
Partially Informed Depth-First Search for the Job Shop Problem

Carlos Mencı́a and Marı́a R. Sierra and Ramiro Varela
Department of Computer Science,

University of Oviedo, 33271 Gijón (Spain)
e-mail: {uo156612, sierramaria, ramiro}@uniovi.es

Abstract

We propose a partially informed depth-first search algo-
rithm to cope with the Job Shop Scheduling Problem with
makespan minimization. The algorithm is built from the
well-known P. Brucker’s branch and bound algorithm. We
improved the heuristic estimation of Brucker’s algorithm by
means of constraint propagation rules and so devised a more
informed heuristic which is proved to be monotonic. We con-
ducted an experimental study across medium and large in-
stances. The results show that the proposed algorithm reaches
optimal solutions for medium instances taking less time than
branch and bound and that for large instances it reaches much
better lower and upper bounds when both algorithms are
given the same amount of time.

Introduction

The Job Shop Scheduling Problem (JSSP) is a paradigm of
optimization and constraint satisfaction problems which has
interested researchers over the last decades, due to its diffi-
culty and its proximity to real-life problems. It is NP-hard in
the strong sense (Garey and Johnson 1979) and is considered
as one of the most intractable problems known so far.

In this paper, we focus on the JSSP with makespan mini-
mization and propose a partially informed depth-first search
algorithm to solve it. This algorithm is built from the
well-known Peter Brucker’s branch and bound algorithm
(Brucker, Jurisch, and Sievers 1994), which is, as far as
we know, the most effective exact method to cope with this
problem. We devised a new heuristic obtained from a lower
bound calculation method proposed in (Carlier and Pinson
1990), which is based on constraint propagation rules, and
we prove it is monotonic.

We have conducted an experimental study across con-
ventional medium and large instances to compare our ap-
proach with Brucker’s algorithm. The results show that for
medium-size instances our approach reduces the time re-
quired to solve them by about 15%. For the largest instances,
that in most of the cases cannot be optimally solved by any
of them, our approach is able to reach much better lower and
upper bounds when both algorithms are given the same time.
In this case, our approach reduces the error with respect to
the best known solutions by about 40%.

Copyright c© 2010, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

The remainder of the paper is structured as follows: In
section 2 a formulation of the JSSP is given. Section 3 out-
lines the main characteristics of Brucker’s algorithm. In sec-
tion 4 we describe the proposed partially informed depth-
first search algorithm. In section 5 we present a heuris-
tic based on a constraint propagation method and prove its
monotonicity. Section 6 reports the results of the experi-
mental study. Finally, in section 7 we summarize the main
conclusions and propose some ideas for future research.

The Job Shop Scheduling Problem

The Job Shop Scheduling Problem (JSSP) requires schedul-
ing a set of N jobs {J1, . . . , JN} on a set of M resources
or machines {R1, . . . , RM}. Each job Ji consists of a set of
tasks or operations {θi1, . . . , θiM} to be sequentially sched-
uled. Each task θil has a single resource requirement Rθil

,
a fixed duration pθil

and a start time stθil
to be determined.

The JSSP has three constraints: precedence, capacity and
non-preemption. Precedence constraints translate into linear
inequalities of the type: stθil

+ pθil
≤ stθi(l+1)

. Capacity
constraints translate into disjunctive constraints of the form:
stv + pv ≤ stw ∨ stw + pw ≤ stv, if Rv = Rw. Non-
preemption requires assigning machines to operations with-
out interruption during their whole processing time. The
objective is to come up with a feasible schedule such that
the completion time, i.e. the makespan, is minimized. This
problem is denoted as J ||Cmax in the α|β|γ notation.

Below, a problem instance will be represented by a di-
rected graph G = (V, A∪E). Each node in the set V repre-
sents an actual operation, with the exception of the dummy
nodes start and end, which represent operations with pro-
cessing time 0. The arcs of A are called conjunctive arcs
and represent precedence constraints and the arcs of E are
called disjunctive arcs and represent capacity constraints. E
is partitioned into subsets Ei with E = ∪{i=1,...,M}Ei. Ei

includes an arc (v, w) for each pair of operations requiring
Ri. The arcs are weighted with the processing time of the
operation at the source node. Node start is connected to the
first operation of each job and the last operation of each job
is connected to node end.

A feasible schedule S is represented by an acyclic sub-
graph GS of G, GS = (V, A ∪ H), where H =
∪i=1,...,MHi, Hi being a processing ordering for the oper-
ations requiring Ri. The makespan is the cost of a critical

113

Proceedings of the Twentieth International Conference on Automated Planning and Scheduling (ICAPS 2010)

start end

R12

R

R3

1311

2

4 3

1

3

3 3

22

33

23

3

1R21

2R31 1R32

1R

3R

2R

20

0

0

2 4
3

2

3

23 3

θ θ θ

θθθ

θ θ θ

Figure 1: A feasible schedule to a problem with 3 jobs and 3
machines. Bold face arcs show a critical path whose length
(makespan) is 12

path and it is denoted as L(S). A critical path is a longest
path from node start to node end. A critical path contains
a set of critical blocks. A critical block is a maximal se-
quence, with length at least two, of consecutive operations
in a critical path requiring the same machine. Figure 1 shows
a solution graph for an instance with 3 jobs and 3 machines.

In order to simplify expressions, we define the following
notation for a feasible schedule. The head rv of an opera-
tion v is the cost of the longest path from node start to node
v, i.e. it is the value of stv. The tail qv is defined so as the
value qv + pv is the cost of the longest path from v to end.
Hence, rv +pv + qv is the makespan if v is in a critical path,
otherwise, it is a lower bound. PMv and SMv denote the
predecessor and successor of v respectively on the machine
sequence and PJv and SJv denote the predecessor and suc-
cessor operations of v respectively on the job sequence.

A partial schedule is given by a subgraph of G where
some of the disjunctive arcs are not fixed yet. In such a
schedule, heads and tails can be estimated as

rv = max{ max
J⊆P (v)

{min
j∈J

rj +
∑

j∈J

pj}, rPJv
+ pPJv

} (1)

qv = max{ max
J⊆S(v)

{
∑

j∈J

pj + min
j∈J

qj}, pSJv
+ qSJv

} (2)

with rstart = qend = 0 and where P (v) denotes the dis-
junctive predecessors of v, i.e. operations requiring machine
Rv which are scheduled before than v. Analogously, S(v)
denotes the disjunctive successors of v.

Brucker’s Algorithm

As far as we know, the best exact method proposed so far to
cope with the J ||Cmax problem is the branch and bound al-
gorithm due to P. Brucker et al. (Brucker, Jurisch, and Siev-
ers 1994). This algorithm starts from the constraint graph for
a given problem instance and proceeds to fix disjunctive arcs
subsequently. The key feature of the algorithm is a smart
branching scheme that relies on fixing arcs either in the same
or in the opposite direction as they appear in a critical block
of a feasible solution. Moreover, the algorithm exploits pow-
erful methods to obtain accurate lower and upper bounds.
Lower bound calculation is based on preemptive one ma-
chine sequencing problem relaxations. The optimal solution

to the simplified problem is given by the so-called Jackson’s
Preemptive Schedule (JPS), which is obtained in polynomial
time by the algorithm proposed in (Carlier 1982). Upper
bounds are obtained by means of the greedy G&T algorithm
proposed in (Giffler and Thomson 1960). Finally, Brucker’s
algorithm exploits a constraint propagation method termed
immediate selection (Carlier and Pinson 1989). This method
allows to fix additional disjuntive arcs so as the effective
search tree is dramatically reduced. Brucker’s algorithm can
easily solve almost any instance up to 10 jobs and 10 ma-
chines as well as many larger instances. In fact, the famous
set of instances selected in (Applegate and Cook 1991) are
considered very hard to solve due to the fact that the great
majority of them are not solved by this algorithm.

A Partially Informed Depth-First Search

Algorithm

In this section, we present a partially informed depth-first
search algorithm which looks for optimal schedules in the
same search space as Brucker’s algorithm. We describe the
state representation, the way of computing heuristic estima-
tions and upper bounds, the expansion mechanism, a con-
straint propagation method that reduces the search space and
the search strategy used by the algorithm.

State Representation

A search state n is given by a partial solution graph Gn =
(V, A∪FDn), where FDn denotes the disjunctive arcs fixed
in n. In the initial state FDn = �. Heads and tails in n are
calculated by expressions (1) and (2). The cost of the best
path from the initial state to n, denoted by g(n), is given by
the largest cost path between nodes start and end in Gn.
As g(n) is computed from n, it is always optimal no matter
what path led to it. Hence, g(n) = g∗(n).

Heuristic Estimation

For each generated state n, a heuristic estimation f(n) of
the cost of the best solution reachable from n (i.e. the cost
of the best path from the initial state to a goal constrained
to pass through n) is computed. This estimation is based on
problem splitting and constraint relaxations. Let O be the
set of operations requiring the machine m. Scheduling op-
erations in O accordingly to their heads and tails in n so as
the value maxv∈O(stv + pv + qv) is minimized is known
as the One Machine Sequencing Problem (OMSP). The op-
timal solution to this problem for n is clearly a lower bound
of f∗(n) = g∗(n) + h∗(n), where h∗(n) is the optimal cost
from n to its nearest goal. However, the OMS problem is
still NP-hard. So, a new relaxation is required in order to ob-
tain a polynomially solvable problem. To do that, it is com-
mon to relax the non-preemption constraint. An optimal so-
lution to the preemptive OMS problem is given by the Jack-
son’s Preemptive Schedule (JPS) (Carlier 1982). The JPS is
calculated by the following algorithm: at any time t given by
a head or the completion of an operation, from the minimum
rv until all operations are completely scheduled, schedule
the ready operation with the largest tail on machine m. Cal-
culating the JPS has a complexity of O(k × log k), where

114

Algorithm 1 G&T (state n). Calculates a heuristic solution
S from a state n. O denotes the set of all operations and SC
the set of scheduled operations

0. SC = {start};
while (SC �= O) do

1. A = {v ∈ O \ SC; P (v) ∪ {PJv} ⊂ SC};
2. v∗ = arg min{ru + pu; u ∈ A};
3. B = {v ∈ A; Rv = Rv∗ and rv < rv∗ + pv∗};
4. C = {v ∈ O \ SC; Rv = Rv∗};
5. w∗ = argmin{makespan of JPS(C \ {w}) after
schedule w; w ∈ B};
6. Schedule w∗ in S at a time rw∗ ;
7. Add w∗ to SC and update heads of operations not in
SC;

end while
8. return S and its makespan;

k is the number of operations. Finally, f(n) is taken as the
largest JPS over all machines. So, h(n) = f(n)−g(n) is an
optimistic estimate of h∗(n). Below, fJPS(n) and hJPS(n)
denote these heuristic estimations for n.

Upper Bounds

As Brucker’s algorithm does, we introduce upper bound cal-
culations in the depth-first search counterpart. To do that, a
variant of the well-known G&T algorithm proposed in (Gif-
fler and Thomson 1960) is used. The algorithm is issued
from each expanded node so as it builds a schedule that in-
cludes all disjunctive arcs fixed in that state. Note that the
disjunctive arcs fixed to obtain the schedule do not remain
fixed in that node. G&T is a greedy algorithm that produces
a schedule in a number of N ∗ M steps. Algorithm 1 shows
the G&T algorithm adapted to obtain upper bounds from a
search state n. Remember that P (v) denotes the disjunc-
tive predecessors of operation v in state n. In each iteration,
the algorithm considers the set A comprising all operations
v that can be scheduled next, i.e. all operations such that
P (v) and PJv are already scheduled (initially only opera-
tion start is scheduled). The operation v∗ in A with the
earliest completion time if it is scheduled next is determined,
and a new set B is obtained with all operations v in A requir-
ing the same machine as v∗ that can start at a time lower than
the completion time of v∗. Any of the operations in B can
be scheduled next and the selected one is w∗ if it produces
the least cost JPS for the remaining unscheduled operations
on the same machine. Finally, the algorithm returns the built
schedule S and the value of its makespan.

The best upper bound computed so far, with makespan
UB, is maintained so as generated states n having f(n) ≥
UB are pruned from the search space as they do not lead to
better solutions.

Expansion Mechanism

The expansion mechanism is based on the following theo-
rem (Brucker, Jurisch, and Sievers 1994).

Theorem 1. Let S and S′ be two schedules. If L(S′) <
L(S), then one of the two following conditions holds:

1) at least one operation v in a critical block B in GS , dif-
ferent from the first operation of B, is processed in S′

before all operations of B.

2) at least one operation v in a critical block B in GS , dif-
ferent from the last operation of B, is processed in S′

after all operations of B.

Now, let us consider a feasible schedule S being compat-
ible with the disjunctive arcs fixed in state n. Of course,
S might be the schedule calculated by Algorithm 1. The
solution graph GS has a critical path with critical blocks

B1, . . . , Bk. For block Bj = (uj
1, . . . , u

j
mj

) the sets of op-

erations

EB
j = Bj \ {u

j
1} and EA

j = Bj \ {u
j
mj

}

are called the before-candidates and after-candidates
respectively. For each before-candidate (after-candidate) a
successor s of n is generated by moving the candidate be-
fore (after) the corresponding block. An operation l ∈ EB

j

is moved before Bj by fixing the arcs {l → i; i ∈ Bj \ {l}}.

Similarly, l ∈ EA
j is moved after Bj by fixing the arcs

{i → l; i ∈ Bj \ {l}}.
This expansion strategy is complete as it guaranties that at

least one optimal solution is contained in the search graph.
However, this strategy can be improved by fixing additional
arcs so as the search space is a complete tree. Let us con-
sider a permutation (E1, . . . , E2k) of all sets EB

j and EA
j .

This permutation defines an ordering for successors gener-
ation. When a successor is created from a candidate Et,
we can assume that all solutions reachable from n by fix-
ing the arcs corresponding to the candidates E1, . . . , Et−1

will be explored from the successors associated to these can-
didates. So, for the successor state s generated from Et

the following sets of disjunctive arcs can be fixed: Fj =

{uj
1 → i; i = u

j
2, . . . , u

j
mj

}, for each EB
j < Et and

Lj = {i → uj
mj

; i = u
j
1, . . . , u

j
mj−1}, for each EA

j < Et

in the permutation above. So the successors of a search tree
node n generated from the permutation (E1, . . . , E2k) are
defined as follows. For each operation l ∈ EB

j generate a

search tree node s by fixing the arcs FDs = FDn ∪ SB
j ,

provided that the resulting partial solution graph has no cy-
cles, with

SB
j =

⋃

EB
i <EB

j

Fi ∪
⋃

EA
i <EB

j

Li ∪ {l → i : i ∈ Bj\{l}}.

(3)
And for each operation l ∈ EA

j generate a search tree node

s by fixing the arcs FDs = FDn ∪ SA
j with

SA
j =

⋃

EB
i <EA

j

Fi ∪
⋃

EA
i <EA

j

Li ∪ {i → l : i ∈ Bj\{l}}.

(4)

Fixing Additional Arcs by Constraint Propagation

After adjusting heads and tails, new disjunctive arcs can be
fixed by the constraint propagation method due to Carlier
and Pinson (Carlier and Pinson 1989), termed immediate se-
lection. Below, I denotes the set of operations requiring a

115

Algorithm 2 PROCEDURE Select

for all c, j ∈ I, c �= j do
if rc + pc + pj + qj ≥ UB then

fix the arc (j → c);
end if

end for

given machine. For each operation j ∈ I , rj and qj denote
the head and tail respectively of the operation j in the state
n.

Theorem 2. Let c, j ∈ I, c �= j. If

rc + pc + pj + qj ≥ UB, (5)

j has to be processed before c in every solution reachable
from state n that improves UB.

The arc (j → c) is called direct arc and the procedure
Select given in Algorithm 2 calculates all direct arcs for the
state n in a time of order O(|I|2).

The procedure Select can be combined with the method
due to Carlier and Pinson that allows to improve heads and
tails. This method is based on the following result.

Theorem 3. Let c ∈ I and J ⊆ I\{c}.

1) If

min
j∈J∪{c}

rj +
∑

j∈J∪{c}

pj + min
j∈J

qj ≥ UB, (6)

then in all solutions reachable from state n improving
UB, the operation c has to be processed after all oper-
ations in J .

2) If

min
j∈J

rj +
∑

j∈J∪{c}

pj + min
j∈J∪{c}

qj ≥ UB, (7)

then in all solutions reachable from state n improving
UB, the operation c has to be processed before all op-
erations in J .

If condition 1) of the theorem above holds, then the arcs
{j → c; j ∈ J} can be fixed. These arcs are called primal
arcs and the pair (J, c) is called primal pair. Similarly, if
condition 2) holds, the dual arcs {c → j; j ∈ J} can be
fixed and (c, J) is a dual pair.

In (Brucker, Jurisch, and Sievers 1994), an efficient
method is derived to calculate all primal and dual arcs. This
method is based on the following ideas. If (J, c) is primal
pair, the operation c cannot start at a time lower than

rJ = max
J′⊆J

{min
j∈J′

rj +
∑

j∈J′

pj}. (8)

So, if rc < rJ , we can set rc = rJ and then the procedure
Select fixes all primal arcs {j → c; j ∈ J}.

This fact leads to the following problem.

Definition 1 (Primal problem). Let c ∈ I . Does there exist
a primal pair (J, c) such that rc < rJ ? If it exists, find

rJ∗ = max{rJ ; (J, c) is a primal pair}. (9)

In (Carlier and Pinson 1994), Carlier and Pinson propose
an algorithm which is also based on JPS calculations to solve
the primal problem in a time O(k log k), with k = |I|. So,
all primal pairs can be computed in O(k2 log k). We refer
the interested reader to Carlier and Pinson’s or Brucker et
al.’s papers.

Analogously, if (c, J) is dual pair, qc cannot be lower than

qJ = max
J′⊆J

{
∑

j∈J′

pj + min
j∈J′

qj}. (10)

So, if qc < qJ , we can set qc = qJ and then the procedure
Select fixes all dual arcs {c → j; j ∈ J}. All dual pairs can
be obtained similarly.

Finally, the algorithm used to fix additional disjunctive
arcs proceeds as follows:

1) calculation of all primal arcs for all machines,

2) calculation of new heads and tails,

3) calculation of all dual arcs for all machines,

4) calculation of new heads and tails.

As new heads and tails are computed in steps 2 and 4 due
to the additional arcs fixed in steps 1 and 3, steps 1-4 should
be repeated as long as new disjunctive arcs are fixed.

Search Strategy

Brucker’s algorithm uses a backtracking procedure and a
simple dispatching rule for selecting the next successor
node. When exploring a node, it computes all before and
after candidates in a critical path, it then generates only one
successor at a time which is explored next, giving priority
to before (after) candidates with the smallest heads (tails
resp.). By doing so, it only takes profit from the heuristic
estimations (lower bounds) for pruning those states n having
f(n) ≥ UB. According to (Pearl 1984), the main advantage
of this search strategy is the low use of memory.

We propose here to use a depth-first search strategy
in which successors of a given state are sorted by non-
decreasing values of f(·), so as the most promising of them
are expanded first. So, all successors of a state n are gen-
erated and stored before exploring any of them, i.e. n is
expanded. In this way, the selection of the next node to ex-
plore is based on more knowledge from the problem domain
than that of a single dispatching rule. In our algorithm this
rule is used for breaking ties for nodes with the same value
of f(·) as it has given better results than other methods such
as considering g(·) values or the number of arcs fixed in the
node.

Guiding the search by knowledge from the problem do-
main when traversing the search tree has important benefits.
The sooner good upper bounds are found, the more effective
the immediate selection procedure is, what leads to reduce
the search space, compute more accurate heuristic estima-
tions, reach good upper bounds sooner and so on.

This search strategy needs more memory resources than
backtracking, as all successors of the states along the current
branch are stored. Nevertheless, these requirements are still
low, due to the depth-first search.

116

Heuristic Improvement by Constraint

Propagation

To improve the heuristic estimations, we use the following
strategy which is inspired in some ideas taken from (Carlier
and Pinson 1990) for computing lower bounds for the JSSP.

If we have a heuristic estimation f(n) for a state n and
we can prove in any way that a solution with cost not greater
than P ≥ f(n) may not be reachable from state n, then we
can improve the heuristic estimation up to P +1. In order to
do that, we apply immediate selection to n considering the
upper bound P + 1. This way, we are supposing that there
exists a solution with makespan not greater than P (lower
than P + 1) reachable from n. So, additional disjunctive
arcs get fixed and the resulting situation is a state, denoted
nr, that in general is not a node of the search tree. However,
any solution with cost not greater than P reachable from n
must include all arcs fixed in state nr. Hence, if the partial
solution graph Gnr

is inconsistent, such a solution cannot
exist and then the estimation can be improved to P +1. The
inconsistency of Gnr

can be established if one of the two
following conditions holds:

1) Gnr
contains a cycle.

2) A lower bound greater than P can be derived from Gnr
.

In the first case the inconsistency is clear as all arcs fixed
in Gnr

should be included in the final solution graph and a
solution graph must be acyclic. In the second case, even if
Gnr

has no cycles, there is an inconsistency as a solution
with cost lower than or equal to P containing the arcs fixed
in Gnr

cannot exist. In order to check this condition we use
the lower bound given by fJPS(nr).

To compute the improved heuristic a dichotomic search in
the interval [fJPS(n), UB − 1] is made. The new heuristic
estimation, termed fIS , is computed as fIS(n) = P , where
P is the smallest value in the interval that produces a graph
Gnr

without inconsistencies (after applying the immediate
selection procedure with the upper bound P + 1). Note that
the value P = fJPS(n) − 1 would produce an inconsis-
tent graph Gnr

as at least a lower bound equal to fJPS(n)
would be derived from it. Analogously, P = UB− 1 would
generate a graph Gnr

= Gn, without any inconsistency, as
the immediate selection method is applied to n with upper
bound UB after n is generated and before computing this
heuristic estimation for it. So, the new heuristic, denoted
hIS , is obtained as hIS(n) = fIS(n) − g(n).

Monotonicity of hIS

It is clear that hIS(n) ≥ hJPS(n), for every state n. We
now prove that hIS is monotonic. In this section, ri(n) de-
notes the head of operation i in the search state n. Analo-
gously, qi(n) refers to its tail. SCS(n) is the set containing
all successors of n.

Lemma 1. Let n and n′ be two states such that n′ ∈
SCS(n). Then, ∀i, ri(n) ≤ ri(n

′) and qi(n) ≤ qi(n
′).

Proof. Generating n′ from n requires fixing at least one dis-
junctive arc in n′ without producing any cycle in Gn′ . So,
every path from node start to node i in Gn belongs to Gn′

as well. As the head of operation i is computed across the
paths from start to i it is clear that ∀i, ri(n) ≤ ri(n

′). Anal-
ogously for tails, so qi(n) ≤ qi(n

′).

Lemma 2. Let n and n′ be two states such that n′ ∈
SCS(n). If an arc i → j gets fixed by immediate selec-
tion with an upper bound P + 1 in n, then it will get fixed in
n′ with P + 1 as well.

Proof. The immediate selection procedure fixes an arc i →
j in n if rj(n) + pi + pj + qi(n) ≥ P + 1. From Lemma 1,
∀k, rk(n′) ≥ rk(n) and qk(n′) ≥ qk(n), so rj(n

′) + pi +
pj + qi(n

′) ≥ P + 1. Hence, i → j will be also fixed in n′

by immediate selection.

Corollary 1. Let n and n′ be two states such that n′ ∈
SCS(n). And let nr and n′

r be the resulting states from
applying immediate selection to states n and n′ respectively
considering the same upper bound. Then Gnr

is a subgraph
of Gn′

r
and ∀i, ri(nr) ≤ ri(n

′
r) and qi(nr) ≤ qi(n

′
r)

Proof. It is trivial from Lemma 2 that Gnr
is a subgraph

of Gn′

r
, as FDn ⊂ FDn′ and every arc fixed in n by im-

mediate selection is fixed in n′ as well. Also, from similar
reasoning as in Lemma 1, heads and tails in Gn′

r
are larger

or at least equal than they are in Gnr
as the set of paths from

start to i and from i to end in Gnr
are subsets of the corre-

sponding sets of paths in Gn′

r
.

Lemma 3. Let n, n′ be two search states such that n′ ∈
SCS(n). Then fIS(n) ≤ fIS(n′).

Proof. Let Gnr
and Gn′

r
be the resulting graphs of applying

immediate selection with upper bound P + 1 to n and n′

respectively. To prove that fIS(n) ≤ fIS(n′) it is enough to
see that for any P +1 that Gnr

is inconsistent then Gn′

r
is in-

consistent as well. We analyze separately the two conditions
for inconsistency given previously.

1) As Gnr
is a subgraph of Gn′

r
, if Gnr

contains a cycle,
then Gn′

r
contains a cycle as well.

2) As ∀i, ri(nr) ≤ ri(n
′
r) and qi(nr) ≤ qi(n

′
r), any pre-

emptive schedule for a machine in n′
r is a feasible pre-

emptive schedule for the same machine in nr (but not
conversely), so the Jackson’s Preemptive Schedule for
every machine in n′

r is greater or equal than it is in nr

and so fJPS(n′
r) ≥ fJPS(nr). Hence, if fJPS(nr) >

P , then fJPS(n′
r) > P .

So it follows that fIS(n) ≤ fIS(n′).

Theorem 4. hIS is monotonic.

Proof. From Lemma 3 we know fIS(n) ≤ fIS(n′)∀n, n′ ∈
SCS(n). This is equivalent to g(n) + hIS(n) ≤ g(n′) +
hIS(n′). As ∀s, g(s) is computed as the length of the largest
path from start to end in Gs, the cost of the path from the
initial state to s is always known and equal to g∗(s), no mat-
ter what path led to s. This implies that g(n′) − g(n) =
c(n, n′), so hIS(n) ≤ c(n, n′) + hIS(n′). Hence, hIS is
monotonic (equivalently consistent) and consequently ad-
missible.

117

Remark 1. The results given by Lemma 2 and Corollary 1
assume that the states n and n′ ∈ SCS(n) are initially con-
sistent with P + 1, i.e., their associated graphs are acyclic
and fJPS(n) ≤ fJPS(n′) < P + 1. In other cases, it is
trivial that Lemma 3 holds.

Analysis of the Effectiveness of hIS

As we have seen, the improved heuristic hIS is more in-
formed than the original one hJPS , i.e. hIS(n) ≥ hJPS(n)
for every state n, so it is expected that the number of nodes
expanded by the partially informed depth-first search algo-
rithm is smaller with hIS than it is with hJPS . The reason
for this is that the values of the function f(·) are larger, so
more nodes are pruned from the condition f(n) ≥ UB and,
at the same time, the evaluation function guides the search
towards more promising regions of the search space so as
better upper bounds are reached quickly. However, it is also
clear that computing hIS takes more time than computing
hJPS , so we have to consider whether or not the increase in
time consumed by the heuristic is compensated by the reduc-
tion of the effective search space. To do that we considered
some of the instances with 10 jobs and 10 machines that
in our experiments have required more search time (namely
ORB01, ORB03, FT10 and LA20). For each of them we
have analyzed the difference between the two heuristic esti-
mations and the number of nodes visited at different levels
of the search space. As the number of arcs fixed from a state
to a successor is not constant, we have taken the number of
disjunctive arcs fixed in a node as its level, instead of the
length or the cost of the path from the initial state to it. The
initial state has no disjunctive arcs fixed whereas the maxi-
mum number of arcs that can be fixed for an instance with
N jobs and M machines is given by the expression

maxArcs(N, M) = M ×
(N − 1)2 + (N − 1)

2
. (11)

States having such a number of disjunctive arcs fixed rep-
resent feasible schedules. However, the partially informed
depth-first search algorithm rarely reaches this situation, due
to the condition f(n) ≥ UB that allows to prune the node
n.

Figure 2 shows the results from instance ORB01 (the re-
sults from ORB03, FT10 and LA20 are fairly similar). The
x-axis represents the percentage of the disjunctive arcs fixed
(with respect to maxArcs(10, 10)). And the y-axis repre-
sents the average improvement in percent of hIS over hJPS ,
computed for each node n as

100×
hIS(n) − hJPS(n)

hJPS(n)
. (12)

As we can observe, the average improvement is about
30% and it is more or less uniform for different values of
the number of arcs fixed in the states, with variations in only
a very small fraction of the nodes at low and high levels of
the search.

Figure 3 illustrates the distribution of the states evaluated
with respect to the number of disjunctive arcs fixed. As we
can observe they are normally distributed: the number of

nodes evaluated at low levels is very small, then the num-
ber increases quickly for intermediate levels and finally it is
very low again for levels close to the final states. This is
quite reasonable, as at the end most of the nodes get pruned
and at the beginning the number of states is lower than it is at
intermediate levels. The results given in figures 2 and 3 cor-
respond to the search space traversed by the algorithm using
the heuristic hIS . With hJPS there are only small variations
due to the differences in the number of evaluated nodes.

These results suggest us the possibility of using different
heuristics at different levels. In particular we propose using
hIS at low levels where there are few nodes and the deci-
sions are more critical. At intermediate levels maybe the use
of a low cost heuristic such as hJPS could be better as there
are a very large number of states and the decisions are less
critical. And finally, at the last levels where the decisions
are much less critical and few nodes are visited the heuristic
is not very relevant. So we propose using hIS up to a given
level of the search in order to take the most critical decisions
and then use hJPS in order to save time.

 0

 20

 40

 60

 80

 100

 120

 0 20 40 60 80 100

A
ve

ra
ge

 im
pr

ov
em

en
t o

f h
IS

 (
%

)

% maxArcs(10,10)

Figure 2: Distribution of heuristic improvements in the ef-
fective search space depending on the number of arcs fixed

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 20 40 60 80 100

N
um

be
r

of
 g

en
er

at
ed

 s
ta

te
s

% maxArcs(10,10)

Figure 3: Distribution of states in the effective search space
depending on the number of arcs fixed

118

Table 1: Results for instances of size 10 × 10

DF

BB 0% 20% 35% 50% 65% 80% 100%

Exp. 100,00 69,45 67,71 67,42 68,21 68,63 68,46 68,41
T.(s) 100,00 86,41 86,41 97,09 119,42 138,83 147,57 148,54

Table 2: Results for selected instances

DF

BB 0% 20% 35% 50% 65% 80% 100%

EUB 100,00 81,17 66,50 60,76 51,94 49,40 52,14 52,39
ELB 100,00 100,00 45,97 65,74 60,63 65,74 65,74 65,74

Table 3: Results for instances of size 20 × 15

DF

BB 0% 20% 35% 50% 65% 80% 100%

EUB 100,00 74,19 69,01 69,96 69,84 62,62 58,65 58,20
ELB 100,00 100,00 70,84 70,84 70,84 70,84 70,84 70,84

Computational Results

As we have pointed, we have conducted an experimental
study to compare the proposed partially informed depth-first
search algorithm (DF) with the original Brucker’s branch
and bound algorithm (BB). We have considered three sets
of benchmarks taken from the OR-library. Firstly, eighteen
instances of size 10 × 10 (10 jobs and 10 machines): FT10,
ABZ5-6, LA16-20 and ORB01-10. As all of these instances
are easily solved by both algorithms, we report the average
number of nodes expanded and time taken to reach an op-
timal schedule (and prove its optimality) in percentage with
respect to those obtained by BB. Then, we considered the
set of instances selected in (Applegate and Cook 1991) as
very hard to solve: FT20 (size 20 × 5), LA21, LA24, LA25
(15 × 10), LA27, LA29 (20 × 10), LA38, LA40 (15 × 15),
ABZ7, ABZ8 and ABZ9 (20 × 15). Finally, we considered
the set of Taillard’s instances of size (20× 15) together with
ABZ7, ABZ8 and ABZ9. As most of these instances are
not optimally solved by any of the algorithms, we consider
the quality of the upper and lower bounds reached by BB
in average with respect to the best known lower and upper
bounds (taken from (Zhang et al. 2008)). Then we report the
average error in the upper and lower bounds (EUB and ELB

respectively) reached by DF with respect to those reached
by BB. For the three sets of instances we have considered
a number of levels to apply the improved heuristic hIS : 0,
20, 35, 50, 65, 80 and 100%. With level 0% the improved
heuristic is not applied to any of the nodes. In the other
cases, when the improved heuristic is not applied, we use
the estimation f(n) = max(f(p), fJPS(n)), where p is the
parent of state n. In all cases we report values averaged for
all the instances of the set and normalized so as BB is given
the value 100. The target machine was Linux (Ubuntu 9.04)

on Intel Core 2 Quad Q9400 (2,66 GHz), 4 GB. RAM.

Table 1 reports the results from the 10×10 instances. The
average time taken by the BB algorithm is 5, 72 seconds
and the average number of expanded nodes is 7184, 67. The
first remarkable result is that DF reduces the number of ex-
panded nodes by about 30% with respect to BB. This num-
ber is almost the same disregarding the level of application
of the improved heuristic (even if only hJPS is used). This
is a little bit surprising as the differences between the two
heuristic estimations are about 30% in average, as we have
seen in the previous section. In our opinion this is due to
the fact that these instances are easy to solve and the single
heuristic hJPS is able to guide the search quite well. At the
same time, the intensive use of hIS only contributes to in-
crease the time taken so as the overall time is even greater
than the time taken by BB when hIS is applied at a level
beyond 35%. For these instances, applying hIS at a level in
[0, 20] is the best choice and, in this case, the time is reduced
by about 15% with respect to BB.

Table 2 shows the results from the second set of instances.
In this case all algorithms were run for 1 hour. The average
error reached by BB is 5, 37% for upper bounds and 3, 42%
for lower bounds with respect to the best known bounds. As
we can observe, DF is better than BB in all cases. When
hIS is used, the improvement in lower bounds is about 35%
in all cases, independently of the level up to hIS is applied,
with exception of the level 20%. This is due to the fact that
the instance LA38 is solved optimally in this case and so the
lower bound is much better than in the remaining ones. The
fact that the lower bound is almost the same for all levels
is quite reasonable due to the depth-first search. The lower
bound is the lowest f(·) of a node in the open list and, as
the instances are very large, this value might correspond to a

119

successor of the initial state due to the fact that the algorithm
is not able to expand all of these successors after one hour.
For the same reason the lower bound at level 0% is the same
as that of BB. However, the quality of the upper bounds
improves in direct ratio with the level up to hIS is applied. In
this case it is worth to exploit the improved heuristic beyond
level 50%. In this case the improvement with respect to BB
is about 50%. Moreover, BB does not reach an optimal
solution to the instance FT20, whereas DF solves it in just
a few seconds using hIS .

Table 3 summarizes the results from the largest instances
(size 20 × 15) obtained in 1 hour. These are extremely hard
instances. The average error reached by BB is 13, 01% for
upper bounds and 4, 18% for lower bounds with respect to
the best known bounds. The results show similar tendency
as those for the second set of instances. DF is always better
than BB. In this case, the lower bounds reached by DF
when hIS is used at any level are always the same due to
the fact that these instances are even harder to solve. The
upper bounds improve in direct ratio with the level up to
hIS is used. However, in this case, it is worth to exploit the
improved heuristic in the whole search space. Overall, the
improvement in upper bounds quality with respect to BB is
more than 40%.

So, we can draw two main conclusions from this exper-
imental study. The first one is that DF is better than BB
when both of them use the same heuristic information given
by hJPS and the second one is that DF is able to improve
when it is given more informed and time consuming heuris-
tics, such as hIS , but in this case we have to be aware of
the problem size and exploit this heuristic up to a level that
depends on the problem size. In any case, for very large in-
stances it is worth to exploit this heuristic during the whole
search.

Conclusions
We have proposed a partially informed depth-first search al-
gorithm to cope with the Job Shop Scheduling Problem with
makespan minimization. This algorithm has been designed
from the branch and bound algorithm proposed in (Brucker,
Jurisch, and Sievers 1994), (Brucker 2004). We have also
devised a new heuristic which is monotonic and it is more
informed than the heuristic estimation used in the original
Brucker’s algorithm. We have conducted an experimental
study across three sets of medium, large and very large in-
stances from the OR-library. The results show that the pro-
posed algorithm outperforms the original branch and bound
algorithm in the three sets. The improvement is due to the
fact that the partially informed depth-first search is able to
exploit the heuristic knowledge much better than the sin-
gle branch and bound strategy. We have done some experi-
ments, not reported here, combining branch and bound with
the improved heuristic and the results were not good, as the
resulting algorithm takes much more time to reach the same
solutions, or reaches worse solutions in a given time.

As future work we plan to design new heuristic estima-
tions based on more powerful constraint propagation rules,
such as those proposed in (Dorndorf, Pesch, and Phan-Huy
2000), and exploit other search strategies such as IDA∗

(Korf 1985) or some combinations of depth-first and best-
first strategies in order to improve the lower bounds. We will
also try to adapt the algorithms to cope with objective func-
tions other than the makespan, which are in general more
interesting from the point of view of real-life problems and,
for the largest instances, we will consider weighted and non-
admissible heuristics in order to improve the efficiency at the
cost of reaching suboptimal solutions.

Acknowledgments

We are grateful to the reviewers for their helpful comments.
This research has been supported by the Spanish Ministry of
Science and Education under research project MEC-FEDER
TIN2007-67466-C02-01 and by the Principality of Asturias
under grant FICYT-BP09105.

References

Applegate, D., and Cook, W. 1991. A computational study
of the job-shop scheduling problem. ORSA Journal of Com-
puting 3:149–156.

Brucker, P.; Jurisch, B.; and Sievers, B. 1994. A branch
and bound algorithm for the job-shop scheduling problem.
Discrete Applied Mathematics 49:107–127.

Brucker, P. 2004. Scheduling Algorithms. Springer, 4th
edition.

Carlier, J., and Pinson, E. 1989. An algorithm for solving
the job-shop problem. Management Science 35(2):164–176.

Carlier, J., and Pinson, E. 1990. A practical use of jack-
son’s preemptive schedule for solving the job shop problem.
Annals of Operations Research 26:269–287.

Carlier, J., and Pinson, E. 1994. Adjustment of heads and
tails for the job-shop problem. European Journal of Opera-
tional Research 78:146–161.

Carlier, J. 1982. The one-machine sequencing problem.
European Journal of Operational Research 11:42–47.

Dorndorf, U.; Pesch, E.; and Phan-Huy, T. 2000. Constraint
propagation techniques for the disjunctive scheduling prob-
lem. Artificial Intelligence 122:189–240.

Garey, M., and Johnson, D. 1979. Computers and In-
tractability. Freeman.

Giffler, B., and Thomson, G. L. 1960. Algorithms for solv-
ing production scheduling problems. Operations Research
8:487–503.

Korf, R. E. 1985. Depth-first iterative-deepening: An op-
timal admissible tree search. Artificial Intelligence 27:97–
109.

Pearl, J. 1984. Heuristics: Intelligent Search strategies for
Computer Problem Solving. Addison-Wesley.

Zhang, C. Y.; Li, P.; Rao, Y.; and Guan, Z. 2008. A very
fast TS/SA algorithm for the job shop scheduling problem.
Computers and Operations Research 35:282–294.

120

