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1 Introduction

In this paper we propose a method based on dominance properties to reduce the
effective space in best-first search. The method is illustrated with an application
of the A∗ algorithm [Hart (1968); Nilsson (1980); Pearl (1984)] to the Job Shop
Scheduling Problem (JSSP) with makespan minimization. We established a suffi-
cient condition for a state n1 dominates another state n2 so as n2 can be pruned.
Also, we have devised a rule to evaluate this condition efficiently. The overall result
is a substantial reduction in both the time and mainly in the space required for
searching optimal schedules.

Over the last decades, a number of methods has been proposed in the literature
to deal with the JSSP with makespan minimization. In particular there are some
exact methods such as the branch and bound algorithm proposed in Brucker (1994)
or the backtracking algorithm proposed in Sadeh (1996). As the majority of the
efficient methods for the JSSP with makespan minimization, the Brucker’s algo-
rithm relies on the concept of critical path, i.e. a longest path in the solution graph
representing the processing order of operations in a solution. In particular, the
branching schema is based on reversing the order of operations on the critical path.
The main problem of the methods based on the critical path is that they can not
be efficiently adapted to objective functions other than makespan. The algorithm
proposed in Sadeh (1996) is guided by variable and value ordering heuristics and its
branching schema is based on starting times of operations. It is not as efficient as
the Brucker’s algorithm for makespan minimization, but it can be easily adapted for
other classic objective functions such as total flow time or tardiness minimization.
In this paper, we consider the search space of active schedules in order to evaluate
the proposed method for pruning by dominance. This search space is suitable for
any objective function. For this reason we have chosen to compare with the method
proposed in Sadeh (1996) in the experimental study.

The paper is organized as follows. In section 2 the JSSP is formulated. Section
3 describes the search space of active schedules for the JSSP. Section 4 sumarizes
the main characteristics of A∗ algorithm. In section 5, the heuristic used to guide
A∗ for the JSSP is described. Section 6 introduces the concept of dominance and
establishes some results and an efficient rule to test dominance for the JSSP. Section
7 reports results from the experimental study. Finally, section 8 summarizes the
main conclusions.

2 Problem Formulation

The Job Shop Scheduling Problem (JSSP) requires scheduling a set of N jobs
{J1, . . . , JN} on a set of M resources or machines {R1, . . . , RM}. Each job Ji

consists of a set of tasks or operations {θi1, . . . , θiM} to be sequentially scheduled.
Each task θil has a single resource requirement Rθil

, a fixed duration pθil and a start
time stθil

to be determined. The JSSP has three constraints: precedence, capacity
and no-preemption. Precedence constraints translate into linear inequalities of
the type: stθil

+ pθil
≤ stθi(l+1) . Capacity constraints translate into disjunctive

constraints of the form: stv+pv ≤ stw∨stw+pw ≤ stv, if Rv = Rw. No-preemption
requires that the machine is assigned to an operation without interruption during
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its whole processing time. The objective is to come up with a feasible schedule such
that the completion time, i.e. the makespan, is minimized.

In the sequel a problem instance will be represented by a directed graph G =
(V, A∪E). Each node in the set V represents an actual operation, with the exception
of the dummy nodes start and end, which represent operations with processing time
0. The arcs of A are called conjunctive arcs and represent precedence constraints
and the arcs of E are called disjunctive arcs and represent capacity constraints. E
is partitioned into subsets Ei with E = ∪{i=1,...,M}Ei. Ei includes an arc (v, w) for
each pair of operations requiring Ri. The arcs are weighed with the processing time
of the operation at the source node. Node start is connected to the first operation
of each job and the last operation of each job is connected to node end.

A feasible schedule is represented by an acyclic subgraph Gs of G, Gs = (V, A∪
H), where H = ∪i=1,...,MHi, Hi being a processing ordering for the operations
requiring Ri. The makespan is the cost of a critical path. A critical path is a
longest path from node start to node end.

In order to simplify expressions, we define the following notation for a feasible
schedule. The head rv of an operation v is the cost of the longest path from node
start to node v, i.e. it is the value of stv. The tail qv is defined so as the value
qv + pv is the cost of the longest path from v to end. Hence, rv + pv + qv is the
makespan if v is in a critical path, otherwise, it is a lower bound. PMv and SMv

denote the predecessor and successor of v respectively on the machine sequence and
PJv and SJv denote the predecessor and successor nodes of v respectively on its
job.

A partial schedule is given by a subgraph of G where some of the disjunctive
arcs are not fixed yet. In such a schedule, heads and tails can be estimated as

(1)
rv = max{maxw∈P (v)(rw + pw), rPJw + pPJw}
qv = max{maxw∈S(v)(pw + qw), pSJv + qSJv}

where P (v) denotes the disjunctive predecessors of v, i.e. operations requiring
machine Rv which are scheduled before v. Analogously, S(v) denotes the disjunctive
successors of v. Hence, the value rv + pv + qv is a lower bound of the best schedule
that can be reached from the partial schedule. This lower bound may be improved
from the Jackson’s preemptive schedule (see section 5).

3 The Search Space of Active Schedules

A schedule is active if for an operation can start earlier at least another one
should be delayed. Maybe the most appropriate strategy to calculate active sched-
ules is the G&T algorithm proposed in Giffler (1960). This is a greedy algorithm
that produces an active schedule in a number of N ∗M steps. At each step, G&T
algorithm makes a non-deterministic choice. Every active schedule can be reached
by taking the appropriate sequence of choices. Therefore, by considering all choices,
we have a complete search tree suitable for strategies such as branch and bound,
backtracking or A∗. This is one of the usual branching schemas for the JSSP, as
pointed in Brucker (2006), and it is the approach taken, for example, in Varela
(2002) and Sierra (2005).
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Algorithm 1 SUC(state n). Algorithm to expand a state n. When it is successively
applied from the initial state, i.e. an empty schedule, it generates the whole search
space of active schedules.

1. A = {v ∈ US(n); PJv ∈ SC(n)};
2. Let v ∈ A the operation with the lowest completion time, that is rv + pv ≤
ru + pu, ∀u ∈ A;
3. B = {w ∈ A; Rw = Rv and rw < rv + pv};
for each w ∈ B do

4. SC(n′) = SC(n) ∪ {w} and US(n′) = US(n)\{w};
\∗ w gets scheduled in the current state n′ ∗\

5. Gn′ = Gn ∪ {w → v; v ∈ US(n′), Rv = Rw};
\∗ stw is now scheduled in n′ to rw and the arc(w, v) is added to the graph

∗\
6. c(n, n′) = max{0, (rw + pw)−max{(rv + pv), v ∈ SC(n)}};
7. Update heads of operations in US(n′) accordingly with expression (1);
8. Add n′ to successors;

end for
9. return successors;

Algorithm 1 shows the expansion operation that generates the full search tree
when it is applied successively from the initial state, in which none of the operations
are scheduled yet. In the sequel, we will use the following notation. Let O denote
the set of operations of a problem instance, and n1 and n2 be two search states. In
n1, O can be decomposed into the disjoint union SC(n1) ∪US(n1), where SC(n1)
denotes the set of operations scheduled in n1 and US(n1) denotes the unscheduled
ones. D(n1) = |SC(n1)| is the depth of node n1 in the search space. Given O′ ⊆ O,
rn1(O

′) is the vector of heads of operations O′ in state n1. rn1(O
′) ≤ rn2(O

′) iff
for each operation v ∈ O′, rv(n1) ≤ rv(n2), rv(n1) and rv(n2) being the head of
operation v in states n1 and n2 respectively. Analogously, qn1

(O′) is the vector of
tails.

4 Best-First Search

For best-first search we have chosen the A∗ Nilsson’s algorithm Nilsson (1980).
A∗ starts from an initial state s, a set of goal nodes Γ and a transition operator SUC
such that for each node n of the search space, SUC(n) returns the set of successor
states of n. Each transition from n to n′ has a positive cost c(n, n′). P ∗s-n denotes the
minimum cost path from node s to node n. The algorithm searches for a path P ∗s-o
which has the lower cost to achieve an objective. The set of candidate nodes to be
expanded are maintained in an ordered list OPEN . The next node to be expanded
is that with the lowest value of the evaluation function f , defined as f(n) = g(n)+
h(n); where g(n) is the minimal cost known so far from s to n, (of course if the
search space is a tree, the value of g(n) does not change, otherwise this value has
to be updated as long as the search progresses) and h(n) is a heuristic positive
estimation of the minimal distance from n to the nearest goal. If the heuristic
function underestimates the actual minimal cost, h∗(n), from n to the goals, i.e.
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h(n) ≤ h∗(n), for every node n, the algorithm is admissible, i.e. it returns an
optimal solution. Moreover, if h(n1) ≤ h(n2)+ c(n1, n2) for every pair of states n1,
n2 of the search graph, h is consistent. Two of the properties of consistent heuristics
are that they are admissible and that the sequence of values f(n) of the expanded
nodes is non-decreasing. The heuristic function h(n) represents knowledge about
the problem domain, therefore as long as h approximates h∗ the algorithm is more
and more efficient as it needs to expand a lower number of states to reach the
optimal solution.

5 A Heuristic for the JSSP

In order to devise a heuristic estimation, we have used a problem relaxation. The
residual problem represented by a state n is given by the unscheduled operations in
n together with their heads and tails, i.e. the triplet P (n) = (US(n), rn(US(n)),
qn(US(n))). Problem relaxation is made in two steps. Firstly, for each ma-
chine m with a requiring operation in US(n), the simplified problem P (n)|m =
(US(n)|m, rn(US(n)|m), qn(US(n)|m)) is considered, where US(n)|m denotes the
unscheduled operations in n requiring machine m. Problem P (n)|m is known as
the One Machine Sequencing (OMS) with heads and tails, where an operation v
is defined by its head rv, its processing time pv over machine m, and its tail qv.
This problem is still NP -hard, so a new relaxation is made: the no-preemption of
machine m. This way an optimal solution to this problem is given by the Jackson’s
preemptive schedule (JPS) Carlier (1989, 1994). Figure 1 shows an example of
OMS instance and a JPS for it. The JPS is calculated by the following algo-
rithm: at any time t given by a head or the completion of an operation, from the
minimum rv until all jobs are completely scheduled, schedule the ready operation
with the largest tail on machine m. Carlier and Pinson proved in Carlier (1989,
1994) that calculating the JPS has a complexity of O(K × log2(K)), where K is
the number of operations.

The JPS of problem P (n)|m, denoted JPS(P (n)|m), provides a lower bound of
the completion time of problem P (n), denoted Cmax(P (n)). As f∗(n) = max{g(n),
Cmax(P (n))}, the value JPS(P (n)|m) is a lower bound of f∗(n) too. So, to obtain

Figure 1 The Jackson’s Preemptive Schedule for an OMS problem instance

 

v 1 2 3 4 5 6 rv 4 0 9 15 20 21 pv 6 8 4 5 8 8  qv 20 25 30 9 14 16  
a) An OMS problem instance   2 1 3 1 4 5 6 5 4  0        8  9   13    18 20 21      29      36  39 b) A JPS with makespan 50 given by completion time of job 5(36 + 14) 
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a lower bound of h∗(n), the value of the largest completion time of operations in
SC(n), i.e. g(n), should be considered and the heuristic, termed hJPS , is calculated
as

(2) hJPS(n) = max{0, JPS(J(n))− g(n)}; JPS(J(n)) = max
m∈R

{JPS(J(n)|m)}

As hJPS is devised from a problem relaxation, it is consistent Pearl (1984).

6 Dominance Properties

Given two states n1 and n2, we say that n1 dominates n2 if and only if the best
solution reachable from n1 is better, or at least of the same quality, than the best
solution reachable from n2. In some situations this fact can be detected and then
the dominated state can be early pruned. Let us consider a small example. Figure
2 shows the Gantt charts of two partial schedules, with three operations scheduled,
corresponding to search states for a problem with 2 jobs and 3 or more machines.
If the second operation of job J1 requires R2 and the third operation of J2 requires
R3, it is easy to see that the best solution reachable from the state of Figure 2a can
not be better than the best solution reachable from the state of Figure 2b. This is
due to the residual problem of both states comprising the same set of operations
and in the first state the heads of all operations are larger or at least equal than the
heads in the second state. So, the state of Figure 2a may be pruned if both states
are simultaneously in memory. Of course, a good heuristic will lead the search to
explore first the state of Figure 2b if both of them are in OPEN at the same time.
However, at a later time, the state of Figure 2a and a number of its descendants
might also be expanded. Consequently, early pruning of this state can reduce the
space and, if the comparison of states for dominance is done efficiently, also the
search time. Pruning by dominance is not new in heuristic search. For example,
in Nazaret (1999) a method is proposed for the Project Scheduling Problem and
in Korf (2003) and Korf (2004) similar methods are proposed for the Bin Packing
Problem and the two-dimensional Cutting Stock Problem respectively.

More formally, we define dominance among states as it follows.

Definition 6.1. Given two states n1 and n2, such that n1 /∈ P ∗s-n2
and n2 /∈ P ∗s-n1

,
n1 dominates n2 if and only if f∗(n1) ≤ f∗(n2).

Of course, establishing dominance among any two states is problem dependent
and it is not easy in general. Therefore, to define an efficient strategy, it is not
possible to devise a complete method to determine dominance and apply it to
every pair of states of the search space. So, what we have done is establishing a
sufficient condition for dominance for the JSSP. As we will see, this condition can be
efficiently evaluated, so as the whole process of testing dominance is efficient, at the
cost of not detecting all dominated states. The sufficient condition for dominance
is formalized in the following two results.

Proposition 6.2. Let n1 and n2 be two states such that SC(n2) ⊆ SC(n1) and
rn1(US(n1)) ≤ rn2(US(n1)), then the following conditions hold:

1. qn1
(US(n1)) = qn2

(US(n1)).
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2. JPS(P (n1)) ≤ JPS(P (n2)).

3. Cmax(P (n1)) ≤ Cmax(P (n2)).

Proof. Condition 1 comes from the fact that each operation v ∈ US(n1) is an
unscheduled operation in both states n1 and n2. Consequently, v has not any
disjunctive successor yet. So, according to equations (1), qv(n1) = pSJv + qSJv (n1)
and qv(n2) = pSJv

+ qSJv
(n2). As qend(n1) = qend(n2) = 0, reasoning by induction

from node end backwards, we have finally qv(n1) = qv(n2). Hence, qn1
(US(n1)) =

qn2
(US(n1)).
To prove condition 2, let us denote P (n2|n1) to the problem comprising op-

erations in US(n1) but considering the heads of these operations as in state n2,
i.e. P (n2|n1) = (US(n1), rn2(US(n1)), qn2

(US(n1)))). Problems P (n2|n1) and
P (n1) have the same operations, and the head of each operation in P (n1) is lower
or at least equal than it is in P (n2|n1), while the tails are equal. Therefore, any
preemptive schedule for operations US(n1)|m with heads and tails as they are in
problem P (n1) is also a feasible preemptive schedule for these operations with heads
and tails as they are in P (n2|n1). So, it is clear that JPS(P (n1)) ≤ JPS(P (n2|n1)).
Through analogous reasoning JPS(P (n2|n1)) ≤ JPS(P (n2)), as the operations in
P (n2|n1) are a subset of those in P (n2) and the heads and tails of the operations
in common are the same.

Finally, condition 3 can be proved through similar reasoning as condition 2, as
Cmax(P (n1)) ≤ Cmax(P (n2|n1)) ≤ Cmax(P (n2)).

Theorem 6.3. Let n1 and n2 be two states such that n2 /∈ P ∗s-n1
. If SC(n2) ⊆

SC(n1), rn1(US(n1)) ≤ rn2(US(n1)) and f(n1) ≤ f(n2), then the following con-
ditions hold, where D(n) denotes the depth of node n in the search tree:

1. D(n1) ≥ D(n2).

2. n1 /∈ P ∗s-n2
.

3. n1 dominates n2.

Proof. Condition (1) is trivial from SC(n2) ⊆ SC(n1), as D(n) = |SC(n)|. From
condition (1) the only possibility for condition (2) not to hold is that n1 = n2, but
this can not be true due to n2 /∈ P ∗s-n1

. So condition (2) holds.
To prove condition (3), let us remember that f(n) = max{g(n), JPS(P (n))}

and f∗(n) = max{g(n), Cmax(P (n))}. As JPS(P (n1)) ≤ JPS(P (n2)), from

Figure 2 Partial schedules of two search states, state b) dominates state a)

 
      0 1 2 3 4 5  6  7  8 0 1 2 3 4 5   J1 J2 J1 J2 R1 R2 R3 R1 R2 R3 R1 R2 R2 R1 

a) b) 
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f(n1) ≤ f(n2) it follows that either (a) g(n1) ≤ g(n2) or (b) g(n1) > g(n2) and
JPS(P (n2) ≥ g(n1). If (a) holds, as Cmax(P (n1)) ≤ Cmax(P (n2)) it follows that
f∗(n1) ≤ f∗(n2). If (b) holds, as Cmax(P (n2)) ≥ JPS(P (n2)) ≥ g(n1) > g(n2),
then f∗(n1) ≤ Cmax(P (n2)) ≤ f∗(n2). Then n1 dominates n2.

6.1 Rule for testing dominance

From the results above, we can devise rules for testing dominance to be included
in the A∗ algorithm. To establish that node n1 dominates node n2 the following
conditions should be verified

1. n2 /∈ P ∗s-n1

2. SC(n2) ⊆ SC(n1)

3. rn1(US(n1)) ≤ rn2(US(n1))

4. f(n1) ≤ f(n2)

so in principle each time a new node n1 appears during the search, this node should
be compared with any other node n2 reached previously. When f(n1) = f(n2), it
should be verified if n1 dominates n2 and also if n2 dominates n1. If one of the
nodes is dominated, it can be pruned. It could be the case that both n1 dominates
n2 and n2 dominates n1; in this case either of them, but not both, can be pruned.
Obviously, this rule does not seem very efficient. So we simplify this process and
proceed as follows:

(i) Each time a node n is selected by A∗ for expansion, n is matched with every
node n′ in OPEN such that f(n) = f(n′). As both nodes are in OPEN , only
conditions (2) and (3) have to be tested. If any of the nodes become domi-
nated, it is pruned. In the case that both n dominates n′ and n′ dominates
n, n′ is pruned.

(ii) If node n is not pruned in step (i), it is compared with those nodes n′ in
the CLOSED list such that D(n′) ≥ D(n). This is a necessary condition
for n′ dominates n and it also implies condition 1 for n and n′. Moreover,
f(n′) ≤ f(n) due to hJPS being consistent. So, only conditions 2 and 3 have
to be checked. If n′ dominates n, then n is pruned.

In step (i), n is not compared with nodes n′ in OPEN with f(n) < f(n′). In
this situation, n could dominate n′, but this will be detected later if n′ is selected for
expansion, as n will be in CLOSED. In step (ii), nodes n′ with D(n′) ≥ D(n) may
be efficiently searched in CLOSED by ordering this list accordingly with the depth
of the expanded states. Regarding step (ii), n might dominate n′ if f(n) = f(n′);
in this case, n′ and every descendant of n′ at any level of the search, some of
which might be in OPEN , may be pruned. This requires searching over the whole
CLOSED list and keeping trace of successors for each of the expanded nodes. In
our experiments, we have not considered this possibility because it doesn’t make
up for the cost of searching and keeping links from parents to children. The reason
for this is that most of the nodes in OPEN that are pruned in this way became
also pruned from comparison with other nodes.
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7 Experimental study

For experimental study we have chosen the set of 15 problems LA01-15 from the
OR-library (http://people.brunel.ac.uk/ mastjjb/jeb/info.html). These are small
and medium size instances, LA01 to LA05 are 10 × 5 (10 jobs and 5 machines),
LA06 to LA10 are 15 × 5 and LA11 to LA15 are 20 × 5. Also, for the purpose of
comparison with other methods, we have considered the set of instances proposed
in Sadeh (1996). This is a set of 60 instances of size 10 × 5 which is organized
in 6 groups of 10 problems each. Each group is characterized by two parameters:
BK (number of bottleneck resources) and RG (range parameter). A resource is a
bottleneck if it appears at the same position in the machine sequence of all jobs.
RG controls the distribution of release dates and deadlines of jobs.

We used an A∗ prototype implementation coded in C++ language developed in
Builder C++ 6.0 for Windows, the target machine was Pentium 4 at 3Ghz with 1Gb
RAM . To evaluate the efficiency of the proposed pruning method, we first solved
these instances without considering upper bounds. So, none of the generated states
n can be pruned from the condition f(n) ≥ UB and these nodes should be inserted
in the OPEN list, even though they will never be expanded due to heuristic hJPS

being admissible. Moreover, in this case A∗ only completes the search either when
a solution state is reached or when the computational resources (memory available
or time limit) are exhausted. This allows us to have an idea about the size of the
search space for these instances. We have given a time limit of 3600 seconds for
each run.

Table 1 summarizes the results of this experiment. As we can observe, when
pruning is not applied, instances 10, 11 and 13 remain unsolved due to memory
getting exhausted. On the other hand, with pruning applied in its full extension,
i.e. by comparing the expanded node n′ with all node n in CLOSED with D(n) ≥
D(n′), instances 10 and 13 are solved but instance 11 is not solved either; in this
case the memory is not exhausted in the time limit. The remaining instances are
solved in both cases. For all instances, the number of nodes expanded is lower when
pruning is applied (here it is important to remark that the memory consumed is
in direct ratio with the number of expanded nodes), while the time is similar in
average, but it is larger in some cases. So, we have experimented by restricting
comparisons to nodes n in CLOSED with D(n) = D(n′). In this case, the time
is clearly lower, even though the number of expanded nodes augments slightly. In
spite of that, instance 11 still remains unsolved due to time limit.

In the second series of experiments, we have enhanced A∗ with upper bounds
calculation by means of a greedy algorithm. As it was done in Brucker (1994, 2004)
we have used the G&T algorithm with a selection rule based on JPS computations
restricted to the machine required by critical operations, i.e. those of set B in Al-
gorithm 1. Here, with a given probability P , a solution is issued from the expanded
node. When P < 1, the results are averaged over 20 runs for each instance. Table
2 reports results from a set of experiments with different values of P . Let us firstly
consider the first two parts of this table. In the first part, results from no pruning
are reported; while in the second one the results came from applying pruning by
dominance in its full extension. As we can observe, the number of expanded nodes
is always much lower with pruning than it is without it; and this number is in
inverse ratio with the value of P , as it can be expected. However, the time taken is
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similar or even larger with pruning. The third part of Table 2 shows results from
restricting comparison to nodes with the same depth in the search tree. In this
case, the search takes lower time than it takes in previous experiments, while the
number of expanded nodes is only a little bit larger. So, this seems to be the best
choice. As we can observe from the average values reported in Table 2, pruning in
its full extension reduces the number of expanded nodes in about 82% with respect
to the non-pruning version, while the time increases in about 40%. However, prun-
ing restricted to nodes of the same depth reduces the expanded nodes in about 80%
and also the time in more than 50%. Overall, we can conclude that the proposed
method that combines pruning by dominance with probabilistic calculation of up-
per bounds is efficient when searching in the space of active schedules for makespan
minimization.

In the last series of experiments we consider the benchmark proposed in Sadeh
(1996). Table 3 summarizes the results obtained across these instances. For each
group of 10 instances with the same values of parameters RG and BK, this table
reports the number of generated and expanded nodes as well as the time taken.
These values are averaged first over the 20 runs with each instance and then over
the 10 instances of each group. All instances got solved in all runs. As we can
observe, the time taken and the number of generated and expanded nodes are
much lower with pruning by dominance. Being the differences more significative
for the hardest instances, i.e. those in the second, fourth and sixth groups. In
principle, these results are not directly comparable with those reported in Sadeh
(1996). The reason for this is that Sadeh and Fox have considered a decision version
of the problem with due dates. In average, these due dates are at least a 20% larger

Table 1 Summary of results of pruning by dominance over instances LA01-15.

Results obtained without considering UBs during the search, i.e. UB = ∞
No pruning Pruning by dominance Pruning by dominance

D(n) ≥ D(n′) D(n) = D(n′)
Inst. Expanded Time(s) Expanded Time(s) Expanded Time(s)

1 418 0 158 0 165 0
2 57103 27 9454 78 10509 7
3 249 1 216 0 217 0
4 63969 30 7309 33 7888 6
5 8397 4 3518 10 3731 3
6 14270 9 1935 5 2220 3
7 1853 1 1158 2 1243 2
8 2926 3 1494 2 1517 2
9 678 0 436 1 439 0

10 280582 182 37894 1142 52713 71
11 131470 143 72067 3600 105449 272
12 1689 1 952 3 965 2
13 111891 141 13111 89 13599 33
14 258 0 257 0 257 0
15 76967 93 20022 275 22068 46

bold indicates time limit (3600 s.) or memory limit getting exhausted.
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Table 2 Summary of results combining pruning by dominance with probabilistic cal-
culation of heuristic solutions during the search over instances LA01-15. When P < 1,
the results are averaged over 20 runs for each instance. The heuristic algorithm is run
from the initial state and then for each expanded state with probability P . Instances not
included in this table get solved at the initial state, i.e. f(start) = First UB = C∗

P = 1 P = 0, 1 P = 0, 01
Inst. Expanded Time(s) Expanded Time(s) Expanded Time(s)
No pruning

1 23 0 400 0 418 0
2 57082 151 57091 38 57102 27
3 152 1 189 0 248 0
4 63892 158 63892 42 63892 30
7 26 1 1384 2 1852 2
8 2904 10 2911 3 2924 2

12 18 0 25 0 696 1
13 6 1 15 0 96968 126
15 76863 457 76918 127 76963 95

Average
22330 87 22536 24 33451 31

Pruning by dominance
1 23 0 89 0 158 0
2 9433 105 9438 80 9453 78
3 128 1 170 0 209 0
4 7152 52 7152 34 7214 32
7 26 1 752 2 1098 2
8 1472 8 1479 3 1491 2

12 18 1 28 0 545 2
13 6 1 18 0 7226 50
15 19950 397 20002 287 20021 276

Average
4245 63 4348 45 5268 49

Pruning by dominance, restricting matching to states of the same depth
1 23 0 145 0 165 0
2 10488 36 10497 10 10505 7
3 128 1 180 0 215 0
4 7714 28 7714 8 7801 6
7 26 1 1049 2 1118 2
8 1495 7 1503 2 1516 2

12 18 0 26 0 127 1
13 6 1 14 0 10206 25
15 4655 178 22042 58 22066 46

Average
4657 28 4797 19 5969 10

than the optimal makespan. In their experimental study, they reach solutions for
52 instances in a time of about 3 or 4 seconds on a DECstation 5000/200, while
the remaining 8 instances remain unsolved even taking a much larger time. As
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they report solutions fulfilling the due date constrains and these due dates are
considerably larger than the optimal makespan, it is expected that their solutions
are far from being optimal. So, from all these considerations, we can consider our
approach more efficient than that reported in Sadeh (1996).

8 Conclusions

In this paper we propose a pruning method based on dominance relations among
states to improve the efficiency of best-first search algorithms. We have applied this
method to the JSSP considering the search space of active schedules and the A*
algorithm. To do that, we have defined a sufficient condition for dominance and a
rule to evaluate this condition which is efficient as it allows to restrict comparison
of the expanded node with only a fraction of nodes in OPEN and CLOSED lists.
This method is combined with a greedy algorithm to obtain upper bounds during
the search. We have reported results from an experimental study over instances
taken from the OR-library and from Sadeh (1996). These experiments show that
the proposed method of pruning by dominance, in combination with the greedy
algortithm , is efficient as it allows to save both space and time. Furthermore, the
method is much more efficient than the backtracking algorithm proposed in Sadeh
(1996).

As future work, we plan to combine the pruning strategy with constraint propa-
gation techniques, such as those proposed in Dorndorf (2000, 2002), as it is done in
the branch and bound algorithm described in Brucker (1994, 2004). Also, we plan
to apply the pruning by dominance method to other scheduling problems which
are harder to solve than the JSSP with makespan minimization such as the JSSP
with total flow time or tardiness minimization; and the the JSSP with setup times.
Also, we will confront other problems such as the Travelling Salesman Problem or
the Cutting-Stock Problem. As search spaces of these problems have similar char-
acteristics to the space of active schedules for the JSSP, we expect to obtain similar
improvement of efficiency in both cases.

Table 3 Summary of results with Heuristic hJPS with pruning by dominance over the
Sadeh instances. Time limit is 3600s.

Results obtained considering UBs during the search with P = 0.01
No pruning Pruning by dominance

Subset Inst. Generated Expanded Time(s) Generated Expanded Time(s)
BK = 1, RG = 0, 0 336 148 0 269 118 0
BK = 2, RG = 0, 0 79936 32118 19 9568 3899 5
BK = 1, RG = 0, 1 158 74 0 150 71 0
BK = 2, RG = 0, 1 116911 45260 26 8441 3423 5
BK = 1, RG = 0, 2 140 73 0 113 58 0
BK = 2, RG = 0, 2 1543 714 0 625 276 0
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