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ABSTRACT 

Finite element models for estimating stresses and displacements in laminated glass 

elements under dynamic loadings are very time-consuming because (1) many small 3D 

elements are needed to model accurately all the layers of the sandwich element and (2) 

the core usually shows a time and temperature dependent behaviour.  In the last years, 

the concept of effective thickness using a quasi-elastic solution has got the attention of 

the research community because of its simplicity and reasonable level of accuracy 

achieved in the calculation of laminated glass elements under static loadings. In this 

paper, a dynamic effective thickness to estimate stresses in laminated glass beams under 

dynamic loadings in the frequency domain is derived using the correspondence 

principle. The analytical equations are validated by experimental tests carried out on 

simply supported and free-free laminated glass beams at different temperatures in the 

range 20-40ºC. 

KEYWORDS: A. Layered Structures ; B.  Vibration ; C.  Analytical modelling ;  D. 

Thermal analysis. 
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NOMENCLATURE 

𝐸   Young modulus 

𝐸𝑒𝑓𝑓  Effective Young modulus 

𝐸1   Young’s modulus of glass layer 1  

𝐸3   Young’s modulus of glass layer 3  

𝐸2
∗(𝜔)  Complex tensile modulus for the polymeric interlayer 

𝐸2
′(𝜔)  Real component of the tensile complex modulus (storage) 

𝐸2
′′(𝜔)  Imaginary component of the tensile complex modulus (loss) 

𝐸2(𝑡)  Viscoelastic relaxation tensile modulus for polymeric interlayer 

𝐺2(𝑡)  Viscoelastic relaxation shear modulus for the polymeric interlayer 

𝐺2
∗(𝜔)  Complex shear modulus for the polymeric interlayer 

𝐺2
′(𝜔)  Real component of the shear complex modulus (storage) 

𝐺2
′′(𝜔)  Imaginary component of the shear complex modulus (loss) 

𝐻1  Thickness of glass layer 1 in laminated glass 

𝐻2  Thickness of polymeric layer in laminated glass 

𝐻3  Thickness of glass layer 3 in laminated glass 

𝐻0 = 𝐻2 + (
𝐻1 + 𝐻3
2

) 

𝐼  Second moment of area 

𝐼1 =
𝐻1
3

12
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𝐼3 =
𝐻3
3

12
 

𝐼𝑇 = 𝐼1 + 𝐼3 =
𝐻1
3 + 𝐻3

3

12
 

𝐾2(𝑡)  Viscoelastic bulk modulus 

𝐾2
∗(𝜔) 

L  Length of a glass beam 

T   Temperature 

𝑇0  Reference temperature 

𝑌 =
𝐻0
2𝐸1𝐻1𝐸3𝐻3

𝐸𝐼𝑇(𝐸1𝐻1+𝐸3𝐻3)
  

 

LOWERCASE LETTERS 

𝑎𝑇  Shift factor  

𝑏  Width of a glass beam 

𝑔(𝑥)  Shape function (Galuppi and Royer Carfagni model) 

𝑖  Imaginary unit 

𝑘𝐼
   Wavenumber 

�̅�  Mass per unit area 

𝑡  Time 

𝑤  Deflection  

GREEK LETTERS 
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Ω∗  Non-dimensional complex frequency 

𝜁  Modal damping ratio 

  Loss factor 

𝜂2  Loss factor of the polymeric interlayer of laminated glass 

𝜌𝑖  Mass density of laminated glass layers 

𝜔   Frequency 
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1 INTRODUCTION 

Laminated glass is a sandwich or layered material which consists of two or more plies 

of monolithic glass with one or more interlayers of a polymeric material. All polymeric 

interlayers present a viscoelastic behaviour, i.e. their mechanical properties are 

frequency (or time) and temperature dependent [1, 2]. Polyvinyl butyral (PVB) is the 

most used interlayer material. 

In analytical and numerical models, glass mechanical behaviour is usually modelled as 

linear-elastic in the pre glass-breakage, whereas the polymeric interlayer is 

characterized as linear-viscoelastic [1]. Laminated glass is easy to assemble in a finite 

element models but a lot of small 3D elements are needed to mesh accurately because 

the thickness of the viscoelastic interlayer is usually very small compared with the 

dimension of the laminated glass element. Consequently, the 3D models are highly 

time-consuming.  

In the last years several analytical models have been proposed for determining the static 

deflections and stresses of laminated glass beams [2, 3, 4, 5, 6, 7, 8]. In order to 

simplify the calculation of deflections and stresses in laminated glass beams, the 

concept of effective thickness have been proposed in the literature [7, 8]. The method 

consists of calculating the thickness (time and temperature dependent) of a monolithic 

element with bending properties equivalent to those of the laminated one, that is to say, 

the deflections and stresses provided by the equivalent monolithic beam are equal to 

those of the layered model with viscoelastic core. 

With respect to the dynamic behaviour, several models were proposed in the 60's and 

70's  about the dynamic flexural vibration of sandwich beams with viscoelastic core [9, 

10, 11, 12, 13, 14]. Aenlle and Pelayo [15] demonstrated that the model of Ross, 

Kerwin and Ungar (RKU) [9] can be considered as a particular case of the Mead and 

Markus model [12] when the exponential decay rate per unit length along the beam is 

neglected. The authors derived an effective stiffness for the dynamic behavior of 

laminated glass beams from the RKU model [9], which can be used to calculate modal 

parameters and dynamic deflections in laminated glass beams. With this technique, 

monolithic numerical models with an effective stiffness [17, 18] can be used 

advantageously in place of layered models.  
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A dynamic effective thickness for laminated glass plates was proposed by Aenlle and 

Pelayo [16]. Furthermore, the authors proposed the effective Young modulus concept 

for beams and plates which is more attractive for using in numerical models. The effect 

of temperature in the dynamic behaviour of laminated glass elements was studied in 

[15, 16, 19]. 

The aim of this paper is to propose a simplified method to estimate stresses in the 

frequency domain in laminated glass beams subject to dynamic loadings using an 

equivalent monolithic model, avoiding the use of layered finite element models or 

complicated analytical models. A dynamic stress effective thickness for laminated glass 

beams in the frequency domain is derived by applying the correspondence principle [20, 

21, 22, 23] to the stress effective thickness for static loadings proposed by Galuppi and 

Royer Carfagni [8]. The dynamic stress effective thickness is dependent on the dynamic 

effective stiffness proposed by Aenlle and Pelayo [15, 16] to estimate modal parameters 

and dynamic deflections. Equations for the stress effective Young Modulus and the 

stress effective distance to the neutral axis are also formulated which can be used in 

place of the effective thickness with the same accuracy. This technique can be applied 

to three layered laminated glass beams with glass showing a linear elastic behaviour and 

the polymeric core showing viscoelastic behaviour [1, 20, 21, 22, 23]. In order to 

validate the model, the stresses in a laminated glass beam made of annealed glass plies 

and PVB core were estimated using the stress effective thickness concept. The 

analytical predictions were validated with experimental tests comparing the predicted 

stresses with those measured with strain gages. 

 

2.1 VISCOELASTIC BEHAVIOUR 

The mechanical properties of a linear-viscoelastic material are frequency (or time) and 

temperature dependent [1, 22]. In the frequency domain, the complex tensile modulus, 

𝐸2
∗(𝜔),  at temperature 𝑇 is given by:  

𝐸2
∗(𝜔, 𝑇) = 𝐸2

′(𝜔, 𝑇) + 𝑖 ⋅ 𝐸2
′′(𝜔, 𝑇) = 𝐸2

′(𝜔, 𝑇)(1 + 𝑖 ⋅ 𝜂2(𝜔, 𝑇)) (1) 
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where superscript ‘*’ indicates complex,  𝜔 represents the frequency, 𝑖 is the imaginary 

unit, 𝐸2
′  (𝜔, 𝑇) and 𝐸2

′′ (𝜔, 𝑇) are the storage and the loss tensile moduli, respectively, 

and  

𝜂2(𝜔) =
𝐸2
′′(𝜔, 𝑇)

𝐸2
′(𝜔, 𝑇)

 (2) 

is the loss factor that relates both moduli. The subscript ‘2’ is used hereafter to reference 

the viscoelastic interlayer (Figure 1). 

As regards the shear behavior, the complex shear modulus, 𝐺2
∗ (𝜔, 𝑇), is given by: 

𝐺2
∗(𝜔, 𝑇) = 𝐺2

′(𝜔, 𝑇) + 𝑖 ⋅ 𝐺2
′′(𝜔, 𝑇) = 𝐺2

′(𝜔, 𝑇)(1 + 𝑖 ⋅ 𝜂2(𝜔, 𝑇)) (3) 

where 𝐺′(𝜔, 𝑇) and 𝐺′′(𝜔, 𝑇) are the storage and the loss shear moduli, respectively. 

Both the shear and tensile moduli can be related by means of the correspondence 

principle [20, 21, 22, 23] introducing the corresponding complex viscoelastic properties, 

i.e.: 

𝐺2
∗(𝜔, 𝑇) =

3𝐸2
∗(𝜔, 𝑇) 𝐾2

∗(𝜔, 𝑇)

9𝐾2
∗(𝜔, 𝑇) − 𝐸2

∗(𝜔, 𝑇)
 (4) 

where 𝐾2
∗(𝜔, 𝑇) is the complex bulk modulus.  

In order to take into account the temperature dependence of the viscoelastic interlayer 

properties, it is commonly assumed a simply thermo-rheological behaviour in the 

material [22]. This fact allows determining a relation between time and temperature in 

linear viscoelastic materials using a Time-Temperature-Superposition (TTS) model 

such as the William-Landel-Ferry or Arrhenius equations [1, 24]. Once the TTS model 

is fitted for a reference temperature, 𝑇0, i.e. the temperature used in the experimental 

tests, the moduli for the material to a different temperature, 𝑇1, can be estimated by 
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shifting in time the moduli at temperature 𝑇0 using a shift factor, 𝑎𝑇(𝑇0, 𝑇1), obtained 

from the material TTS model. A similar process can be followed in the frequency 

domain [23, 24]. 

2.2 GALUPPI AND ROYER-CARFAGNI MODEL 

Galuppi and Royer-Carfagni [8, 25, 26] derived a model for calculating the deflection of 

laminated glass beams under static loading that can be applied to a very wide range of 

boundary and loading conditions. The deflection of the beam is given by: 

𝑤(𝑥, 𝑡, 𝑇) = −
𝑔(𝑥)

𝐸𝐼(𝑡, 𝑇)𝑆
 

(5) 

where g(x) is a shape function that takes the form of the elastic deflection of a 

monolithic beam with constant cross section under the same loading and boundary 

conditions as the laminated glass beam and 𝐸𝐼(𝑡)𝑆 is the effective bending stiffness of 

the laminated glass beam given by: 

EI(t, T)S =
1

ηS(t, T)
EIT(1 + Y)

+
1 − ηS(t, T)

EIT

 
(6) 

Where: 


𝑆
(𝑡, 𝑇) =

1

1 +
𝐸1𝐻1𝐻2𝐸3𝐻3𝜓𝐵

(1 + Y)G2(𝑡, 𝑇)(𝐸1𝐻1 + 𝐸3𝐻3)
 
 

(7) 

In [16] it was demonstrated that that the parameter 𝜓𝐵 is related to the wavelength of 

the first buckling mode shape, 𝜆1𝑏𝑐𝑘 , by means of: 

𝜓𝐵 =
4𝜋2

𝜆1𝑏𝑐𝑘
2  (8) 
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The parameter 𝜂𝑆(𝑡) takes values in the range 0 ≤ 𝜂𝑆(𝑡) ≤ 1 corresponding 𝜂𝑆 = 0 to 

the case of a layered beam and 𝜂𝑆 = 1 to a monolithic beam. 

The stresses in each glass ply are given as the summation of the contribution of axial 

forces and bending moments. The stresses at the top and the bottom of layer 1 are given 

by [8]:  

𝜎1(𝑥, 𝑡, 𝑇) = (𝐸1𝜂𝑠(𝑡, 𝑇) ∙
𝐸𝐼(𝑡, 𝑇)𝑠
𝐸𝐼𝑇𝑂𝑇

𝐻3𝐻0
𝐻1 +𝐻3⏟                  

𝑎𝑥𝑖𝑎𝑙

±
𝐸1𝐻1
2⏟

𝑏𝑒𝑛𝑑𝑖𝑛𝑔

)𝑤′′(𝑥, 𝑡, 𝑇) (9) 

whereas for layer 3 are given by: 

𝜎3(𝑥, 𝑡, 𝑇) = (−𝐸3𝜂𝑠(𝑡, 𝑇) ∙
𝐸𝐼(𝑡, 𝑇)𝑠
𝐸𝐼𝑇𝑂𝑇

𝐻0𝐻1
𝐻1 + 𝐻3⏟                    

𝑎𝑥𝑖𝑎𝑙

±
𝐸3𝐻3
2⏟  

𝑏𝑒𝑛𝑑𝑖𝑛𝑔

)𝑤′′(𝑥, 𝑡, 𝑇) (10) 

Where superscript ′′ indicates second derivative of the deflection shape with respect to 

x. 

2.3 STATIC EFFECTIVE THICKNESS 

The static deflection-effective thickness is defined as the thickness of a monolithic glass 

with the same width and length, which gives the same displacement as does the 

laminated-glass beam under the same loading [7, 8, 25]. As the behaviour of the 

laminated glass elements are time and temperature dependent, an effective thickness has 

to be determined for each time and temperature.  The deflection effective thickness for 

laminated glass beams can be determined identifying the stiffness of a monolithic beam 

with Young modulus 𝐸𝑖 and thickness 𝐻𝑖𝑒𝑓𝑓 with the stiffness given by Eq. (6), i.e.: 

𝐸𝑖𝐻𝑖𝑒𝑓𝑓
3 (𝑡, 𝑇)

12
= EI(t, T)S (11) 

where the subindex “eff” indicates effective. From Eq. (11) it is derived that: 
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𝐻1𝑒𝑓𝑓(t, T) = √
12𝐸𝐼𝑇(1 + 𝑌)

𝐸1(1 + 𝑌(1 − 𝜂𝑆(𝑡)))

3

 (12) 

and 

𝐻3𝑒𝑓𝑓(t, T) = √
12𝐸𝐼𝑇(1 + 𝑌)

𝐸3(1 + 𝑌(1 − 𝜂𝑆(𝑡)))

3

 (13) 

An effective Young modulus 𝐸𝑒𝑓𝑓 can easily be derived from: 

𝐸𝑒𝑓𝑓(𝑡)𝐻
3

12
= EI(t)S (14) 

which results in: 

𝐸𝑒𝑓𝑓(t, T) =
12𝐸𝐼𝑇(1 + 𝑌))

𝐻3(1 + 𝑌(1 − 𝜂𝑆(𝑡)))
 (15) 

where  

𝐻 = 𝐻1 + 𝐻2 + 𝐻3 (16) 

With respect to the stresses, the stress-effective thickness of a laminated-glass beam ply 

is defined as the thickness of a monolithic glass beam that, under the same boundary 

and load conditions of the problem at hand, presents the same maximum stress [7, 8].  

The stress-effective thickness for layer 1, H1σeff
 , is obtained equating  Eq. (9) with the 

equation: 
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𝜎1(𝑥, 𝑡, 𝑇) =
𝐸𝐼(𝑡, 𝑇)𝑠

𝐻1𝜎𝑒𝑓𝑓
2

6

𝑤′′(𝑥, 𝑡, 𝑇) 
(17) 

Which results in: 

𝐻1𝜎𝑒𝑓𝑓(𝑡, 𝑇) = √

1

𝐸1𝜂𝑠(𝑡, 𝑇)𝐻3𝐻0
6𝐸𝐼𝑇𝑂𝑇(𝐻1 + 𝐻3)

+
𝐻1

𝐻1𝑒𝑓𝑓 
3 (𝑡, 𝑇)

 
(18) 

The same procedure is followed to derive the stress-effective thickness for layer 

3, H3σeff
 , which is expressed as: 

𝐻3𝜎𝑒𝑓𝑓(𝑡, 𝑇) = √

1

𝐸3𝜂𝑠(𝑡, 𝑇)𝐻1𝐻0
6𝐸𝐼𝑇𝑂𝑇(𝐻1 + 𝐻3)

+
𝐻3

𝐻3𝑒𝑓𝑓 
3 (𝑡, 𝑇)

 
(19) 

2.4 DYNAMIC EFFECTIVE STIFFNESS 

Ross, Kerwin, and Ungar [9, 27] developed a model for the flexural vibrations of 

sandwich elements considering the beam simply supported and assuming a flexural 

deformation spatially sinusoidal in shape, which is formulated as: 

𝐸𝐼∗(𝜔, 𝑇) 𝑤(𝑥, 𝑡, 𝑇)𝐼𝑉 + �̅� �̈�(𝑥, 𝑡, 𝑇) = 0 (20) 

Where �̅� is the mass per unit length and 𝐸𝐼∗(𝜔, 𝑇) is an effective complex flexural 

stiffness given by: 

𝐸𝐼∗(𝜔, 𝑡) =
1

ηd(ω, T)
EIT(1 + Y)

+
1 − 𝜂𝑑(𝜔, 𝑇)

EIT

 
(21) 

where 
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𝜂𝑑(𝜔, 𝑇) =
1

1 +
𝐸1 𝐻1 𝐻2𝐸3 𝐻3  𝑘𝐼

2(𝜔, 𝑇)
𝐺2
∗ (𝜔, 𝑇)(𝐸1𝐻1 + 𝐸3𝐻3)(1 + 𝑌)

 
(22) 

And  𝑘𝐼
 (𝜔, 𝑇) is the wavenumber, which is related with the wavelength 𝜆(𝜔, 𝑇) by 

means of: 

 𝑘𝐼
 (𝜔, 𝑇) =

2𝜋

𝜆(𝜔, 𝑇)
 (23) 

The complex natural frequencies are estimated with the expression: 

𝜔2(1 + 𝑖 ⋅ 𝜂) = 𝑘𝐼
4(𝜔, 𝑇)

𝐸𝐼∗(𝜔, 𝑇)

 �̅�
      (24) 

The dynamic effective thickness and the dynamic effective Young modulus are derived 

using the same methodology as that used in statics and they are expressed as [15, 16]: 

𝐻1𝑒𝑓𝑓(𝜔, 𝑇) = √
12𝐸𝐼𝑇(1 + 𝑌)

𝐸1 (1 + 𝑌(1 − 𝜂𝑑(𝜔, 𝑇)))

3
 (25) 

 

𝐻3𝑒𝑓𝑓(𝜔, 𝑇) = √
12𝐸𝐼𝑇(1 + 𝑌)

𝐸3 (1 + 𝑌(1 − 𝜂𝑑(𝜔, 𝑇)))

3
 (26) 

 

𝐸𝑒𝑓𝑓(𝜔, 𝑇) =
12𝐸𝐼𝑇(1 + 𝑌))

𝐻3 (1 + 𝑌(1 − 𝜂𝑑(𝜔, 𝑇)))
 (27) 
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3 DYNAMIC EFFECTIVE THICKNESS FOR STRESSES 

The correspondence principle [20, 21, 22, 23] states that if a solution to a linear 

elasticity problem is known, the solution to the corresponding problem for a linearly 

viscoelastic material can be obtained by replacing each quantity which can depend on 

frequency by its Fourier Transform.  

The dynamic stiffness in the frequency domain given by Eq. (21) can be derived from 

the static stiffness (Eq. (6)) by means of the Correspondence Principle [20, 21, 22, 23].  

The same can be said for the dynamic effective thickness (Eqs. 25 and 26), which can 

be derived from Eqs. (12) and (13), and the effective Young modulus (Eq. 27) which 

can be obtained from Eq. (15). 

With respect to parameter ηd(ω, T), it can also be derived from ηs(t, T) with the 

correspondence principle but with the special feature that the wavelength of the first 

buckling mode shape, λ1bck, must be replaced with the wavelength of the vibration 

mode shape λ(ω, T). 

We are going to apply hereafter the correspondence principle to derive equations for 

estimating stresses in the frequency domain, as well as equations for the dynamic stress 

effective thickness, the dynamic stress effective distance to neutral axis, and the 

dynamic stress Young modulus. 

Equations for estimating stresses in the frequency domain can be derived from 

equations (9) and (10) applying the correspondence principle.  The stresses at the top 

and bottom of layer 1 are given by: 

𝜎1(𝑥, 𝜔, 𝑇) = 𝐸1 [𝜂𝑑(𝜔, 𝑇) ∙
𝐸𝐼∗(𝜔, 𝑇)

𝐸𝐼𝑇𝑂𝑇

𝐻3
𝐻1 + 𝐻3

∙ 𝐻0
⏟                    

𝑎𝑥𝑖𝑎𝑙 

±
𝐻1
2⏟

𝑏𝑒𝑛𝑑𝑖𝑛𝑔 

] ∙ 𝑤′′(𝑥, 𝜔, 𝑇) (28) 

And for layer 3 by: 

𝜎3(𝑥, 𝜔, 𝑇) = −𝐸3 [𝜂𝑑(𝜔, 𝑇) ∙
𝐸𝐼∗(𝜔, 𝑇)

𝐸𝐼𝑇𝑂𝑇

𝐻1
𝐻1 + 𝐻3

∙ 𝐻0
⏟                    

𝑎𝑥𝑖𝑎𝑙 

±
𝐻3
2⏟

𝑏𝑒𝑛𝑑𝑖𝑛𝑔 

] ∙ 𝑤′′(𝑥, 𝜔, 𝑇) (29) 
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The dynamic effective stiffness 𝐸𝐼∗(𝜔, 𝑇)   given by Eq. (21) was derived by Aenlle 

and Pelayo [15, 16] from the Mead and Markus model [12]. 

If we take into account that: 

𝜂𝑑(𝜔, 𝑇) ∙
𝐸𝐼∗(𝜔, 𝑇)

𝐸𝐼𝑇𝑂𝑇
=
1

𝑌 
(
𝐸𝐼∗(𝜔, 𝑇)

𝐸𝐼𝑇
− 1) (30) 

Eqs. (28) and (29) are simplified to:  

𝜎1(𝑥, 𝜔, 𝑇) = 𝐸1 [
1

𝑌 
(
𝐸𝐼∗(𝜔, 𝑇)

𝐸𝐼𝑇
− 1)

𝐻3
𝐻1 + 𝐻3

∙ 𝐻0
⏟                    

𝑎𝑥𝑖𝑎𝑙 

±
𝐻1
2⏟

𝑏𝑒𝑛𝑑𝑖𝑛𝑔 

] ∙ 𝑤′′(𝑥, 𝜔, 𝑇) (31) 

And: 

𝜎3(𝑥, 𝜔, 𝑇) = −𝐸3 [
1

𝑌 
(
𝐸𝐼∗(𝜔, 𝑇)

𝐸𝐼𝑇
− 1)

𝐻1
𝐻1 +𝐻3

∙ 𝐻0
⏟                    

𝑎𝑥𝑖𝑎𝑙 

±
𝐻3
2⏟

𝑏𝑒𝑛𝑑𝑖𝑛𝑔 

] ∙ 𝑤′′(𝑥, 𝜔, 𝑇) (32) 

As regarding the dynamic stress effective thicknesses, they are obtained applying the 

correspondence principle to Eqs. (18) and (19)  and they are expressed as: 

𝐻1𝜎𝑒𝑓𝑓(𝜔, 𝑇) = √

1

𝐸1𝜂𝑑(𝜔, 𝑇)𝐻3𝐻0
6𝐸𝐼𝑇𝑂𝑇(𝐻1 +𝐻3)

+
𝐻1

𝐻1𝑒𝑓𝑓 
3 (𝜔, 𝑇)

 
(33) 

for layer 1 and 

𝐻3𝜎𝑒𝑓𝑓(𝜔, 𝑇) = √

1

𝐸3𝜂𝑑(𝜔, 𝑇)𝐻1𝐻0
6𝐸𝐼𝑇𝑂𝑇(𝐻1 + 𝐻3)

+
𝐻3

𝐻3𝑒𝑓𝑓 
3 (𝜔, 𝑇)

 
(34) 

for layer 3. 
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Assuming constant Young modulus 𝐸1 for layer 1 and 𝐸3 for layer 3, expressions for the 

dynamic stress effective distances to neutral axis h1σeff(ω, T) and h3σeff(ω, T) can be 

easily formulated from Eqs. (28) and (29), which results in:  

ℎ1𝜎𝑒𝑓𝑓(𝜔, 𝑇) = 𝜂𝑑(𝜔, 𝑇) ⋅
𝐸𝐼∗(𝜔, 𝑇)

𝐸𝐼𝑇𝑂𝑇
 
𝐻3

𝐻1 + 𝐻3
⋅ 𝐻0 +

𝐻1
2

 
(35)  

for layer 1,and in: 

ℎ1𝜎𝑒𝑓𝑓(𝜔, 𝑇) = 𝜂𝑑(𝜔, 𝑇) ⋅
𝐸𝐼∗(𝜔, 𝑇)

𝐸𝐼𝑇𝑂𝑇
 
𝐻3

𝐻1 + 𝐻3
⋅ 𝐻0 +

𝐻3
2

 
(36) 

for layer 3. 

The same expressions given by Eqs. (35) and (36) can also be obtained from: 

h1σeff(ω, T) =
𝐻1𝑒𝑓𝑓
3

2𝐻1𝜎𝑒𝑓𝑓
2  (37) 

and 

h3σeff(ω, T) =
𝐻3𝑒𝑓𝑓
3

2𝐻3𝜎𝑒𝑓𝑓
2  (38) 

, respectively. Dynamic stress effective Young modulus can also be derived from Eqs. 

(28) and (29). The stress effective Young modulus for layer 1 with thickness H1, is 

expressed as: 

𝐸1𝜎𝑒𝑓𝑓(𝜔, 𝑇) = 𝐸1 [𝜂𝑑(𝜔, 𝑇) ∙
𝐸𝐼∗(𝜔, 𝑇)

𝐸𝐼𝑇𝑂𝑇

𝐻3𝐻0
𝐻1 + 𝐻3

∙
2

𝐻1
+ 1] (39) 

And for layer 3 with thickness 𝐻3 as: 

𝐸3𝜎𝑒𝑓𝑓(𝜔, 𝑇) = 𝐸3 [𝜂𝑑(𝜔, 𝑇) ∙
𝐸𝐼∗(𝜔, 𝑇)

𝐸𝐼𝑇𝑂𝑇

𝐻1𝐻0
𝐻1 + 𝐻3

∙
2

𝐻1
+ 1] (40) 
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3.1 PRACTICAL APPLICATION 

The three concepts described in the previous section for estimating dynamic stresses in 

laminated glass beams (effective thickness, effective distance to neutral axis and 

effective Young modulus) can be used interchangeable without losing of accuracy. 

If the bending moment distribution 𝑀(𝑥) is known, the stresses can be estimated using 

the effective thickness concept with the equations: 

𝜎1(𝑥, 𝜔, 𝑇) =
𝑀(𝑥)

𝐻1𝜎𝑒𝑓𝑓(𝜔, 𝑇)
6

 
(41) 

and 

𝜎3(𝑥, 𝜔, 𝑇) =
𝑀(𝑥)

𝐻3𝜎𝑒𝑓𝑓(𝜔, 𝑇)
6

 
(42) 

respectively. 

However, if the curvature 𝑤′′(𝑥, 𝜔, 𝑇) of the beam is known (from experimental 

measurements, from analytical calculations, numerical models, etc.) the dynamic 

effective distance to the neutral axis hiσeff can be used with the equations: 

σ1(x, ω, T) = 𝐸1 ℎ1𝜎𝑒𝑓𝑓(𝜔, 𝑇) ⋅ 𝑤
′′(𝑥, 𝜔, 𝑇) (43) 

and 

σ3(x, ω, T) = 𝐸3 ℎ3𝜎𝑒𝑓𝑓(𝜔, 𝑇) ⋅ 𝑤
′′(𝑥, 𝜔, 𝑇) (44) 

With respect to the dynamic effective Young modulus Eiσeff, it can be used with the 

equations: 

σ1(x, ω, T) = 𝐸1𝑒𝑓𝑓(𝜔, 𝑇) 𝐻1 ⋅ 𝑤
′′(𝑥, 𝜔, 𝑇) (45) 

and 

σ3(x, ω, T) = 𝐸3𝑒𝑓𝑓(𝜔, 𝑇) 𝐻3 ⋅ 𝑤
′′(𝑥, 𝜔, 𝑇) (46) 
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3.2 MONOLITHIC FE MODELS 

The concept of effective thickness is based on using a monolithic model with constant 

Young modulus and a frequency and temperature dependent thickness. However, if we 

intend to assemble a monolithic FEM for calculating stresses in laminated glass beams, 

it is more appealing to use a beam with constant thickness and a frequency and 

temperature dependent Young modulus. Thus, the monolithic model must be defined 

with: 

 Constant thickness  𝐻 = 𝐻1 + 𝐻2 + 𝐻3 

 Constant density 𝜌𝑒𝑞 =
𝜌1𝐻1+𝜌2𝐻2+𝜌3𝐻3

𝐻1+𝐻2+𝐻3
 

 Dynamic effective Young modulus 𝐸𝑒𝑓𝑓(𝜔, 𝑇) given by Eq. (27) 

This equivalent monolithic model provides the same modal parameters as the laminated 

glasss beam and, consequentely, the same curvatures, i.e.: 

𝑤𝐿𝐴𝑀
′′ (𝑥, 𝜔, 𝑇) = 𝑤𝑀𝑂𝑁

′′ (𝑥, 𝜔, 𝑇) (47) 

Where sub-indexes “LAM” and “MON” indicates laminated and monolithic, 

respectively. 

Thus, using the curvatures obtained with the equivalent monolithic model, the stresses 

in a laminated glass beam can be estimated with: 

𝜎1𝐿𝐴𝑀(𝑥, 𝜔, 𝑇) = 𝐸1 [𝜂𝑑(𝜔, 𝑇) ∙
𝐸𝐼∗(𝜔, 𝑇)

𝐸𝐼𝑇𝑂𝑇

𝐻3
𝐻1 +𝐻3

∙ 𝐻0
⏟                    

𝑎𝑥𝑖𝑎𝑙 

±
𝐻1
2⏟

𝑏𝑒𝑛𝑑𝑖𝑛𝑔 

] ∙ 𝑤𝑀𝑂𝑁
′′ (𝑥, 𝜔, 𝑇) (48) 

For layer 1 and with: 

𝜎3𝐿𝐴𝑀(𝑥, 𝜔, 𝑇) = −𝐸3 [𝜂𝑑(𝜔, 𝑇) ∙
𝐸𝐼∗(𝜔, 𝑇)

𝐸𝐼𝑇𝑂𝑇

𝐻1
𝐻1 +𝐻3

∙ 𝐻0
⏟                    

𝑎𝑥𝑖𝑎𝑙 

±
𝐻3
2⏟

𝑏𝑒𝑛𝑑𝑖𝑛𝑔 

] ∙ 𝑤𝑀𝑂𝑁
′′ (𝑥, 𝜔, 𝑇) (49) 

for layer 3. 

An alternative consists of considering the stresses 𝜎𝑀𝑂𝑁(𝑥, 𝜔, 𝑇) calculated with the 

equivalent monolithic FE model, which are related to the curvature by: 

𝜎𝑀𝑂𝑁(𝑥, 𝜔, 𝑇) = 𝐸𝑒𝑓𝑓(𝜔, 𝑇) ∙
𝐻

2
∙ 𝑤𝑀𝑂𝑁

′′ (𝑥, 𝜔, 𝑇) 
(50) 
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and then to estimate the stresses in the laminated glass beam by means of: 

𝜎1𝐿𝐴𝑀(𝑥, 𝜔, 𝑇) = 𝜎𝑀𝑂𝑁(𝑥, 𝜔, 𝑇) ∙
𝐸1 [𝜂𝑑(𝜔, 𝑇) ∙

𝐸𝐼∗(𝜔, 𝑇)
𝐸𝐼𝑇𝑂𝑇

𝐻3
𝐻1 + 𝐻3

∙ 𝐻0 ±
𝐻1
2 ]

𝐸𝑒𝑓𝑓(𝜔, 𝑇) ∙
𝐻
2

 (51) 

which is obtained identifying Eqs. (28) and (47). Eq. (51) can also be expressed as: 

𝜎1𝐿𝐴𝑀(𝑥, 𝜔, 𝑇) = 𝜎𝑀𝑂𝑁(𝑥, 𝜔, 𝑇) ∙
𝐸1h1σeff(ω, T)

𝐸𝑒𝑓𝑓(𝜔, 𝑇) ∙
𝐻
2

= 𝜎𝑀𝑂𝑁(𝑥, 𝜔, 𝑇) ∙
𝐸1𝜎𝑒𝑓𝑓(ω, T) ⋅ 𝐻1

𝐸𝑒𝑓𝑓(𝜔, 𝑇) ∙ 𝐻
 (52) 

With respect to layer 3, the stresses are estimated with: 

𝜎3𝐿𝐴𝑀(𝑥, 𝜔, 𝑇) = 𝜎𝑀𝑂𝑁(𝑥, 𝜔, 𝑇) ∙
𝐸3 [𝜂𝑑(𝜔, 𝑇) ∙

𝐸𝐼∗(𝜔, 𝑇)
𝐸𝐼𝑇𝑂𝑇

𝐻1
𝐻1 + 𝐻3

∙ 𝐻0 ±
𝐻3
2 ]

𝐸𝑒𝑓𝑓(𝜔, 𝑇) ∙
𝐻
2

 (53) 

or: 

𝜎3𝐿𝐴𝑀(𝑥, 𝜔, 𝑇) = 𝜎𝑀𝑂𝑁(𝑥, 𝜔, 𝑇) ∙
𝐸3h3σeff(ω, T)

𝐸𝑒𝑓𝑓(𝜔, 𝑇) ∙
𝐻
2

= 𝜎𝑀𝑂𝑁(𝑥, 𝜔, 𝑇)
𝐸3𝜎𝑒𝑓𝑓(ω, T) ⋅ 𝐻3

𝐸𝑒𝑓𝑓(𝜔, 𝑇) ∙ 𝐻
 (54) 

 

3.3 USING EXPERIMENTAL DATA  

If modal analysis is applied to the laminated glass beam in order to estimate the modal 

parameters (natural frequencies, mode shapes and damping ratios), and the experimental 

response time histories wex
 (t, T)are measured at several points of the structure, the 

experimental modal coordinates qex(ω, T) can be estimated by: 

𝑞𝑒𝑥(𝜔, 𝑇) = 𝜙𝑒𝑥
−1(𝑥)𝑤𝑒𝑥

 (𝑥, 𝜔, 𝑇) (55) 

Where subscript “ex” indicates experimental data and ϕex
−1
 
represents the inverse matrix 

of the experimental mode shapes. The pseudoinverse must be used if the matrix ϕex
  is 

not square [28, 29].  

On the other hand, the experimental mode shapes can be expanded using one of the 

techniques proposed in the literature [29, 30], from which the curvatures at any point of 

the structure are estimated by: 
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𝑤′′(𝑥, 𝜔, 𝑇) = 𝜙𝑥𝑝
′′ (𝑥) ∙ 𝑞𝑒𝑥(𝜔, 𝑇) (56) 

where the subindex ‘xp’ indicates expanded. If Eq. (56) is substituted in Eq. (28), the 

stresses at any point of the layer 1 can be obtained with the expression: 

𝜎1(𝑥, 𝜔, 𝑇) = 𝐸1 [𝜂𝑑(𝜔, 𝑇) ∙
𝐸𝐼∗(𝜔, 𝑇)

𝐸𝐼𝑇𝑂𝑇

𝐻3
𝐻1 + 𝐻3

∙ 𝐻0 ±
𝐻1
2
] ∙ ∑ 𝜙𝑖𝑥𝑝

′′ (𝑥) ∙ 𝑞𝑖𝑒𝑥(𝜔, 𝑇)

𝑁𝑚𝑜𝑑𝑒𝑠

𝑖=1

 (57) 

whereas the expression for estimating stresses in layer 3 is given by: 

𝜎3(𝑥, 𝜔, 𝑇) = −𝐸3 [𝜂𝑑(𝜔, 𝑇) ∙
𝐸𝐼∗(𝜔, 𝑇)

𝐸𝐼𝑇𝑂𝑇

𝐻1
𝐻1 + 𝐻3

∙ 𝐻0 ±
𝐻3
2
] ∙ ∑ 𝜙𝑖𝑥𝑝

′′ (𝑥) ∙ 𝑞𝑖𝑒𝑥(𝜔, 𝑇)

𝑁𝑚𝑜𝑑𝑒𝑠

𝑖=1

 (58) 

which is obtained substituting Eq. (56) in Eq. (29). 

Moreover, we can also take advantage of the experimental modal parameters to improve 

the accuracy of the technique, replacing the stiffness EI∗(ω, T) in Eqs. (57) and (58) by 

its equivalent experimental modal equation, i.e.: 

𝐸𝐼∗(𝜔𝑒𝑥, 𝑇) =
𝜔(𝑇)𝑒𝑥

2 (1 + 𝑖 ⋅ 𝜂(𝑇)𝑒𝑥) ∙ (𝜌1𝐻1 + 𝜌2𝐻2 + 𝜌3𝐻3)

𝑘𝐼
4(𝜔𝑒𝑥, 𝑇)

 (59) 

Where ω(T)ex
  and η(T)ex  are the experimental natural frequencies and loss factors at 

temperature T, respectively.  

4. VALIDATION OF THE METHODOLOGY 

In order to validate the technique proposed in this paper, the stresses of a  laminated 

glass beam with annealed glass layers, PVB core and with the following geometrical 

data: L = 1 m, H1 = 3.75 mm, H2 = 0.38 mm, H3 = 7.90 mm, b = 0.1 m, were 

predicted using the  Eqs. (57) and (58) and validated with experimental tests. The beam 

was tested in simply supported and in free-free boundary conditions at temperatures in 

the range 20 − 40 𝑜𝐶. For temperatures below 20 𝑜𝐶 the mechanical behaviour of the 

laminated glass beam is similar to a monolithic glass beam [15, 16, 19] and the 

technique is equal to or more accurate than the corresponding one at 20 𝑜𝐶. 

4.1. OPERATIONAL MODAL ANALYSIS 
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The experimental modal parameters at different temperatures were identified with 

operational modal analysis OMA, which is a technique that allows us to estimate the 

model parameters (natural frequencies, mode shapes and damping ratios) without 

knowing and/or controlling the input excitation [31]. The experimental tests were 

carried out at different temperatures in a climate chamber. The beam was excited 

applying many small hits along the beam with an impact hammer, random in time and 

space [31]. The responses were measured using seven uniformly distributed 

accelerometers with a sensitivity of 100 mV/g, during a period of approximately 4 

minutes. The test setup is shown in Figure 2 where the arrows indicate the measured 

directions. The responses were recorded with a sampling frequency of 2132 Hz using a 

National Instruments Compact DAQ acquisition system equipped with NI9234 

acceleration modules. 

The modal parameters were estimated with the frequency-domain decomposition 

(EFDD) [32] and the stochastic subspace iteration (SSI) [33] methods. The two 

techniques provide similar results and, therefore, only the modal parameters estimated 

with the EFDD technique are presented. The identified natural frequencies and loss 

factors corresponding to the first 3 modes are presented in Tables 1 and 2 for simply 

supported and free-free boundary conditions, respectively. For the loss factor, 𝜂, it has 

been assumed that 𝜂 = 2 𝜁 [34]. 

 

4.2 STRESS MEASUREMENTS 

 Two strain gages HBM LY11-350 were attached at points 1 and 2 (see Figure 2).  In 

order to excite the structure, several hits were applied to the beam in random positions 

using an impact hammer and the acceleration responses were recorded using the same 

test setup as that used for OMA.  Both accelerations and strains were acquired using the 

National Instruments Compact DAQ acquisition system.  

 

 

4.3 STRESS ESTIMATION 

The stresses at the points where the strain gages were attached (see Figure 2) were 

estimated using the methodology described in the previous section (Eqs. (57) and (58)). 
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A Young modulus of 72 GPa and a Poisson ratio 𝜈 = 0.22, respectively, were 

considered for the glass layers whereas the  mechanical properties obtained with a 

DTMA in a previous work [35] were considered for the PVB. 

A monolithic finite element model was also assembled in ABAQUS and the beam was 

discretized using 8 Euler-Bernoulli beam elements. The experimental mode shapes were 

expanded to the un-measured DOF’s using the numerical mode shapes extracted from 

the FEM using the Local Correspondence Principle [29]. The number of numerical 

modes considered in the expansion of the experimental mode shapes, as well as the 

contribution of each mode, are presented in Table 3. 

The experimental modal coordinates were obtained using Eq. (55) considering the 

experimental mode shapes at 𝑇 = 20 𝑜𝐶. This assumption is reasonable because not 

significant changes in mode shapes with temperature have been observed in previous 

works [15, 16, 19]. The experimental modal coordinates were filtered using a high pass 

filter and the integration was carried using a rectangular window with a 50% of overlap 

[28]. 

 

5 DISCUSSION OF THE RESULTS 

5.1 SIMPLY SUPPORTED BEAM 

The time histories and the power spectral densities (PSD) of the experimental stresses 

measured with a strain gage located at the midpoint of the beam (point 1 in Figure 2) in 

the simply supported configuration, and those predicted with Eqs. (57) and (58) at 

temperatures of 20 oC,  30 oC and 40 oC, are presented in Figure 3. The stresses in time 

domain were computed by inverse Fourier Transform [36].  It can be observed that the 

noise floor of the experimental strain gage is approximately 60 dB at all the tested 

temperatures.  

Due to the fact that the strain gage is located in the mid-point of the beam only the 

peaks corresponding to symmetric modes appear in the spectral densities, i.e., only the 

modes 1 and 3 contribute to the overall stress at this point in this frequency range. This 

fact is in agreement with the stresses recorded with the strain gage where the main 

contributions also correspond to modes 1 and 3 (see Figure 3). With respect to the 

influence of the temperature, the contribution of the 3rd mode decreases with 

temperature.  
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From Figure 3 it is inferred that the stresses are predicted with a good accuracy at 20 oC 

and 30 oC, the error being less than 9% for the first natural frequency. At 40 oC the 

stresses at the first mode are predicted with an error of 19%. The errors between the 

estimated and the experimental power spectral density of the stresses at the first natural 

frequency (area under the power spectral density at the first natural frequency) are 

presented in Table 4. As it is demonstrated with the free-free tests, this lack of accuracy 

is not a problem of the technique but due to the fact that the mechanical properties of 

the PVB have not been estimated with the required accuracy. 

The experimental and the predicted power spectral densities of the stresses at point 2 are 

presented in figure 4 together with the corresponding time histories. It can be observed 

that the first three modes contribute to the overall stress in the frequency range 0-500 

Hz. The errors between the estimated and the experimental power spectral density of the 

stresses at the first natural frequency are less than 9% and they are presented in Table 4.  

 

5.2 FREE-FREE BEAM 

With respect to the free-free beam tests, the time histories and the spectral densities of 

the experimental and the estimated stresses at the mid-point of the beam for 

temperatures 𝑇 = 20 oC, 30 oC and 40 oC are presented in Figure 5. Beside the peaks 

corresponding to modes 1 and 3, some peaks at 50 Hz and its harmonics (100 Hz, 150 

Hz, 200 Hz and so on ) corresponding to electrical noise are also present in the spectral 

densities, which could not be removed during the tests.  

As in the simply-supported conditions, only the first and the third mode contribute to 

the overall stress at this point. Again the error between the experimental and the 

predicted power spectral densities of the stresses at the first natural frequency increases 

with temperature. The errors at the first natural frequency are presented in Table 4 and 

they are of the same order as those obtained for the simply supported beam. 

As it was shown in Section 3.3, the accuracy of the technique can be improved 

replacing the stiffness given by Eq. (21) with that obtained from the modal parameters 

(Eq. (59)). The stiffness 𝐸𝐼∗(𝜔, 𝑇) at 20 ºC, 30ºC and 40ºC calculated with Eq. (21) and 

that obtained with Eq. (59) are presented in Figure 6, where it can be observed that the 

stiffness calculated with Eq. (21) underestimates the stiffness at all temperatures in all 

the frequency range. Moreover, the discrepancies increase with increasing temperature. 
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The stiffness calculated with modal parameters can only be estimated at the natural 

frequencies and the curves shown in Figure 6 have been fitted with splines. 

The stresses at 40ºC were recalculated using the experimental stiffness determined with 

Eq. (59) (see Figure 6). The new results are shown in Figure 7, the errors being less than 

6%. This demonstrates that the technique provide accurate results if good measurements 

are carried out and accurate mechanical properties of the glass and PVB are used in the 

analytical calculations. 

                                                                                                        

6 CONCLUSIONS 

In the practical calculations of laminated glass elements, as well as in preliminary 

designs, it is very useful to consider simplified methods. In the last years, several 

equations have been proposed to calculate displacements, internal forces, stresses, etc., 

in laminated glass beams and plates under static loads using the effective thickness 

concept [2, 8, 25]. Recently, Aenlle and Pelayo [15, 16] have derived a dynamic 

effective thickness for predicting the modal parameters (natural frequencies, mode 

shapes and damping ratios) in laminated glass beams and plates.  

In this paper a dynamic effective thickness to estimate stresses in laminated glass beams 

under dynamic loadings in the frequency domain has been derived using the 

correspondence principle [20, 21, 22, 23]. With this technique, the stresses can be 

estimated using a monolithic model, avoiding the use of layered finite element models 

or complicated analytical models. The equations have been derived for three layered 

laminated glass beams with glass showing a linear elastic behaviour and the polymeric 

core showing viscoelastic behaviour. The stresses in time domain can be easily 

computed by inverse Fourier Transform [36]. 

The concepts of dynamic effective Young Modulus and dynamic effective distance to 

the neutral axis have also been proposed as an alternative to the effective thickness 

which can be used when the curvature of the beam is known from analytical or 

numerical models or from experimental tests. However, the effective thickness has to be 

used with Eqs. (41) and (42), i.e. when we want to use the bending moment distribution. 

On the other hand, the effective Young modulus is more appealing for using in 

numerical and analytical models because the monolithic model has constant thickness 

whereas a time (or frequency) and temperature dependent Young modulus is defined.  
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The results provided by the proposed methodology can be improved using experimental 

data. If modal analysis is applied to the laminated glass beam in order to estimate the 

modal parameters, a better estimation of the effective stiffness 𝐸𝐼∗(𝜔, 𝑇) can be 

obtained using Eq. (59) which, in turn, can be used in Eqs. (35-40) to obtain better 

effective distances to the neutral axis and effective Young modulus. 

In order to validate the methodology, the stresses of a laminated glass beam with the 

following geometrical data: L = 1 m, H1 = 3.75 mm, H2 = 0.38 mm, H3 = 7.90 mm, 

b = 0.1 m, with annealed glass and PVB core, were estimated using the dynamic stress 

effective thickness. The analytical predictions were validated by experimental tests 

carried out in the temperature range from 20 to 40 oC with simply supported and free-

free boundary conditions. For temperatures below 20 oC the mechanical behaviour of 

the laminated glass is similar to a monolithic material and the technique is very 

accurate. The beam was excited with an impact hammer applying hits random in time 

and space. The stresses were estimated using Eqs. (57) and (58) and the analytical 

predictions were compared with the experimental ones measured with strain gages. It 

has been demonstrated that the proposed technique allows estimating stresses in 

laminated glass beams with a good accuracy. The discrepancies between the analytical 

and the experimental stresses for both the simply supported and the free configurations 

decrease significantly (error less than a 6%) when accurate mechanical properties of 

PVB and glass are used. 
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Figure captions: 

Figure 1. Laminated glass beam section and schematic representation of the different 

layers. 

Figure 2. Test setups used in the experiments. 

Figure 3. Estimated and experimental stresses in point 1 at 20 ºC, 30 ºC and 40 ºC in 

simply-supported condition. Left: time history, Center: detail of the time history, Right: 

power spectral density. 

Figure 4. Estimated and experimental stresses in point 2 at 20 ºC, 30 ºC and 40 ºC in 

simply-supported condition. Left: time history, Center: detail of the time history, Right: 

power spectral density.  

Figure 5. Estimated and experimental stresses in point 1 at 20 ºC, 30 ºC and 40 ºC in 

free-free boundary condition. Left: time history, Center: detail of the time history, 

Right: power spectral density. 

Figure 6. Estimated and experimental stiffness (𝐸𝐼∗(𝜔𝑥𝑝, 𝑇)) at 20 ºC, 30 ºC and 40 ºC. 

Figure 7. Estimated and experimental stresses at 𝑇 = 40 𝑜𝐶 under free-free condition 

using the experimental stiffness (𝐸𝐼∗(𝜔𝑥𝑝, 𝑇)).  

 



Table 1. Natural frequencies and loss factors for the glass beam under simply supported 

boundary conditions. 

 

 

Temp. 

Mode 1 Mode 2 Mode 3 

Frequency 
Loss 

factor 
Frequency 

Loss 

factor 
Frequency 

Loss 

factor 

[
o
C] [Hz] [%] [Hz] [%] [Hz] [%] 

20 31.33 1.16 118.42 1.17 262.59 1.15 

30 30.92 2.22 116.05 2.46 255.44 4 

35 30.15 4.89 113.51 3.41 246.82 8.45 

40 29.59 8.39 108.47 9.67 232.12 9.15 
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Table 2. Natural frequencies and loss factors for the glass beam under free-free 

boundary conditions. 

Temp. 

Mode 1 Mode 2 Mode 3 

Frequency 
Loss 

factor 
Frequency 

Loss 

factor 
Frequency 

Loss 

factor 

[
o
C] [Hz] [%] [Hz] [%] [Hz] [%] 

20 66.47 0.56 182.0 0.97 354.5 1.20 

30 65.97 2.11 179.3 3.75 346.4 5.30 

35 65.37 4.56 175.9 9.40 335.5 11.85 

40 63.70 8.98 168.1 22.98 311.8 19.54 
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Table 3. Contribution of the numerical modes in the expansion of the experimental 

mode shapes using the local correspondence principle.  

 

Free-Free  

Experimental Mode 
Numerical Modes 

1 2 3 4 5 

1 0.9844 0 0 0 0.0122 

2 0 0.9896 0 0 0 

3 0 0 0.9993 0 0 

Simply - supported 

1 0.9913 0 0.0081 0 0 

2 0.0072 0.9971 0 0.0076 0 

3 0 0 0.9969 0.0154 0 
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Table 4. Errors between the predicted and the experimental stresses for the first mode at 

different temperatures in points 1 and 2. 

 

 

Boundary 

Condition 

Frequency 

Temperature 

Error 

[%] 

[Hz] [
o
C] Point 1 Point2 

Simply 

Supported 

31.33 20 7.56 8.62 

31.05 25 7.97       5.37 

30.92 30 8.35 2.23 

30.15 35 16.45 6.58 

29.59 40 18.34 7.01 

Free-Free 

66.47 20 10.97 2.89 

66.12 25 12.14 11.95 

65.96 30 11.44 13.96 

65.37 35 17.84 19.22 

63.78 40 16.36 19.95 
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