.22, respectively, were considered as mechanical properties for the glass. 

The experimental modal parameters were identified with operational modal analysis. The beam 

was excited applying many small hits along the beam with an impact hammer, random in time 

and space [44]. The responses were measured using seven uniformly distributed accelerometers 

(models: B&K 4508B and PCB 333B32) with a sensitivity of 100 mV/g and two strain gage 

sensors HBM LY11-6/350 during a period of approximately 4 minutes. The test setup is shown 

in Figure 3 where the arrows indicate the measured direction with the accelerometers. The 

responses were recorded with a sampling frequency of 1632 Hz and using a National Instruments 

Compact DAQ acquisition system equipped with NI9234 and NI9236 modules.  

The modal parameters were estimated with the ARTeMIS MODAL software using the 

frequency-domain decomposition (EFDD) [44] and the stochastic subspace iteration (SSI) [46] 

methods. The two techniques provide similar results, and therefore only the modal parameters 

estimated with the FDD technique are presented in the paper. The first five modes for the glass 
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beam were considered in the analysis. The singular value decomposition (SVD) of the responses 

is presented in Figure 4. On the other hand, a finite element model was also assembled in 

ABAQUS and the beam was discretized using 8 Euler-Bernoulli beam elements (see Figure 1). 

Table 1 shows the experimental natural frequencies, identified with the EFDD technique, 

together with those obtained from the numerical model. It can be inferred that a very good 

agreement exists between the experimental and the numerical natural frequencies, the error being 

less than 3%. With respect to the mode shapes, the MAC (modal assurance criterion) between 

the experimental and numerical mode shapes is also presented in Table 1. A very good 

correlation exists between the numerical and experimental mode shapes, the MAC being very 

close to one for all the modes considered in the investigation. 

Then, the experimental mode shapes were expanded to the un-measured DOF’s using the 

numerical mode shapes extracted from the FEM and applying the methodology presented in 

section 4.3.c) 

The stresses at the points where the strain gages were attached were estimated using the 

methodology described in sections 3 and 4. In order to excite the structure, several hits were 

applied to the beam in random positions, using an impact hammer. In Figure 5 is shown the 

power spectral density (PSD) of the experimental stresses measured with strain gage 1 (g1, see 

Figure 3). The peaks corresponding to the first five modes identified by OMA can easily be seen 

in Figure 5 together with some peaks at 50, 150, 250, 350 and 450 Hz corresponding to electrical 

noise. In Figure 5 the PSD of the un-scaled displacement modal coordinates is also presented 

which were calculated from the experimental accelerations and the experimental mode shapes 

(see section 4.2). From Figure 5, it can also be inferred that the first two modes contribute the 

most to the stress magnitude (��
∗(�) and � 

∗(�)). This fact is in good agreement with the stresses 
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recorded with the strain gages where the higher values correspond to modes 1 and 2 (see Figure 

5).  

In Figures 6 and 7 are presented the experimental stresses (measured with strain gages) and those 

estimated with Eq. (24) at points 1 and 2, (strain gages 1 and 2, respectively, see Figure 3), at 

different time periods. In both cases, it can be seen that a good correlation is obtained, being the 

average error less than 8%.  However, there is also a contribution of the zero-load noise level in 

the strain gages to the errors between the measured and the estimated stresses. On the other hand, 

the accelerometers are also more sensitive to impacts than the strain gages (see Figures 6 and 7) 

and therefore there is a significant discrepancy between the estimated and the measured stresses 

at the beginning of the impact loading. This effect also contributes to increase the error. 

The dynamic stress distribution for the entire beam can also be calculated with the proposed 

methodology. In Figure 7, the estimated stresses at a specific time interval for the complete glass 

beam are also presented. As expected from the experimental stresses and the displacement modal 

coordinates (Figure 5) where modes 1 and 2 are predominant, it can be observed in Figure 7 

(right) how these mode shapes appear in the stress 3D profile: 2 peaks corresponding to mode 

shape 2 at the beginning of each impact acting simultaneously with mode shape 1 (one peak) that 

can be clearly seen after vanishing mode 2 (due to its higher damping).  

5.2 A glass plate 

The second experiment was performed on a rectangular monolithic glass plate measuring 1400 x 

1000 x 10 mm, with a Young´s modulus � = 72 GPa and a Possion ratio � = 0.22. The glass 

plate was pinned supported in 3 corners, allowing only translational movement perpendicular to 

the plate. 13 accelerometers and 6 strain gauge where mounted to the plate. Figure 8 illustrates 

the test setup. 
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For the experimental modal analysis, load was induced to the plate by gently tapping it with the 

finger. Two persons were exciting the plate at the same time to ensure that the load was applied 

all over during measurements. The accelerations were measured using B&K4508B 

accelerometers and strains were measured using HBM LY11-120 strain gauges. Both 

accelerations and strains were acquired using the same National Instruments Compact DAQ 

acquisition systems used for the glass beam. 

A FE model was constructed in MSC Nastran consisting of 100 DOF´s and 81 QUAD4 

elements. Frequencies, translational and rotational mode shapes components where extracted, 

and the mode shapes in terms of stains were calculated using the principles described in section 

3.2 in the DOF´s where the strain gauges were placed. 

Experimental mode shape expansion was carried out using the same procedure as described with 

the simply supported beam. A plot of the singular values can be seen in Figure 9. The first 8 

natural frequencies and mode shapes were estimated and used as a basis for the analysis. The 

MAC values between experimental and FE mode shapes are presented in Table 2, as well as the 

differences in frequency. The results show that the mode shapes are well correlated. The 

frequencies, however, show a larger deviation compared with the results from the glass beam, 

which is mainly explained by inaccuracies in the modelling of the supports in the FE model. 

However, the information needed from the FE model is limited to the mode shapes 

 (used in the expansion of the experimental mode shapes) because the information corresponding 

to the natural frequencies and the damping is contained in the experimental modal coordinates. 

Thus, a good accuracy can be obtained in the stress estimation if a good correlation exists in the 

mode shapes even though there is not a good correlation in the natural frequencies. For the plate, 

the experimental mode shapes were expanded using the technique described in section 4.3.c. 
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For the strain estimation a series of small impulses was applied to the plate using an impact 

hammer. Both the measured accelerations and strains were highpass filtered at 5 Hz to get rid of 

any noise at DC, and lowpass filtered at 110 Hz so only 8 modes were included in the response. 

The following analysis is based on the bandpass filtered response.  

Translations were obtained by integrating the accelerations twice with respect to time and the 

strains where estimated using the methodology described in section 3.2. Figure 10 shows the 

measured (bandpass filtered) and estimated signal for strain gauge 5 (according to Figure 8). The 

errors for all 6 strain gauges are shown in Table 3. 

The estimation shows good results with errors between 1.4 % and 6.1 %. The results are further 

illustrated by comparing the auto spectral densities (see Figure 11), and rainflow flow count (Fig. 

12) for strain gauge 5. At figure showing the rainflow count the error is measured as the relative 

error between the individual bins. Naturally we see an increase in error for the bins with large 

strain values, because the fewer counts increases the uncertainty in the calculation of the error.  

8 Conclusions 

The material characterization and the stress-time history are the major sources of uncertainty in 

fatigue. This uncertainty comes from inaccuracies in the numerical models and from the use of 

simplified loading models. 

The purpose of this paper is to propose an efficient method for calculating stress-time histories in 

structures subjected to random loadings. The technique can be applied to short time periods of in 

real time to structures in operation. 

The proposed methodology combines the mode shapes identified by modal analysis (classical or 

operational), expanded using a finite element model or an alternative method, and the 

experimental accelerations measured at  several discrete points of the structure. 
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The technique has been validated by experimental tests carried out on a simply supported glass 

beam and on a rectangular glass plate pinned at 3 corners, comparing the estimated stresses with 

those recorded with strain gages.  

It has been demonstrated that the stresses can be estimated with an error less than 10 % if an 

accurate modal identification is performed and a good finite element model is assembled. 
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Figure Captions 

Fig. 1 Example of Euler-Bernoulli beam (left) and bending element with two nodes (right) 

Fig. 2 Plate element 

Fig. 3 Test setup or Sensor and strain gage location for the glass beam  

Fig. 4 Singular value decomposition of the experimental responses for the glass beam 

Fig. 5 Power spectral density of experimental stress at point g2 (left) and displacement modal 

coordinates (right) for the glass beam 

Fig. 6 Experimental and estimated stresses for strain gage 1 at different specific time intervals 

Fig. 7 Experimental and estimated stresses for strain gage 2 (left) and estimated stress for the 

complete glass beam (right) at specific time intervals 

Fig. 8 Sensor and strain gauge location for the rectangular glass plate 

Fig. 9 Singular value decomposition of the experimental responses for the glass plate 

Fig. 10 Measured and estimated strains for the glass plate 

Fig. 11 Auto spectral density for measured and estimated strains at SG5 for the glass plate 

Fig. 12 Comparison between measured and estimated strain in form of rainflow count (SG5) for 

the glass plate 
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Table 1 Experimental and Numerical natural frequencies for the glass beam 

  

Mode 

Frequency 

MAC Experimetal Numerical Error 

[Hz] [Hz] [%] 

1 15.26 14.89 2.42 0.9999 

2 59.11 58.58 0.90 0.9998 

3 132.3 134.1 1.36 0.9995 

4 233.4 238.7 2.27 0.9999 

5 363.3 373.9 2.92 0.9988 

 

 



Table 2 Experimental and Numerical natural frequencies for the rectangular glass plate 

 

Mode 

Frequency 

MAC Experimetal Numerical Error 

[Hz] [Hz] [%] 

1 6.44 5.97 7.30 0.9999 

2 16.41 15.94 2.86 0.9994 

3 29.30 28.18 3.82 0.9989 

4 38.67 36.92 4.53 0.9987 

5 52.15 49.91 4.30 0.9982 

6 73.83 69.39 6.01 0.9980 

7 76.76 73.09 4.78 0.9971 

8 94.92 89.23 6.00 0.9971 

 

 



Table 3 Error between measured and estimated strains for the glass plate 

 

Strain 

gage 
SG1 SG2 SG3 SG4 SG5 SG6 

Error [%] 6.05  3.18  2.26  5.14  2.58  1.37  

 

 


