
A New Admissible Heuristic for the Job Shop Scheduling Problem with Total Flow
Time

Marı́a R. Sierra
Dept. of Mathematics, Statistics and Computing, University of Cantabria, 39005 Santander (Spain)

e-mail: sierramr@unican.es

Ramiro Varela
Dept. of Computer Science and A.I. Centre, University of Oviedo, 33271 Gijón (Spain)

e-mail: ramiro@uniovi.es

Abstract

In this paper, we face the Job Shop Scheduling problem
with total flow time minimization with A∗ Nilsson’s al-
gorithm. We propose a new heuristic based on problem
relaxation to One Machine Sequencing problem with
tardiness minimization. This heuristic is improved by
means of the well-known generalized Emmons’ con-
straint propagation rules. Additionally, we use a prun-
ing by dominance method to reduce the effective search
space. We report results from an experimental study
conducted to evaluate the performance of the proposed
heuristic and to compare the A* approach with a classic
local search procedure. The results show that the pro-
posed heuristic is efficient as A* is able to reach optimal
solutions for instances that are not always solved to op-
timality with the local search procedure; even running
for a larger time.

Introduction
The Job Shop Scheduling Problem (JSSP) is an example of
combinatorial optimization and constraint satisfaction prob-
lems that has interested to researches over the last years.
Traditionally, the optimization criteria is makespan mini-
mization. For this version of the problem, very efficient
exact and approximate methods have been proposed in the
literature, most of them relying on the concept of critical
path. Among the exact methods, the most relevant is the
branch and bound algorithm proposed by Brucker et al.
in (Brucker, Jurisch, & Sievers 1994; Brucker 2004), de-
veloped from concepts and techniques proposed by some
other authors as Carlier and Pinson (Carlier & Pinson 1989;
1994). Regarding non-exact methods, the most relevant
are the local search techniques based on the neighborhood
structures proposed firstly by Dell’ Amico and Trubian
(Dell’ Amico & Trubian 1993) that were used and devel-
oped afterwards by many other authors, often in conjunc-
tion with one or various meta-heuristics such as Genetic
Algorithms (Mattfeld 1995; Nowicki & Smutnicki 1996;
Yamada & Nakano 1996) Tabu Search or Simulated Anneal-
ing (Zhang et al. 2008). Unfortunately, all these techniques,
relaying on critical paths, are not so useful when the opti-
mization criteria is other than makespan minimization.

Copyright c© 2008, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

In this paper we confront the JSSP problem with total flow
time minimization by means of the A∗ algorithm (Hart, Nils-
son, & Raphael 1968; Nilsson 1980; Pearl 1984). We build
on a previous work (Sierra & Varela 2007) where we con-
fronted the JSSP with makespan minimization. The search
space is that of active schedules and the branching schema is
based on the well-known G&T algorithm (Giffler & Thom-
son 1960). We propose a new heuristic combining a problem
relaxation to the One Machine Sequencing (OMS) problem
with the well-known generalized Emmons’ constraint prop-
agation rules for the preemptive OMS. In order to reduce
the effective search space, we adapted the pruning by domi-
nance method proposed in (Sierra & Varela 2007).

The paper is organized as follows. In section 2 the JSSP
is formulated. Section 3 describes the search space of active
schedules for the JSSP. Section 4 summarizes the main char-
acteristics of A∗ algorithm. In section 5, the heuristic used
to guide A∗ for the JSSP with total flow time is described.
Section 6 describes the generalized Emmons’ rules and how
they are applied to improve the heuristic. Section 7 reviews
the concepts of dominance and describes the rule for testing
it for the JSSP with total flow time. Section 8 review the
local search procedure proposed in (Kreipl 2000). Section 9
reports results from an experimental study. Finally, section
10 summarizes the main conclusions.

Problem Formulation
The Job Shop Scheduling Problem (JSSP) requires schedul-
ing a set of N jobs {J1, . . . , JN} on a set of M resources
or machines {R1, . . . , RM}. Each job Ji consists of a
set of tasks or operations {θi1, . . . , θiM} to be sequentially
scheduled. Each task θil has a single resource require-
ment Rθil

, a fixed duration pθil
and a starting time stθil

whose value should be determined. The JSSP has three con-
straints: precedence, capacity and no-preemption. Prece-
dence constraints translate into linear inequalities of the
type: stθil

+ pθil
≤ stθi(l+1) . Capacity constraints trans-

late into disjunctive constraints of the form: stv + pv ≤
stw ∨ stw + pw ≤ stv , if Rv = Rw. No-preemption re-
quires that the machine is assigned to an operation without
interruption during its whole processing time. The objective
is to come up with a feasible schedule such that a given ob-
jective function is optimized. As pointed in (Brucker 2004),
three objective functions are commonly used: makespan, to-

tal flow time and tardiness. In this paper, we focus on mini-
mizing the total flow time, i.e. the sum of completion times
of all jobs. The problem is denoted as J//

∑
Ci in the con-

ventional α/β/γ notation used in the literature.
In the sequel a problem instance will be represented by a

directed graph G = (V, A∪E). Each node in the set V rep-
resents an actual operation, with the exception of the dummy
nodes start and end, which represent operations with pro-
cessing time 0. The arcs of A are called conjunctive arcs
and represent precedence constraints and the arcs of E are
called disjunctive arcs and represent capacity constraints. E
is partitioned into subsets Ei with E = ∪{i=1,...,M}Ei. Ei

includes an arc (v, w) for each pair of operations requiring
Ri. The arcs are weighed with the processing time of the
operation at the source node. Node start is connected to the
first operation of each job and the last operation of each job
is connected to node end.

A feasible schedule is represented by an acyclic subgraph
Gs of G, Gs = (V, A ∪ H), where H = ∪i=1,...,MHi, Hi

being a processing ordering for the operations requiring Ri.
The completion time of a job is the cost of a longest path
from node start to node end restricted to pass through the
last operation of the job just before the node end.

In order to simplify expressions, we define the following
notation for a feasible schedule. The head rv of an operation
v is the cost of the longest path from node start to node v,
i.e. it is the value of stv . The tail qv is defined as the pro-
cessing time of operations after v in the job sequence. PMv

and SMv denote the predecessor and successor of v respec-
tively on the machine sequence and PJv and SJv denote the
predecessor and successor nodes of v respectively on its job.

A partial schedule is given by a subgraph of G where
some of the disjunctive arcs are not fixed yet. In such a
schedule, heads and tails can be estimated as

rv = max{maxw∈P (v)(rw + pw), rPJw + pPJw}
qv = pSJv + qSJv

(1)

where P (v) denotes the disjunctive predecessors of v, i.e.
operations requiring machine Rv which are scheduled be-
fore v. Hence, the value rv +pv +qv is a lower bound of the
completion time of the job of operation v that can be reached
from the partial schedule. So these values allow to obtain a
lower bound of the total flow time. This lower bound is not
very tight and may be improved as we will see in section .

The Search Space of Active Schedules
A schedule is active if to start earlier any operation, at least
another one should be delayed. The search space of active
schedules is dominant for the J//

∑
Ci, i.e. it contains

at least and optimal schedule. Maybe the most appropri-
ate strategy to obtain active schedules is the G&T algorithm
proposed in (Giffler & Thomson 1960). This is a greedy
algorithm that produces an active schedule in a number of
N ∗M steps. At each step G&T makes a non-deterministic
choice. Every active schedule can be reached by taking the
appropriate sequence of choices. Therefore, by considering
all choices, we have a complete search tree for strategies
such as branch and bound, backtracking or A∗.

Algorithm 1 SUC(state n). Algorithm to expand a state n.
When it is successively applied from the initial state, i.e. an
empty schedule, it generates the whole search space of active
schedules.

1. A = {v ∈ US(n); PJv ∈ SC(n)};
2. v = arg min{ru + pu; u ∈ A};
3. B = {w ∈ A; Rw = Rv and rw < rv + pv};
for each w ∈ B do

4. SC(n′) = SC(n) ∪ {w} and US(n′) = US(n)\{w};
5. Gn′ = Gn ∪ {w → v; v ∈ US(n′), Rv = Rw};
\∗ w gets scheduled at time rv in state n′ ∗\

6. c(n, n′) = rw + pw − (rPJw + pPJw);
7. Add n′ to successors;

end for
8. return successors;

Algorithm 1 shows the expansion operation that generates
the full search tree when it is applied successively from the
initial state, in which none of the operations are scheduled
yet.

In the sequel, we will use the following notation. Let O
denote the set of operations of a problem instance, and n1

and n2 be two search states. In n1, O can be decomposed
into the disjoint union SC(n1) ∪ US(n1), where SC(n1)
denotes the set of operations scheduled in n1 and US(n1)
denotes the unscheduled ones. D(n1) = |SC(n1)| is the
depth of node n1 in the search space. Given O′ ⊆ O,
rn1(O

′) is the vector of heads of operations O′ in state
n1. rn1(O

′) ≤ rn2(O
′) iff for each operation v ∈ O′,

rv(n1) ≤ rv(n2), rv(n1) and rv(n2) being the head of
operation v in states n1 and n2 respectively. Analogously,
qn1

(O′) is the vector of tails of operations O′ in state n1;
and pn1

(O′) denotes the vector of processing times. We also
denote

J(n) = (US(n), rn(US(n)), pn(US(n)), qn(US(n)))
(2)

the residual problem of state n and consider J = Jm ∪ Jm,
where Jm denotes the set of jobs with any operation in
US(n) requiring machine m and Jm denotes the subset of
jobs with operations in US(n) none of them requiring ma-
chine m. To obtain relaxed models, we firstly split the orig-
inal problem J(n) into subproblems J(n)|m and J(n)|m
and consider these problems independent from each other.
Then we devise relaxations for each of them and calculate
the lower bound of the original problem by summing up the
optimal costs, or a lower bound, of both relaxed problems.
Problem J(n)|m is given by unscheduled operations of jobs
in Jm and problem J(n)|m is given by unscheduled opera-
tions of jobs in Jm.

A∗ Nilsson’s Algorithm
For best-first search we have chosen the A∗ Nilsson’s algo-
rithm (Nilsson 1980). A∗ starts from an initial state s, a set
of goal nodes Γ and a transition operator SUC such that for
each node n of the search space, SUC(n) returns the set
of successor states of n. Each transition from n to n′ has a
positive cost c(n, n′). P ∗s-n denotes the minimum cost path

from node s to node n. The algorithm searches for a path
P ∗s-o with o = arg min{P ∗s-o′ |o′ ∈ Γ}.

The set of candidate nodes to be expanded are maintained
in an ordered list OPEN . The next node to be expanded is
that with the lowest value of the evaluation function f , de-
fined as f(n) = g(n)+h(n); where g(n) is the minimal cost
known so far from s to n, (of course if the search space is a
tree, the value of g(n) does not change as there is one only
path from s to n, otherwise this value has to be updated as
long as the search progresses) and h(n) is a heuristic posi-
tive estimation of the minimal distance from n to the nearest
goal. If the node selected for expansion is an objective, the
algorithm stops and returns the solution reached.

If the heuristic function underestimates the actual mini-
mal cost, h∗(n), from n to the goals, i.e. h(n) ≤ h∗(n), for
every node n, the algorithm is admissible, i.e. it returns an
optimal solution. Moreover, if h(n1) ≤ h(n2) + c(n1, n2)
for every pair of states n1, n2 of the search graph, h is con-
sistent. Two of the properties of consistent heuristics are that
they are admissible and that the sequence of values f(n) of
the expanded nodes is non-decreasing. The heuristic func-
tion h(n) represents knowledge about the problem domain.
As long as h approximates h∗ the algorithm gets more and
more efficient as it needs to expand a lower number of states
to reach the optimal solution.

New Heuristic for the JSSP with Total Flow
Time

In order to devise a heuristic, we have used a problem relax-
ation. Let us start with an example by considering the par-
tial solution from Figure 1. It actually represents a search
state for a problem with 4 jobs and 3 machines with two
operations scheduled, θ31 and θ41. For the remaining oper-
ations, it represents their heads in this state. Figure 1 may
also be considered as representing the solution to the sim-
plified instance obtained from relaxing every capacity con-
straint involving a pair of unscheduled operations. Now, let
us consider relaxing all these constraints except those in-
volving one machine, said M1. The optimal solution to this
problem requires scheduling all operations demanding M1

so that these operations do not overlap each other and that
the overall delay for the last operations of the jobs is mini-
mal. The solution of the relaxed problem is that from Figure
2. This relaxed problem is equivalent to the One Machine
Sequencing (OMS) problem with due dates and tardiness
minimization; the due date of each operation v given by
adding the value rv + pv with the maximum delay of this
operation that doesn’t produce any delay in its job last’s op-
eration.

More formally, we consider the following problem relax-
ation. For jobs in Jm, every capacity constraint involving
two operations of US(n) is relaxed, except those involving
operations requiring machine m; while capacity constraints
involving an operation of SC(n) and an operation of US(n)
are maintained in the relaxed model. In this way, the relaxed
problem is equivalent to the OMS problem with heads, due
dates and total tardiness minimization. The tardiness of an
operation θij is defined as Tij = max(0, Cij −dθij), where

J3 J2 J1

θ31(M2) θ21(M1) θ11(M1)
θ32(M3) θ22(M3) θ12(M2)

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 J4 θ42(M1)
θ13(M3)

θ23(M2)
θ33(M1)

θ43(M2) θ41(M3)
Figure 1: A search state with 2 scheduled operations

J3 J2 J1
θ31(M2) θ11(M1)

θ32(M3) θ22(M3) θ12(M2)
 1 2 3 4 5 6 7 8 9 10 11 12 13 14 J4

θ13(M3)
θ23(M2)

θ33(M1)
θ43(M2) θ41(M3) θ42(M1)

θ21(M1)
Figure 2: Solution to the state of Figure 1 relaxing all ca-
pacity constraints involving pairs of unscheduled operations,
except those involving M1

Cij is the completion of operation θij and dij the due date.
We denote this problem as

J ′(n)|m = (US(n)|m, rn(US(n)|m),
pn(US(n)|m), dn(US(n)|m)), (3)

where dn(US(n)|m) denotes the due dates of operations
given by dθij = rθiM +pθiM−qθij for each θij in US(n)|m.

The problem J ′(n)|m with total tardiness minimization
is NP-hard in the strong sense (Rinnooy 1976). Moreover,
even if preemption is allowed, the resulting problem is still
NP-hard. In (Baptiste, Carlier, & Jouglet 2004), P. Baptiste
el al. introduce a new lower bound for the preemptive case
which is obtained from due date relaxations and it is based
on the following two results. In order to simplify notation,
let (θ1, ..., θk) denote the operations to be scheduled on the
same machine and ri, pi and di their heads, processing times
and due dates respectively.

Proposition 1 Let θu and θv be two operations such that
ru ≤ rv , pu ≤ pv and du ≤ dv , then there exist and optimal
schedule in which θv starts after the end of θu.

Proposition 2 Let θu and θv be two operations such that
ru ≤ rv , pu ≤ pv and du > dv . Exchanging du and dv does
not increase the optimal total tardiness.

These propositions allow to compute a lower bound by
means of the following algorithm. Starting at time t given

by the minimum of the heads of all operations, the set
D = {θu/ru ≤ t ∧ p′u > 0} of operations available but
not completed at t is considered (p′u denotes the remaining
processing time of operation θu at time t). Let θu be the
operation with the shortest remaining processing time, and
θv the operation with the smallest due date. If du = dv ,
according to Proposition 1 it is optimal to schedule the op-
eration θu from t until a time t′ given by the minimum of
the completion time of θu, i.e. t + p′u, and the time when
a new operation is available. If it is not the case, according
to Proposition 2, the due dates of θu and θv are exchanged.
θu has now the smallest remaining processing time and the
smallest due date, and the new instance has an optimal tar-
diness equal or lower than the original one. According to
Proposition 1, for the new instance, it is optimal to sched-
ule θu from time t up to t′ obtained as before. The value
of t is increased up to t′ and the iteration continues until all
operations are completed.

This algorithm is based on the Schrage’s Algorithm (Car-
lier 1982), and runs in O(k log k) steps. It starts from the
operations list ordered by increasing values of their heads.
At any time t, the cardinality of D is m. xp . . . x1x0 is
the binary expression of m (p = log2 k). D is parti-
tioned into p + 1 subsets, Sp, . . . , S1, S0, with cardinalities
2pxp, . . . , 21x1, x0 respectively (Sj is empty when xk = 0).
Every non-empty set Sj is ordered: firstly the operations al-
ready scheduled and then the others by increasing order of
remaining processing times and in case of ties by increasing
due dates.

Indexes αj , 0 ≤ j ≤ p, are defined as follows: αj is null
if Sj is empty or if all the operations in Sj are scheduled,
otherwise αj is the subscript of the first operation of Sj not
scheduled yet. Each time a new operation θ is introduced
in D, it is first inserted in the empty set Sj0 with minimal
subscript j0; then Sj0 = S0 ∪ S1 ∪ . . . ∪ Sj0−1 ∪ Sj0 and
S0 . . . Sj−1 are emptied. In practice auxiliary sets Mj are
used with cardinals 2j with M0 = {θ} and Mj = Mj−1 ∪
Sj−1, 0 ≤ j ≤ j0. Sj0 = Mj0 .

Sorting the operations list at the beginning takes a time of
order O(k log k). The first time a new set Sj is filled, all
previous sets S0, ..., Sj−1 are merged, this operation taking
a time of order O(2j ∗ j). This is of the same order as the
time taken in all previous merges. So, merging all operations
in the last set Sp which, in the worst case may involve all
k operations from the p sets (with p = log k) will take a
time of order O(k log k). As the remaining operations, i.e.
choosing the operation to be scheduled next and establishing
its processing interval are done in a time of order O(log k),
the overall complexity of the Schrage’s algorithm is of order
O(k log k).

From the preemptive schedule calculated by this algo-
rithm for problem J ′(n)|m, we actually obtain a lower
bound of f∗(n) as

F (J(n)) = maxm∈R{
∑

Ji∈Jm
(Tθi

m + rθiM
+

pθiM
) +

∑
Ji∈Jm

(rθiM
+ pθiM

)} (4)

where θi
m denotes the operation of job Ji requiring machine

m and Tθi
m its tardiness in the peemptive schedule. So, to

obtain the value of the heuristic estimation h(n), the value of
g(n) should be discounted and so the heuristic is calculated
as

h(n) = F (J(n))− g(n). (5)

As h is not obtained from an optimal solution of a relaxed
problem but from a lower bound, it is admissible but it might
not be consistent.

Improving the Heuristic with the Generalized
Emmons Rules

Heuristic h may be improved by exploiting a set of domi-
nance rules proposed in (Baptiste, Carlier, & Jouglet 2004)
that generalize the well-known Emmons rules proposed in
(Emmons 1969). The original Emmons rules allow to de-
duce some precedence relations for the special case where
the release dates are equal and preemption is not allowed.
The generalization to arbitrary release dates is possible if
the non-preemption constraint is relaxed. In this case the re-
sulting generalized Emmons rules can be used to tighten the
lower bound of the preemptive problem.

The application of these rules requires a deadline δu for
each operation θu. The value of δu may be initiated to the
completion time of an active schedule. It is easy to see that
all active schedules have the same completion time Cmax.
To compute this value, a schedule can be built where jobs
are scheduled in non-decreasing order of release dates. Then
the value of δu can be tighten since each operation θu cannot
be completed after Cmax −Σθu∈Aupu, where Au is a set of
operations that have determined to start after θu completes.
Analogously, the release date r′u of operation θu can be ini-
tiated as ri and then adjusted to max(r′u, Cmax(Bu)), where
Bu is a set of operations that have to be completed before
operation θu can start and Cmax(Bu) is the completion time
of an active schedule of operations of Bu. The generalized
Emmons rules are given in the following three propositions.

Proposition 3 (Generalized Emmons rule 1) Let S be a
schedule and θu and θv two operations such that ru ≤ rv ,
pu ≤ pv and du ≤ dv + pv , then there exist a schedule S′ in
which θv starts after the end of θu and the tardiness of S′ is
lower than or equal to the tardiness of S.

Proposition 4 (Generalized Emmons rule 2) Let S be a
schedule and θu and θv two operations such that ru ≤ rv ,
du ≤ vv and δu ≤ max(rv + pv, dv), then there exist a
schedule S′ in which θv starts after the end of θu and the
tardiness of S′ is lower than or equal to the tardiness of S.

Proposition 5 (Generalized Emmons rule 3) Let S be a
schedule and θu and θv two operations such that ru ≤ rv ,
δu ≤ pv , then there exist a schedule S′ in which θv starts
after the end of θu and the tardiness of S′ is lower than or
equal to the tardiness of S.

These rules may be applied at each step of the algorithm
described in previous section to compute the heuristic h to
discard some operations among the candidates to be sched-
uled next. For example, if at time t there are two ready op-
erations θu and θv , i.e. their release dates are r′u = r′v = t,
such that p′u ≤ p′v and du ≤ dv + p′v , then as a consequence

of the generalized Emmons rule 1, the remaining of θu can
be scheduled before starting operation θv and both the dead-
line of θu and the release date of θv may be adjusted accord-
ingly. Analogous reasoning may be followed from rules 2
and 3. As pointed in (Baptiste, Carlier, & Jouglet 2004)
this improved lower bound can be computed in O(k4). Al-
though, in practice, the propagation of the generalized Em-
mons rules is computed in a reasonable amount of time.

Dominance Properties
Given two states n1 and n2, we say that n1 dominates n2

if and only if the best solution reachable from n1 is better,
or at least of the same quality, than the best solution reach-
able from n2. In some situations this fact can be detected
and then the dominated state can be early pruned. Let us
consider a small example.

Figure 3 shows the Gantt charts of two partial schedules,
with three operations scheduled, corresponding to search
states for a problem with 2 jobs and 3 machines. If the sec-
ond operation of job J1 requires R2 and the third operation
of J2 requires R3, it is easy to see that the best solution
reachable from the state of Figure 3a can not be better than
the best solution reachable from the state of Figure 3b. This
is due to the fact that the residual problem comprises the
same set of operations in both states and in the first state the
heads of all operations are larger or at least equal than the
heads in the second state. So, the state of Figure 3a may be
pruned if both states are stored in memory at the same time.
Of course, a good heuristic will lead the search to explore
first the state of Figure 3b if both of them are in OPEN at
the same time. However, at a later time, the state of Fig-
ure 3a and a number of its descendants might also be ex-
panded. Consequently, early pruning of this state can reduce
the space and, if the matching of states to test dominance is
efficient, the search time as well.

We define dominance among states as follows.

Definition 1 Given two states n1 and n2, such that n1 /∈
P ∗s-n2

and n2 /∈ P ∗s-n1
, n1 dominates n2 if and only if

f∗(n1) ≤ f∗(n2).

Of course, establishing dominance among any two states
is problem dependent and it is not easy in general. The next
result gives a sufficient condition for a node n1 dominates a
node n2. This condition can be efficiently evaluated as each
expanded node have to be compared only with the nodes
previously expanded having the same subset of operations
scheduled.

 0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 J1 J2 J1 J2 R1 R2 R3 R1 R2 R3 R1 R2 R2 R1

a) b)
Figure 3: Partial schedules of two search states, state b)
dominates state a)

Theorem 1 Let n1 and n2 be two states such that
SC(n1) = SC(n2). Let us denote SC = SC(n1) =
SC(n2) and US = US(n1) = US(n2) and rv(n) and
qv(n) the head and tail respectively of operation v in state
n. If

rn1(US) ≤ rn2(US) (6)

and

∑

1≤i≤N,θiM∈SC

rθiM
(n1) ≤

∑

1≤i≤N,θiM∈SC

rθiM
(n2) (7)

then n1 dominates n2.

Proof 1 (Sketch of the proof) As the heads of all unsched-
uled operations are lower in n1 than they are in n2, every
solution to the remaining problem of n2 is also a solution to
the remaining problem of n1.

Local Search Algorithm
For the purpose of comparison with our A∗ algorithm, in
this paper we consider the local search algorithm proposed
in (Kreipl 2000) termed large step random walk. In prin-
ciple, this local search algorithm is devoted to the JSSP
with weighted tardiness minimization. However, this prob-
lem is equivalent to the JSSP with total flow time if we
consider all jobs having the same weight and all due dates
having value 0. In the experimental study, we have used
the implementation of this heuristic for the JSSP with to-
tal flow time included in the LEKIN tool downloaded from
(http://www.stern.nyu.edu/om/software/lekin/index.htm).

The idea behind the large step random walk is the suc-
cessive iteration of intensification phases, called small steps,
and diversification phases, or large steps. The large step uses
a metropolis algorithm and so it accepts worsening solutions
in order to escape from local optima, whilst the small step
uses a random descent method so as it always reaches a local
optimum.

The neighborhood structure proposed in (Kreipl 2000)
is similar to the structures defined in (Taillard 1994) and
(Dell’ Amico & Trubian 1993) for makespan minimization.
It is also based on exchanges on critical paths. However, at
difference from the case of makespan minimization where
there is only one critical path, for total flow time there are
as many critical paths as the number of jobs. So, the num-
ber of neighbors is in general very high and in practice the
method is not so efficient as it is for makespan minimization.
For further details of the large step random walk method we
refer to the interested reader to the paper of S. Kreipl.

Experimental Study
The goal of this study is to assess the performance of the
proposed A∗ algorithm and also to compare it with other ap-
proach taken from the literature. As we have commented
above, to do that we have chosen the local search procedure
proposed in (Kreipl 2000). The target machine was Linux
(Ubuntu V.8.04) on Intel Core 2 Duo (2,13 GHz., 7,5 Gb.
RAM). We have considered the sets of problems LA01-05

Table 1: Summary of results from combining heuristic h3,
Emmons’ rules and pruning by dominance over instances
LA01 − LA05. Time limit 3600s. (Values in bold indicate
that memory limit was exhausted without reach a solution.)

No pruning + h3

Instance Generated Expanded Time(s)
LA01 1109048 471492 137
LA02 3627888 1453887 441
LA03 390090 153589 48
LA04 844107 339748 102
LA05 3569995 1399554 436

Pruning + h3

Instance Generated Expanded Time(s)
LA01 246576 106896 37
LA02 516490 215975 84
LA03 79239 31832 11
LA04 135262 56746 21
LA05 410076 173443 70

No pruning + h3 + Emmons
Instance Generated Expanded Time(s)
LA01 413499 175824 57
LA02 5184833 2156489 1501
LA03 181531 72591 25
LA04 605888 245079 79
LA05 3622363 1451037 535

Pruning + h3 + Emmons
Instance Generated Expanded Time(s)
LA01 133391 57437 20
LA02 398687 166206 63
LA03 51467 20642 8
LA04 109852 45996 17
LA05 277781 116830 45

Table 2: Summary of results with Local Search over in-
stances LA01− LA05.

Instance LA01 LA02 LA03 LA04 LA05
Best Sol. 4832 4459 4151 4259 4072

(30s.) 4833 4498 4151 4271 4131
(64s.) 4833 4459 4151 4271 4072

with 10 jobs and 5 machines each and the ORB1-10 in-
stances with 10 jobs and 10 machines each; all instances are
taken from the OR-library. Instances LA01-05 are solved
to optimality by A∗, whilst instances ORB1-10 are harder
to solve so as the optimal solution is not known for all of
them.

Table 1 shows the results obtained by A∗ combining prun-
ing by dominance, heuristic h3 and the Emmons’ rules
across LA instances. It is clear that the pruning method al-
lows reducing both the effective search space and the run-
ning time in about one order of magnitude. Regarding the
improvement obtained from the Emmons’ rules, when prun-
ing is not applied they allow solving one more instance than
the number of instances solved when these rules are not ap-
plied. When pruning is exploited, the Emmons’ rules allow
reducing both the number of expanded nodes and the time

Table 3: Summary of results from combining heuristic h3,
Emmons’ rules and pruning by dominance over instances
ORB 9× 9.(Values in bold indicate that memory limit was
exhausted without reach a solution.)

No Pruning + h3

Instance Generated Expanded Time(s)
ORB01 9× 9 3110288 1731664 590
ORB02 9× 9 3028465 1672119 528
ORB03 9× 9 2796950 1440675 544
ORB04 9× 9 3317534 1961478 623
ORB05 9× 9 300471 176815 53
ORB06 9× 9 2832350 1475977 541
ORB07 9× 9 3241386 1885379 594
ORB08 9× 9 2547419 1191199 510
ORB09 9× 9 925732 565944 168
ORB10 9× 9 3066205 1710266 550

Pruning + h3

Instance Generated Expanded Time(s)
ORB01 9× 9 746135 421573 179
ORB02 9× 9 441510 253151 98
ORB03 9× 9 491587 259095 120
ORB04 9× 9 1131313 659567 289
ORB05 9× 9 82206 47972 17
ORB06 9× 9 860798 467269 221
ORB07 9× 9 592898 345889 163
ORB08 9× 9 1586053 812605 519
ORB09 9× 9 187179 111023 41
ORB10 9× 9 487075 276921 111

No Pruning + h3 + Emmons
Instance Generated Expanded Time(s)

ORB01 9× 9 3191201 1835122 686
ORB02 9× 9 2351544 1303234 468
ORB03 9× 9 2906972 1550722 658
ORB04 9× 9 3343663 1987577 729
ORB05 9× 9 268678 158201 54
ORB06 9× 9 2861212 1504837 639
ORB07 9× 9 3261372 1905274 696
ORB08 9× 9 2584342 1228022 632
ORB09 9× 9 599378 365056 125
ORB10 9× 9 3066732 1710956 624

Pruning + h3 + Emmons
Instance Generated Expanded Time(s)

ORB01 9× 9 547687 310954 131
ORB02 9× 9 366068 209260 81
ORB03 9× 9 378658 199359 95
ORB04 9× 9 914526 533722 229
ORB05 9× 9 74543 43514 16
ORB06 9× 9 720815 390476 185
ORB07 9× 9 481491 280638 124
ORB08 9× 9 1458504 749257 431
ORB09 9× 9 134458 78979 31
ORB10 9× 9 368718 209593 92

taken in about 30%.
Table 2 shows the results obtained by the local search pro-

cedure for instances LA01-05 with a time limit of 30s. This
is the mean time taken by A∗ to solve these instances, as we

can see in Table 1. As we can observe, only one of the 5
instances gets solved to optimality. If the time limit is aug-
mented to 64s. (the maximum time taken for A∗ for these
instances), the local search procedure solves 3 of the 5 in-
stances.

Regarding instances ORB1-10, they are on the threshold
of problem size that A∗ is able to solve; only 2 of the 10
instances get solved, for 3 instances the algorithm stopped
after 3600s. without solution and for the remaining 5 the
memory is exhausted by this time. So, we have experi-
mented with instances of size 9 × 9 obtained by eliminat-
ing the last machine and the last job in each of the instances
ORB1-10. The results of this experiment are reported in Ta-
ble 3. All these instances get solved taking a time of 142s. in
average. In Table 3 we have also reported results from exper-
iments with different combinations of pruning and the Em-
mons rules with heuristic h3. It is worth remarking that these
rules allow reducing both the number of expanded nodes and
the time taken in about 20%. We have experimented with
the local search across these 9 × 9 instances leaving a time
limit of 142s. As we can see in Table 4, only 5 of the 10
instances get solved. For the remaining 5 instances, we have
also leaved the algorithm running for 300s. and only one
more instance gets solved, as we can see in Table 5.

Table 4: Summary of results with Local Search over in-
stances ORB 9× 9. Time limit 142s (Average).

Instance Opt. Sol. Reach. Sol.
ORB01 9× 9 6367 6383
ORB02 9× 9 5867 5868
ORB03 9× 9 6310 6310
ORB04 9× 9 6661 6661
ORB05 9× 9 5605 5605
ORB06 9× 9 6106 6106
ORB07 9× 9 2668 2668
ORB08 9× 9 5668 5717
ORB09 9× 9 6013 6026
ORB10 9× 9 6328 6333

Table 5: Summary of results with Local Search over in-
stances ORB 9× 9. Time limit 300s.

Instance Opt. Sol. Reach. Sol.
ORB01 9× 9 6367 6383
ORB02 9× 9 5867 5868
ORB08 9× 9 5668 5693
ORB09 9× 9 6013 6013
ORB10 9× 9 6328 6333

Conclusions
In this paper we considered an A∗ approach to the JSSP with
total flow time minimization. We proposed a new heuristic
based on problem relaxation to the OMS problem with tar-
diness minimization. The A∗ algorithm is enhanced with a
pruning by dominance rule that allows reducing the effec-
tive search space. We reported results from an experimental

study showing that the proposed A∗ algorithm is quite com-
petitive with the local search procedure proposed in (Kreipl
2000). A∗ can solve to optimality instances up to 10 × 5 or
9 × 9 and the local search procedure is not able to solve to
optimality all these instances even taking a larger time. Of
course, for larger instances, the local search procedure may
obtain sub-optimal solutions while A∗ is not able to solve
them as the computer memory gets exhausted.

As future work, we will try refining the heuristic from
recent constraint propagation rules such as the new global
constraint proposed in (Kovacs & Beck 2007) for the OMS
problem with weighted tardiness minimization. We will also
consider other objective functions such as the weighted tar-
diness and other variants of the classic JSSP, such as the
JSSP with sequence dependent setup times.

Acknowledgments
This work has been supported by the Spanish Ministry of
Science and Education under research project MEC-FEDER
TIN2007-67466-C02-01.

References
Baptiste, P.; Carlier, J.; and Jouglet, A. 2004. A brach-
and-bound procedure to minimize total tardiness on one
machine with arbitrary release dates. European Journal
of Operational Research 158:595–608.
Brucker, P.; Jurisch, B.; and Sievers, B. 1994. A branch
and bound algorithm for the job-shop scheduling problem.
Discrete Applied Mathematics 49:107–127.
Brucker, P. 2004. Scheduling Algorithms. Springer, 4th
edition.
Carlier, J., and Pinson, E. 1989. An algorithm for solving
the job-shop problem. Management Science 35(2):164–
176.
Carlier, J., and Pinson, E. 1994. Adjustment of heads and
tails for the job-shop problem. European Journal of Oper-
ational Research 78:146–161.
Carlier, J. 1982. The one-machine sequencing problem.
European Journal of Operational Research 11:42–47.
Dell’ Amico, M., and Trubian, M. 1993. Applying tabu
search to the job-shop scheduling problem. Annals of Op-
erational Research 41:231–252.
Emmons, H. 1969. One-machine sequencing to minimize
certain functions of job tardiness. Operations Research
17:701–715.
Giffler, B., and Thomson, G. L. 1960. Algorithms for solv-
ing production scheduling problems. Operations Research
8:487–503.
Hart, P.; Nilsson, N.; and Raphael, B. 1968. A formal ba-
sis for the heuristic determination of minimum cost paths.
IEEE Trans. on Sys. Science and Cybernetics 4(2):100–
107.
Kovacs, A., and Beck, J. C. 2007. A global constraint
for total weighted completion time. In CPAIOR2007: Pro-
ceedings of the Fourth International Conference on Inte-
gration of AI and OR Techniques in Constraint Program-

ming for Combinatorial Optimization Problems, volume
4510 of Lecture Notes in Computer Science, 112–126.
Springer.
Kreipl, S. 2000. A large step rendom walk for minimizing
total weighted tardiness in a job shop. Journal of Schedul-
ing 3:125–138.
Mattfeld, D. C. 1995. Evolutionary Search and the Job
Shop Investigations on Genetic Algorithms for Production
Scheduling. Springer-Verlag.
Nilsson, N. 1980. Principles of Artificial Intelligence.
Tioga, Palo Alto, CA.
Nowicki, E., and Smutnicki, C. 1996. A fast taboo search
algorithm for the job shop scheduling problem. Manage-
ment Science 42:797–813.
Pearl, J. 1984. Parallel machine scheduling models with
fuzzy processing times. Information Sciences 166:49–66.
Rinnooy, A. H. G. 1976. Machine sequencing problem:
Classification, complexity and computation. Nijhoff, The
Hague.
Sierra, M., and Varela, R. 2007. Pruning by dominance
in best-first search. In Proceedings of CAEPIA’2007, vol-
ume 2, 289–298.
Taillard, E. D. 1994. Parallel taboo search techniques for
the job shop scheduling problem. ORSA Journal on Com-
puting 6(2):108–117.
Yamada, T., and Nakano, R. 1996. Scheduling by ge-
netic local search with multi-step crossover. In Proceed-
ings of Fourth International Conference On Parallel Prob-
lem Solving from Nature (PPSN IV 1996), 960–969.
Zhang, C. Y.; Li, P.; Rao, Y.; and Guan, Z. 2008. A very
fast ts/sa algorithm for the job shop scheduling problem.
Computers and Operations Research 35:282–294.

