
Improving heuristic estimations with constraint

propagation in searching for optimal schedules ⋆

Carlos Menćıa, Maŕıa R. Sierra and Ramiro Varela

Department of Computing.
University of Oviedo. Campus of Viesques, 33271 Gijón, Spain

Tel. +34-8-5182508. FAX +34-8-5182125.
{uo156612, sierramaria, ramiro}@uniovi.es

http://www.aic.uniovi.es/Tc

Abstract. We face the Job Shop Scheduling Problem by means of
branch and bound and A∗ search. Our main contribution is a new
method, based on constraint propagation rules, that allows improving
the heuristic estimations. We report results from an experimental study
across conventional instances with different sizes showing that A∗ takes
profit from the improved estimations. Both algorithms can reach opti-
mal solutions for medium size instances and, in this case, the branch and
bound algorithm is better than A∗. However, for very large instances that
remain unsolved in both cases, A∗ returns much better lower bounds due
to the improved estimation.

Keywords Job Shop Scheduling, Heuristic Search, A∗ algorithm, Branch and Bound
Constraint propagation

1 Introduction

State space search is a classical technique in the field of artificial intelligence. It often
allows to obtain optimal solutions to combinatorial problems up to a moderate size.
Usually, the key for success consists in devising a reduced search space, accurate heuris-
tic estimations of lower and upper bounds of optimal solutions and powerful constraint
propagation rules to reduce the effective search space. Search algorithms require large
amounts of computational resources, i.e. time and space. So, when the main memory
of the target machine is scarce, only branch and bound (B&B) algorithms are actually
efficient. However, the current technology offers low cost machines with up to 8 or 16
GiB of memory, so as other approaches such as best first search are also efficient for at
least moderate sized problems.

In this paper we consider the Job Shop Scheduling Problem (JSSP) and two search
algorithms to solve it: the branch and bound algorithm proposed by P. Brucker et al. in
[Brucker et al., 1994] and [Brucker, 2004], and an implementation of the Nilsson’s A∗

algorithm [Nilsson, 1980] designed from Brucker’s algorithm. Our main contribution

⋆ This work has been supported by the Spanish Ministry of Science and Education
under research project MEC-FEDER TIN2007-67466-C02-01 and by the Principality
of Asturias under grant FICYT-BP09105.

is a method to improve heuristic estimations which is based on some constraint prop-
agation rules. The results of our experimental study show that both algorithms can
solve instances with 10 jobs and 10 machines and that A∗ reaches better lower bounds
for larger instances that remain unsolved with both algorithms, while the branch and
bound algorithm computes the best upper bounds.

The remaining of the paper is organized as follows. In section 2 the JSSP is formu-
lated. Section 3 outlines the main characteristics of Brucker’s algorithm. In section 4,
we describe the main components of the A∗ algorithm which is based on ideas taken
from Brucker’s algorithm. In section 5 we present the method to improve the heuristic
estimations. Section 6 shows the results of the experimental study. Finally, in section
7 we summarize the main conclusions and propose some ideas for future research.

2 Problem formulation

The Job Shop Scheduling Problem (JSSP) requires scheduling a set of N jobs
{J1, . . . , JN} on a set of M resources or machines {R1, . . . , RM}. Each job Ji con-
sists of a set of tasks or operations {θi1, . . . , θiM} to be sequentially scheduled. Each
task θil has a single resource requirement Rθil, a fixed duration pθil and a start time
stθil to be determined. The JSSP has three constraints: precedence, capacity and
non-preemption. Precedence constraints translate into linear inequalities of the type:
stθil +pθil ≤ stθi(l+1). Capacity constraints translate into disjunctive constraints of the
form: stv + pv ≤ stw ∨ stw + pw ≤ stv, if Rv = Rw. Non-preemption requires assigning
machines to operations without interruption during their whole processing time. The
objective is to come up with a feasible schedule such that the completion time, i.e. the
makespan, is minimized. This problem is denoted as J ||Cmax in the α|β|γ notation.

In the sequel, a problem instance will be represented by a directed graph G =
(V, A∪E). Each node in the set V represents an actual operation, with the exception of
the dummy nodes start and end, which represent operations with processing time 0. The
arcs of A are called conjunctive arcs and represent precedence constraints and the arcs
of E are called disjunctive arcs and represent capacity constraints. E is partitioned into
subsets Ei with E = ∪{i=1,...,M}Ei. Ei includes an arc (v, w) for each pair of operations
requiring Ri. The arcs are weighted with the processing time of the operation at the
source node. Node start is connected to the first operation of each job and the last
operation of each job is connected to node end.

A feasible schedule S is represented by an acyclic subgraph GS of G, GS = (V, A∪
H), where H = ∪i=1,...,MHi, Hi being a processing ordering for the operations requiring
Ri. The makespan is the cost of a critical path and it is denoted as L(S). A critical path
is a longest path from node start to node end. A critical path contains a set of critical
blocks. A critical block is a maximal sequence, with length at least two, of consecutive
operations in a critical path requiring the same machine. Figure 1 shows a solution
graph for an instance with 3 jobs and 3 machines.

In order to simplify expressions, we define the following notation for a feasible
schedule. The head rv of an operation v is the cost of the longest path from node start
to node v, i.e. it is the value of stv. The tail qv is defined so as the value qv + pv is the
cost of the longest path from v to end. Hence, rv + pv + qv is the makespan if v is in
a critical path, otherwise, it is a lower bound. PMv and SMv denote the predecessor
and successor of v respectively on the machine sequence and PJv and SJv denote the
predecessor and successor operations of v respectively on the job sequence.

start end

R12

R

R3

1311

2

4 3

1

3

3 3

22

33

23

3

1R21

2R31 1R32

1R

3R

2R

20

0

0

2 4
3

2

3

23 3

θ θ θ

θθθ

θ θ θ

Fig. 1. A feasible schedule to a problem with 3 jobs and 3 machines. Bold face arcs
show a critical path whose length (makespan) is 12.

A partial schedule is given by a subgraph of G where some of the disjunctive arcs
are not fixed yet. In such a schedule, heads and tails can be estimated as

rv = max{ max
J⊆P (v)

{min
j∈J

rj +
∑

j∈J

pj}, rPJv + pPJv} (1)

qv = max{ max
J⊆S(v)

{
∑

j∈J

pj + min
j∈J

qj}, pSJv + qSJv} (2)

with rstart = qend = 0 and where P (v) denotes the disjunctive predecessors of v, i.e.
operations requiring machine Rv which are scheduled before than v. Analogously, S(v)
denotes the disjunctive successors of v. Hence, the value rv + pv + qv is a lower bound
of the best schedule that can be reached from the partial schedule.

3 Brucker’s algorithm

The best exact algorithm proposed so far to cope with the J ||Cmax problem is undoubt-
edly the branch and bound algorithm due to P. Brucker et al. ([Brucker et al., 1994]).
This algorithm starts from the constraint graph for a given problem instance and pro-
ceeds to fix disjunctive arcs subsequently. The key feature of the algorithm is a smart
branching schema that relies on fixing arcs either in the same or in the opposite direc-
tion as they appear in a critical block of a feasible solution. Moreover, the algorithm
exploits powerful methods to obtain accurate lower and upper bounds. Lower bound
calculation is based on preemptive one machine sequencing problem relaxations. The
optimal solution to the simplified problem is given by the so-called Jackson’s Pre-
emptive Schedule (JPS), which is obtained in polynomial time by the algorithm pro-
posed in [Carlier, 1982]. Upper bounds are obtained by means of the greedy G&T algo-
rithm proposed in [Giffler and Thomson, 1960]. Finally, Brucker’s algorithm exploits a
constraint propagation method termed immediate selection [Carlier and Pinson, 1989].
This method allows fixing additional disjuntive arcs so as the effective search tree is

dramatically reduced. Brucker’s algorithm can easily solve almost any instance up to
10 jobs and 10 machines as well as many larger instances. In fact, the famous set of
instances selected by D. Applegate and W. Cook in [Applegate and Cook, 1991] are
considered very hard to solve due to the fact that they are not solved by this algorithm
(with only one exception, the FT10 instance).

4 A
∗ algorithm for the JSSP

We start reviewing the A∗ algorithm, then we describe the state space, the initial
heuristic estimation, the way to obtain upper bounds, and the immediate selection
procedure that allows reducing the effective search space. As we have commented above,
all these components are adapted from Brucker’s algorithm.

4.1 A
∗ algorithm

For best-first search we have chosen the Nilsson’s A∗ algorithm [Nilsson, 1980]. A∗

starts from an initial state s, a set of goal nodes and a transition operator SUC such
that for each node n of the search space, SUC(n) returns the set of successor states
of n. Each transition from n to n′ has a non-negative cost c(n, n′). The algorithm
searches for a path from s to the goals. The set of candidate nodes to be expanded are
maintained in the OPEN list. The next node to be expanded is that with the lowest
value of the evaluation function f , defined as f(n) = g(n) + h(n); where g(n) is the
minimal cost known so far from s to n and h(n) is a heuristic estimation of the minimal
distance from n to the nearest goal. If the heuristic function underestimates the actual
minimal cost, h∗(n), from n to the goals, i.e. h(n) ≤ h∗(n), for every node n, the
algorithm is admissible, i.e. it returns an optimal solution. The heuristic function h(n)
represents knowledge about the problem domain, therefore as long as h approximates
h∗ the algorithm is more and more efficient as it needs to expand a lower number of
states to reach an optimal solution.

4.2 The search space

A search state n is given by a partial solution graph Gn = (V, A ∪ FDn), where FDn

denotes the fixed disjunctive arcs in n. In the initial state FDn = ⊘. Heads and tails
in a state n are calculated by expressions (1) and (2). The cost of the best path from
the initial state to a state n is given by the largest cost path between nodes start and
end in Gn; with only one exception for the initial state whose value is 0.

4.3 Heuristic estimation

The heuristic estimation is based on problem splitting and constraint relaxations. Let
O be the set of operations requiring the machine m. Scheduling operations in O ac-
cordingly to their heads and tails in a state n so as the value max

v∈O(stv + pv + qv)
is minimized is known as the One Machine Sequencing Problem (OMSP). The optimal
solution to this problem for a state n is clearly a lower bound of f∗(n) = g∗(n)+h∗(n),
where g∗(n) is the optimal cost from start to n. However, the OMS problem is still
NP-hard. So, a new relaxation is required in order to obtain a polynomially solvable
problem. To do that, it is common relaxing the non-preemption constraint. An optimal

Algorithm 1 UB(state n). Calculates a heuristic solution S from a state n. O

denotes the set of all operations and SC the set of scheduled operations

0. SC = {start};
while (SC 6= O) do

1. A = {v ∈ O \ SC; P (v) ∪ {PJv} ⊂ SC};
2. v∗ = arg min{ru + pu; u ∈ A};
3. B = {v ∈ A; Rv = Rv∗ and rv < rv∗ + pv∗};
4. C = {v ∈ O \ SC; Rv = Rv∗};
5. w∗ = arg min{makespan of JPS(C \ {w}) after schedule w; w ∈ B};
6. Schedule w∗ in S at a time rw∗ ;
7. Add w∗ to SC and update heads and tails of operations not in SC;

end while
8. return S and its makespan;

solution to the preemptive OMS problem is given by the Jackson’s Preemptive Sched-
ule (JPS) [Carlier and Pinson, 1989,Carlier and Pinson, 1994]. The JPS is calculated
by the following algorithm: at any time t given by a head or the completion of an oper-
ation, from the minimum rv until all operations are completely scheduled, schedule the
ready operation with the largest tail on machine m. Carlier and Pinson proved that cal-
culating the JPS has a complexity of O(k× log k), where k is the number of operations.
Finally, f(n) is taken as the largest JPS over all machines. So, h(n) = f(n) − g(n).

4.4 Upper bounds

As Brucker’s algorithm does, we introduce upper bound calculations in the A∗

counterpart. To do that, a variant of the well-known G&T algorithm proposed in
[Giffler and Thomson, 1960] is used. The algorithm is issued from each expanded node
so as it builds a schedule that includes all disjunctive arcs fixed in that state. Here it
is important to remark that the disjunctive arcs fixed to obtain the schedule do not
remain fixed in that node. G&T is a greedy algorithm that produces a schedule in
a number of N ∗ M steps. Algorithm 1 shows the G&T algorithm adapted to obtain
upper bounds from a search state n. Remember that P (v) denotes the disjunctive pre-
decessors of operation v in state n. In each iteration, the algorithm considers the set
A comprising all operations v that can be scheduled next, i.e. all operations such that
P (v) and PJv are already scheduled (initially only operation start is scheduled). The
operation v∗ in A with the earliest completion time if it is scheduled next is calculated,
and a new set B is obtained with all operations v in A requiring the same machine as
v∗ that can start at a time lower than the completion time of v∗. Any of the operations
in B can be scheduled next and the selected one is w∗ if it produces the least cost JPS
for the remaining unscheduled operations on the same machine. Finally, the algorithm
returns the built schedule S and the value of its makespan UB.

The algorithm maintains the best upper bound computed so far and finishes when
f(n) ≥ UB for a node n selected to be expanded.

4.5 Expansion mechanism

The expansion mechanism is based on the following theorem [Brucker et al., 1994].

Theorem 1. Let S and S′ be two schedules. If L(S′) < L(S), then one of the two
following conditions holds:

1. at least one operation v in a critical block B in GS, different from the first operation
of B, is processed in S′ before all operations of B.

2. at least one operation v in a critical block B in GS, different from the last operation
of B, is processed in S′ after all operations of B.

Now, let us consider a feasible schedule S being compatible with the disjunctive
arcs fixed in state n. Of course, S might be the schedule calculated by Algorithm 1.
The solution graph GS has a critical path with critical blocks B1, . . . , Bk. For block
Bj = (uj

1, . . . , u
j
mj) the sets of operations

EB
j = Bj \ {u

j
1} and EA

j = Bj \ {u
j
mj}

are called the before-candidates and after-candidates respectively. For each before-
candidate (after-candidate) a successor s of n is generated by moving the candidate
before (after) the corresponding block. An operation l ∈ EB

j is moved before Bj by
fixing the arcs {l → i; i ∈ Bj \ {l}}. Similarly, l ∈ EA

j is moved after Bj by fixing the
arcs {i → l; i ∈ Bj \ {l}}.

This expansion strategy is complete as it guaranties that at least one optimal so-
lution is contained in the search graph. However, this strategy can be improved by
fixing additional arcs so as the search space is a complete tree. Let us consider a
permutation (E1, . . . , E2k) of all sets EB

j and EA
j . This permutation defines an order-

ing for successors generation. When a successor is created from a candidate Et, we
can assume that all solutions reachable from n by fixing the arcs corresponding to
the candidates E1, . . . , Et−1 will be explored from the successors associated to these
candidates. So, for the successor state s generated from Et the following sets of dis-
junctive arcs can be fixed: Fj = {uj

1 → i; i = u
j
2, . . . , u

j
mj}, for each EB

j < Et and

Lj = {i → u
j
mj ; i = u

j
1, . . . , u

j
mj−1}, for each EA

j < Et in the permutation above. So
the successors of a search tree node n generated from the permutation (E1, . . . , E2k)
are defined as follows. For each operation l ∈ EB

j generate a search tree node s by
fixing the arcs FDs = FDn ∪ SB

j , provided that the resulting partial solution graph
has no cycles, with

S
B
j =

⋃

EB
i

<EB
j

Fi ∪
⋃

EA
i

<EB
j

Li ∪ {l → i : i ∈ Bj\{l}}. (3)

And for each operation l ∈ EA
j generate a search tree node s by fixing the arcs FDs =

FDn ∪ SA
j with

S
A
j =

⋃

EB
i

<EA
j

Fi ∪
⋃

EA
i

<EA
j

Li ∪ {i → l : i ∈ Bj\{l}}. (4)

4.6 Fixing additional arcs by constraint propagation

After adjusting heads and tails, new disjunctive arcs can be fixed by the constraint
propagation method due to Carlier and Pinson [Carlier and Pinson, 1989], termed im-
mediate selection. In the sequel, UB denotes an upper bound of the optimal solutions,
I denotes the set of operations requiring a given machine and n a search state. For
each operation j ∈ I, rj and qj denote the head and tail respectively of the operation
j in the state n.

Algorithm 2 PROCEDURE Select

for all c, j ∈ I, c 6= j do
if rc + pc + pj + qj ≥ UB then

fix the arc (j → c);
end if

end for

Theorem 2. Let c, j ∈ I, c 6= j. If

rc + pc + pj + qj ≥ UB,

j has to be processed before c in every solution reachable from state n that improves
UB.

The arc (j → c) is called direct arc and the procedure Select given in Algorithm 2
calculates all direct arcs for the state n in a time of order O(|I|2).

The procedure Select can be combined with the method due to Carlier and Pinson
that allows improving heads and tails. This method is based on the following result.

Theorem 3. Let c ∈ I and J ⊆ I\{c}.

(1) If

min
j∈J∪{c}

rj +
∑

j∈J∪{c}

pj + min
j∈J

qj ≥ UB, (5)

then in all solutions reachable from state n improving UB, the operation c has to
be processed after all operations in J .

(2) If

min
j∈J

rj +
∑

j∈J∪{c}

pj + min
j∈J∪{c}

qj ≥ UB, (6)

then in all solutions reachable from state n improving UB, the operation c has to
be processed before all operations in J .

If condition (1) of the theorem above holds, then the arcs {j → c; j ∈ J} can
be fixed. These arcs are called primal arcs and the pair (J, c) is called primal pair.
Similarly, if condition (2) holds, the dual arcs {c → j; j ∈ J} can be fixed and (c, J) is
a dual pair.

In [Brucker et al., 1994], an efficient method is derived to calculate all primal and
dual arcs. This method is based on the following ideas. If (J, c) is primal pair, the
operation c cannot start at a time lower than

rJ = max
J′⊆J

{min
j∈J′

rj +
∑

j∈J′

pj}. (7)

So, if rc < rJ , we can set rc = rJ and then the procedure Select fixes all primal
arcs {j → c; j ∈ J}.

This fact leads to the following problem.

Definition 1 (Primal problem). Let c ∈ I. Does there exist a primal pair (J, c)
such that rc < rJ? If it exists, find

rJ∗ = max{rJ ; (J, c) is a primal pair}. (8)

In [Carlier and Pinson, 1989], Carlier and Pinson propose an algorithm which is
also based on JPS calculations to solve the primal problem in a time O(k log k), with
k = |I|. So, all primal pairs can be computed in O(k2 log k). This algorithm is fairly
complicated so as it cannot be explained here for the lack of space. We refer the
interested reader to Carlier and Pinson’s or Brucker et al.’s papers.

Analogously, if (c, J) is dual pair, qc cannot be lower than

qJ = max
J′⊆J

{
∑

j∈J′

pj + min
j∈J′

qj}. (9)

So, if qc < qJ , we can set qc = qJ and then the procedure Select fixes all dual arcs
{c → j; j ∈ J}. All dual pairs can be obtained similarly.

Finally, the algorithm used to fix additional disjunctive arcs proceeds as follows:

(1) calculation of all primal arcs for all machines,

(2) calculation of new heads and tails,

(3) calculation of all dual arcs for all machines,

(4) calculation of new heads and tails.

As new heads and tails are computed in steps 2 and 4 due to the additional arcs
fixed in steps 1 and 3, steps 1-4 should be repeated as long as new disjunctive arcs are
fixed.

5 Improving the heuristic using constraint propagation

The underlying idea used here to improve the heuristic estimation given by f(n) is the
following. Should we can prove that a solution with cost f(n) may not be reached from
state n, then the heuristic estimation could be increased up to f(n) + 1. To do that,
we propose using the immediate selection procedure described above, but fixing the
value of the upper bound to f(n) + 1. This process may be repeated if the heuristic
estimation improves, i.e. the resulting partial solution graph contains any cycle. This
suggest an iterative search over the sequence f(n) + 1, f(n) + 2, To reduce the
consumed time, we have opted for a binary search in the interval [f(n) − 1 . . . UB],
instead. In the experimental study, we also consider a simplification of this method
where the algorithm to improve heads and tails is not used. In this case, the time
taken is expected to be lower at the cost of a lower improvement as well. The resulting
heuristic is clearly admissible and it can be proved to be consistent.

6 Experimental study

In this experimental study we analyze the behavior of both algorithms, B&B and A∗,
when they use simple and improved heuristic estimations in two different conditions:
when they are able to solve the instances and when they cannot reach a solution within
a given time. In this later case, both algorithms return a lower bound and an upper
bound of the optimal solutions. To do that, we have considered two different sets of
problems taken from the OR-library. Firstly, a set of instances FT10, LA16-20, ORB01-
10 and ABZ5-6 of size 10 × 10 (10 jobs and 10 machines), as this is the threshold size
for square instances to be considered interesting and both algorithms can solve them in

Table 1. Summary of results across 10 × 10 instances.

Average B&B A∗ A∗ I A∗ IR

Expanded 6396 19879 7542 8460
Generated 62428 195209 86192 95848

Inserted in OPEN 6445 23283 21805 22982
Time(s) 15,28 46,78 94,44 77,28

at most a few minutes. Then, we considered a set of large instances with sizes 15 × 10
(LA21,24,25), 20 × 10 (LA27,29) and 20 × 15 (LA38,40), which are beyond the size of
problems that both algorithms can solve in 30 minutes. The target machine was Linux
(Ubuntu V.8.04) on Intel Core 2 Duo (2,13 GHz, 7 GiB RAM).

Table 1 shows the average values of expanded and generated nodes, and the time
taken in each case across the 10 × 10 instances. In addition to B&B, A∗ and A∗ with
the improved heuristic described in Section 5 (A∗ I), a new version (A∗ IR) is included,
where the improvement procedure is simplified by skipping the operation of improving
heads and tails from the solution of the primal and dual problems.

As we can observe, B&B is the best in all three measures taken. However, these
results show that A∗ is also a suitable approach as it can solve all the instances. In
the first version, the time taken by A∗ is about 3 times the time taken by B&B.
Moreover, with the improved versions of the heuristic estimation, the time is even
larger, even though the number of expanded and generated nodes decreases in more
than 50 percent. However, the number of nodes that are finally inserted in the OPEN
list is quite similar with all versions of A∗ and, in any case, is about 3,5 times the
number of nodes inserted by B&B. We have also experimented with B&B and the
improved versions of the heuristic estimation and the results were not good: the time
taken was larger and the number of expanded nodes was very similar.

Table 2 shows the results across the larger and more difficult instances. As we can
see none of the four algorithms reaches the optimal solution in a time of 30 minutes
(even A∗ runs out of memory for all instances before this time). So we report the UB

and LB reached in any case (B.K. denotes the best know values). Clearly B&B gets
the best UB’s, while the best LB’s are reached by the improved versions of A∗, in
particular by A∗ IR. This is a real advantage of these last two versions with respect to
B&B and A∗. Clearly, this advantage is due to the improved heuristic estimation.

Table 2. Summary of results across the larger instances.

B.K. B&B A∗ A∗ I A∗ IR
Instances UB LB UB LB UB LB UB LB UB LB

LA21 1046 1046 1069 995 1073 995 1099 1004 1098 1007
LA24 927 927 957 881 958 889 962 922 962 923
LA25 977 977 978 894 998 924 999 948 999 949
LA27 1235 1235 1314 1235 1311 1235 1309 1235 1309 1235
LA29 1153 1130 1218 1114 1239 1114 1241 1114 1225 1114
LA38 1196 1196 1228 1077 1254 1129 1255 1160 1255 1163
LA40 1222 1222 1262 1170 1277 1170 1264 1178 1264 1180

7 Conclusions

We have proposed a method to improve heuristic estimations for the Job Shop
Scheduling Problem with makespan minimization. We have exploited this method with
Brucker’s B&B algorithm and with an A∗ version of this algorithm as well. The first
relevant conclusion is that A∗ can solve instances up to a size of at least 10×10, which
is the threshold size for non-trivial instances. For instances that both algorithms can
solve optimally, the B&B algorithm is more efficient in a factor of about 3 or 4 times.
We have observed that the B&B algorithm usually obtains better upper bounds ear-
lier than A∗, so this is clearly one of the reasons for it to perform better. However, for
instances that remain unsolved with both algorithms, A∗ produces much better lower
bounds thanks to the proposed heuristic improvement, while B&B still produces the
best upper bounds. So, we can conclude that both approaches are of real interest as
they complement each other. These results suggest us designing new approaches based
on both algorithms. For example, they could be run in parallel so as they share the best
current upper and lower bounds. In this case, we expect that at least A∗ will improve.
Furthermore, a partially informed depth first search will probably take profit from the
improved heuristic, at difference of B&B, so as it could perform better. Besides, some
other constraint propagation rules, such as those proposed in [Dorndorf et al., 2000],
could also be used to further improve heuristic estimations. Finally, the A∗ algorithm
could also improve using pruning by dominance techniques, such as the one proposed
in [Sierra and Varela, 2008].

References

[Applegate and Cook, 1991] Applegate, D. and Cook, W. (1991). A computational
study of the job-shop scheduling problem. ORSA Journal of Computing, 3:149–156.

[Brucker, 2004] Brucker, P. (2004). Scheduling Algorithms. Springer, 4th edition.
[Brucker et al., 1994] Brucker, P., Jurisch, B., and Sievers, B. (1994). A branch and

bound algorithm for the job-shop scheduling problem. Discrete Applied Mathematics,
49:107–127.

[Carlier, 1982] Carlier, J. (1982). The one-machine sequencing problem. European
Journal of Operational Research, 11:42–47.

[Carlier and Pinson, 1989] Carlier, J. and Pinson, E. (1989). An algorithm for solving
the job-shop problem. Management Science, 35(2):164–176.

[Carlier and Pinson, 1994] Carlier, J. and Pinson, E. (1994). Adjustment of heads and
tails for the job-shop problem. European Journal of Operational Research, 78:146–
161.

[Dorndorf et al., 2000] Dorndorf, U., Pesch, E., and Phan-Huy, T. (2000). Constraint
propagation techniques for the disjunctive scheduling problem. Artificial Intelligence,
122:189–240.

[Giffler and Thomson, 1960] Giffler, B. and Thomson, G. L. (1960). Algorithms for
solving production scheduling problems. Operations Research, 8:487–503.

[Nilsson, 1980] Nilsson, N. (1980). Principles of Artificial Intelligence. Tioga, Palo
Alto, CA.

[Sierra and Varela, 2008] Sierra, M. and Varela, R. (2008). Pruning by dominance in
best-first search for the job shop scheduling problem with total flow time. Journal of
Intelligent Manufacturing, DOI 10.1007/s10845-008-0167-4, 1:1–2.

