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Javier. A ellos les debo todo.



Resumen
Los problemas de scheduling son problemas de tipo combinatorio con gran presencia

en la literatura durante las últimas décadas. Estos problemas son NP-completos, lo que
supone un gran reto para los investigadores en Inteligencia Artificial. En su definición
clásica, se asume que todos los datos son conocidos y precisos. Sin embargo, este no es el
caso en situaciones reales, especialmente cuando hay factores humanos involucrados. Por
ejemplo, es común que los tiempos exactos de procesamiento de cada tarea no se conoz-
can a-priori. La incertidumbre presente en el mundo real puede afectar drásticamente a
los resultados que se obtienen asumiendo condiciones ideales. Esto ha llevado a muchos
investigadores a considerar la incertidumbre como parte del problema. Entre las diversas
maneras de modelar esta incertidumbre, los conjuntos difusos plantean una muy buena
alternativa, lo que hace que su uso se esté extendiendo cada vez más. Cuando la incer-
tidumbre se modela mediante números fuzzy, nos referimos a los problemas de scheduling
como fuzzy scheduling. Concretamente, esta tesis se centra en el uso de los números fuzzy
más comunes en este tipo de problemas: los números fuzzy triangulares o TFNs. Además,
los problemas de scheduling presentan en muchas ocasiones fechas de entrega o due-dates.
Estas fechas son generalmente estrictas, pero lo más común en escenarios reales es que
sean flexibles. En esta tesis se considera el uso de fechas de entrega flexibles y tiempos de
procesamiento fuzzy para tres problemas: fuzzy open shop, fuzzy job shop y fuzzy flexible
job shop.

De entre los distintos métodos de resolución que se pueden encontrar en la literatura,
esta tesis se centra en las metaheuŕısticas, las cuáles son capaces de encontrar soluciones
de gran calidad en muy poco tiempo. Para que su comportamiento sea óptimo, es muy
importante acotar el conjunto de soluciones entre las que buscar la óptima. Si bien es-
tos conjuntos han sido muy estudiados en el problema clásico, no ocurre lo mismo en los
problemas de fuzzy scheduling. En esta tesis se propone la primera definición formal de
categoŕıas de schedules y esquemas de generación de schedules en el entorno fuzzy. En
base a estos esquemas, proponemos varios métodos de resolución para los mencionados
problemas. En concreto, estos métodos se centran en la optimización de la función ob-
jetivo más común: el makespan. En base a los resultados obtenidos con cada método se
plantean algunas gúıas sobre cómo resolver de forma eficiente problemas de fuzzy schedul-
ing. Además de lo anterior, se proponen también métodos de optimización multi-objetivo
que, además del makespan, optimicen el agreement index, que es el grado de cumplim-
iento de las fechas de entrega flexibles. Se tienen en cuenta tanto el caso en el que las dos
funciones tienen la misma prioridad, como el caso en el que una es más importante que la
otra.

Cuando hay incertidumbre en un problema, la robustez es un concepto de gran impor-
tancia. En muchos casos puede ser preferible tener soluciones robustas con una calidad
razonable, a tener soluciones de gran calidad cuyo resultado se ve gravemente afectado
cuando hay una mı́nima variación en los datos de entrada. Aunque esto es algo de vital
importancia, no es sencillo de medir. En la literatura se puede encontrar una definición
de semántica en problemas de fuzzy scheduling. En base a esta definición, en esta tesis
se propone un nuevo marco en el que poder medir la robustez, distinguiendo entre dos
tipos de medidas: las medidas a-priori, que pueden ser tomadas antes de la implantación
de la solución en un entorno real, y las medidas a-posteriori, que no pueden ser evaluadas



antes de su implantación. En este marco, proponemos distintas medidas para la robustez,
las cuáles nos permiten hacer comparaciones que no eran posibles con otro tipo de medi-
das. Finalmente, proporcionamos varios métodos para optimizar estas medidas, solas, o
conjuntamente con una medida de calidad como el makespan.



Summary
Scheduling problems are a kind of combinatorial problems that pose a great chal-

lenge to Artificial Intelligence researchers, being very hard to solve. They are well-known
NP-complete problems which have had a great presence in the literature during the last
decades. However, in the classical definition of these problems, well-defined information is
assumed, which is not the case in most of real-world scenarios, especially when human fac-
tors are involved. For instance, the exact processing times of operations may be unknown
in advance. The uncertainty that is present in real situations can drastically deteriorate
the performance of a solution obtained assuming deterministic conditions. This has led
many researchers to consider this uncertainty as part of the problem to solve. Among
the different approaches to model the uncertainty, fuzzy sets have emerged as a very in-
teresting tool and have been extensively used in different manners. When uncertainty is
modelled by means of fuzzy numbers, we refer to fuzzy scheduling problems. In partic-
ular, for this PhD thesis we use the most extended representation in fuzzy scheduling,
which is triangular fuzzy numbers or TFNs. Scheduling problems may have also due date
constraints, which represent deadlines for each job. These are usually taken to be hard
constraints, but in real scenarios, it is more common for them to be flexible. In this thesis
we consider the use of flexible due dates together with uncertainty in processing times in
three different scheduling problems: fuzzy open shop, fuzzy job shop and fuzzy flexible
job shop.

Among the different solving methods in the literature, we focus on metaheuristics,
which are known to find very good solutions in a short amount of time. For these algo-
rithms to perform well, it is important to define good sets of solutions in which look for the
optimal solution. These are well defined for classical scheduling problems, but surprisingly,
this is not the case in fuzzy scheduling. Here we provide a first formal definition of sched-
ule categories and schedule generation schemes for fuzzy scheduling problems. This allows
us to propose efficient solving methods for these problems. In particular, we consider the
most common optimisation criteria, which is the makespan minimisation. Based on the
ideas behind the best-known algorithms for the classical scheduling problems, we design
new strategies for fuzzy scheduling and provide some insights and hints about the most
promising ways of solving these problems. Furthermore, we also propose multi-criteria op-
timisation methods to minimise the makespan and maximise the agreement index, which
is the degree to which the flexible due dates of jobs are fulfilled. We consider both the
case in which one objective is given more relevance than the other and the case in which
both objectives are equally relevant.

An issue of great importance when scheduling under uncertainty is the robustness of
solution quality. Indeed, solutions which are robust and reasonably good in quality may
be preferred to solutions which in principle are optimal but perform poorly when slight
variations in the input data occur. This is a factor that must be taken into account, but
which is difficult to translate into a well-defined measure. Using as starting point a defini-
tion of semantics for fuzzy scheduling from the literature, we propose a new framework to
measure robustness which distinguishes between two kinds of measures: a-priori measures,
which are obtained before implementing a solution in a real environment, and a-posteriori
measures, that are obtained after implementing the solution. Based on this framework,
we propose different robustness measures for fuzzy scheduling. We also propose optimisa-



tion algorithms that allow optimising these robustness measures alone or together with a
performance measure such as makespan in order to obtain high quality robust solutions.
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Chapter 1

Introduction

1.1 Scheduling

Scheduling problems are a kind of combinatorial problems that pose a great challenge
to Artificial Intelligence researchers, being very hard to solve [87]. They are well known
NP-complete problems which have had a great presence in the literature during the last
decades [16, 87]. Roughly speaking, a scheduling problem consists in assigning a set of
resources to a set of tasks or operations fulfilling some constraints and optimising one or
more objective functions. Seeing this generic definition, it is easy to guess that these prob-
lems are present in many real situations ranging from day-to-day ones to scenarios with
a high economical impact. Some typical examples are assigning work shifts and activities
at work centres, optimising the production of factories or optimising the performance of
machines [87].

In the following, we will assume that a scheduling problem consists in scheduling a set of
n jobs J = {J1, . . . , Jn} on a set of m physical resources or machines M = {M1, . . . ,Mm},
subject to a set of constraints. Each job Ji is composed by a set of ni tasks θij requiring
the use of a machine for its whole processing time pij . A feasible schedule is an allocation
of starting times Sij for each task θij such that a set of constraints hold. The objective is
to find a schedule which is optimal according to some criterion.

Depending on the set of constraints considered, different scheduling problems may be
defined. In this document we shall focus in two of the so-called shop scheduling problems,
which are among the most popular ones in the literature:

• Job Shop Scheduling Problem (JSP):

– Capacity constraints: Each task θij requires the uninterrupted and exclusive
use of one fixed machine ηij ∈M .

Sij ≥ Crs ∨ Cij ≤ Srs, ∀r, s r 6= i ∨ s 6= j : ηij = ηrs (1.1)

where Cij = Sij + pij, 1 ≤ i ≤ n, 1 < j ≤ ni denotes the completion time of
task θij .

– Precedence constraints: The tasks θij belonging to job Ji are to be sequentially
scheduled following a fixed order.

Sij ≥ Cij−1, 1 ≤ i ≤ n, 1 < j ≤ ni (1.2)

Si1 ≥ 0, 1 ≤ i ≤ n

• Open Shop Scheduling Problem (OSP):
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– Precedence constraint: Two operations belonging to the same job cannot over-
lap their execution in time:

Sij ≥ Cir ∨ Cij ≤ Sir, 1 ≤ j, r ≤ ni r 6= j (1.3)

– Capacity constraint: It has the same constraints as in JSP (Const. 1.1):

Several variants of these problems can be defined. In particular, we will consider the
Flexible Job Shop Scheduling Problem (fJSP), as its popularity has been increasing during
the last years. This is a generalization of the JSP, in which each task θij can be scheduled
in a set of machines Mij ⊂ M instead of having to be processed in one fixed machine.
Furthermore, the processing time of task θij will vary depending on the machine η ∈Mij

where it is scheduled, denoted pηij .
Although there are many optimisation criterion that can be taken into account in

scheduling problems, the most common one in the literature is the minimisation of the
makespan Cmax, which is the time it takes to finish all jobs:

Cmax = max
i=1...n

{Ci} (1.4)

where Ci = maxj=1...ni{Cij} denotes the completion time of job Ji.
In real situations it is quite common to find due dates, that is, each job Ji has a deadline

Di. When these constraints are present, other optimisation criteria can be considered. In
this case, a common one is the minimisation of the maximum tardiness (Tmax), which
measures the maximum delay that a job has with respect to its due date:

Tmax = max
i=1...n

{0, Ci −Di} (1.5)

Let us illustrate these concepts with an example. Here we have a job shop scheduling
problem with n = 3 jobs and m = 2 machines with processing times, machine assignment
and due dates as follows:

p =




4 4
5 3
2 4


 η =




1 2
2 1
2 1


 D =




12
6
9


 (1.6)

Now we schedule the operations following the order θ11, θ21, θ31, θ22, θ32, θ12. Operation
θ11 can be scheduled with S11 = 0 and C11 = S11+p11 = 0+4 = 4, and similarly operation
θ21 is scheduled with S21 = 0 and C21 = 5. Now operation θ31 cannot be scheduled before
C21 because of the capacity constraints (Const. 1.1), so S31 = C21 = 5 and C31 = 5+2 = 7.
The next operation to be scheduled is θ22 which cannot begin before θ21 because of the
precedence constraint (Const. 1.2) nor before θ11 because of capacity constraints, therefore
S22 = max{C11, C21} = max{4, 5} = 5. If we continue, we obtain the completion times
for each job C1 = C12 = 11, C2 = C22 = 8, C3 = C32 = 12 and we can compute different
objective functions. For instance, the makespan in this case is 12, and the maximum
tardiness is 3.

The most natural way to represent a schedule is a Gantt Chart. In Figure 1.1 we see
the Gantt Chart for the previous example. Red dotted lines represent the due dates and
the colours of the tasks represent the machine to which they are assigned. However, the
most useful representation to work with schedules are graphs. Figure 1.2 contains the
directed graph corresponding to the previous example. Each node represent a task of the
problem, with the exception of the dummy nodes start or s and end or e, representing
tasks with null processing times. The black arcs represent the precedence constraints and
the coloured ones the capacity constraints. Each arc is weighted with the processing time
of the task at its source node, so for instance the makespan can be computed as the longest
path from s to e.

4
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Figure 1.1: Solution of a scheduling problem (Gantt chart).
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35
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Figure 1.2: Solution of a scheduling problem (Graph).
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1.2 Uncertainty and robustness

Notice that in the classical definition of the problem, well-defined information is assumed,
which is not the case in most of real-world scenarios, specially when human factors are
involved. The uncertainty that is present in real situations can drastically deteriorate the
performance of a solution obtained assuming deterministic conditions. This has led many
researchers to consider this uncertainty as part of the problem to solve [50]. Among the
different ways of dealing with the uncertainty, two approaches have become more popu-
lar: stochastic scheduling and fuzzy scheduling. Stochastic scheduling is the best known
approach to dealing with uncertainty in scheduling. It uses probability distribution func-
tions, usually minimising the expected costs, the deviation w.r.t. the best expected cost
or maximising the probability of the cost to be under a given threshold [10, 50, 87]. The
main disadvantages of this approach are that it requires a great amount of information in
advance to model the data correctly and it yields very complex computations in practice.
On the other hand, the fuzzy approach has emerged as a very interesting tool and has
been extensively used in different manners, ranging from representing incomplete or vague
states of information to using fuzzy priority rules with linguistic qualifiers or preference
modelling [31, 96, 115]. Fuzzy scheduling states a promising alternative to the stochastic
approach and it is being used by an increasing number of authors. Instead of probability
distribution functions, this approach models the uncertainty using fuzzy sets, which rep-
resent possibility distribution functions. As a counterpart to stochastic scheduling, this
may be a less accurate approach, but has the advantage that it can be applied when hav-
ing only some vague information, which is the most common situation. Furthermore, the
simplicity of the fuzzy model allows to build solving methods that are less computation-
ally demanding than the methods required for stochastic scheduling. According to [31],
“the fuzzy set and possibility theory may help building a trade-off between the expressive
power and the computational difficulties of stochastic scheduling techniques while tackling
uncertainty and accounting for local specifications of preferences”.

An issue of great importance is the robustness of solution quality when scheduling
under uncertainty. Indeed, solutions which are robust and reasonably good in quality may
be preferred to solutions which in principle are optimal but perform poorly when slight
variations in the input data occur. Take for instance the case where the manager of a
corporation is given two alternative business plans. The first one offers an expected profit
of 10,000AC, but depending on the actual conditions that are present when the plan is
executed, the final profit may range between 3,000AC and 17,000AC. Instead, the second
alternative has an expected profit of 9,500AC but it ensures that, whatever the conditions
during its execution, the profit will always be between 9,000AC and 10,000AC. Depending
on the risks the manager is willing to take, he/she may prefer the second plan to the
first “optimal” one. In general, the trade-off between the expected performance quality
and solution robustness should be taken into account. It is however difficult to translate
the idea of robustness into a well-defined measure. Indeed, it is possible to find in the
literature numerous interpretations and definitions of related measures when it comes to
modelling the robustness of a schedule [3, 5, 10, 116].

1.3 Metaheuristics

Due to the complexity of scheduling problems, they are usually tackled by means of Artifi-
cial Intelligence techniques. We can roughly split these techniques in two main groups: ex-
act techniques and metaheuristics. The former are focused on finding the optimal solution
to the problem according to some criteria. These approaches are however computation-
ally expensive, either in terms of computation time or memory usage. On the other hand,
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metaheuristics are optimisation algorithms that allow to find very good solutions in a short
amount of time. Even though they do not guarantee finding the optimal solution for the
problem, their good performance has made them very popular, and many of them have
been developed during the last decades [37, 101]. Probably the most extended metaheuris-
tics are genetic algorithms [51], which keep a set of potential solutions to the problem, and
through recombination and replacement strategies are able to make those solutions move
towards better ones. This is a so-called population-based metaheuristic, but there are
many others as for example Particle Swarm Optimisation [88], Scatter Search [72] or Ant
Colony [23, 29]. There also exist metaheuristics that instead of using a pool of solutions,
take one solution and follow an iterative process to improve its quality. This is done for
instance in local search algorithms. These are based on the use of neighbourhoods, which
are sets of solutions that can be obtained after performing a small change in an original
solution or starting point. Once a neighbourhood is defined, the algorithm will examine
it and take a new solution therein as starting point for the next iteration until some stop-
ping criterion is met. As in the case of population-based strategies, depending on how we
define the steps to follow we can find many approaches, being the most popular ones Hill
Climbing and Tabu Search [39].

In summary, a wide range of metaheuristic algorithms can be found in the literature,
each having its strong and weak points. Additionally, during the last years it is becoming
popular to combine or hybridise different metaheuristics to exploit their strong points while
minimising their shortcomings [13, 12, 102]. A good example is memetic algorithms [22,
108], which are a hybrid between a genetic algorithm and a local search strategy. The
former is a very good strategy to explore different solutions but quite poor at exploiting
them, whereas the latter has a great level of exploitation but lower exploration capability.
The combination of both often results in a much better performance than any of its
components used separately.

Metaheuristics can also be used for solving multiobjective optimisation problems [101,
103]. These are problems where the algorithm tries to find solutions which are optimal
according to more than one criterion. If the criteria are perfectly correlated this is not
a problem, but usually it is impossible to find a solution that is optimal for more than
one criteria at the same time. Many approaches can be found in the literature to solve
multi-criteria optimisation problems. For instance, if the different criteria are not equally
relevant, then the multiobjective problem can be solved as a single-criteria problem in
which the objective function is a weighted sum of the different objectives, or a hierarchy can
be established between the different criteria following a so-called lexicographical approach.
On the other hand, when there is no difference in the relevance of the criteria, the most
common approach is to compute a set of non-dominated solutions instead of just one
solution. Roughly speaking, this is a set of solutions in which we cannot clearly determine
which one is the best. This situation appears when one solution is better than another
regarding one criteria, but it is worse regarding another one.

7
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Chapter 2

Objectives

The main target of this thesis is to solve scheduling problems under uncertain circum-
stances by means of metaheuristic techniques. Scheduling optimisation problems, both
real problems and academic ones, have such a great complexity that even using classical
metaheuristic techniques we need large budgets of time to find high-quality solutions. Fur-
thermore, when we model the uncertainty that is present in real situations and take it into
account during the optimisation process, the complexity of the problem increases. Because
of this, it is needed to develop new solving methods to deal with the uncertainty and find
good solutions in reasonable amounts of time. Additionally, the robustness appears as an
important factor to take into account. This factor can be optimised alone, but it is not
really useful to have very robust solutions with a very low quality. Therefore we shall try
to find solutions that are robust but also have a high level of quality.

All the above motivates the following list of more detailed goals for this thesis:

1. Study and analyse different approaches to model uncertainty through the use of
fuzzy numbers. Adopt new analytic measures of optimality for expected quality
and robustness in uncertain environments, paying special attention to the relation
between robustness and expected performance.

2. Study the effects of adding uncertainty. Asses if previous studies for classical schedul-
ing problems are still valid in the case that uncertainty is modelled.

3. Design (hybrid) metaheuristics for fuzzy scheduling problems to optimise classical
objective functions (e.g. makespan, tardiness, etc.), taking into account the partic-
ularities of the uncertainty model.

4. Adapt multiobjective algorithms to solve fuzzy scheduling problems where robust-
ness shall be considered as an objective function together with the performance
metric.

5. Evaluate the performance of the developed methods on already published benchmark
instances, to compare them with the state-of-the-art methods.

9
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Chapter 3

Uncertainty in scheduling
problems

In this thesis we consider the most common source of uncertainty in the literature, which
is the uncertainty in the processing times of the operations. In addition, we shall consider
flexibility in the due-date constraints. These are usually hard constraints in classical
scheduling problems and when they are present, it is common to try to optimise objective
functions such as already mentioned maximum tardiness. However, flexible due dates allow
to model the satisfaction degree of a customer depending on the delay of the job. This is
a natural approach, as customers are usually flexible regarding delays in the delivery of a
job.

3.1 Fuzzy processing times

In real-world situations, it is often the case that some factors are unknown a-priori by
the analyst. This usually leads to the exact processing times of the operations not being
known in advance. However, an expert may be able to roughly approximate them based on
his major experience. For instance, he/she may establish an interval of possible values for
the processing time and even assess whether some values in the interval appear to be more
plausible than others. When there is little knowledge available, the crudest representation
for uncertain processing times would be a human-originated confidence interval. If some
values appear to be more plausible than others, a natural extension is a fuzzy interval or
fuzzy number, which have been extensively studied in the literature (cf. [34]). The simplest
model is a triangular fuzzy number or TFN, using an interval [a1, a3] of possible values
and a modal value a2. That is, for a TFN A denoted A = (a1, a2, a3), the membership
function takes a triangular shape as shown in Figure 3.1 completely determined by the
three real numbers as follows:

µA(x) =





x−a1
a2−a1 : a1 < x ≤ a2
x−a3
a2−a3 : a2 < x < a3

0 : x ≤ a1 or a3 ≤ x
(3.1)

For α ∈ (0, 1], its α-cut Aα = {x : µA(x) ≥ α} is a closed interval [aα, aα]; we shall
abuse notation slightly and denote its support as A0.

TFNs are to date the most widely used model for uncertain durations in the fuzzy
scheduling literature [1]. Furthermore, notice that any real number r ∈ R can be seen
as a special case of TFN where A = (r, r, r); this allows us to deal with problems where
tasks have both uncertain and precise processing times. However, when TFNs are to be
used to extend scheduling problems to handle uncertainty, two issues must be addressed:

11



0

1

µA

a1 a2 a3

Figure 3.1: Membership function of a triangular fuzzy number.

the means of extending the arithmetic operations of addition and maximum to work with
TFNs (to compute starting and completion times) and the establishment of an order
relation between TFNs.

3.1.1 Order relations for fuzzy numbers

The fact that there is no natural total ordering in the set of TFNs makes concepts like
“minimal makespan” ambiguous. Hence, in order to compare different TFNs, several
ranking methods have been and keep being proposed in the literature (cf. [18, 107, 114]).
Furthermore, quoting Brunelli and Mezei [18],

It is impossible to give a final answer to the question on what ranking method
is the best. Most of the time, choosing a method rather than another is a
matter of preference or is context dependent.

Let F denote the set of fuzzy numbers. Ranking methods in F can be roughly divided
in two types: those based on “defuzzification” and those based on fuzzy binary relations.
In the first case, a mapping M : F → R is defined which associates each fuzzy number A
with a real number and then the natural ordering on the real line is used, most commonly,
A ≤M B iff M(A) ≤ M(B). In the second case, a relation M : F × F → [0, 1] is
defined such that M(A,B) is the degree to which A is greater than B and, consequently,
if M(A,B) ≥ M(B,A), then A ≥M B. When it comes to comparing fuzzy quantities
in the context of fuzzy scheduling (e.g. compare makespan values), the most common
approach in the literature is the former.

The membership function µA of a fuzzy quantity A can be interpreted as a possibil-
ity distribution on the real numbers; this allows to define the expected value of a fuzzy
quantity [49], given for a TFN A by

E[A] =
1

4
(a1 + 2a2 + a3). (3.2)

This mapping induces a total ordering ≤E in the set of fuzzy intervals [36], where for any
two fuzzy intervals A,B:

A ≤E B ↔ E[A] ≤ E[B] (3.3)

Clearly, for any two TFNs A and B, this property holds:

∀i, ai ≤ bi → A ≤E B. (3.4)
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The expected value coincides with the neutral scalar substitute of a fuzzy interval
and can also be obtained as the centre of gravity of its mean value or using the area
compensation method, which calculates areas under the membership function with an
interpretation in terms of imprecise probabilities [31].

Related to this, there is a ranking method widely used in the fuzzy scheduling literature
following the seminal papers [93] and [94]. In this ranking method, the criterion for
dominance is one of the following three in the order given below:

• Criterion 1 (c1): The greatest associate ordinary number (expected value) is used as
a first criterion.

• Criterion 2 (c2): If c1 does not rank the two TFNs, those which have the best
maximal presumption (the mode) will be chosen as a second criterion.

• Criterion 3 (c3): If c1 and c2 do not rank the TFNs, the difference of the spreads
will be used as a third criterion.

So we can summarise this ranking method as follows:

A ≤R B ↔





E[A] < E[B]

E[A] = E[B] ∧ a2 < b2

E[A] = E[B] ∧ a2 = b2 ∧ (a3 − a1) ≤ (b3 − b1)
(3.5)

Even though these are the most common ranking methods in fuzzy scheduling, other
methods can be found. For example in [6] the authors propose a new dominance criterion
between TFNs that ranks fuzzy quantities depending on the overlapping existing between
their membership functions, or in [74] the authors adapt a different ranking for solving
the fuzzy job shop. Furthermore, different ranking methods have been considered to solve
a flexible job shop problem with uncertainty in the paper [80] that is part of this thesis
(see Sections 4.3.2 and 7.1).

3.1.2 Arithmetic with fuzzy numbers

In scheduling problems, we essentially need two operations on fuzzy numbers, the addition
and the maximum. These are obtained by extending the corresponding operations on real
numbers using the Extension Principle. In the case of the addition, it turns out that for
any pair of TFNs A and B, the resulting expression is:

A+B = (a1 + b1, a2 + b2, a3 + b3). (3.6)

Unfortunately, computing the resulting expression of the maximum is not that straight-
forward and, most importantly, the set of TFNs is not closed under this operation. For
the sake of simplicity and tractability of numerical calculations, it is fairly common in the
literature, following [36], to approximate the maximum by a TFN, evaluating only the
operation on the three defining points, that is, for every A, B TFNs:

max(A,B) ≈ maxI(A,B) = (max(a1, b1),max(a2, b2),max(a3, b3)) (3.7)

Some arguments can be given to support this approximation. First, for any two fuzzy
numbers A and B, if f is a bivariate continuous isotonic function, then F = f(A,B) is
another fuzzy number such that

∀α ∈ [0, 1], Fα = [f(aα, bα), f(aα, bα)]. (3.8)

Computing f(A,B) is then equivalent to computing f on every α-cut. In particular, the
maximum is a continuous isotonic function, so it can be calculated by evaluating two
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maxima of real numbers for every value α ∈ [0, 1]. If seems then natural to approximate
the maximum by the TFN that results from using linear interpolation, evaluating equa-
tion (3.8) only for certain values of α (this is proposed for 6-point fuzzy numbers in [36]).
Given that the defining values (a1, a2, a3) of a TFN A are such that A0 = [a1, a3] and
A1 = [a2, a2], the approximated maximum as in (3.7) corresponds to such an interpolation
for α = 0 and α = 1. Secondly, if F = max(A,B) denotes the maximum of two TFNs A
and B and G = maxI(A,B) the approximated value by interpolation, then F = G if A
and B do not overlap and, in any case, it holds that

∀α ∈ [0, 1], f
α
≤ g

α
, fα ≤ gα. (3.9)

The approximated maximum G is thus a TFN which artificially increases the value of the
actual maximum F , but maintaining the support and modal value, that is, F0 = G0 and
F1 = G1. This approximation can be trivially extended to the case of more than two TFNs.
It has been widely used in the scheduling literature, among others, in [20, 36, 44, 60, 93]
or [110].

More recently, it has been proposed in [61] to approximate the maximum of two TFNs
A and B by means of the above ranking method, so:

max(A,B) ≈ maxR(A,B) =

{
A : A <R B

B : B <R A
(3.10)

Notice that with this approximation it is not guaranteed that the approximated max-
imum maintains the support nor the modal value. In other words, if we consider two
crisp values within the supports of the two TFNs, the maximum of these crisp values
is not guaranteed to be in the support of the approximate maximum. However, in [61]
and [62] some examples are considered which lead the author to conclude that “the ap-
proximate max obtained by the new criterion approaches the real max better than that
obtained from” maxI . Since then, this alternative approximation for the maximum has
been adopted among others in [64, 112, 121] and [122].

Using an approximation that keeps the support of the real maximum has some desirable
properties in the case of scheduling, as we shall see for instance in Section 3.3. Based
on this, we adopt the use of maxI(A,B) for the development of the thesis and refer
to as max(A,B) (for the sake of simplicity), unless the opposite is explicitly stated. It is
important to notice that, for any two TFNs A and B, if MI = maxI(A,B) is the maximum
approximated by interpolation and MR = maxR(A,B) is the maximum approximated by
the ranking method, it is always the case that mi

R ≤ mi
I for i = 1, 2, 3 and, hence,

MR ≤E MI and MR ≤R MI . This will be important when comparing results with authors
that use the maxR(A,B) approximation.

3.2 Flexible due dates

In the case in which due-date constraints are present in real situations, they are often
flexible. For instance, a customer may have a preferred delivery date d1 for his job, but he
will allow some delay until a later date d2, after which he will be completely unsatisfied
and will potentially cancel the order. The satisfaction of a due-date constraint becomes
a matter of degree, our degree of satisfaction that a job is finished on a certain date. A
natural approach to modelling such satisfaction levels is to use a fuzzy set D = (d1, d2)
with linear decreasing membership function as follows:

µD(x) =





1 : x ≤ d1
x−d2
d1−d2 : d1 < x < d2

0 : d2 ≤ x
(3.11)
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Figure 3.2: Degree to which a TFN C satisfies the flexible due date D.

A different definition is used for instance in [66, 117] and [118], where the authors
propose that finishing a job too early may be as undesirable as finishing it too late, so a
trapezoidal membership function is used. For this thesis, we follow the ideas from [31],
where it is said that the above membership function expresses a flexible threshold “less
than” representing the satisfaction degree of the customer for the job finishing at time x.
However, notice that in our case the completion time of the jobs may be not a real number,
but a fuzzy quantity. When the completion time of a job Ji is a TFN Ci, the degree to
which Ci satisfies its due-date constraint Di is usually measured by the agreement index
(AI) [20, 58, 70, 93]. This degree is illustrated in figure 3.2 and is computed as follows:

AI(C,D) =
Area(C ∩D)

Area(C)
(3.12)

where Area(D ∩ C) and Area(C) denote the areas under the membership functions of
(D ∩C) and C respectively. The intuition behind this definition is to measure the degree
to which C is contained in D (the degree of subsethood). Notice that the flexible due date
D is completely satisfied when AI = 1 (that is, Area(C ∩D) = Area(C)) and unsatisfied
when AI = 0 (C ∩D = ∅). In the case that C is a TFN, the above formula is equivalent
to:

AI(C,D) =
2Area(C ∩D)

c3 − c1 (3.13)

Obviously, if c1 = c3 then C is a real value and the satisfaction degree is obtained
as µD(C). Let us now consider the case where C is not a real number (c1 < c3). The
main concern in this case is the computation of Area(C ∩D), which corresponds to the
following expression:

Area(C ∩D) =

∫ ∞

−∞
min{µC(x), µD(x)}dx (3.14)

Notice that the computation of this formula changes depending on how C and D
intersect. To overcome this issue, when (C ∩ D) is not a triangle, the area is usually
approximated by the area of the maximum triangle inscribed in this plane area, obtaining
an approximation ÃI to the agreement index. If the actual area is to be computed, we
may distinguish 5 main scenarios, yielding different ways to compute the AI value. This
is illustrated in Figure 3.3, where we show with a dotted line the area that is computed
with the described approximation.
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Figure 3.3: Different scenarios to compute the Agreement index.

Case 1: c2 ≤ d1 ∧ c3 ≤ d2
In this case the TFN C is completely included in D:

Area(C ∩D) =
c3 − c1

2
, hence AI = 1 (3.15)

Case 2: d2 ≤ c1
This is the simplest case, since C and D do not overlap, thus the intersection is 0:

Area(C ∩D) = 0, hence AI = 0 (3.16)

Case 3: d1 ≤ c2 ∧ c1 < d2 ≤ c3
In this case, AI coincides with its approximation ÃI. The expression for AI depends
on the x-coordinate ip1 of the point where C and D intersect:

ip1 =
c2d2 − c1d1

c2 − c1 + d2 − d1 (3.17)

Clearly, c1 ≤ ip1 ≤ c2 and d1 ≤ ip1 ≤ d2. If c1 6= c2, then AI is given by the
following expression:

AI =
(ip1 − c1)(d2 − c1)
(c2 − c1)(c3 − c1) (3.18)
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In the special case when c1 = c2, then c1 = ip1 and AI is given by:

AI =
(c1 − d2)2

(d2 − d1)(c3 − c1) (3.19)

Notice that when the due date is strict and d1 = d2, the expression for AI does not
change.

Case 4: c2 < d1 ≤ d2 < c3

Here the x-coordinate ip2 of the point where C and D intersect is such that c2 <
d1 ≤ ip2 ≤ d2 < c3 and is given by:

ip2 =
c3d1 − c2d2

c3 − c2 + d1 − d2 (3.20)

and the expression for AI is as follows:

AI =
c3(ip2 − c2) + d2(c3 − ip2)− c1(c3 − c2)

(c3 − c2)(c3 − c1) (3.21)

Notice that, whereas in the previous cases AI = ÃI, this no longer holds here, with
ÃI = d2−c1

c3−c1 .

Case 5: d1 < c2 ≤ c3 < d2

In this case, C intersects twice with D and AI depends both on ip1 and ip2 as
follows:

AI =
ip1(c1 − d2) + ip2(d2 − c3) + d2(c3 − c1)

(d2 − d1)(c3 − c1) (3.22)

As in the previous case, AI does not coincide with its approximation ÃI = ip1−d2
d1−d2 .

3.3 Fuzzy scheduling

The fact that now uncertainty is taken into account through the use of fuzzy numbers af-
fects the model of the scheduling problems seen in Chapter 1. For instance, now processing
times are not real values but TFNs pij = (p1ij , p

2
ij , p

3
ij), thus starting and completion times

are TFNs as well. Therefore, the constraints need to be adapted to the new framework.
In the scheduling problems we have seen, precedence and capacity constraints state that
an operation θij cannot overlap its execution with another task θiq belonging to its job, or
a task θrs requiring its same machine. If θiq and θrs are already scheduled, this will gen-
erally lead to schedule the new task with a starting time such that Sij ≥ max{Ciq, Crs},
so no constraint is violated. Having this in mind, it is easy to see that depending on the
maximum approximation we choose for the TFNs, the constraints in the fuzzy framework
may be interpreted in different ways. For instance, when using maxI the constraints for
this fuzzy framework are defined as follows:

• Capacity constraint (Const. 1.1): Now the constraint (1.1) is defined as:

Skij ≥ Ckrs ∨ Ckij ≤ Skrs, ∀r, s r 6= i ∨ s 6= j : ηij = ηrs k = 1, 2, 3 (3.23)

Cij = Sij + pij, 1 ≤ i ≤ n, 1 < j ≤ ni

• Precedence constraint (Const. 1.2): The constraint (1.2) is also verified in each
component of the TFN:

Ski0 ≥ 0, 1 ≤ i ≤ nk = 1, 2, 3 (3.24)

Skij ≥ Ckij−1, 1 ≤ i ≤ n, 1 < j ≤ ni k = 1, 2, 3
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• Precedence constraint (Const. 1.3): The precedence constraint for the OSP is now
defined as:

Skij ≥ Ckir ∨ Ckij ≤ Skir, 1 ≤ j, r ≤ ni r 6= j k = 1, 2, 3 (3.25)

This approach to extending precedence and capacity constraints to the fuzzy framework
is used for instance in [20, 42, 47, 93, 110], and will be the one adopted in this thesis. As
we have seen, the approximation maxI keeps the support and modal value of the actual
maximum operation. Thanks to this property, given a schedule that is feasible for this set
of constraints, if the real duration of every task lies in the support of its fuzzy duration,
then the real makespan will be contained within the support of the fuzzy makespan. On the
other hand, when the approximation to the maximum is taken to be maxR the constraints
are not defined on each defining point. Instead, comparisons are made by means of the
ranking methods ≤E and ≤R. This approach can be found in different papers, for instance
in [63, 64, 68, 69, 112]. Because of the properties of this approximation maxR, we cannot
guarantee that if the real duration of every task lies in the support of its fuzzy duration,
then the real makespan is a value in the support of the fuzzy makespan. In the end, this
can cause the fuzzy makespan of the schedule to be meaningless.

3.3.1 An illustrative example

Let us illustrate these ideas with an example. Here we have a fuzzy job shop scheduling
problem with n =3 jobs and m = 2 machines with processing times, machine assignment
and due dates as follows:

p =




(3, 4, 7) (3, 4, 7)
(4, 5, 6) (2, 3, 3)
(1, 2, 4) (3, 4, 6)


 η =




1 2
2 1
2 1


 D =




(12, 15)
(6, 11)
(9, 12)


 (3.26)

Now we schedule the operations following the order θ11, θ21, θ31, θ22, θ32, θ12. Operation
θ11 is scheduled with S11 = (0, 0, 0) and C11 = S11+p11 = (0, 0, 0)+(3, 4, 7) = (3, 4, 7), and
similarly operation θ21 is scheduled with S21 = (0, 0, 0) and C21 = (4, 5, 6). Now operation
θ31 cannot be scheduled before C21 because of the constraint (3.23), so S31 = C21 = (4, 5, 6)
and C31 = (4, 5, 6) + (1, 2, 4) = (5, 7, 10). The next operation to be scheduled is θ22 which
cannot begin before θ21 because of constraint (3.24) nor before θ11 because of constraint
(3.23), therefore S22 = max{C11, C21} = max{(3, 4, 7), (4, 5, 6)} = (4, 5, 7). If we continue,
we obtain the completion times for each job C1 = C12 = (8, 11, 17), C2 = C22 = (6, 8, 10),
C3 = C32 = (9, 12, 16) and we can even compute the agreement indexes AI1 = 0.85,
AI2 = 0.81, AI3 = 0.21. Finally, we can compute objective functions such as the makespan
Cmax = maxi{Ci} = (9, 12, 17).

The fuzzy schedule can be represented again with a Gantt chart, following [36], as it
is shown in figure 3.4. The red dotted lines are the flexible due dates and the colours of
the tasks represent the machine to which they are assigned.

Schedules can be also represented using graphs, as it happened in the deterministic
case. However, in this case the labels of the edges are TFNs instead of real values. An
example is given in Figure 3.5. In this case, the graph can be also decomposed as proposed
in [48], where the authors represent the schedules using three parallel graphs Gi, each one
representing one of the defining points of the TFNs. This is especially useful to look for
critical paths and optimise objective functions as the makespan Cmax.
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Figure 3.4: Solution of a fuzzy scheduling problem (Graph).
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Figure 3.5: Solution of a fuzzy scheduling problem (Graph).
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Chapter 4

Development and results

This thesis concentrates on studying the impact of having uncertainty in three of the
numerous existing scheduling problems:

• FJSP: Fuzzy Job Shop Scheduling Problem

• FOSP: Fuzzy Open Shop Scheduling Problem

• FfJSP: Fuzzy Flexible Job Shop Scheduling Problem

This chapter describes the research carried out on these problems, including the study of
robustness, with references to the publications that are present in the compendium.

The chapter is organised as follows. First we introduce search spaces and schedule
generation schemes and describe the work that has been done to define them in the fuzzy
scheduling framework, including the proposal of new schedule categories. This is followed
by a description of the different methods proposed in the thesis for solving the fuzzy
scheduling problems mentioned above, including both single objective and multiobjective
algorithms. Finally, we discuss robustness in scheduling problems by studying different
robustness metrics, proposing new methods to measure it and providing optimisation
methods to obtain robust solutions.

4.1 Search spaces and schedule generation schemes

A key issue in scheduling is the definition of subsets of feasible solutions and the study of
their properties. We define a search space as a set of solutions to a problem. In general, if
a search space is too large, it is potentially more difficult to find the optimal solution than
when the set of solutions is small. However, if it is too small it may not be guaranteed to
contain at least one optimal solution. The ideal search space would be the smallest one
containing at least one optimal solution.

Definition 4.1.1 A search space is said to be dominant if it contains at least one optimal
solution to the problem.

This is illustrated in Figure 4.1, where black dots represent non-optimal solutions and
red dots represent the optimal ones. On the left we see the set of all feasible solutions
of the problem. On the right we can see different search spaces which are subsets of the
previous one, thus making the search for optimal solutions easier. Notice however, that the
smallest set (the red one) does not contain any optimal solution, i.e. it is not dominant.
In this case, it may be preferable to use the grey set, which is larger but dominant.

In general, depending on the situation, we may be interested in different search spaces.
For instance, solving methods such as exact search methods may benefit from considering
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Figure 4.1: Different sets of solutions (red dots are optimal solutions).

small sets of solutions while other solving methods benefit from having large diversity in
the sets of solutions that they consider, so it seems appropriate that they use slightly
larger search spaces.

In classical scheduling problems, there are well known search spaces which define dif-
ferent categories of schedules [98]. Among them, the most extended ones for the JSP and
OSP are the following:

• Feasible solutions: Set of solutions such that the constraints of the problem hold.
Obviously, this search space is dominant.

• Semi-active schedules: Set of feasible solutions such that no task can be scheduled
earlier without changing the relative order of at least, two tasks. It is dominant.

• Active schedules: Set of semi-active schedules such that no task can be scheduled
earlier without delaying the starting time of at least another task. This search space
is dominant.

• Non-delay schedules: A machine cannot be idle at time t if there is a task available
to be performed at that same instant. This search space is not dominant.

Notice that the smallest dominant search space in this list is the set of active schedules.
Furthermore, every semi-active schedule can be mapped in the set of the active schedules.
On the other hand, the set of non-delay schedules is not dominant, but it is a very small
search space in which the average quality of the solutions is very high (regarding many
objective functions). This makes this search space especially useful when it is required to
find good solutions very quickly (e.g. to generate a initial population or when the number
of potential solutions to the problem is extremely large).

To build a schedule such that all constraints hold or such that it belongs to a specific
category, the most usual way is to use a task processing order (or a priority array).

Definition 4.1.2 A Schedule Generation Scheme (SGS) is an algorithm that is able to
build a schedule from a task processing order.

It is essential to have proper SGSs and study which is the set of schedules obtainable
with a given SGS. Moreover, it is important to know how a SGS relates with the schedule
categories and study its theoretical ability to reach the optimum.

Definition 4.1.3 A SGS is complete for a given search space if it can be used to generate
all the schedules in it.

Ideally, for a given search space we want to have a SGS that is complete in that
search space and also does not build solutions outside this space. In general, any SGS for
scheduling problems can be defined following the generic schema provided in Algorithm 1.
Here, the set A is determined by the constraints of the problem, but depending on how
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while there are unscheduled tasks do
1. Compute a set A of operations that are available to be scheduled.
2. Compute a subset E ⊂ A of eligible operations.
3. Choose the operation θij ∈ E that is in the most left position in the task processing order.

4. Schedule θij in its earliest possible starting time ESij .

Algorithm 1: Generic Schema of a SGS

the set E is defined and how the value ESij is computed, different sets of solutions can
be obtained.

In the case of classical scheduling, there are well-defined SGSs which generate solu-
tions in the search spaces introduced before. Perhaps the best known SGS is the Gif-
fler&Thompson algorithm (G&T) [38], which generates active schedules for the JSP and
is complete in that search space. Surprisingly enough, although we can find some ad-hoc
extensions of deterministic SGSs to the fuzzy framework, no effort has been made to give
precise definitions for categories of schedules when fuzzy times are involved, nor have SGSs
been defined and studied systematically in this framework. The first step of this thesis is
intended to fill this existing gap in the literature. This will (hopefully) allow to define more
efficient solving methods for fuzzy scheduling problems. Inspired by the work of [4, 98, 99]
for different deterministic scheduling problems, we have provided formal definitions for
scheduling categories in the fuzzy framework as well as several SGSs for the FJSP and the
FOSP. Moreover, we have studied the relationship between different types of schedules and
the sets of solutions generated by the proposed SGSs, as well as investigating whether such
sets necessarily contain one optimal schedule. Due to the FfJSP being a generalisation of
the FJSP, the studies made for FJSP can then be easily extended to the FfJSP.

4.1.1 Schedule categories and SGS for the FJSP

The study of schedule categories and SGSs for the FJSP is the core of one of
the publications that are part of this thesis [85]. In the following, we introduce
the contribution we have made for the FJSP. However, we refer the reader to Section 8.1
for more detail on these concepts. Following the schema in Algorithm 1 we may build
different SGSs for the FJSP. Due to the precedence constraints of the FJSP, the set of
available tasks A contains at each step the first non scheduled task of each job. Regarding
the ESij values, we propose two different strategies to compute it: an insertion strategy
and an appending strategy. In the insertion strategy, the earliest possible starting time is
computed as the earliest starting time ESIij we can assign to task θij without delaying
any already scheduled task. On the other hand, if θxy is the last operation scheduled in
machine ηij and θiz is the last scheduled operation of job Ji, then the appending strategy
computes the earliest possible starting time ESAij as:

ESA = max{Cxy, Ciz} (4.1)

These strategies are easy to interpret in the deterministic case. However, it is not so
straight forward in the fuzzy case. In the already mentioned paper we provide a definition
for each strategy which is consistent with the constraints we defined in Section 3.3 for
fuzzy scheduling.

In the classical JSP, schedule categories are defined based on the concepts of “left shift”,
“local left shift” and “global left shift” [98]. Therefore, it seems reasonable to extend these
concepts to fuzzy scheduling so to define scheduling categories in this framework.
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Definition 4.1.4 Let t be a feasible schedule, then a left shift of an operation θij in t is
a move giving another feasible schedule s where:

∃k ∈ {1, 2, 3} : skij < tkij ∧ ∀l 6= k slij ≤ tlij (4.2)

sxy =txy ∀x, y x 6= i ∨ y 6= j

Definition 4.1.5 Let t be a feasible schedule (i.e. an assignment of starting times), then
a local left shift of a task θij in t is a move giving another feasible schedule s where

∃k ∈ {1, 2, 3} : skij = tkij − 1 ∧ ∀l 6= k slij = tlij (4.3)

sxy =txy ∀x, y x 6= i ∨ y 6= j

Definition 4.1.6 Let t be a feasible schedule, then a global left shift of a task θij in t is
a left shift of θij that is not obtainable by a sequence of local left shifts.

Based on these extensions, we provide the first formal definitions and studies for both
semi-active and active schedules for the FJSP paying special attention to the dominance
of the categories.

Definition 4.1.7 A semi-active schedule is a feasible schedule in which none of the tasks
can be locally left-shifted.

Semi-active schedules can be obtained by defining a SGS such that E = A at each step
and the the earliest possible starting times are computed following an appending strategy
(ES = ESA). We have proven that this SGS, we denote SemiActiveSGS, always generates
semi-active schedules and is complete in that search space.

Definition 4.1.8 An active schedule is a feasible schedule where no global or local left
shift lead to a feasible schedule.

The definition of a SGS for building active schedules is not so straight forward. We
propose to extend to the fuzzy case the well-known G&T algorithm, which is based on an
appending strategy (ES = ESA). At each step, this algorithm looks for the operation θ∗

which has the earliest possible completion time C∗. The set E is then built with all the
operations θij requiring the same machine as θ∗ and such that ESAij < C?. Notice that
depending on how we perform the comparison between each ESAij value and C?, the set
E can change. For instance, we have seen that dominance and completeness are lost when
considering a simple extension of this algorithm (we call fG&T-SGS1 ), while an insertion
based SGS (ActiveSGS ) that takes E = A and ES = ESI generates active schedules and
is complete on that search space.

Definition 4.1.9 The fG&T-SGS1 algorithm is an appending SGS where the eligible set
E is computed as follows:

C? = min{ESAij + pij : θij ∈ A} (4.4)

E = {θij ∈ A : ∃k ESAkij < (C?)k}

After performing a more detailed analysis on the causes of this behaviour, we design a
more sophisticated extension of the G&T (we call fG&T-SGS2 ) which completely changes
the way in which the subset E is built.
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Figure 4.2: Comparison of solutions (in terms of Cmax) obtained with different SGSs for
FJSP.

Definition 4.1.10 The fG&T-SGS2 algorithm is an appending SGS where the eligible set
E is computed as follows.

C? = min{ESAij + pij : θij ∈ A}
A? ={θij ∈ A : ∃k ESAkij + pkij = (C?)k} (4.5)

E ={θij ∈ A : ∀θxy ∈ A? x 6= i ∨ y 6= j ∃k ESAkij < ESAkxy + pkxy}

We have proven that this new SGS is able to keep the completeness and dominance
properties. In order to get more information about the schedules generated by each of the
proposed SGS, we conduct a set of experiments in which we generate a pool of random
task orderings and evaluate them using the different SGSs. The results are illustrated
in figure 4.2, where the comparison is made in terms of makespan, which is the most
common objective function. They confirm the differences between semi-active and active
subspaces. Furthermore, the best quality is obtained with fG&T-SGS1, which has the
smallest associated search space, so it seems that narrowing the search space can improve
the average quality of schedules even if dominance is lost. In addition, we see that using an
appending strategy (fG&T-SGS2 ) leads to a slightly better mapping (i.e. average quality
of obtained solutions is better), but is more computationally expensive. We believe that
these results are a very good starting point for this research on fuzzy scheduling, and
they can also provide a guide for designing new SGS and incorporate them both into
metaheuristic and exact search methods.

4.1.2 Schedule categories and SGS for the FOSP

The definition of good search spaces is a critical factor for solving the FOSP, as it has many
more feasible solutions than for instance, the FJSP. This is because the most characteristic
constraint of this problem (const. 3.25) is actually a relaxation of the precedence constraint
of the FJSP (const. 3.24). We can find in the literature some ad-hoc definitions of schedule
categories for the FOSP, as for instance in [84] where an extension of the G&T algorithm is
used, but no formal definitions are provided. When defining a SGS for the FOSP following
the generic schema in algorithm 1, the main difference w.r.t. to the FJSP is that, in the
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FOSP the set A contains at each step all the non scheduled tasks. In addition, even though
the computation of ESAij is done as in the FJSP, this is no the case of ESIij . Unlike
the FJSP, in a FOSP problem a task θij can be scheduled before Ciz, where θiz is the last
scheduled task of job Ji. Fortunately, the definitions we have provided of “left shift”, “local
left shift” and “global left shift” for fuzzy scheduling are valid for the FOSP, which allows
to define the same categories in this problem: semi-active and active schedules. Moreover,
the SemiActiveSGS we have previously defined can be applied to generate semi-active
schedules for the FOSP and is complete in that search space. Remember however, that
the set A, and therefore the set E are different than in the FJSP. If we consider the FOSP
constraints when computing ESIij , then the ActiveSGS can also be used to generate
active schedules in FOSP and is complete in that search space. Unfortunately, the study
made for the FJSP is not valid for the FOSP when designing appending based SGSs to
build active schedules. Following a similar process than before, the extension of the G&T
algorithm for the deterministic OSP can be considered. In this extension, the subset E is
built with the operations requiring the same machine as, or belonging to the same job as
θ∗ that can begin before C?.

Extending G&T to the fuzzy case:

The same definition of the fG&T-SGS1 can be applied to the FOSP by taking into account
that the set A is different. Nevertheless, the formal studies provided for the FJSP are not
valid in this case. It is easy to prove that the SGS is not complete by finding an example
of active schedule that cannot be generated with this SGS. However, we have not been
able (yet) to provide any formal demonstration about its (non)dominance.

When extending the G&T algorithm to the fuzzy framework, two main issues must
be addressed: how to compute C? and how to compare each ESAij value with C?. For
the former, a ”minimum” operation between TFNs is required. In the previous approach,
this operation was made based on the approximation for the maximum of two TFNs maxI
(see Section 3.1.2). However, we can also use the maxR approach, thus C? is computed
as the completion time with the minimum expected value. By doing this, it can be
proven than the resulting SGS is complete in the set of active schedules, and therefore it is
dominant, but it does also generate solutions that are not active. Let’s illustrate this with
an example: let θix, θiy, θjz ∈ A be three tasks such that θix, θiy belong to the same job,
but θjz belongs to a different one and requires a different machine than θix and θiy. It may
be possible to find at one iteration of the algorithm that ESix=(11,12,13), Ciy=(10,11,12)
and Cjz=(6,10,14). Clearly, by scheduling task θix before θiy we obtain a schedule that is
not active (θiy could be scheduled without delaying θix), thus θix must not be scheduled
before θiy. However, notice that E[Ciy]=11 and E[Cjz]=10, thus C∗ =(6,10,14). This
leads to task θix being part of the set E due to ES3

ix < (C?)3 and it could be scheduled
before θiy, leading to a not active schedule.

Finally, by keeping the computation of C? as in the first approach and adapting the
(fG&T-SGS2 ) to the FOSP, we obtain an SGS that apparently overcomes the previous
issues. Even though we strongly believe that this SGS generates only active schedules and
is complete in that search space, we have not been able (yet) to formally prove it.

E-active schedules:

In the previous approaches, the comparison between the ESAij values and C? has been
made by checking if ∃i, ESAi < (C?)i. However, this comparison can be done by means of
the ranking methods <E and <R defined in section 3.1.1. To be consistent with this ap-
proach, the C? value should be computed again as the completion time with the minimum
expected value. By doing this, we obtain a SGS that is actually the same as the G&T
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for the deterministic problem in which the durations of the tasks are taken to be their
expected values. This approach is used for instance in [84]. Even though this approach
does not make use of all the available information about the uncertainty, we can prove that
this SGS always generates active schedules, but it is not complete in that search space. To
distinguish the schedules that are generated with this approach, we call them “e-active”
schedules (expectation based active schedules). As it happened with fG&T-SGS1 in the
FJSP, we have seen empirically that the average Cmax of the e-active schedules is better
than the average quality of active schedules. However, we have not been able to formally
prove the dominance of this search space.

4.2 Metaheuristic strategies for fuzzy scheduling

4.2.1 Fuzzy Open Shop

Among the three problems considered in this thesis, the FOSP is maybe the one with the
least presence in the literature. Nevertheless, a genetic algorithm is proposed in [84] to
solve it; and in [43] the authors define a specific neighbourhood by following the ideas
from [48] to define critical paths based on the use of parallel graphs. This neighbourhood
is used to implement a Hill Climbing algorithm which is then combined with a genetic
algorithm.

Due to the scarce literature for this problem, it seems reasonable to look for the most
successful methods for solving the deterministic problem in order to have some preliminary
insights. As far as we know, the best results for the classic OSP are published in [11]
and [95], where the latter provides slightly better results overall. In [95], a particle swarm
optimisation algorithm (PSO) is proposed which uses different decoding schemas or SGS,
most of them based on the well known G&T algorithm. The main ideas proposed in that
paper can be adapted to the case of the FOSP with makespan minimisation. This is the
basis for the paper [79] that is part of the compendium of publications of this
thesis (see Section 7.4). The paper does not only describe the proposed method, but
is also devoted to the study of robustness. This section focuses on the solving method,
and the part about robustness will be detailed in section 4.3. The method we propose
is a PSO in which solutions are codified by means of priority arrays, which allows to
assign the solution to a position in the space. The mechanism to move the particles in
the algorithm is not the standard one. For instance, the velocity of each particle is given
by an array of values in the set {-1,0,1} and it is updated following a stochastic strategy.
This strategy guides the particle towards the best global solution found so far by the
algorithm, or towards the best position found by the particle itself. This choice is done by
an inertia parameter, which defines the probability of moving towards one or the other,
and whose value can vary during the evolution of the algorithm. Additionally, a mutation
and diversification strategies are included to avoid getting stuck in local optima. Due to the
large number of solutions for the FOSP, the most relevant factor is the decoding strategy.
In this proposal, we decode the particle position by using the SGS introduced in the
previous section for building e-active schedules. Furthermore, we introduce a parameter
δ ∈ [0, 1] which is based on the ideas from [40]. This allows to narrow the size of the
search space -the lesser the δ value, the smaller the search space-. After studying the effect
that this parameter has in the performance of our PSO based algorithm, we determine
that the best option is to use the SGS with δ = 0.25. In fact, using smaller values
causes the algorithm to lose too much diversity thus making it easier to get stuck in local
optima, whereas having larger δ values makes the algorithm get lost quite easily in such
a vast search space thus not finding very good solutions. Finally, we perform a detailed
parametric analysis to find the best configuration for the algorithm, and compare its
performance with the state-of-the-art method, which is the memetic algorithm published
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1. Initialize with en empty state.
while there are unscheduled tasks do

for each node in the current level do
2. Computes a set of candidate operations to expand.
3. Computes a heuristic value h for the new nodes.
4. Discard all nodes with h > UB, where UB is an upper bound.
5. Apply ReduceToRelated method proposed in [11].
6. Expand the node by scheduling the ext nodes with the highest priority in the array.

6. Keep the bw nodes with the best h value.

Algorithm 2: Beam Search for FOSP

in [43]. Even though a PSO based algorithm may seem less sophisticated than a genetic
algorithm with local search, it has been able to greatly outperform the results obtained
in [43]. We think this is thanks to our proposal focusing on a better search space. This
confirms our suspects about the size of the search space being a key factor when solving
the FOSP.

In addition to reduce the size of the search space as we have done, we may find good
solutions for the FOSP by proposing more intensive search algorithms. This is done for
instance in [11], where a beam search (BS) algorithm is combined with a local search and
then embedded into an ant colony optimisation algorithm (ACO) to solve the deterministic
OSP. Moreover, the PSO from [95] includes a beam search as part of the decoding strategy.
Roughly speaking, BS are breadth-first search algorithms where the maximum number of
nodes per level is limited by a “beam width” (bw) parameter. There is also a constant value
ext that limits the maximum number of children that a node is allowed to generate. These
two parameters control the trade-off between exploration and exploitation. In addition,
a BS may be enhanced by including an upper bound to prune the tree, which guides the
search to more promising areas, or a local search to improve its exploitation at the cost
of increasing the computational effort. In this thesis we propose a beam search strategy
that follows the scheme given in algorithm 2 and is guided by a task priority array.

The set of candidate tasks in step 2 is the set E that results from using the SGS that
we have introduced for building e-active schedules. In step 3, for a given partial schedule,
the heuristic function h is defined as follows:

max{ max
i=1...n

{CJi +
∑

pij}, max
k=1...m

{CMk +
∑

pij}} (4.6)

where θij is an unscheduled task, CJi is the completion time of job Ji and CMk is the
completion time of the last task scheduled in machine Mk.

The priority array has the role of guiding the search towards different areas of the
search space. Therefore, if the BS is run several times using different priority arrays, it
will explore different areas of the search space. In order to keep the best guiding priority
arrays and build better ones, we propose to evolve them through the use of a genetic
algorithm. We call Genetic Beam Search (GBS) to this hybrid of a genetic algorithm with
a beam search strategy. Similarly to memetic algorithms, the genetic component provides
exploration capabilities whereas the beam search focuses on intensification. The larger
the bw and ext, the larger the intensification. We run the algorithm with low exploration
capabilities (ext=2 and bw=2n) in order to have reasonable computational times. The
results obtained with this strategy outperform all the previous results published for the
FOSP, including the ones we have obtained with the PSO based algorithm. Moreover, even
though the algorithm is designed for the FOSP, it performs quite well in the deterministic
problem, being close to the best known results. This approach has been presented
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in the META conference in 2014 1.

Multiobjective approaches

In the case in which due dates are present, we can focus on optimising additional objective
functions such as the maximum tardiness. This is actually done in [81], which is
part of the compendium of this thesis (see Section 7.3). As in previous cases,
this section will focus only on the solving method proposed in this paper, and the work
about robustness will be introduced in section 4.3. Here we tackle a bi-objective FOSP
with hard due dates in which the optimisation criteria is to minimise the makespan Cmax
and the fuzzy maximum tardiness Tmax, that is defined as:

Tmax = max
i=1...n

{(0, 0, 0), Ti} (4.7)

where T ki = max{0, Cki − di} for all k = {1, 2, 3}.
In addition, we consider different goals for the objective functions, which model the

desirable targets given by a decision maker for each objective. When this happens, it is
often the case that some are achievable only at the expense of others. A well established
approach to dealing with multiple and possibly conflicting objectives is lexicographic goal
programming. It assumes that there exists a hierarchy of importance for these goals so as to
satisfy as many as possible in the specified order. This is a common situation in real world
problems, where the decision maker has a clear priority between the objective functions
but is satisfied once the objective with the highest priority reaches a certain quality level.
A formal model for this problem is provided in the paper. We tackle this multiobjective
problem by adapting the PSO based algorithm previously described in this section to
work as a lexicographical goal programming method. This is done by changing the way
in which different solutions are compared: let A and B be two solutions, f1, f2, . . . , ft
different objective functions sorted by their priority, and Goal(fi) the desirable target for
function fi, then A is better than B (in a minimisation context) if and only if one of the
following hold:

• ∃i ∈ [1, t] : fi(B) > Goal(fi) such that:

– fi(A) < fi(B) ∧ fj(A), fj(B) ≤ Goal(fj)∀j ∈ [1, i)

• ∀i ∈ [1, t]fi(A), fi(B) ≤ Goal(fi) and ∃j ≤ t such that:

– fj(A) < fj(B) ∧ fk(A) = fk(B)∀k ∈ [1, j)

The main issue to assess the behaviour of our solving method is the lack of instances
for this problem in the literature. Even though we are able to find hard instances for
makespan minimisation, there are not available test beds considering due dates or desir-
able targets as far as we know. Because of this, we propose and make available online2

a new set of problems based on the common use instances of Brucker [17] for the OSP.
Using this new test bed, we perform an extensive parametric analysis to optimise the
performance of our algorithm in this multiobjective scenario taking into account the two
possible hierarchies between the objective functions. When evaluating our lexicographical
goal programming approach, we see that the goal for the most prioritised objective func-
tions is always reached. Furthermore, if we run the algorithm optimising just one objective
function, then the value we obtain in the secondary objective function is much worse than
when we use the multiobjective approach. For instance, when using the lexicographical

1There are no proceedings yet for this conference. The extended abstract of this work is available online
at http://meta2014.sciencesconf.org/37981

2Repository section at http://di.uniovi.es/iscop
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approach having Cmax as the most relevant objective function, the values obtained for
the second function Tmax, are a 26% better than a single-objective approach optimising
only Cmax. For the sake of completeness, we also compare our method with a Pareto-
like approach, more appropriate for the case in which no hierarchy can be established for
the objectives. We observe that the solutions obtained with the lexicographic approach
complement very well those obtained by the Pareto based approach, by focusing on the
“extreme ends” of the set of non-dominated solutions.

A similar work is followed in the paper [78] that is also part of the compendium
included in this thesis (see Section 7.5), in which flexible due dates are defined
instead of hard constraints (see Section 3.2). In this paper we model a multiobjective
FOSP in which the optimisation criteria are the minimisation of makespan Cmax and the
maximisation of the agreement index AI. The AI measures the satisfaction degree to
which a flexible due date is met, therefore each job Ji has a different AIi value. The
degree of overall due-date satisfaction for a given schedule is then obtained by aggregating
all the satisfaction degrees AIi, i = 1, . . . , n. In particular, we consider two aggregation
functions: the minimum and the average; previously used in the literature concerning shop
scheduling with soft constraints, for instance in [45, 60, 93]:

AIav =
1

n

n∑

i=1

AIi, (4.8)

AImin = min
i=1,...,n

AIi (4.9)

The function AIav can be interpreted as an overall performance we shall optimise
in order to improve the average satisfaction degree of the costumers, while AImin is a
more conservative and restrictive measure in which the objective is to guarantee that
all the customers are satisfied at a certain (optimal) degree. Again we assume that a
decision maker has desirable targets for each objective, thus we have a lexicographical goal
programming model. As we have done in the previous case, we propose a multiobjective
optimisation algorithm considering the different hierarchies between the objectives. The
results show a similar behaviour than in the case in which due dates were strict: the
goal for the main objective function is always reached and when we run the algorithm
optimising just one objective function, then the value we obtain in the secondary objective
function is much worse than when we use the multiobjective approach. In addition to this
analysis, we also perform a comparison between the use of the AImin as the main objective
function and the use of AIav. It may seem that these functions are strongly correlated, but
we have seen that the Cmax values (secondary objective function) we obtain are slightly
better when AIav is considered. We think that this is because in the first iterations of the
algorithm there are many solutions with AImin = 0, thus this function is a worse guiding
the algorithm to promising solutions in the first iterations.

In conclusion, we may state that the large search space of the fuzzy open shop schedul-
ing problem makes very important the definition of good search spaces in which look for
solutions. In general, this is more important that the choice of different generic meta-
heuristics. For instance, we have seen that a PSO working in a good search space is able
to outperform a more sophisticated memetic algorithm searches for solutions in a larger
search space. Another promising strategy to solve this problem is to find a really good
trade-off between exploration and exploitation, and here the hybridisation of exact meth-
ods with metaheuristics is providing very good results. Moreover, the best results we have
reached until now have been by using a beam search algorithm (which is based on an
exact method) combined with a genetic algorithm. Finally, in the multiobjective case we
have seen that hierarchical approaches like lexicographical goal programming techniques
are a good approach for the case in which goals are established and a hierarchy among
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the objective functions is present. Furthermore, in the case in which there is no hierarchy,
they offer an interesting alternative to Pareto-like approaches, as they complement the set
of solutions obtained by algorithms like the well-known NSGA-II.

4.2.2 Fuzzy Job Shop

On the opposite to the FOSP, the FJSP has been the fuzzy scheduling problem with more
presence in the literature. An interesting review can be found in [1] citing most of the
contributions about this problem. Due to the number of already existing methods to solve
this problem, in this thesis we shall focus less in the solving methods for the FJSP and
instead pay more attention to more theoretical ideas. In fact, we have already provided
a formal study on search spaces for this problem, and it will be also the main scheduling
problem we will use when studying robustness.

Regarding makespan minimisation, we can find several contributions in the literature.
For instance, we can find among others a memetic algorithm in [91] or a shifting bottleneck
hybridised with a genetic algorithm (SBP-GA) in [86]. Furthermore, a random-key based
GA (RKGA) is proposed in [63], a hybrid discrete PSO (HDPSO) in [68], a multiobjective
optimiser in [104], a simulated annealing method in [110] and a genetic algorithm (SMGA)
in [93]. In addition to these methods, it may be interesting to know the metaheuristic
methods that perform the best in the deterministic case. It seems reasonable that this
methods can perform really well in the FJSP as well, as both problems share many features.
In the case of the deterministic JSP, it appears that the most successful algorithms are
based on local search strategies [9, 28, 75]. Defining good neighbourhood structures to
guide those algorithms seems to be the key to solve this problem. Back in the FJSP,
different neighbourhood structures for local search algorithms have been already proposed
in the literature. In [36], the neighbourhood structure proposed in [106] for the JSP is
extended to the fuzzy framework. This structure is based on the reversal of critical arcs
in the graph representing the solution, and is extended later in [48], where the authors
consider the use of three parallel graphs for representing a fuzzy schedule. A more efficient
neighbourhood is then proposed in [46], and more recent one is described in [91]. We make
use of this last neighbourhood structure to define a tabu search algorithm (TS) for the
FJSP in [83]. Its main structure is based on the ideas from [28] and its exploitation
capabilities are parametrised so its stopping criteria is reached after a fixed number of
consecutive iterations without improvement. The algorithm is run several times from
different initial solutions as to explore different areas. These solutions are provided by,
and evolved through, a genetic algorithm. The details on both components (i.e. the TS
and the GA) and how they are combined can be found in the paper. The results obtained
with this hybrid are very promising. In the first place, we observe a synergy effect in
figure 4.3, that is, the hybrid version is able to get better results than the GA or the
TS by separate in similar running conditions. This shows that the combination of the
exploration capabilities of the GA complement very well the exploitation ability of the
TS. Finally, we compare our approach with the best method in the literature, that is
the memetic algorithm from [91]. Having similar runtime, our approach outperforms the
state-of-the-art results in almost a 34%.

One of the main issues we find when designing solving methods for the FJSP is the lack
of a common framework to compare different algorithms. Unlike the deterministic case, no
common test-bed is available for the FJSP that allows for fair and meaningful comparisons
and assessment of different proposals. Moreover, only a portion of the instances used in
the literature for experimental results are available to the research community. To fill this
gap, we invest part of this thesis in reviewing and studying the level of difficulty of the
available instances with regard to the most widely used objective function, the makespan.
We have done an exhaustive compilation of all the instances used so far in the literature,
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Figure 4.3: Synergy effect in a hybrid between GA and TS.

which can be divided in two big groups depending on whether they have been generated
from scratch (e.g. [63, 93]) or by fuzzyfying well-known benchmark instances from the
JSP (e.g. [46, 105]). We also find that some of the authors that fuzzyfy deterministic
instances do not make available the resulting fuzzy instances, but the stochastic method
they use to generate them (e.g. [74, 121]). In those cases, we follow the respective method
to generate the fuzzy instances so to be able to study them. We make these instances
available online in a common repository3 together with all the available instances of the
literature to make them more accessible to the scientific community. The analysis on the
difficulty of the instances is done based on the state-of-the-art algorithms for makespan
minimisation. We also consider the memetic algorithm from [91] that seems to be the
most successful method and a GRASP algorithm that is based in the neighbourhood
structure used by that memetic algorithm. The reason for using a GRASP is to compare
the solutions achieved with a simple method with the solutions obtained with the state-
of-the-art algorithms. The most common way of assessing the quality of solutions is by
means of relative measures such as a relative error w.r.t. a lower bound. We define a lower
bound to the FJSP by extending the method from [100] to the fuzzy framework, thus we
can compute a lower bound as:

LB = max{ max
i=1...n

{
∑

j=1...ni

pij}, max
k=1...m

{
∑

i,j:ηij=k

pij}} (4.10)

However, this LB is not as tight as desirable to have a proper reference point and assess
the room for improvement that an instance may have. In the case of fuzzy instances, it can
be proved that a lower bound for the expected makespan of the fuzzy instance is given by
an optimal solution (or any lower bound) of the associated expected crisp problem, that is,
the problem where durations are the expected value of the corresponding fuzzy ones. Based
on this, we are able to provide-and make available for the community-new lower bounds for
all the instances by using the IBM ILOG CPLEX CP Optimizer software [54] to find the
optimal solution (when possible) of the associated expected crisp problem. Having tighter
lower bounds, we follow an exhaustive analysis on the difficulty of each instance. What we
see is that many of the proposed instances are already optimally solved or they offer little
room for improvement, thus they are not suitable for assessing future solving methods
for FJSP. The existing instances that may offer enough room for improvement to serve
as future benchmarks are the original fuzzy instances Lei01,Lei02 [63] and LP01 [68],
all the fuzzyfyed instances from La21,24,36,39,40 [46, 97, 121], La27,37,40 [46, 97] and
ABZF 7 [46] (which are not yet solved to optimality even if they do not seem specially hard)
and finally instances ABZF 8,9, LaS29 and LaF 29 [46, 97], this last group representing

3Repository section at http://di.uniovi.es/iscop
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Figure 4.4: Correlation between E[Cmax], AImin and AIav in a 6× 6 instance.

a real challenge. The obtained results for the existing FJSP instances suggest that it is
necessary to have more challenging problem instances in order to test the potential of
future proposals to solve the FJSP. Therefore, we propose and make available a new test
bed based on the well-known Ta benchmark proposed in [100] for the JSP. An analysis on
these instances shows that they are much more challenging than the ones already proposed
in the literature, so we hope they may serve as future point of reference.

Multiobjective approaches

In addition to makespan minimisation, in the cases in which flexible due dates are present
other objective functions such as the agreement index can be considered. Unlike the
FOSP, there are several works optimising this objective function in the FJSP. For in-
stance, a genetic algorithm is proposed in [93] to maximise the minimum AI, in [66] the
authors maximise the minimum and average AI, and in [118] a co-evolutionary algorithm
is proposed to maximise the average AI. We can find also different multiobjective ap-
proaches in which the AI is optimised together with the makespan: goal programming is
used in [45, 93], in [118] the authors assign weights to each objective function and apply
a GA to optimise it, a lexicographical approach can be found in [44] and a Pareto archive
PSO is proposed in [60]. Here we shall focus on the case in which there is no preference
between the objective functions. It may seem that AImin and AIav are strongly correlated,
as it is obvious that having a large value in AImin helps to improve the value of AIav, and
a short value in AImin can affect negatively AIav. To measure the possible correlation of
these functions and also E[Cmax], we evaluate them in a pool of 1000 random solutions
for three well-known FJSP instances (6× 6 instances from [93]). The obtained results for
one of the instances are shown in figure 4.4.

Clearly, E[Cmax] is not correlated with any of the AI functions. Moreover, its cor-
relation index R2 is in average 0.18 w.r.t AIav and 0.01 w.r.t. AImin. When comparing
both AI measures, we see than in fact, there are a lot of solutions with AImin = 0, which
is not surprising taken into account that we are using random solutions. To have a more
reliable study, we remove all the solutions having AImin < 0.1. By doing so, we obtain
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Figure 4.5: Evolution of the percentage of different objective vectors in the population.

a correlation index R2 between both AI measures that is around 0.35. This small value
indicates that it could make sense to consider both measures as objective functions. How-
ever, the fact that there a lot of solutions having AImin = 0 leads us to think that it
may be hard to guide a metaheuristic in its first stages, when most of the initial solutions
have a 0 value for this function. Therefore, for our first approach we shall consider only
E[Cmax] and AIav. Besides the well-established class of Pareto-dominance based algo-
rithms, e.g. NSGA-II [27], we can report a recent and growing interest in the so-called
aggregation-based algorithms, and especially the MOEA/D (multiobjective evolutionary
algorithm based on decomposition) framework [120]. This algorithm decomposes a given
problem into a number of single-objective optimisation sub-problems, each of them de-
fined by a scalarising function using a different weight vector. We there-by implement
a MOEA/D algorithm for our bi-objective problem by using one of the most extended
crossover operators for the JSP, the Generalized Order Crossover (GOX), and inversion
as mutation strategy. Surprisingly, this approach performs much worse than a NSGA-II
algorithm with the same crossover and mutation operators. After a detailed analysis, we
observe that MOEA/D loses the diversity in its population in the early stages of the run.
This is illustrated in figure 4.5, were we plot the evolution of the average number of dif-
ferent solutions (in the objective space) in the population maintained by both algorithms
as a function of the number of function evaluations for one instance.

We clearly attribute this to the fact that as soon as a good solution is found in
MOEA/D, its aggressive replacement strategy will immediately replace all solutions from
the near sub-problems. This shows that even though this algorithm performs really good
in continuous optimisation, it may be not appropriate for scheduling problems. Based on
our observations, we provide improved variants of MOEA/D for the FJSP by addressing
the raised diversity issue. Firstly we test already existing variants that are designed as
to keep more diversity in the population: The MOEA/D-nr variant from [67], and the
MOEA/D-xy variant from [71]. As expected, this approaches perform much better than
the standard MOEA/D and in most of the cases, better than NSGA-II. Moreover, if we
perform a more detailed analysis to get some insights we can appreciate that MOEA/D-xy
is slower than MOEA/D-nr converging but keeps more diversity, which allows it to get
better results in the long term (when we have large time budgets), whereas MOEA/D-nr
appear to be better in the short-mid term. Once we have addressed that the main issue
that MOEA/D has to solve FJSP is the diversity, we design a completely new replacement
strategy for this algorithm. First, we simply do not allow an offspring to replace a solution
if there already exists a solution having the same objective values in the corresponding
neighbourhood. Moreover, every time this condition is satisfied and the replacement is
activated with respect to an offspring, say y, and a neighbouring sub-problem solution,
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say xj , we do the following. The offspring y becomes the new current solution for sub-
problem j, but the previous solution xj is not discarded if it can improve the solution of
other neighbours. Hence, we recursively check whether there is an opportunity that solu-
tion xj replaces a solution j′ in the neighbourhood of sub-problem j. If such a solution is
found, a new replacement is activated and so on until no improvement is observed. Notice
that with this strategy we do maintain diversity but we also attempt to improve con-
vergence since we heuristically check whether a solution can serve for some sub-problems
before discarding it from the population. This new strategy provides better results than
the already mentioned variants, having better results than both independently of the time
budget.

In conclusion, the FJSP is the fuzzy scheduling problem with more presence in the lit-
erature. Many methods have been proposed to solve it, but it seems that the best strategy
to tackle it is to adapt to the fuzzy case the most successful ideas for the deterministic
problem. Specifically, the definition of good neighbourhood structures to design more so-
phisticated local search algorithms appears as a very relevant factor. Furthermore, the hy-
bridisation of these local search strategies with population-based evolutionary algorithms
have provided the best results known so far. Regarding the multiobjective approaches, it
is clear that the MOEA/D algorithm is not very appropriate to solve this problem, even
though it can be refined to improve its behaviour. Based on the obtained results for the
single-objective case, we think it would be very interesting to design a multiobjective local
search algorithm in the near future.

4.2.3 Fuzzy Flexible Job Shop

The fuzzy flexible job shop has grabbed the attention of several researchers during the
last decade and different methods to solve this problem can be found. For instance, a
genetic algorithm can be found in [62], a co-evolutionary algorithm in [64], a swarm-based
neighbourhood search algorithm in [65], a hybrid artificial bee colony algorithm in [112],
an EDA algorithm in [113], and more recently a hybrid biogeography-based method in [69].

In previous problems, solutions could be easily codified by means of priority arrays,
which are then used as input for SGS (see Section 4.1) to build different schedules. In
general, this is not enough for the case of the case FfJSP, where in addition to the priority
array, a machine assignment η is required. As reminder, tasks θij in FfJSP have not a fixed
machine ηij assigned, but it can be performed in a set of machines Mij ⊂ M . Moreover,
once a machine assignment η is established, the FfJSP becomes a FJSP. This clear divi-
sion of the problem in two sub-problems (machine assignment and task processing order)
leads to think that a co-evolutionary strategy may be the most natural way to tackle the
FfJSP. This is done in the paper [80] that is introduced in the compendium of
this thesis (see Section 7.1), in which we propose a cooperative co-evolutionary algo-
rithm [89, 90]. Cooperative co-evolutionary algorithms handle two or more populations,
each with its own coding schemes and recombination operators, that cooperate to perform
the evaluation of individuals. In our proposal, the algorithm handles two populations:
the machine assignment population PM and the task ordering population P T . A general
schema of our proposal is illustrated in Figure 4.6.

We propose a heuristic seeding method based on an insertion decoding algorithm. The
idea is to use this decoding method as a production rule to generate a pool of full schedules
for the FfJSP and then encode their task orderings as individual for P T and their machine
assignments as an individuals for PM . Due to the different nature of both populations,
crossover and mutation operators must be specific for each sub-problem. For instance,
for population PM we use a one-point crossover and a mutation strategy that consist on
taking one task θij at random, and assign it to a random machine η′ij ∈Mij ; for population

P T we use the JOX crossover operator [76] and and insertion based mutation operator.
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It is at the time of evaluation that populations need to cooperate: any individual only
encodes part of a solution and needs to be complemented by an individual from the other
population, the so-called cooperative partner, to conform a full solution which can be
evaluated. If a machine assignment is taken from one individual in PM , the task ordering
given by an individual of the other population is evaluated using the insertion based SGS
from Section 4.1.1. The choice of cooperative partners is done based on [52], where three
cooperative partners are used to evaluate each individual. The three full schedules built in
this evaluation process are then improved using a Hill Climbing strategy before selecting
the best individuals to go into the next generation. This process is repeated until a
stopping criterion is met, in our case, for 100 iterations. The most relevant contribution
in our method is the design of specific local search strategies for each population. For
population PM , based on the works in [41, 73], we build a neighbour by taking a critical
task θij and assigning it to a new random machine ηij ∈ Mij . Regarding population P T ,
aimed at finding good task orderings, the local search assumes a fixed machine assignment
(provided by the cooperative partner). This allows to use the neighbourhood structures
for fuzzy job shop explained in the previous section. A more detailed study on these
neighbourhoods can be found in the paper [77] that is part of this thesis, and in which
we propose and study them for the first time in the FfJSP. The results obtained with
our proposal are promising. We see that the hybrid of the co-evolutionary algorithm
with specialised local search strategies provides better results than using both methods by
separate. Furthermore, the algorithm compares favourably with the methods mentioned
at the beginning of this section, which are the state-of-the-art for this problem.

If the FfJSP is considered as a generalisation of the FJSP, it seems reasonable to think
that if a hybrid of a genetic algorithm with local search strategies performed well for the
FJSP, it may also be suitable for the FfJSP. This reasoning is the basis for the paper [77],
which is part of the compendium in this thesis (see Section 7.2), and in which
a hybrid between a genetic algorithm and a tabu search is proposed. The neighbourhood
structures we have considered for the FJSP are based on the use of on finding critical paths
in three parallel graphs. Roughly speaking, these graphs join the nodes belonging to the
same job or needing the same machine to be performed. However, the machine in which
each task is going to be performed is not known in advance in the FfJSP, thus the graph
representation must be adapted to this case. In the paper, we propose a new graph-based
representation for solutions of this problem in which the nodes are labelled not only with
the task θij , but also with the machine ηij ∈ Mij to which the task is assigned in the
solution. This is illustrated with an example in figure 4.7.

This graph can be easily extended to the three parallel graph representation follow-
ing [48]. Based on this representation we define two new neighbourhood structures for the
FfJSP:
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Figure 4.7: Graph representation of a solution for a FfJSP problem.

Definition 4.2.1 (Neighbourhood NA) Let a solution be denoted as (η, π), where η is a
machine assignment and π is a feasible task processing order. The neighbourhood structure
NA is defined by the set of solutions (η′, π) such that:

NA(η, π) = {(η′, π) : η′ij 6= ηij , ∀(r, s) 6= (i, j) ηrs = η′rs, θij is critical, η′ij ∈Mij} (4.11)

where criticality is defined according to [48].

Definition 4.2.2 (Neighbourhood NP ) Let a solution be denoted as (η, π), where η is a
machine assignment and π is a feasible task processing order. Given an arc v = (x, y) in
the associated graph, let π′ denote the processing order obtained after reversing arc v. The
neighbourhood structure NP is defined by the set of solutions (η, π′) such that:

NP (η, π) = {(η, π′) : v is in a critical block} (4.12)

where criticality is defined according to [48].

These neighbourhoods can be joined in one structure NAP = NA ∪ NP . A formal
study on the properties of this union is provided in the paper. For instance, it is proved
that it always produces feasible solutions and verifies the connectivity property, that is,
for every non-optimal solution it is possible to build a finite sequence of transitions of
NAP leading to a globally optimal solution. When designing a local search algorithm, the
most consuming part is the evaluation of the neighbours to choose a solution for the next
iteration. We propose a method to estimate the makespan of each neighbour by extending
to the fuzzy and flexible framework, the well-known concepts of head and tail of a task.
This allow to quickly evaluate the potential of the neighbours and choose one for the next
iteration. Notice that this estimation is made differently depending on the neighbourhood
we are using: NA or NP . Furthermore, the proposed estimation is a lower bound for
the actual makespan obtained after the change is performed, which allows to easily dis-
card non-improving neighbours if needed. The defined neighbourhoods together with this
mechanism are used to implement a tabu search that follows the ideas from [28]. This al-
gorithm is then combined with a genetic algorithm to increase its exploration capabilities.
The genetic algorithm encodes the solutions by means of two arrays: one for the machine
assignment and other for the task processing order. It uses an extension of the well-known
JOX crossover operator [76] for the mating, which already includes an implicit mutation
effect, thus we do not include an explicit mutation strategy. Another contribution of this
work is the way in which the initial population for the hybrid algorithm is generated. We
propose a heuristic seeding based on an insertion SGS but taking advantage of the flexi-
bility. Let A be the set of available operations in the SGS at the current stage (initially,
this set contains the first operation from each job). Instead of using a priority array, we
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select a random operation θij ∈ A and compute its earliest completion time, C?, consid-
ering all the machines where it can be processed. Then, we randomly select a machine
Mk ∈ Mij in which θij may finish at C? and schedule θij in machine Mk at its earliest
starting time (ESI), given by C? − pkij . The resulting algorithm, named heuristic genetic
tabu search (HGTS in short), is studied through an extensive experimental analysis. We
see that each of the components that conform the algorithm (heuristics seeding, genetic
component and tabu search) contribute to its overall performance, which is impossible
to reach if we remove any of the components. We also compare our method with the
state-of-the-art methods mentioned above using the instances that are available in the
literature. The results show a great improvement with respect to the already published
results and the results obtained with our previous co-evolutionary algorithm. However,
only 6 instances are available in the literature. Moreover, we believe that the results ob-
tained with our method for these instances are close to the optimal solutions, thus we feel
in the need of proposing a new test bed. In order to design proper instances, we make
a compilation with the hardest instances for the deterministic fJSP, which can be found
in [7, 14, 26, 53]. We select the most challenging ones (13 in total) and use them as base
to build fuzzy instances by following the method proposed by [121]. We have made these
instances available online4 together with the results obtained with our HGTS method so
to encourage competition. Finally, and for the sake of completeness, we run our method
over the published instances for the deterministic fJSP. Surprisingly, even though the pro-
posed methods is not designed for this problem, the obtained results are very close to the
state-of-the-art results.

In conclusion, we may consider the FfJSP as a hot topic in the fuzzy scheduling en-
vironment, due to its increasing popularity in the last years. The fact that tasks can be
scheduled in different machines and that the problem is easy to split in two sub-problems,
makes the FfJSP really interesting and challenging. However, from the point of view of
including uncertainty in its formulation, which is the main target of this thesis, it does
not present a behaviour very different to the FJSP. In both cases, the hybridisation of
local search strategies with population based evolutionary algorithms provides very good
results. Nevertheless, we have provided several formal studies on the FfJSP, which in-
clude the definition of new neighbourhood structures and heuristic methods for designing
initial solutions. We hope this may serve for future researchers to better understand the
particularities that appear in the FfJSP when including uncertainty.

4.3 Robustness

A fuzzy schedule does not provide exact starting times for each task. Instead, it gives a
fuzzy interval of possible values for each starting time, provided that tasks are executed
in the order determined by the schedule. In fact, it is impossible to predict what the
exact time-schedule will be, because it depends on the realisation of the tasks durations,
which is not known in advance. When uncertainty is present, robustness becomes a very
relevant factor. Roughly speaking, a schedule is said to be robust if it minimises the
effect of executional uncertainties on its performance [5]. This straightforward definition
may, however, be subject to many different interpretations when it comes to specifying
robustness measures [5, 92].

4.3.1 Semantics for fuzzy scheduling

In [45], a semantics for fuzzy schedules was proposed and then used to measure the per-
formance of fuzzy schedules in real environments. According to this semantics, solutions

4Repository section at http://di.uniovi.es/iscop
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Figure 4.8: Semantics for fuzzy scheduling.

to fuzzy scheduling problems should be understood as a-priori solutions, also called base-
line or predictive schedules [50]. These solutions are found when the duration of tasks
is not exactly known and a set of possible scenarios must be taken into account. Each
fuzzy schedule corresponds to an ordering of tasks; it is not until tasks are executed in a
real environment according to this ordering that we know their real duration and, hence,
obtain a real schedule, the a-posteriori solution with deterministic times. This process is
illustrated in figure 4.8 for a better understanding.

This definition requires an actual execution of the problem which may not always
be available. For instance, most of the problems that are available in the literature are
synthetic. In this case, we propose to run a Monte-Carlo simulation. Given a fuzzy
instance, we generate a sample of K possible realisations of that instance by assigning
an exact duration to each task. A crucial factor in this method is the way in which we
sample deterministic durations for the tasks based on their fuzzy values. We do this by
simulating exact durations for tasks following a probability distribution that is consistent
with the possibility distribution µA defined by each fuzzy duration A.

This first approach to the study of robustness is published in the paper [81]
that is part of the compendium of this thesis (see Section 7.3). There, the
main interest is to find a-priori solutions that yield to good schedules in the moment
of their practical use, that is, to good a-posteriori solutions. To perform the Monte-
Carlo simulation, four different scenarios are proposed to cover a wide range of possible
situations.

• Scenario I: Given the fuzzy duration pij , the crisp duration is sampled following a
probability distribution which is computed by dividing the membership function of
pij by its surface.

• Scenario II: From an optimistic point of view, given the fuzzy duration pij , the
crisp duration is sampled following a uniform probability distribution in the interval
[p1ji, p

1
ij + 0.25(p3ij − p1ij)].

• Scenario III: From a pessimistic point of view, given the fuzzy duration pij , the
crisp duration is sampled following a uniform probability distribution in the interval
[p3ij − 0.25(p3ij − p1ij), p3ji].

• Scenario IV: In a particularly adverse scenario characterized by a wrong prediction,
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given the fuzzy duration pij , the crisp duration is sampled following a uniform prob-
ability distribution in the interval [p1ji, p

1
ij +0.25(p3ij−p1ij)]∪ [p3ij−0.25(p3ij−p1ij), p3ji]

The idea of evaluating different alternatives according to various scenarios as a way of
dealing with imprecise or poorly defined data is not new of this thesis. Indeed, a “robust”
solution is, intuitively, a solution that performs “well” or “not too bad” in all scenarios [56],
and an approach based on finding robust solutions should prevent from taking decisions
with disastrous consequences in the case that a particularly adverse scenario should prevail
at the end. In the paper, this approach is used to assess the advantages of taking into
account the uncertainty during the optimisation process. -This is done by running the
algorithm twice: one to solve the fuzzy instance, and one to solve the instance without
taking into account the uncertainty (taking the expected duration of each task). Being the
algorithm a lexicographical goal programming approach (see Section 4.2.1), we measure
the percentage of real executions (simulated through the Monte-Carlo method) in which
the obtained solutions reach the established target. We observe that reach the target
more often when we use the solutions obtained with the algorithm when the uncertainty
is modelled in the instance. In addition, we measure the performance of the solutions
in terms of their objective functions. Even though both approaches behave similarly in
Scenario I, in Scenario III, which represents the most pessimistic scenario, the quality of
the solution obtained when modelling the uncertainty is not so deteriorated as the solution
obtained without using TFNs.

4.3.2 Robustness measures

Even though the previous method allows to compare different approaches in terms of
robustness to some extent, we shall need a well-defined metric to assess the robustness
of a single solution. Based on the previous semantics for fuzzy scheduling problems and
to be coherent with it, we adopt the definition of ε-robustness given in [10] for stochastic
scheduling, and extend it to the fuzzy scheduling case.

Definition 4.3.1 A predictive schedule with objective value fpred is ε-robust for a given
ε, if the objective value fexec of the eventually executed schedule is such that:

(1− ε)fpred ≤ fexec ≤ (1 + ε)fpred (4.13)

which is equivalent to:
|fpred − fexec|

fpred
≤ ε (4.14)

That is, the relative error of the estimation made by the predictive schedule is bounded
by ε. Obviously, the smaller ε is, the more robust is the schedule. It is worth noticing that
this approach is different from the better-known approach from combinatorial optimisa-
tion, based on min-max or min-max regret criteria, which aims at constructing solutions
having the best possible performance in the worst case [2]. The study of such criteria
is motivated by practical applications where an anticipation of the worst case is crucial
and has already been translated to the fuzzy framework [57, 111]. However, the min-max
approach may be deemed as too conservative in some cases where the worst case is not
that critical and an overall acceptable performance is preferred. It is in these situations
where an approach such as the one proposed here might be more adequate. This defini-
tion is coherent with the semantics for fuzzy scheduling described before: the fpred value
is actually the estimated objective value given by the a-priori schedule, whereas the fexec
value is the actual objective value obtained in the a-posteriori schedule. Notice that the ε
robustness is measured after the actual realisation of the schedule, thus in the framework
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of the previous semantics, we call this an “a-posteriori robustness measure”. In the case
in which we need to perform a Monte-Carlo simulation to obtain possible actual environ-
ments, we shall obtain K different fexec values: f1exec, . . . , f

K
exec. If that is the case, we

measure the ε-robustness as:

ε =
1

K

K∑

i=1

∣∣fpred − f iexec
∣∣

fpred
(4.15)

In the paper [79] that can be found in this thesis (see Section 7.4), we
propose these ideas and use the ε measure to solve the same question as before: is it
worthy to model the uncertainty?. In this case the objective function is the makespan
Cmax, so the predicted value fpred is the expected makespan of the a-priori solution,
fpred = E[Cmax], and the fexec is the actual makespan obtained in the real scenario.
We confirm the behaviour we have found in the previous section in which the solutions
obtained modelling the uncertainty during the optimisation process are much robust than
those obtained when considering only the expected durations. Being more concrete, the ε
obtained by the latter are in average a 85% worse than those obtained by the former.

The definition of this robustness measure allows to perform new comparisons and
analysis in fuzzy scheduling problems. That is the case of the paper [80] that can
be found in this thesis (see Section 7.1). When TFNs are introduced in scheduling
problems, many ordering relations can be defined to rank them (see section 3.1.1). These
ranking methods have a great influence on the optimisation algorithms. For instance, every
time the algorithm needs to compare two solutions to guide the search, a ranking method
is required. We propose to asses which ranking method is better for fuzzy scheduling
problems. However, when comparing the results obtained with an algorithm using a
ranking method A and the results obtained using a ranking method B, we would need
another ranking method to establish the comparison. Knowing that the performance
measure cannot be used to asses the advantages of one ranking method over another, we
propose to compare them in terms of robustness using the ε metric. As we have seen,
ranking methods can be roughly divided in two types: those based on defuzzification and
those based on fuzzy binary relations. In [19] it is proposed to summarise a fuzzy set A
by the value:

Eβ(A) =

∫ 1

0
(βaα + (1− β)aα)dα (4.16)

where β ∈ [0, 1] is a pessimism value. Obviously, this value can be used in a ranking
method of the first type. When we translate this formula into the specific case of TFNs,
we observe than many of the already defined defuzzyfycation methods for fuzzy sets cor-
respond actually to the cases in which β ∈ {0, 0.5, 1}. A brief summary of these ranking
methods and their relation to this general formula is provided in the paper. To asses the
differences between the use of one or another ranking method, three index based methods
are considered by taking the three mentioned values of β in the previous formula and the
co-evolutionary algorithm described in 4.2.3 is run.

The solutions obtained with each method are then compared by means of the ε-
robustness measure. A more detailed study of the literature reveals that the Scenario
I described for sampling crisp durations from the fuzzy one, can be objected to; according
to [30], it is arbitrary and the obtained probability may fail to belong to P(µA), the set
of probability measures dominated by µA. Therefore we adopt two different approaches:

• Scenario V: Consists in considering the uniform probability distribution that is
bounded by the support of the TFN. This possibility-probability transformation
is motivated by several results from the literature (see [8, 32]) that justify the use
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Figure 4.9: ε values for solutions obtained with different Eβ(A) ranking methods.

of TFNs as fuzzy counterparts to uniform probability distributions and model-free
approximations of probability distributions with bounded support.

• Scenario VI: We consider the probability distribution obtained from each fuzzy du-
ration pij after applying the pignistic transformation obtained by considering cuts
as uniformly distributed probabilities [35]. This is the probability one would obtain
from the membership function of a fuzzy duration applying a generalised version of
the Insufficient Reason Principle by Laplace.

In figure 4.9 we see the comparison between the use of the three ranking methods.
Thanks to this metric, we can see that ranking the fuzzy numbers with Eβ=0.5(A), which
is actually the same as index as the expected value E[Cmax], appears to be the best
option in terms of robustness. Moreover, the robustness analysis allows to identify curious
behaviours. For instance, using Eβ=1(A), which is the most optimistic case (i.e. is based
on the idea that the tasks would finish earlier than expected) provides the least robust
schedules. This behaviour has a natural explanation if we look at the solution graph:
in scheduling, every single delay in a critical task increases in the same quantity the
makespan, whereas a shorter processing time of a critical task is likely to derive in this
task being critical no more, thus having a small or non-existing impact in the makespan
which might be determined by a new critical path.

In addition to the ε robustness measure, in this thesis we tackle robustness from a
different point of view so to have different metrics. In the paper [82] included in this
thesis (see Section 8.2), we propose to find the equivalent to what has been called in
the stochastic framework β-robust schedules [24, 116], schedules with a certain confidence
level that the performance will be within a given threshold.

The membership function µA of a fuzzy duration A may be interpreted as a possibility
distribution on the real numbers [33, 119], representing the set of more or less plausible,
mutually exclusive values of a variable x (for instance, the underlying uncertain duration).
Since a degree of possibility can be viewed as an upper bound of a degree of probability,
µA also encodes a whole family of probability distributions. It is well known that for a
given interval I ⊆ R, the possibility and necessity measure that A ∈ I are respectively
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given by Π(A ∈ I) = supx∈I µA(x) and N(A ∈ I) = infx∈I 1−µA(x) = 1−supx 6∈I µA(x) =
1 − Π(A 6∈ I), so necessity and possibility are dual measures which provide lower and
upper bounds for the probability that x is in I given the information ‘x is A’: N(A ∈ I) ≤
Pr(A ∈ I) ≤ Π(A ∈ I). In particular, for a TFN A, the necessity and the possibility that
A is less than a given real number r are given by:

N(A ≤ r) =





0, r ≤ a2,
r−a2
a3−a2 , a2 ≤ r ≤ a3,
1, a3 < r

Π(A ≤ r) =





0, r ≤ a1,
x−a1
a2−a1 , a1 ≤ r ≤ a2,
1, a2 < r

(4.17)

Clearly, for any value r, N(A ≤ r) ≤ Π(A ≤ r). Figure 4.10 illustrates both measures.

Assuming we have a fuzzy objective function f and a target or threshold f? for it, we
want to maximise the confidence that the value we obtain for f will “for sure” be less than
this threshold. In our setting, this means to maximise the necessity degree that f is less
than f?.

Definition 4.3.2 A schedule with a fuzzy objective value f is said to be necessarily β∗-
robust w.r.t. a threshold f? if and only if β∗ = N(f ≤ f?). Analogously, the schedule is
said to be possibly β∗-robust w.r.t. f? iff β∗ = Π(f ≤ f?). β∗ and β∗ are respectively the
degrees of necessary and possible robustness w.r.t. the threshold f?.

Clearly, if a schedule is β∗-robust and β∗-robust w.r.t. the same threshold, and β =
Pr(f ≤ f?), we have that β∗ ≤ β ≤ β∗.

The degree of necessary robustness represents the degree of confidence that the value f
will certainly be less than the threshold. In the following, we will consider that the objec-
tive will be to find a schedule maximising this confidence level. Obviously, by maximising
the degree of necessary robustness we are also maximising the possible robustness of the
schedule. Notice that for this metric we do not need an actual realisation of the schedule,
thus according to the semantics we are using, we consider this as an “a-priori robustness
measure”. Furthermore, we can make use of the Monte-Carlo simulation described before
as to have an “a-posteriori robustness” measure related to this. Once a schedule is per-
formed in a real environment, we obtain the actual value fexec of its objective function,
which may be under or above the threshold f?. Due to the Monte-Carlo method simulat-
ing K different possible situations or possible realisation of the schedule, we consider the
proportion κ of those values which are actually below the threshold f?. This κ value is an
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Figure 4.11: Evolution of a GA optimising β∗-robustness by using adaptive thresholds.

a-posteriori measure of the robustness of the schedule. Ideally, if a schedule has a good
β∗-robustness, then it should correspond to a high κ.

κ =
1

K

∣∣{i = 1, . . . ,K : f iexec < f?}
∣∣ (4.18)

4.3.3 Robustness optimisation

The main advantage of having robustness metrics is that they allow to obtain robust
schedules by finding solutions that are optimal according to those metrics. This is the
case of the already mentioned paper [82], in which apart from adapting the idea of β-
robustness to the case of fuzzy scheduling, we assess the quality of that measure and
propose a method to optimise it. In this paper, the FOSP is considered and a GA from
the literature [84] is adapted to optimise the β∗-robustness of the makespan. That is,
given a threshold C? for the makespan, we want to maximise the degree of confidence
that the actual makespan of the schedule Cmax will certainly be less than the threshold
C?. In principle, to do so it would only be necessary to substitute the fitness function
therein (Cmax) by the robustness metric. However, such a straightforward approach has a
serious drawback: the initial population, generated at random, consists of poor schedules,
with high makespan values which, most likely, will lead to all solutions having β∗ = 0
for any reasonable threshold C?. This makes it impossible for the GA to evolve until it
finds a promising solution by chance. In order to overcome this drawback, we propose to
adapt the GA to use an “adaptive” threshold, with successive approximations C?0 , C

?
1 , . . .

until C? is reached. We propose to obtain C?0 as the most pessimistic value of the best
makespan in this population, so to ensure that all the individuals on the initial population
will have non-zero fitness values (in fact, the individual with the best makespan will have
fitness 1), thus allowing the GA to evolve. The successive C?i values can be computed in
many different ways. For instance, we propose to linearly decrease the threshold at each
iteration until C? is reached. Once C? is reached, we allow the GA to evolve a little bit
more so the solutions can be effectively optimised with respect to C?. This is illustrated
in figure 4.11, in which we see the different C?i values and how the GA evolves in time. A
more detailed analysis on these results is provided in the paper.

The obtained results are promising. We appreciate that even for the worst solutions
β∗ > 0, so by the given definitions, in all solutions the possible β∗-robustness is 1. Finally,
we assess the quality of the β∗ measure by following the Monte-Carlo simulation described
before to obtain its a-posteriori counterpart (κ). We observe that the obtained κ values
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are very close to 1. We think this can be explained by the conservative character of
the necessary robustness. In fact, in all cases where the fuzzy schedule has β∗ > 0.6,
the makespan values for all deterministic simulations are below the threshold C?, that is
κ = 1.

In most of the real situations, an expert may want to obtain solutions with a high per-
formance quality but also robust enough. Indeed, an optimal solution may be of little or no
use when it is executed if changes in the input data drastically affect its real performance.
Therefore, our aim in the sequel is to optimise both, a performance or quality function and
the robustness of the solution with respect to that function. Clearly, robustness measures
such as the ε-robustness are dependent on the performance function. Therefore we opt
for an optimisation strategy that allows to optimise both functions simultaneously. This
is actually proposed in different papers, as for instance in [25] where the authors optimise
the makespan Cmax and its robustness. In the sequel, we focus in the FJSP in which
the objective function related to performance is the makespan Cmax, and the objective
function related to robustness is ε. When a-posteriori robustness measure such as ε are
used, we may find a shortcoming. Indeed, when we evaluate the performance quality of
a potential solution we do it in the fuzzy framework, but to evaluate its robustness we
shall need to perform a Monte-Carlo simulation and evaluate the schedule in K differ-
ent situations. This multiplies by K the computational cost of the evaluation function,
thus leading to a high computational cost in the cases in which K is high. To overcome
this situation, one approach may be to find an a-priori robustness measure that can be
easily computed. Given that an a-priori schedule provides a most plausible value for the
makespan C2

max, we propose to interpret the a-priori robustness as the maximum devi-
ation that the makespan of the executed schedule may suffer with respect to this value.
We denote this measure as RobD. In the case in which we approximate the maximum of
TFNs by maxI (see section 3.1.2), this is the maximum possible difference between the
modal value and the bounds of the support of the fuzzy interval Cmax:

RobD = max{C2
max − C1

max, C
3
max − C2

max} (4.19)

Obviously, the smaller this difference, the better the robustness. It is easy to see that
RobD thus defined measures the maximum possible difference between the makespan of a
real execution and the most likely estimated makespan value. In the following, we design
a metaheuristic strategy to solve the bi-criteria FJSP with Cmax and RobD minimisation.
We intend to minimise both objectives together, thus we adopt a Pareto-based algorithm
to solve the problem. In particular, our algorithm is based on the well-known NSGA-II
algorithm [27] and uses the ActiveSGS algorithm described in Section 4.1.1. A parametric
analysis shows that the best performance is achieved by using a GOX crossover operator
with probability 1.0 and an inversion based mutation with probability 0.1, as to keep
diversity in the population. Diversity is a key issue when solving FJSP problems, thus we
slightly change the replacement strategy of NSGA-II. Specifically, we propose to start by
removing the individuals that are repeated, in the sense that there already exists at least
another individual having identical objective values. Only after this elimination is the
NSGA-II replacement strategy applied. In the unlikely case that such elimination causes
that we do not have enough individuals for the next generation, all the non-repeated
individuals pass onto the next generation, which is later completed with the best repeated
individuals according to their rank level and crowding distance. Based on the good results
obtained in Section 4.2.2 when hybrid algorithms were considered, we include a dominance-
based tabu search in the NSGA-II. This tabu search can be seen as an improvement
strategy which is applied to every new individual after evaluating it so to improve it in
terms of dominance. This improving mechanism has a similar philosophy than the PAES
search algorithm [59]. In our case, given a current solution S, the algorithm looks for its
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Figure 4.12: Results of the approach for optimising RobD and cmax in a FJSP instance.

neighbours using the neighbourhood structure for the FJSP from [48]. The neighbours
are then classified in three different categories depending on if they dominate S, they are
dominated by S or none of these cases hold. According to this division, the tabu search
tries to pick one solution for the next iterations by choosing a solution that dominates S.
If there is not, then take a solution that is non-dominated by S, and a solution that is
dominated by S is taken only as the last option. In case of a tie, it chooses the solution with
the lesser (normalised) euclidean distance to the origin (0,0). The tabu search shall stop
after a fixed number of consecutive iterations without finding a solution that dominates
the best solution found so far. An experimental analysis is performed using the same
framework and test beds we have used in Section 4.2.2 for assessing other approaches. As
we had guessed, in figure 4.12 we see that the hybrid (MTEA) between the dominance-
based tabu search (DBTS) and the NSGA-II based algorithm (MOEA) provides much
better results that both strategies by separate.

Finally, to assess if this a-priori robustness measure accurately predicts the a-posteriori
robustness, we perform a series of experiments to check the degree of correlation between
both, RobD and ε, using the Scenarios V and VI previously described. Firstly, we randomly
generate a set of non-dominated solutions and measure both the average a-priori RobD

and a-posteriori ε robustness, where the latter is obtained under Scenario V. The results
show a moderate correlation index R2 in the largest tested instances (between 0.55 and
0.70) and a high positive correlation in the other ones, with an average correlation index
across all instances of 0.71. Based on this, the proposed a-priori measure RobD may be
considered to be a good predictive approach to the actual executed robustness. The same
experiment is repeated, but this time using the sets of non-dominated solutions obtained
after running the hybrid approach. In this case the correlation between both measures is
much stronger, with an average correlation index of 0.83. The obtained results suggest
that the simultaneous optimisation of the a-priori robustness and the expected makespan
enhances the quality of this a-priori measure as an estimator of the real robustness. This
supports the idea of optimising both objectives simultaneously, as we have done here. Fi-
nally, the same experiments are run under Scenario VI. In this case, the obtained average
correlation indices were 0.83 and 0.85 respectively. This small gap shows that the opti-
misation proposed in this work has a greater impact in terms of robustness when there
is a greater likelihood of deviations from the most probable durations, which is the case
of Scenario V. Notice nonetheless that the correlation index after optimisation is quite
high under both simulation scenarios, which illustrates the high reliability of RobD as a
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predictive estimate of the schedule’s executed robustness.
The definition of an a-priori robustness measure is not the only way to overcome the

issue of the high computational cost of computing ε. Fitness approximation has been
addressed from different areas, as can be seen for instance in [15, 55]. Techniques to
manage surrogates for fitness evaluation include evaluating the fitness function only in
some of the generations or in some individuals within a generation based on a wide range
of criteria. Here we propose to use an approximation to the ε robustness by using data
sampling techniques. In particular, we implement this idea in an optimisation algorithm
based again on NSGA-II. When a solution is to be evaluated in the algorithm, we use the
ActiveSGS, which shall provide the Cmax value. Then we approximate the ε-robustness
of the solution with that of the most similar solution in the set for which ε values have
been previously computed, provided that this similarity exceeds a given threshold. In this
surrogate model, we shall define the similarity measure and the update strategy for this
set of solutions we call cache. For the former, we propose to use a similarity measure
based on the fuzzy makespan values due to the ε depending on the expected value of
the fuzzy makespan and, the fact that the makespan of every actual realisation lies in
the support of the fuzzy makespan. In the literature we can find numerous proposals to
quantify the degree of similarity between two fuzzy numbers [21, 109]. However, most
similarity functions are not adequate for our framework. Among all of them, we adopt a
measure based on the so-called shared area between the fuzzy numbers, as we consider it
is a simple but still representative measure. The shared area between fuzzy numbers with
respect to the total area of these fuzzy numbers has been incorporated as a component of
the measure of similarity of generalised fuzzy trapezoidal numbers in [109]. In our case,
given two TFNs A and B, the degree of similarity S(A,B) defined as:

S(A,B) =
Area(A ∩B)

Area(A ∪B)
(4.20)

to simplify computations, when A ∩ B is not a triangle, we approximate the area
by the maximum triangle inscribed in this plane area. We shall say that A and B are
approximately equal given a small non-negative number δ iff S(A,B) ≤ δ. Regarding the
cache updating, it is motivated by the fact that, as the algorithm converges, the chance
that a new solution lies in areas of the search space with bad solutions becomes smaller.
A new solution is thus added to the cache only if it is not similar enough to any of the
elements already in the list, in the sense that they are not approximately equal as defined
above. When this is the case, the solution is fully evaluated to obtain its actual ε value
and added to the list. If this is full, the new solution replaces the one in the list that has
not been used for longer to estimate the value of the robustness for another individual.
We perform an experimental study to assess the influence of the size of the cache and the
use of more or less restrictive similarity thresholds.

We can observe that, in general, increasing the similarity threshold improves the per-
formance of the algorithm at the cost of increasing the computational cost. This behaviour
is quite natural, as having a stricter threshold causes the algorithm to fully evaluate more
solutions, thus having more accurate information, at the cost of having a longer runtime.
Moreover, when the similarity threshold is high and the cache size is small, the processing
time is even larger than in the case in which we do not use the surrogate and fully evaluate
ε for every solution. This is explained by the fact that it is unlikely to find an approxi-
mately equal individual in a small-sized cache, so most of individuals are fully evaluated
by the algorithm and, additionally, it loses time comparing solutions and updating the
cache. On the other hand, if we use a large cache size and a low similarity threshold,
the algorithm speeds up but loses quality on its performance. We could say that these
parameters control the trade-off between computational cost and performance. From a
thorough experimental study, we have found that for a population of size 100, using a
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threshold between 0.9 and 0.95 and a cache of size 100 provides a reasonable trade-off,
which allows to reduce running times in more than 20% w.r.t. not using this surrogate,
without a significant loss of solution quality.
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Chapter 5

Conclusions and future work

5.1 Conclusions

Along this thesis we have tackled different scheduling problems with uncertainty in the
processing times. We have modelled this uncertainty by means of fuzzy numbers; in partic-
ular, we have focused on the use of triangular fuzzy numbers. To incorporate this model to
scheduling problems, we have seen that two major concerns must be addressed: arithmetic
and ranking. For the former, the addition can be easily computed by using the Extension
Principle, but the case of the maximum is different. Given its complexity, the maximum
is usually approximated in fuzzy scheduling. From the two main approximations in the
literature, we have seen that the use of one of them, denoted maxI in this document, offers
some desirable properties, especially for the case in which we intend to study robustness.
This strongly supports using this approximation. Regarding the ranking, many different
methods can be considered to order fuzzy numbers. Among them, the ones based on the
expected value have shown to be very consistent. In the case of TFNs, the use of the
expected value as ranking method coincides with many other popular ranking methods
for fuzzy numbers. Furthermore, we have compared this method with other well-known
ranking methods and the use of the expected value appears to be the one that leads to
more robust solutions. In addition to uncertainty on task durations, we have also consid-
ered the use of flexible due dates, quite common in real-world situations, and measured
their satisfaction by means of the agreement index, that can be seen in terms of scheduling
as the degree to which a fuzzy completion time satisfies a flexible due date.

We have tackled three different scheduling problems: the Fuzzy Open Shop (FOSP),
the Fuzzy Job Shop (FJSP) and the Fuzzy Flexible Job Shop (FfJSP). Surprisingly enough,
we have seen that there are in the literature no formal studies about the different search
spaces that can be used to look for solutions in these problems when uncertainty is con-
sidered. Due to the importance of this aspect, we have provided the first formal definition
and study of types of feasible fuzzy schedules and related schedule generation schemes
(SGS) for the FJSP and the FOSP. We have seen that it is not straight forward to ex-
tend well-known SGSs such as the G&T algorithm to the fuzzy case. Actually, simple
extensions of this algorithm lead to losing completeness and dominance properties. We
believe both the theoretical and experimental results in this work can provide a guide for
designing SGS and incorporate them both into metaheuristic and exact search methods
in the future. The defined categories and SGS have allowed us to design more efficient
metaheuristics and study the effects of uncertainty in scheduling problems. These solving
methods have been initially designed based on the best known solving methods for the
respective deterministic problem. In the case of the FOSP, we can conclude that the
large search space of this problem, makes the definition of good search spaces the key
to solve it. We have seen for instance, that when we design a PSO working in a good
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search space, it is able to outperform a more sophisticated memetic algorithm that looks
for solutions in a wider search space. Another promising way to solve this problem seems
to be to find a really good trade-off exploration-exploitation, and here the hybridisation
of exact methods with metaheuristics is providing very good results. The best results
we have reached until now have been by using a beam search algorithm (which is based
on an exact method) combined with a genetic algorithm. Regarding the multi-criteria
approaches we have tried, we have seen that hierarchical approaches like lexicographical
goal programming techniques can complement the results obtained with Pareto-like ap-
proaches such as the well-known NSGA-II. Regarding the FJSP, many solving methods
can be already found in the literature, but it seems that the best way to tackle it is to fol-
low similar strategies than to solve the deterministic problem. Specifically, the definition
of good neighbourhood structures to design more sophisticated local search algorithms
appears as a key factor. Furthermore, we have proposed an hybridisation of these local
search strategies with population-based evolutionary algorithms which have provided the
best results known so far. The main issue we have found for this problem is the lack of a
common framework in the literature to compare different solving methods. Therefore we
made an exhaustive analysis of all the existing test beds and propose a new more chal-
lenging one with the hope that it can be used for other researchers to assess their methods
and encourage the competition. Regarding the multiobjective approaches, it is clear that
the MOEA/D algorithm is not very appropriate to solve this problem, even though it can
be refined to improve its behaviour. Finally, for the case of the FfJSP, the fact that a task
can be scheduled in different machines and that it can be easily split in two sub-problems
makes this problem really interesting and challenging. We have provided several formal
studies on this problem, which include the definition of new neighbourhood structures
and a heuristic method for designing initial solutions. Afterwards, we have proposed a
co-evolutionary algorithm with local search to exploit the nature of this problem and we
obtained very promising results. However, we have also designed a hybrid algorithm that
combines a genetic algorithm with the new defined neighbourhoods and a heuristic seed-
ing, and we have obtained the best known results so far for this problem. We conclude
then, that even though this is an interesting problem, it does not present a behaviour
very different to what we have seen in the FJSP. As in that case, the hybridisation of
local search strategies with population based evolutionary algorithms provides very good
results. Finally, as it happened with the FJSP, we found ourselves in the need of proposing
a new challenging test bed so to assess the quality of our methods and encourage future
competition.

We have highlighted the relevance of robustness when dealing with scheduling problems
under uncertain conditions. Its study is not only important for getting robust solutions,
which is already a desirable target, but also allows for further studies that could no been
done in terms of quality measures. Indeed, the use of robustness measures has allowed
us to propose fair comparison between the use of different ranking methods for TFNs
in scheduling problems. We have observed that there are many different definition of
robustness when it comes to make a clear definition in terms of scheduling and that this
is yet a topic with much work to do in. We have opted for adopting a preliminary work
from the literature where semantics where propose for fuzzy scheduling problems. From
that starting point, we began defining a framework for the study of robustness based
on two different measures: the ε-robustness and the necessary/possible robustness. We
have been developing this framework and applying it to different problems. For instance,
we have been able to see that modelling the uncertainty through fuzzy numbers provides
much more robust solutions than solving the associated deterministic problem in which we
consider only the most plausible durations for the tasks. By means of the a-priori and a-
posterior robustness concepts derived from the use of the previously mentioned semantics,

50



we have proposed different optimisation techniques to optimise robustness alone, as well
as optimising it together with a performance measure like the makespan. However, the
high computational cost of computing the ε-robustness, which includes a Monte-Carlo
simulation, has put us on the need of proposing surrogates for this robustness measure.
Even so, the results obtained so far until now are very promising. Both, the use of the
necessary robustness measure and the surrogate RobD we have proposed, has lead us
to obtain much more robust solutions than the case in which we do not optimise the
robustness explicitly. We hope this research line about robustness can be helpful for other
researchers and may encourage them to work in this line in the near future. We believe
this is actually one of the main concerns when solving problems under uncertainty.

5.2 Future work

During the development of this thesis we have provided new definitions for many aspects of
scheduling problems under uncertainty. However, we think this is a wide field of research
in which there are still many thing to do. Actually, following the research lines established
in this document, we may point out several topics which we think are really interesting to
tackle in the near future.

In order to put bounds to this research we have been using exclusively triangular fuzzy
numbers to model uncertainty in task durations. However many different fuzzy models
can be found in the literature (e.g. trapezoidal fuzzy numbers or 6-point fuzzy numbers)
which can be used to model uncertain processing times. These approaches are not so
present in the literature of fuzzy scheduling, but we think it would be interesting to make
a comparison, maybe in terms of robustness, between different models. Moreover, a com-
parison in terms of robustness between fuzzy approaches and stochastic approaches could
be really enlightening, as there are currently many debates in the scientific community
about which approach is better for dealing with uncertainty in this kind of problems.

We have provided the first formal definition of schedule categories and SGS for fuzzy
scheduling problems. From this starting point and using the framework we provide here,
we may look for smaller search spaces that are complete and dominant. This would be
of special use in the particular case of the FOSP, in which this is a very relevant factor.
Different definitions for semi-active, active and non-delay schedules can be provided in
the case of the fuzzy scheduling. As we have seen, depending on the decisions we take
when designing a SGS, we may many different search spaces. Furthermore, using different
definitions of “left shifts” we can also define new categories. Maybe the most open topic
is the design of solving methods for fuzzy scheduling problems. We have pointed out
the most promising techniques for solving each of the three problems we tackled in this
document. However, these techniques can be for sure improved, and new techniques can
be found that outperformed the previous ones.

Finally, we think that the most important topic that must be addressed in fuzzy
scheduling is robustness. We think that the main goal of modelling uncertainty is to have
optimisation methods that take into account that lack of knowledge and provide solutions
that can perform well in most of the situations, which is the definition of robustness. We
have taken the first steps in defining a framework in which solutions can be compared
in terms of robustness, and we have also proposed methods to optimise it together with
performance measures. However, more research is required in this line. For instance,
until now we have been focused on makespan robustness, but notice that any performance
measure is subject to studying its robustness. Also many other measures for the robustness
can be defined and applied, and the solving methods can be improved so they can tackle the
robustness more effectively. This is, from our point of view, an emerging topic that must
be really taken into account in future researches for scheduling problems with uncertainty.
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Chapter 6

List of publications

In this part of the document we provide a list of all the publications that have been done as
a result of the development of this thesis. For each one we shall provide the bibliographic
reference and the status of the publication. In addition, for each journal paper we also
report its impact factor. Finally, we list the sections of the report in which these papers
are referred to, so to find more details on their content. The publications are divided into
journal and conference papers and are sorted by publication date. We also include a list of
the papers written during the development of the thesis that are under review in a journal
or conference.

Notice that not all of the papers mentioned here will be present in this compendium. In
particular, this compendium contains 7 papers in total: all the journal papers (5 papers)
and the conference paper that were presented in a conference ranked in the ERA or CORE
conference rankings (2 papers).

6.1 Journal papers

1. Palacios, J.J., González-Rodŕıguez, I., Vela, C.R., Puente, J.: Coevolutionary
makespan optimisation through different ranking methods for the fuzzy flexible job
shop. Fuzzy Sets and Systems. In press (2015). Doi: 10.1016/j.fss.2014.12.003.

• Status: In press. Published online (2014).

• Mentioned in: Sections 3.1.1, 4.2.3 and 4.3.2.

• Impact Factor (JCR 2013): 1.880

• Impact Factor (5-year): 2.263

• Journal Ranking:

– Mathematics, Applied: 20/251 Q1 (T1)

– Statistics & Probability: 14/119 Q1 (T1)

– Computer Science, Theory and Methods: 16/102 Q1 (T1)

2. Palacios, J.J., González, M.A., Vela, C.R., González-Rodŕıguez, I., Puente, J.: Ge-
netic tabu search for the fuzzy flexible job shop problem. Computers & Opera-
tions Research 54, 74-89 (2015). Doi: 10.1016/j.cor.2014.08.023.

• Status: Published in 2015.

• Mentioned in: Section 4.2.3.

• Impact Factor (JCR 2013): 1.718

• Impact Factor (5-year): 2.335
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• Journal Ranking:

– Engineering, Industrial: 10/43 Q1 (T1)

– Operations Research & Management Science: 19/79 Q1 (T1)

– Computer Science, Interdisciplinary Applications: 33/102 Q2 (T1)

3. Palacios, J.J., González-Rodŕıguez, I., Vela, C.R., Puente, J.: A particle swarm
solution based on lexicographical goal programming for a multiobjective fuzzy open
shop problem. AI Communications 28(2), 239-257 (2015). Doi: 10.3233/AIC-
140637.

• Status: Published in 2015.

• Mentioned in: Sections 4.2.1 and 4.3.1.

• Impact Factor (JCR 2013): 0.466

• Impact Factor (5-year): 0.582

• Journal Ranking:

– Computer Science, Artificial Intelligence: 105/121 Q4 (T3)

4. Palacios, J.J., González-Rodŕıguez, I., Vela, C.R., Puente, J.: Robust swarm optimi-
sation for fuzzy open shop scheduling. Natural Computing 13(2), 145-156 (2014).
Doi: 10.1007/s11047-014-9413-1.

• Status: Published in 2014.

• Mentioned in: Sections 4.2.1 and 4.3.2.

• Impact Factor (JCR 2013): 0.539

• Impact Factor (5-year): Not available

• Journal Ranking:

– Computer Science, Theory and Methods: 74/102 Q3 (T3)

– Computer Science, Artificial Intelligence: 97/121 Q4 (T3)

5. Palacios, J.J., González-Rodŕıguez, I., Vela, C.R., Puente, J.: Swarm lexicographic
goal programming for fuzzy open shop scheduling. Journal of Intelligent Manu-
facturing. In press (2013). Doi: 10.1007/s10845-013-0850-y.

• Status: In press. Published online (2013).

• Mentioned in: Section 4.2.1.

• Impact Factor (JCR 2013): 1.142

• Impact Factor (5-year): 1.658

• Journal Ranking:

– Computer Science, Artificial Intelligence: 64/121 Q3 (T2)

– Engineering, Manufacturing: 22/39 Q3 (T2)

56



6.2 Conference papers

1. On Maintaining Diversity in MOEA/D: Application to a biobjective combinatorial
FJSP.

• Conference: GECCO 2015: Genetic and Evolutionary Computation Confer-
ence.

• Status: Accepted. To be presented in July 2015. Madrid (Spain).

• Mentioned in: It describes a piece of work from Section 4.2.2.

• Conference Ranking:

– ERA 2010: Rank A

– CORE: Rank A

2. Surrogate-Assisted Multi-Objective Evolutionary Algorithm for Fuzzy Job Shop
Problems.

• Conference: MIC 2015. 11th Metaheuristics International Conference.

• Status: Accepted. To be presented in June 2015. Agadir (Morocco).

• Mentioned in: It describes a piece of work from Section 4.3.3.

• Conference Ranking:

– ERA 2010: Not ranked

– CORE: Not ranked

3. Genetic Beam Search for Fuzzy Open Shop Problems.

• Conference: META 2014. International Conference on Metaheuristics and
Nature Inspired Computing. Marrakech (Morocco).

• Status: Presented. Available online (http://meta2014.sciencesconf.org/37981).
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4. Palacios, J.J., Vela, C.R., González-Rodŕıguez, I., Puente, J.: Schedule generation
schemes for job shop problems with fuzziness. In: Proceedings of ECAI 2014. Fron-
tiers in Artificial Intelligence and Applications, vol. 263, pp. 687-692. IOS Press
(2014). Doi: 10.3233/978-1-61499-419-0-687.

• Conference: ECAI 2014. 21st European Conference on Artificial Intelligence.
Prague (Czech Republic).

• Status: Presented and published.

• Mentioned in: Section 4.1.1.

• Conference Ranking:

– ERA 2010: Rank A

– CORE 2014: Rank A

57
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Chapter 7

Journal papers
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clarity, before each paper we shall include again its data.

7.1 Coevolutionary makespan optimisation through differ-
ent ranking methods for the fuzzy flexible job shop

In this section, we include the following publication.

• Title: Surrogate-Assisted Multi-Objective Evolutionary Algorithm for Fuzzy Job
Shop Problems.

• Journal: Fuzzy Sets and Systems.

• Year: In press. Published online in 2014.

• Impact Factor (JCR 2013): 1.880

• Impact Factor (5-year): 2.263

• Journal Ranking:

– Mathematics, Applied: 20/251 Q1 (T1)

– Statistics & Probability: 14/119 Q1 (T1)

– Computer Science, Theory and Methods: 16/102 Q1 (T1)

This publications contains pieces of work described in Sections 3.1.1, 4.2.3 and 4.3.2.
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Abstract

In this paper we tackle a variant of the flexible job shop scheduling problem with uncertain task durations modelled as fuzzy 
numbers, the fuzzy flexible job shop scheduling problem or FfJSP in short. To minimise the schedule’s fuzzy makespan, we con-
sider different ranking methods for fuzzy numbers. We then propose a cooperative coevolutionary algorithm with two different 
populations evolving the two components of a solution: machine assignment and task relative order. Additionally, we incorporate 
a specific local search method for each population. The resulting hybrid algorithm is then evaluated on existing benchmark in-
stances, comparing favourably with the state-of-the-art methods. The experimental results also serve to analyse the influence in the 
robustness of the resulting schedules of the chosen ranking method.
© 2014 Elsevier B.V. All rights reserved.

Keywords: Flexible job shop scheduling; Robustness; Local search; Coevolutionary algorithm; Ranking of fuzzy numbers; Fuzzy processing times

1. Introduction

The importance of scheduling as a research topic is undeniable, both as a source of interesting complex com-
binatorial optimisation problems and as a field with multiple real applications in industry, finance, welfare, etc. In 
particular, shop problems in their multiple variants—for instance, incorporating flexibility or operators—can model 
many situations which naturally arise in manufacturing environments [1].

Fuzzy sets have contributed to enhancing the applicability of scheduling, helping to bridge the gap between clas-
sical techniques and real-world user needs. They have been used both for handling flexible constraints and uncertain 
data [2–5]. They are also emerging as an interesting tool for improving solution robustness, a much-desired property 
in real-life applications [6–8].
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Incorporating fuzzy sets to scheduling is, however, far from trivial, and they usually require a reformulation of 
the problem under consideration and the development of new solving techniques. In that sense, one important issue 
(shared with many other applications of fuzzy sets) is how to rank different solutions when their quality is given as a 
fuzzy quantity. Many ranking methods have been proposed in the literature [9,10] and their use in fuzzy scheduling has 
been quite heterogeneous (cf. [3]). In consequence, comparisons between different proposals become difficult, if not 
meaningless. Furthermore, this introduces a new difficulty for the practitioner, who may be at a loss when deciding for 
the use a particular ranking method. In this work, we intend to shed new light into this matter, by interpreting different 
ranking methods in terms of optimism/pessimism of the decision maker and also by studying their influence in the 
robustness of the solutions. This, to our knowledge, represents a novel approach to ranking methods in the context of 
fuzzy scheduling.

In deterministic scheduling, the complexity of problems such as job shop means that practical approaches to solving 
them usually involve metaheuristic strategies [11]. Some attempts have been made to extend such methods, mostly 
evolutionary algorithms, to the case where uncertain durations are modelled via fuzzy intervals. In particular, the 
fuzzy flexible job shop problem is receiving an increasing attention, with proposals including a genetic algorithm [12], 
a hybrid artificial bee colony algorithm [13], an estimation distribution algorithm [14], a swarm-based neighbourhood 
search algorithm [15] and a coevolutionary algorithm [16].

Indeed, coevolutionary algorithms [17,18] are a special case of evolutionary algorithms which are proving to be 
very successful in solving complex problems [19–21]. They have been also applied for solving different scheduling 
problems and, in particular, for several variants of job shop. For example in [22] they are used to solve the integrated 
problem of process planning and scheduling, in [23], to solve the classical job shop, in [24], to the stochastic version 
of the problem, in [25], to the dynamic job shop and, finally, to the fuzzy flexible job shop in the above cited [16] and 
in [26], the latter maximising due-date satisfaction.

In the following we tackle the fuzzy flexible job shop problem, where uncertainty in task durations is modelled 
using fuzzy numbers. After introducing the problem, we consider different ranking methods to minimise the resulting 
fuzzy makespan and give a definition of schedule robustness based on average behaviour across all possible cases. We 
will see how the problem naturally lends itself to cooperative coevolution and we shall also propose neighbourhood 
structures for each population, so local search can be embedded in the coevolutionary algorithm. The experimental 
results will illustrate the synergy between the coevolution and the local search, as well as the competitiveness of our 
approach when compared to the state of the art. The results will also allow for an empirical assessment of different 
ranking methods in terms of solution robustness.

2. The fuzzy flexible job shop scheduling problem

The flexible job shop scheduling problem, fJSP in short, consists in scheduling a set of jobs J = {J1, . . . , Jn} on a 
set of physical machines M = {M1, . . . , Mm}, subject to a set of constraints. There are precedence constraints, so each 
job Ji, i = 1, . . . , n consists of a sequence of ni tasks Θi = {θi1, . . . , θini

} that must be sequentially scheduled. There 
are also capacity constraints, whereby each task θij requires the uninterrupted and exclusive use of one machine from 
a subset Rij ⊂ M , so the task’s processing time pijk depends on the machine Mk ∈ Rij .

A feasible schedule or solution consists of an assignment to machines of all N = ∑n
i=1 ni tasks in the set Θ =⋃

1≤i≤n Θi together with an allocation of starting times for each task such that all constraints hold. Alternatively, 
a solution can be represented as a feasible assignment of each task θij ∈ Θ to a machine Mk ∈ Rij and a task processing 
order for each machine in M . Indeed, given these two pieces of information, the starting time of θij , denoted Sij , is 
easily computed as the maximum between the completion times of the predecessor of θij in its job and the predecessor 
of θij in the machine Mk where it has been allocated, and the completion time is given by Cij = Sij + pijk . The 
objective is to find an optimal solution according to some criterion, in our case, minimise the makespan, which is the 
completion time of the last task to be executed, denoted Cmax = maxθij ∈Θ Cij .

2.1. Uncertain processing times

In real-life applications, it is often the case that the exact processing time of tasks is not known in advance. However, 
based on previous experience, an expert may be able to estimate, for instance, an interval for the possible process-
ing time or its most typical value. When there is little knowledge available, the crudest representation for uncertain 
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processing times would be a human-originated confidence interval. If some values appear to be more plausible than 
others, a natural extension is a fuzzy interval or fuzzy number. The simplest model is a triangular fuzzy number or 
TFN, using an interval [a1, a3] of possible values and a modal value a2, and with the membership function taking a 
triangular shape as follows:

μA(x) =

⎧⎪⎨
⎪⎩

x−a1

a2−a1 : a1 ≤ x ≤ a2

x−a3

a2−a3 : a2 < x ≤ a3

0 : x < a1 or a3 < x.

(1)

We shall denote such TFN as A = (a1, a2, a3). For α ∈ (0, 1], its α-cut Aα = {x : μA(x) ≥ α} is a closed interval 
[aα, aα]; we shall abuse notation slightly and denote its support as A0. TFNs are to date the most widely used model 
for uncertain durations in the fuzzy scheduling literature.

In the flexible job shop, we essentially need two operations on fuzzy numbers, the sum and the maximum. These 
are obtained by extending the corresponding operations on real numbers using the Extension Principle. In the case of 
the addition, it turns out that for any pair of TFNs A and B:

A + B = (
a1 + b1, a2 + b2, a3 + b3). (2)

Unfortunately, computing the maximum is not that straightforward and, most importantly, the set of TFNs is not 
closed under this operation. For the sake of simplicity and tractability of numerical calculations, a common approach 
is to approximate the maximum by the TFN that results from evaluating this operation on the three defining points of 
each TFN, that is, for every A, B TFNs:

max(A,B) ≈ max
I

(A,B) = (
max

(
a1, b1),max

(
a2, b2),max

(
a3, b3)). (3)

This approximation has been widely used in the scheduling literature, among others, in [27–31] or [32].
Some arguments can be given to support this approximation. First, for any two fuzzy numbers A and B , if f

is a bivariate continuous isotonic function, that is, f : R2 → R such that for any a ≥ a′ and b ≥ b′ it holds that 
f (a, b) ≥ f (a′, b′), then F = f (A, B) is another fuzzy number such that

Fα = [
f (aα, bα), f (aα, bα)

]
. (4)

Computing f (A, B) is then equivalent to computing f on every α-cut. In particular, the maximum is a continuous 
isotonic function, so it can be calculated by evaluating two maxima of real numbers for every value α ∈ [0, 1]. If 
seems then natural to approximate the maximum by the TFN that results from using linear interpolation, evaluating 
Eq. (4) only for certain values of α (this is proposed for 6-point fuzzy numbers in [28]). Given that the defining 
values (a1, a2, a3) of a TFN A are such that A0 = [a1, a3] and A1 = [a2, a2], the approximated maximum as in (3)
corresponds to such an interpolation for α = 0 and α = 1. Secondly, if F = max(A, B) denotes the maximum of two 
TFNs A and B and G = maxI (A, B) the approximated value by interpolation, then F = G if A and B do not overlap 
and, in any case, it holds that

∀α ∈ [0,1], f
α

≤ g
α
, f α ≤ gα. (5)

The approximated maximum G is thus a TFN which artificially increases the value of the actual maximum F , while 
maintaining the support and modal value, that is, F0 = G0 and F1 = G1. This approximation can be trivially extended 
to the case of more than two TFNs.

2.2. Fuzzy flexible job shop

When task durations in a flexible job shop problem are given as TFNs, the resulting problem is a fuzzy flexible 
job shop problem, FfJSP in short. The objective is to minimise the makespan Cmax according to one of the ranking 
methods described in Section 3.

Notice that a solution to the FfJSP is fuzzy in the sense that starting, processing and completion times of each 
task are fuzzy numbers, seen as possibility distributions on the actual values they may take. However, there is no 
uncertainty regarding the machine assignment nor the order in which tasks must be processed.



JID:FSS AID:6707 /FLA [m3SC+; v1.200; Prn:31/12/2014; 14:15] P.4 (1-17)

4 J.J. Palacios et al. / Fuzzy Sets and Systems ••• (••••) •••–•••

3. Ranking methods of fuzzy numbers

For a given schedule, the makespan Cmax, the completion time of the last task to be executed, is obtained by 
performing addition and maximum operations on fuzzy durations and, hence, is a TFN. If several schedules are 
available, the “best” one would be the one with minimal makespan, which requires comparing fuzzy numbers.

In general, fuzzy scheduling problems involve ordering or ranking fuzzy numbers representing solution perfor-
mance. However, no natural total order exists in the set of fuzzy numbers and several ranking methods have been and 
keep being proposed in the literature (cf. [10,33,34]). Furthermore, quoting Brunelli and Mezei [10],

It is impossible to give a final answer to the question on what ranking method is the best. Most of the time, choosing 
a method rather than another is a matter of preference or is context dependent.

We intend to consider some ranking methods for fuzzy numbers and their influence in the robustness of solutions of 
fuzzy flexible job shop scheduling problems.

Let F denote the set of fuzzy numbers. Ranking methods in F can be roughly divided in two types: those based 
on “defuzzification”, also known as index-based methods, and those based on fuzzy binary relations. In the first 
case, a mapping M : F → R is defined which associates each fuzzy number X with a real number and then the 
natural ordering on the real line is used, most commonly, X ≤M Y iff M(X) ≤ M(Y). In the second case, a relation 
M : F × F → [0, 1] is defined such that M(X, Y) is the degree to which X is greater than Y and, consequently, if 
M(X, Y) ≥ M(Y, X), then X ≥M Y .

In [35] it is proposed to summarise a fuzzy set X by the value:

Eβ(X) =
1∫

0

(
βxα + (1 − β)xα

)
dα, (6)

where β ∈ [0, 1] is a “pessimism” value. This proposal can also be found in [36]. Obviously, this value can be used in 
a ranking method of the first type.

For the special case of β = 1
2 , E 1

2
has been proposed by many authors, among others, as the neutral scalar substitute 

of a fuzzy interval in [37], as the expected value of a fuzzy number in [38], using the area compensation method 
in [39], as the generative expected value induced by the evidence X [40], as the credibilistic expectation of a fuzzy 
variable [41] or as the middle point of a fuzzy number defined for ranking by distance minimisation [42]. It is also 
the centre of the mean value of a fuzzy number as defined in [43] and the expected value of the so-called pignistic 
probability distribution, which is found as the centroid of the set of probabilities dominated by the possibility measure 
associated with X, P(ΠX) (cf. [44]).

When TFNs are considered, the special case β = 0 coincides with the index Aα suggested by [45], which simply 
evaluates the fuzzy number based on the rightmost point of the α-cut for a given α, in this case, α = 0.5. According 
to [10], this approach is the only one which satisfies all the reasonable properties proposed in [46,47] for ordering 
fuzzy quantities.

3.1. Relationship with classical interval comparison and interpretation

In [48], the authors study the relationship between some well-known criteria for classical interval comparison and 
fuzzy ranking methods in the light of imprecise probabilities, extending some preliminary ideas which can already be 
found in [49]. In particular, they consider four interval comparisons:

• Weak ordering: [x, x] ≤ [y, y] iff x ≤ y;

• Maximin: [x, x] ≤ [y, y] iff x ≤ y;

• Maximax: [x, x] ≤ [y, y] iff x ≤ y;

• Hurwicz: [x, x] ≤H(γ ) [y, y] iff γ x + (1 − γ )x ≤ γ y + (1 − γ )y.
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Obviously, the Hurwicz comparison subsumes both the maximim (γ = 1) and the maximax (γ = 0). Interestingly, Eβ

comes down to using Hurwicz criterion on the expectation values with pessimism value β:

Eβ(X) = βE(X) + (1 − β)E(X), (7)

where E and E denote the upper and lower expectations derived from X [48,49].
This provides us with a nice interpretation for comparing TFNs based on Eβ :

• if β = 0, comparing TFNs based on E0 would correspond to a pessimistic decision maker;
• if β = 1, comparing TFNs based on E1 would correspond to an optimistic decision maker;
• if β = 1

2 , comparing TFNs based on E 1
2

would correspond to an in-between decision maker, with an equilibrium 
between pessimism and optimism.

3.2. Relationship with other fuzzy ranking methods

A recent numerical study in [10] suggests that several ranking methods represent very similar (referred to by the 
authors as compatible) points of view. In practice, this means that the ordering they induce in a sample of fuzzy 
numbers is strongly correlated. In particular, for TFNs, the ranking based on E 1

2
is identical to Yager’s ranking based 

on the neutral scalar substitute from [37] and the credibilistic mean from [41] and the ranking based on these two 
indices is grouped as compatible with seven more ranking methods (see [10] for further detail):

• N0.5, the parametric method defined in [50] based on a fuzzy binary relation;
• CoM, the method based on the centre of maxima or mean of maxima [33];
• Ep , the method based on the possibilistic mean value [51];
• CH1, the method based on a ranking index using the concepts of fuzzy maximising and minimising sets from [52];
• CoG, the method based on the centre of gravity of a fuzzy set [33];
• Med, the method based on the median of a fuzzy number [53];
• PD, the method based on the PD relation introduced in [54].

Interestingly, the latter method extends the weak ordering of intervals, with PD(X, Y) corresponding to the upper 
probability of the event X ≥ Y under the monotonic dependence assumption [48].

As for β = 0, we have already noted that E0 coincides with Adamo’s index A0.5. According to [10], the ranking 
based on this index is not strongly correlated to the one based on E 1

2
and is therefore to produce significantly different 

orderings in the set of TFNs.
In conclusion, if we consider three ranking possibilities, based on Eβ with β = 0, 12 , 1, we are in fact modelling 

three different behaviours of the decision maker according to his level of pessimism. But it is also the case that, 
by considering these three possibilities, we are taking into account many other ranking methods from the literature, 
either because they are based on a defuzzification index which coincides with some Eβ for TFNs or because, according 
to [10], they yield very similar orderings to E 1

2
or E0 (in the case of A0.5).

4. Robust schedules

A fuzzy schedule does not provide exact starting times for each task. Instead, it gives a fuzzy interval of possible 
values for each starting time, provided that tasks are executed in the machine and in the order determined by the 
schedule. In fact, it is impossible to predict what the exact time-schedule will be, because it depends on the realisation 
of the task’s durations, which is not known yet. This idea is the basis for a semantics for fuzzy schedules from [30]
by which solutions to the fuzzy job shop should be understood as a-priori solutions, also called baseline or predictive 
schedules in the literature [55]. These solutions are found when the duration of tasks is not exactly known and a 
set of possible scenarios must be taken into account. When tasks are executed according to machine assignment and 
the ordering provided by the fuzzy schedule we shall know their real duration and, hence, obtain a real (executed) 
schedule, the a-posteriori solution with deterministic times.
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Clearly, a fuzzy solution should yield reasonably good executed schedules in the moment of its practical use. Also, 
the estimates for starting and completion times and, in particular, for the makespan, should be reasonably accurate 
for each possible scenario of task durations. This leads us to the concept of solution robustness. As [56] puts it, 
“Intuitively, a solution can be considered as robust if it behaves “well” or “not too bad” in all the scenarios.”. This is 
the idea underlying a definition of ε-robustness given in [57] for stochastic scheduling which can be adapted to the 
fuzzy flexible job shop as follows.

A predictive schedule is considered to be robust if the quality of the eventually executed schedule is close to the 
quality of the predictive schedule. In particular, a predictive schedule with objective value f pred (a TFN) is ε-robust
for a given ε if the objective value f exec of the eventually executed schedule (a real value) is such that:

(1 − ε) ≤ f exec

Eβ(f pred)
≤ (1 + ε), (8)

or, equivalently,

|f exec − Eβ(f pred)|
Eβ(f pred)

≤ ε. (9)

That is, the relative error of the estimation made by the predictive schedule is bounded by ε. Obviously, the smaller ε
is, the better.

According to this interpretation, the robustness of a solution can only be measured once we have a real execution 
of the problem. However, it is very common in the literature to use synthetic problems instead of real ones, so no 
real execution is available. For those cases we propose to run a Monte-Carlo simulation to provide a surrogate of the 
ε-robustness measure. Given a fuzzy instance, we may generate a sample of K possible realisations of that instance 
by assigning an exact duration to each task, that is K deterministic instances in which we can evaluate the robustness 
of the solution. Now for each realisation k = 1, . . . , K , let Cmax,k denote the makespan obtained by executing tasks 
according to the ordering and machine assignment provided by the predictive schedule. Then, the average ε-robustness 
of the predictive schedule, denoted ε, is calculated as:

ε = 1

K

K∑
k=1

|Cmax,k − Eβ(Cmax,pred)|
Eβ(Cmax,pred)

, (10)

where Cmax,pred is the makespan estimated by the predictive schedule.
Notice that a crucial factor in this method is the way in which we simulate real durations for the tasks. This is 

actually done by generating real durations for tasks following a probability distribution that is consistent with the pos-
sibility distribution defined by each fuzzy duration. Originally, in [30] the authors use the renormalisation technique 
(dividing the membership function μM by its surface). However, this technique can be objected to; according to [44], 
it is arbitrary and the obtained probability may fail to belong to P(μM), the set of probability measures dominated 
by μM . Here we will consider instead the probability distribution obtained from each fuzzy duration after applying 
the pignistic transformation obtained by considering cuts as uniformly distributed probabilities [58]. This is the prob-
ability one would obtain from the membership function of a fuzzy duration applying a generalised version of the 
Insufficient Reason Principle by Laplace.

Our approach to robustness is different from the better-known approach from combinatorial optimisation, based 
on min–max or min–max regret criteria, which aims at constructing solutions having the best possible performance 
in the worst case [59]. The study of such criteria is motivated by practical applications where an anticipation of the 
worst case is crucial and has already been translated to the fuzzy framework [6,7]. However, the min–max approach 
may be deemed as too conservative in some cases where the worst case is not that critical and an overall acceptable 
performance is preferred. It is in these situations where an approach such as ε-robustness might be more adequate.

5. Cooperative coevolutionary algorithm for the FfJSP

Coevolutionary algorithms are advanced evolutionary techniques specially suited to solve complex problems which 
are decomposable. They handle two or more populations, each with its own coding schemes and recombination op-
erators, that interact through evaluation. When all populations cooperate to build the problem solution, we talk about 
cooperative algorithms [17].
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Input A FfJSP instance
Output A solution

Generate a pool P of initial solutions.
Best ← arg minS∈P {Cmax(S)};
Split P into populations PT

0 and PM
0 ;

i ← 1;
while stop condition not satisfied do

//Evolve one iteration for population PT
i−1

PT
i

← Paired individuals from PT
i−1;

for each pair of individuals do
Apply crossover and mutation with probabilities probc and probm;

Evaluate PT
i

using partners from PM
i−1; //Best is updated if necessary

PT
i

← Apply 4:2 parent–children tournament between PT
i

and PT
i−1;

//Evolve one iteration for population PM
i−1

PM
i

← Paired individuals from PM
i−1;

for each pair of individuals do
Apply crossover and mutation with probabilities probc and probm;

Evaluate PM
i

using partners from PT
i−1; //Best is updated if necessary

PM
i

← Apply 4:2 parent–children tournament between PM
i

and PM
i−1;

//Apply elitism
Replace worst individual in PT

i
and in PM

i
with respective partial solutions from Best;

return Best

Algorithm 1: Main steps of the coevolutionary algorithm.

Cooperative coevolutionary algorithms have been extensively used in a varied sets of scheduling problems [22–25,
60–62]. Specifically for the FfJSP, [16] proposes a cooperative coevolutionary algorithm to minimise the makespan 
and [26] combines a genetic algorithm with a dynamic particle swarm optimisation method in a kind of cooperative 
coevolutionary algorithm. However, both proposals differ greatly from our coevolutionary algorithm, among others, 
in the coding schema and consequent recombination operators, as well as in the selection of cooperative partners for 
evaluation.

The nature of solutions to the FfJSP, with two separate components, suggests that cooperative coevolution may be 
specially suited for this problem. The first subproblem we face when searching for a solution to the FfJSP is to assign 
the processing of each task θij to a machine Mk ∈ Rij . Once this has been done, we obtain a classical job shop problem 
where we need to establish the order in which tasks are to be processed in each machine. We propose to separately 
evolve those two components in a coevolutionary framework, with a “machine assignment population” P M in charge 
of evolving the machine assignment and a “task ordering population” P T in charge of finding the processing order for 
tasks.

Algorithm 1 summarises the main steps of our coevolutionary algorithm. It first builds a pool of initial solutions, 
which are then split to form the initial populations P T

0 and P M
0 . A variable Best will record the best full initial 

solution and will then be updated throughout the evolution so it always keeps record of the best solution found so 
far, thus incorporating elitism. After the initialisation phase, the algorithm iterates until a stopping criterion is met. At 
each iteration, the individuals of each population are paired and crossover and mutation operators are applied to each 
pair with probability probc and probm respectively; each individual is then evaluated using some partners from the 
other population in order to have a complete solution and, finally, a replacement strategy is applied.

In the following, we describe in more detail the algorithm’s components.

5.1. Genotype coding and decoding

Every individual from population P M encodes a machine assignment as a vector α = {α1, . . . , αN }; task θij is 
associated to the element in position p = j + ∑i−1

l=1 nl , so αp ∈ Rij represents the machine assigned to θij . On the 
other hand, an individual in P T encodes a topological order of tasks as a permutation with repetition π = {π1, . . . , πN }
such that ∀l, 1 ≤ πl ≤ n and |{πl : πl = i}| = ni, ∀i = 1, . . . , n. This is a permutation of the set of tasks as proposed 
in [63] for the JSP, where each task is represented by its job number. For example, the topological order θ21, θ11, θ22, 
θ31, θ32, θ12 is encoded as (2 1 2 3 3 1).
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Input A FfJSP instance
Output An individual for each population

A ← {oi1, 1 ≤ i ≤ n};
while A �= ∅ do

oij ← a task selected at random from A;
for each k ∈ Mij do

Compute EST ijk ;
C∗ ← min{ESTijk + pijk, k ∈ Mij };
K ← {k ∈ Mij , ESTijk + pijk = C∗};
k∗ ← a machine selected at random from K ;
Schedule the task θij in machine k∗ with Sij = ESTijk∗ ;
A ← A − {oij }
if j < ni then

A ← A ∪ {θij+1};
Split and encode the schedule.

Algorithm 2: The Ff Insertion.

Notice that the encoding of each population is completely independent of the other population, unlike the coevo-
lutionary approach from [16] for the same problem. This independence allows both populations to evolve separately, 
interacting only at the evaluation phase. Indeed, to calculate a schedule we require a full solution, combining an 
individual α from P M and an individual π from P T . Then, a pair (α, π) ∈ P M × P T will be decoded using the 
following insertion strategy. The task sequence is traversed in the order given by π and each task θij is then scheduled 
in the machine Mk to which it is assigned by chromosome α. To assign a starting time to the task, it is necessary 
to compute a feasible insertion interval, that is a time interval [tk,S, tk,E] in which machine Mk is idle and such that 
tk,S + pijk ≤ tk,E and tk,S ≥ Ci(j−1) (if j = 0, Ci(j−1) is taken to be 0); thus θij can be processed within that time 
interval without violating precedence constraints. When tk,S, tk,E and pijk are TFNs, we require that these inequalities 
hold in each of their three components (in accordance to the definition of maximum and addition). Then, the earliest 
starting time for operation θij in machine Mk , denoted EST ijk , is the smallest tk,S that can be found. We schedule 
operation θij in machine Mk with starting time Sij = EST ijk .

5.2. Initial populations

The simplest way to generate both initial populations is to do it randomly, as done, for instance, in [16] and [26]. 
Alternatively, we propose a heuristic seeding method based on the insertion decoding algorithm. The idea is to use 
this algorithm as a production rule to generate a full schedule for the FfJSP and then encode its task ordering as an 
individual for P T and its machine assignment as an individual for P M .

The heuristic method is detailed in Algorithm 2. Let A denote the set of tasks that can be scheduled at a certain 
stage, initially the first task from each job. We iteratively select a random task θij ∈ A and compute C
 = min{EST ijk +
pijk : Mk ∈ Rij }, the earliest possible completion time for θij in all machines where it can be processed. A machine 
Mk∗ is then randomly selected from the set K = {Mk : EST ijk +pijk = C
} of machines where this earliest completion 
time can be achieved, so θij is scheduled in Mk∗ with starting time EST ijk∗. θij is removed from A and its successor 
in the job is added to A, provided it exists. The process finishes when A becomes empty, i.e., all tasks have been 
scheduled.

5.3. Recombination operators

For the machine assignment population P M , we use the one-point crossover: given two genotypes αA =
{αA

1 , . . . , αA
N } and αB = {αB

1 , . . . , αB
N } the operator chooses a random point p ∈ (1, N) and builds two offsprings 

αC, αD such that αC
i = αA

i and αD
i = αB

i for i ≤ p and αC
i = αB

i and αD
i = αA

i for i > p. A mutation strategy is also 
introduced, which takes a random gene αq in the genotype associated to task θij and changes its value to a random 
machine in Rij .

In the case of P T , individuals are combined using the JOX operator [64]. Given two genotypes πA, πB , JOX selects 
a random subset of jobs, copies their genes to one offspring in the same positions as in the first parent πA, and fills 
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Input A FfJSP instance, PT , PM , Best
Output Fitness values for PT ’s individuals and Best updated

for each individual IT
p ∈ PT do

//Decoding with Cooperative partners
S1 ← Decode(IT

p , Best solution from PM );

S2 ← Decode(IT
p , Random solution from PM );

S3 ← Decode(IT
p , IM

p ∈ PM );

//Intensification phase
Apply Local search to S1, S2 and S3;
S ← arg minj=1,2,3{Cmax(Sj )};
fitness(IT

p ) ← Cmax(S);

Update IT
p chromosome with S;

if Cmax(S) < Cmax(Best) then
Best ← S;

return fitness(P T ), Best

Algorithm 3: Evaluation algorithm for P T population using cooperative partners of P M .

the remaining genes from the second parent πB so that they maintain their relative ordering. The second offspring is 
formed exchanging the role of the parents. The well-known insertion operator is used for mutation. A random gene πp

in the genotype is chosen and changes its position to a random one, while keeping the relative order of the other tasks.
In both populations, all individuals are grouped in pairs for mating. Acceptance is carried out using tournament 

in each group of parents and offsprings, selecting the best two individuals from this group of four to pass to the next 
generation. Additionally, we introduce elitism, so the Best solution is split and the worst solutions from P T and P M

are replaced by the task sequence and machine assignment of Best respectively.

5.4. Cooperative partners for evaluation

It is at the time of evaluation that populations need to cooperate: any individual only encodes part of a solution and 
needs to be complemented by an individual from the other population, the so-called cooperative partner, to conform 
a full solution which can be evaluated, using the decoding method above. Based on [23], we use three cooperative 
partners to evaluate each individual. Assuming all individuals in both populations are arbitrarily ordered, an individual 
in position p from one population has as cooperative partners from the other population the best individual in the 
previous generation, a random individual and the individual in the same position p. Finally, the individual’s fitness 
value is the best makespan of the three obtained schedules.

As we will see in Section 6, the three full schedules built in this evaluation process may be improved using a 
local search strategy before selecting the best individual. We will propose a different neighbourhood structure for 
each population and we will explain how the specific local search procedures are embedded in the coevolutionary 
algorithm.

6. Local search

Evolutionary algorithms are often hybridised with local search to benefit from the synergy between both methods, 
i.e., between the exploitation of the local search and the exploration of the evolutionary approach. Here, we propose 
to apply local search to each individual after its evaluation. This means applying local search three times for each 
individual, one for each of its cooperative partners. In order for the computational effort to not increase excessively, we 
implement the local search following a simple hill climbing strategy, which is one of the fastest ones. The best solution 
found after the three local search processes per individual is selected and the chromosome is updated accordingly, 
thus introducing Lamarckism. Algorithm 3 illustrates the evaluation of chromosomes incorporating the selection of 
cooperative partners and the local search.

It is common in the literature to represent solutions to shop problems using acyclic graphs and define neighbour-
hood structures based on critical paths in these graphs. In this work we shall define different neighbourhood structures 
to be used on each population, taking into account their specific characteristics. We adapt the solution graph model 
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Fig. 1. Solution graph representing a feasible schedule to a problem with 3 jobs and 3 machines. The makespan is (16, 22, 31).

from [65] to incorporate machine flexibility. A solution can be represented by an acyclic directed graph G with a node 
for each task of the problem, labelled with the machine to which it has been assigned, plus two nodes representing 
fictitious tasks start and end with null processing times. There are conjunctive arcs representing job precedence con-
straints (including arcs from node start to the first task of each job and arcs from the last task of each job to node end) 
and disjunctive arcs representing machine processing orders. Each arc is weighted with the processing time of the task 
at the source node (a TFN in our case) in the machine where it is to be processed. This is illustrated in Fig. 1, which 
shows a solution graph obtained after decoding the cooperative partners: α = {2, 1, 1, 3, 2, 2, 1, 2, 1} as vector for the 
machine assignment and π = {2, 1, 2, 3, 2, 3, 2, 3, 1} as the permutation with repetition which encodes the topological 
order of tasks θ21 θ11 θ22 θ31 θ23 θ32 θ24 θ33 θ12. The makespan of this solution is (16, 22, 31).

The starting and completion times of each task can be found by propagating constraints in the graph, and the 
makespan will be the completion time of task end (which may not coincide with the completion time of any job). 
In the crisp case, the makespan corresponds to the cost of a critical path, which is defined as the longest path in a 
solution graph from node start to node end. It is not trivial to extend concepts and algorithms related to criticality to 
the problem with uncertain durations (cf [3,28]). Here we adopt the definition from [65], where it is proposed that a 
solution graph G be decomposed into three parallel solution graphs Gi , i = 1, 2, 3, with identical structure to G but 
where the cost of any arc is the i-th component of the TFN labelling that arc in G. The union of all critical paths in Gi

i = 1, 2, 3 will be the set of critical paths in G and critical nodes and arcs will be those within a critical path. Finally, 
a critical block is a maximal subsequence of tasks of a critical path assigned to the same machine. The makespan of 
the schedule is not necessarily the cost of a critical path in G, but it holds that each component Ci

max is the cost of a 
critical path in the corresponding solution parallel graph Gi .

For population P M , representing machine assignments, based on the work of [66] and [67] for other variants of 
fJSP, we build a neighbour by taking a critical task θij and assigning it to a new random machine Mk ∈ Rij . For 
example, by assigning the machine M3 to the critical task θ12 in the solution graph of Fig. 1, we obtain another 
solution with makespan (14, 20, 30). The resulting neighbours are always feasible, so no repair strategy is needed. 
The evaluation of neighbours and, hence, the cost of the local search procedure, is optimised by using makespan 
estimates in the line of [67], adapted to the fuzzy context.

Regarding population P T , aimed at finding good task orderings, the local search assumes a fixed machine assign-
ment (provided by the cooperative partner). This allows to use the structure for fuzzy job shop from [68], where a 
neighbour is built by reversing a critical arc at the extreme of a critical block. For instance, by reversing the critical arc 
(θ23, θ32) in the solution graph of Fig. 1, we obtain a neighbour with makespan (16, 21, 29). The motivation for this 
definition is that reversing critical arcs preserves feasibility and, additionally, reversing arcs inside critical blocks does 
not improve the makespan. Again, the evaluation of neighbours and consequent cost of the local search procedure is 
optimised using makespan estimates, as proposed in [68].

7. Experimental study

The goal of this experimental study is twofold. The first objective is to evaluate the hybrid coevolutionary algorithm 
proposed, analysing the contribution of each of its components and comparing its behaviour with the state-of-the-art 
methods. The second objective is to study the influence of the ranking method in the robustness of the solutions.



JID:FSS AID:6707 /FLA [m3SC+; v1.200; Prn:31/12/2014; 14:15] P.11 (1-17)

J.J. Palacios et al. / Fuzzy Sets and Systems ••• (••••) •••–••• 11

Table 1
Analysis of algorithm’s components with best (average) expected makespan values obtained in each case.

Inst LB pBKS RP HP CCEA LS CELS

01 28.50 30.00 62.48 32.30 30.25 28.75 28.50
(83.53) (37.18) (31.15) (29.51) (28.53)

02 45.00 45.25 81.98 47.80 45.75 45.25 45.25
(107.39) (54.53) (46.60) (45.38) (45.25)

03 43.50 47.50 90.88 50.23 47.00 45.25 43.50
(114.11) (56.95) (47.63) (45.86) (44.18)

04 33.50 37.75 76.25 39.25 37.25 36.00 34.25
(95.22) (44.85) (38.28) (36.51) (35.08)

05 37.50 62.00 110.18 63.33 58.50 57.75 53.25
(133.92) (69.58) (60.43) (58.73) (55.07)

06 40.25 63.75 103.89 61.63 57.00 55.75 52.75
(125.26) (68.04) (58.50) (57.41) (53.93)

MRE Best 131.64 29.03 20.78 17.57 12.64
(Avg) (191.10) (45.17) (23.84) (19.67) (14.63)

Experiments are made on the instances that are available in the literature for the FfJSP which are, to our knowledge, 
the four instances proposed in [12] (denoted 01–04), and the two instances proposed in [16] (denoted 05, 06). All 
instances have m = 10 machines. Instances 01–04 have 10 jobs each, with a total of 40 tasks for the first two instances 
01, 02 and 50 tasks for instances 03 and 04, while instances 05 and 06 have 15 jobs and 80 tasks each. Despite the 
relatively low number of tasks, the difficulty of the benchmark is considerable. The reason is that all instances have full 
flexibility, meaning that every task can be performed in any machine with varying processing time, which significantly 
increases the size of the search space.

Our hybrid algorithm (denoted CELS hereafter) has been implemented in C++ on a PC with a Xeon E5520 pro-
cessor and 24 Gb RAM. After some preliminary testing, the parameters have been set as follows: 50 individuals per 
population and 100 generations as stopping criterion, crossover probability equal to 0.90 and mutation probability 
equal to 0.05 for both populations.

7.1. Analysis of CELS’s performance

In the experiments devoted to evaluate the proposed algorithm, to keep the experimentation within reasonable 
bounds and to be in line with the existing works for FfJSP in the literature, we will restrict ourselves to the ranking 
method based on E 1

2
. Even though the ranking methods considered in this work have been used as such by other 

authors for solving the FfJSP, the state-of-the-art methods for this problem do use a ranking method based on E 1
2
, 

which is combined with other defuzzification indices to break ties, as originally proposed by [29]. In the remaining of 
this section, we might refer to E 1

2
(Cmax) as expected makespan and, since no confusion is possible, for the sake of a 

simpler notation we will drop the subindex and simply write E(Cmax). As a reference for the quality of a solution of 
a given instance of FfJSP, we will use a lower bound of the expected makespan given by LB = E(maxj {∑n

i=1 p∗
ij })

where p∗
ij = min{pijk, k ∈ Rij }.

A first set of experiments is devoted to analysing the different components of our algorithm. To evaluate the 
heuristic seeding we generate the initial pool of solutions using two different methods, the first one applying the 
heuristic introduced in Section 5.2 and the second one generating the solutions at random. We then evaluate the quality 
of the resulting chromosomes in terms of expected makespan. A summary of the results can be seen in Table 1. The 
first column corresponds to the instance id and for reference the second column reports the lower bound LB. The 
best-known solution so far (pBKS) is included in the third column, while the fourth and fifth columns report the best 
(average) expected makespan for both pools of initial solutions. We can observe a considerable gain in quality for the 
heuristic solutions: the average makespan mean relative error (MRE) w.r.t. LB is reduced in average 76% across all 
instances when HP is considered instead of RP.
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We now evaluate the contribution of the cooperative coevolutionary algorithm (CCEA) and the local search pro-
cedure (LS). To this end, CCEA is run with no local search for the same time taken by CELS. Additionally, since 
CELS uses two populations of size 50 and evolve for 100 generations, we evaluate LS by generating two populations 
of 500 individuals and applying LS to the resulting populations (three searches per chromosome, one per cooperative 
partner). The last three columns in Table 1 report the best (average) expected makespan values obtained with the three 
methods CCEA, LS and CELS. We can see that CCEA improves the best expected makespan 18% w.r.t. the heuristic 
initial population, which means that the heuristic seeding provides a good starting point for the CCEA in terms of 
quality but also in terms of diversity, allowing for a proper evolution of the populations. In fact, the results of CCEA 
are already quite competitive w.r.t. the previously best-known solutions, especially as the problem size increases. LS 
obtains even better results than CCEA, with a MRE equal to 17.57% in the best case and equal to 19.67% in average. 
More importantly, CELS, combining both CCEA and LS, improves the best and average expected makespan in every 
instance, with the exception of 02, where the best makespan is equal for CELS and LS. As an added value for CELS, 
the runtime of LS is in average 134% greater than the runtime of CELS. We conclude that CELS benefits from the 
synergy among the good starting point provided by the HS, a good combination of exploration and exploitation in 
each subproblem provided by the CCEA and the LS respectively and a good cooperation between both subproblems 
provided by the coevolution.

We now proceed to evaluate CELS compared with the state of the art in the FfJSP. From the literature we gather that 
the most competitive approaches to FfJSP are the coevolutionary genetic algorithm (CGA) from [16], the swarm-based 
neighbourhood search algorithm (SNSA) from [15], and the hybrid artificial bee colony algorithm (hABC) from [13].

CGA is implemented in Microsoft Visual C++ 6.0 and run on a 512 RAM 1.7 G CPU PC. The population size 
of CGA is 150 and the maximum generation is 1000. With this configuration the CPU times ranges from 8 and 11 
seconds for every one of the 20 executions. SNSA is coded in Microsoft Visual C++ 6.0 and run on a 2 G RAM 2.2 G
CPU PC. The size of swarm is 100 and the number of iterations is limited to 500. With this configuration they report 
run times between 9 and 14 seconds, in average, in every one of the 20 runs. Finally, hABC is implemented in C++ 
and run on 2.83-GHz PC with 3.21-GB RAM. Parameters are set as follows: population size 2 × n × m, steps for 
local search n ×m and the number of trials after which a food source cannot be further improved (Limit) 20. For each 
instance, the algorithm is run 20 times and in average, every run takes between 11 and 15 seconds, but the two largest 
instances are not included in these results.

Table 2 shows the results of 30 runs of CELS on each instance compared to the methods above. For each method it 
includes the makespan of the best solution (with its expected value between brackets), the average expected makespan 
across all solutions found in several runs, the corresponding MRE values and the average runtime of a single run in 
seconds. The missing rows for instances 05 and 06 correspond to the cases when the original works do not report 
results on these instances. In bold we highlight the best solution from all methods, marked with “a” when it improves 
the previous best-known solution and with “b” when the solution is optimal, given that the lower bound is reached. 
We see that CELS improves the best and average values in all cases except for instance 02, where it obtains the same 
best expected value as SNSA. For instances 01–04 (for which all algorithms provide results), CELS reduces the MRE 
more than 77% in average. For instance 05, the reduction w.r.t. CGA and SNSA exceeds 38%, and on instance 06 
it obtains a 46% reduction w.r.t. SNSA. Notice that solutions for instances 01 and 03 are indeed optimal, as they 
coincide with the lower bound.

Overall, CELS establishes new best solutions for all instances except for 02, where it obtains the same expected 
makespan as SNSA. Regarding the average expected makespan, not only is CELS significantly better than the other 
methods, but it also improves the previously known best values.

7.2. Influence of fuzziness and ranking methods in robustness

In this subsection we propose to evaluate in terms of ε-robustness the behaviour of the predictive schedules obtained 
using different ranking methods for fuzzy numbers. In our case, for each instance we obtain three predictive schedules, 
namely the schedules obtained after solving the fuzzy problem with CELS using each of the three fuzzy ranking 
methods from Section 3. The surrogate robustness of each predictive schedule is computed as explained in Section 4. 
The ε value for each ranking method will be denoted ε0, ε 1

2
and ε1, corresponding respectively to β = 0, modelling 

the pessimistic decision maker, β = 1
2 , the compromising decision maker, and β = 1, the optimistic decision maker.
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Table 2
Summary of results in FfJSP instances with best-known solutions in bold.

Instance
(LB)

Algor. Best(Cmax)

(E(Best(Cmax)))
Avg E MRE Time

(s)Best Avg

01
(28.50)

CGA 21, 29, 41 (30.00) 33.18 5.26 16.40 8.3
SNSA 21, 29, 42 (30.25) 31.68 6.14 11.14 8.7
hABC 19, 30, 43 (30.50) 32.15 7.02 12.81 9.9
CELS 21, 28, 37 (28.50)a,b 28.53 0.00 0.09 1.9

02
(45.00)

CGA 32, 47, 57 (45.75) 47.45 1.67 5.44 8.3
SNSA 35, 43, 60 (45.25) 47.05 0.56 4.56 8.9
hABC 33, 46, 58 (45.75) 47.70 1.67 6.00 10.9
CELS 32, 46, 57 (45.25) 45.25 0.56 0.56 2.3

03
(43.50)

CGA 34, 47, 63 (47.75) 51.00 9.77 17.24 10.7
SNSA 36, 46, 62 (47.50) 51.25 9.20 17.82 11.4
hABC 33, 47, 64 (47.75) 50.70 9.77 16.55 14.8
CELS 31, 43, 57 (43.50)a,b 44.18 0.00 1.55 3.0

04
(33.50)

CGA 26, 37, 51 (37.75) 40.80 12.69 21.79 10.8
SNSA 26, 39, 53 (39.25) 41.45 17.16 23.73 11.5
hABC 23, 38, 53 (38.00) 40.45 13.43 20.75 13.9
CELS 24, 33, 47 (34.25)a 35.08 2.24 4.73 2.7

05
(37.50)

CGA 42, 62, 82 (62.00) 65.95 65.33 75.87 23.9
SNSA 40, 65, 93 (65.75) 68.53 75.33 82.73 14.2
CELS 35, 53, 72 (53.25)a 55.07 42.00 46.84 6.7

06
(40.25)

SNSA 46, 63, 83 (63.75) 65.65 58.39 63.11 14.4
CELS 35, 52, 72 (52.75)a 53.93 31.06 34.00 6.7

a Improves the previous best known solution.
b Optimal solution is reached.

We run CELS 30 times on each instance for each ranking method, thus obtaining 30 predictive schedules. Each 
predictive schedule is then evaluated via a Monte-Carlo simulation with K = 1000, yielding a total of 30 εβ values 
for each ranking method (β = 0, 12 , 1). Fig. 2 depicts for each instance, the average εβ value of each ranking method 
across the 30 predictive schedules, while the box plot in Fig. 3 illustrates in more detail the distribution of ε-values 
obtained across the 30 predictive schedules for instance 06.

The predictive schedules obtained from the fuzzy problem using a compromising approach to rank fuzzy numbers 
appears to be the best option in terms of robustness (with smaller prediction error ε), being the pessimistic approach 
also quite good and clearly much better than the schedule obtained from the optimistic one. This behaviour has a 
natural explanation: in scheduling, every single delay in a critical task increases in the same quantity the makespan, 
whereas a shorter processing time of a critical task is likely to derive in this task being critical no more, thus having a 
small or non-existing impact in the makespan which might be determined by a new critical path.

To enhance the conclusions of the experimental comparison based on ε-robustness among solutions obtained with 
different raking methods, we have conducted some statistical analysis on instance 06, which seems to be the hardest 
one. We take for each value of β , the ε-robustness values εβ given by 30 runs of CELS. In a preliminary analysis,
the Kolmogorov–Smirnov test rejected the hypotheses of normality so we have used non-parametric statistical tech-
niques. Specifically, we have performed a Friedman test to rank the three different sets of data (corresponding to εβ

for β = 0, 12 , 1) and deduce whether there are significant differences among the robustness of solutions for varying β . 
With a p-value ≈ 0, the mean rank values are 1.873 for β = 0, 1.127 for β = 1

2 and 3.000 for β = 1, which show 
that the ranking method used for TFNs has a significant influence on the robustness of the solutions. Additionally, 
to have a pairwise comparison, we have made a Mann–Whitney-U test over every pair of samples: β = 0 vs. β = 1

2 , 
β = 0 vs. β = 1, and β = 1

2 vs. β = 1 with p-value ≈ 0 in all cases. It is clear that ranking TFNs with expected 
value (β = 1

2 , corresponding to a decision maker who compromises between optimism and pessimism) gives the most 
robust solutions, whereas using a ranking with an optimistic interpretation seems to be the worst choice in scheduling 
problems.
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Fig. 2. Mean εβ values for the different ranking methods.

Fig. 3. εβ values for the different ranking methods on instance 06.

A final set of experiments is conducted to assess the benefit in terms of robustness of using fuzzy sets. Indeed, 
although modelling uncertainty seems to be a natural approach to exploit all the available information, it may happen 
that from a practical point of view this makes no great difference with respect to solving the deterministic problem 
obtained by taking only the most likely duration of each task, that is the modal values. If this was the case, then it would 
not be worth in practice to increase the complexity of the problem by considering fuzzy numbers. To check if this is 
the case, we have run some additional experiments in the same line as we did above, now comparing the predictive 
fuzzy schedule obtained with E 1

2
and the predictive deterministic schedule obtained solving the defuzzified problem, 

again with 30 runs of CELS. The predictive schedules obtained from the defuzzified problem have a slightly better 
makespan value, compared to the expected makespan of the fuzzy schedules. However, the deterministic solutions 
are much worse than the fuzzy ones in terms of robustness, as illustrated in Fig. 4. Indeed, the ε values obtained 
after solving the deterministic instances are in average 73.62% worse than the ε1/2 values obtained with the fuzzy 
schedules as shown above. We conclude that, even though considering the defuzzified problem in principle seems to 
yield better solutions, in fact the slightly better quality of these solutions may not compensate their lower robustness, 
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Fig. 4. ε values for deterministic and fuzzy predictive schedules.

given that the outcome of a real execution is much more unpredictable than when fuzzy information about durations 
is taken into account.

In summary, the above results mean that the ranking method chosen to compare TFNs (and hence, to minimise 
makespan) has a clear influence in the robustness of the resulting predictive schedule, with the compromising approach 
being the one that yields better robustness among all the considered approaches. Notice however that this does not 
necessarily mean that the solution with optimal makespan according to the compromising approach is a solution with 
optimal robustness. Additionally, we have seen that the predictive schedules benefit from using fuzzy sets in terms of 
increased robustness compared to solving a defuzzified problem.

8. Conclusions

We have tackled the flexible job shop scheduling problem with fuzzy durations and have proposed a new cooper-
ative coevolutionary algorithm hybridised with local search, named CELS, to solve it. The experimental results have 
assessed the quality of the initial heuristic seeding and the synergy between coevolution and local search. They have 
also shown that CELS outperforms the state-of-the-art methods, establishing new best known solutions and, in two 
cases, even finding the optimal solution. In addition, we have assessed the behaviour of several ranking methods for 
TFNs in these problems by means of a robustness measure. This measure accounts for the average behaviour of predic-
tive schedules in real situations. We have seen that the use of different ranking methods actually affects the robustness 
of the algorithm’s outcome. Due to the nature of scheduling problems, this outcome is more robust when ranking is 
based on the expected value of the TFNs, modelling a decision maker who compromises between pessimism and op-
timism, followed by the approach modelling a pessimistic decision maker, with the optimistic method being definitely 
worse. These results strongly support the use of the expected value as a ranking method for fuzzy scheduling prob-
lems. Additionally, the robustness analysis further supports the use of fuzzy sets throughout the optimisation process, 
compared to the option of simplifying the problem by turning it into a deterministic one.
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a b s t r a c t

This paper tackles the flexible job-shop scheduling problem with uncertain processing times. The
uncertainty in processing times is represented by means of fuzzy numbers, hence the name fuzzy
flexible job-shop scheduling. We propose an effective genetic algorithm hybridised with tabu search and
heuristic seeding to minimise the total time needed to complete all jobs, known as makespan. To build a
high-quality and diverse set of initial solutions we introduce a heuristic method which benefits from the
flexible nature of the problem. This initial population will be the starting point for the genetic algorithm,
which then applies tabu search to every generated chromosome. The tabu search algorithm relies on a
neighbourhood structure that is proposed and analysed in this paper; in particular, some interesting
properties are proved, such as feasibility and connectivity. Additionally, we incorporate a filtering
mechanism to reduce the neighbourhood size and a method that allows to speed-up the evaluation of
new chromosomes. To assess the performance of the resulting method and compare it with the state-of-
the-art, we present an extensive computational study on a benchmark with 205 instances, considering
both deterministic and fuzzy instances to enhance the significance of the study. The results of these
experiments clearly show that not only does the hybrid algorithm benefit from the synergy among its
components but it is also quite competitive with the state-of-the-art when solving both crisp and fuzzy
instances, providing new best-known solutions for a number of these test instances.
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1. Introduction

Scheduling operations is one of the most critical issues in
manufacturing and production systems as well as in information
processing environments [1]. The job-shop scheduling problem
(JSP) is a simplified model of many problems in this class which
has interested researchers for decades due to its simple formulation
but, at the same time, high difficulty, being NP-hard [2]. In the
classical JSP a set of jobs have to be processed on a set of machines,
each job consisting of a sequence of consecutive operations and
each operation requiring the exclusive use of exactly one machine
during all its processing time, which is perfectly known in advance.
A typical performance indicator is the makespan, i.e., the time
required to complete all jobs.

Unfortunately, the classical JSP cannot model many practical
situations due to the fact that project decisions usually have to be
made in advance, when activity durations are still highly uncertain.

A great variety of approaches have been considered to deal with
these real-life situations, as can be seen in the review of funda-
mental approaches for scheduling under uncertainty from [3].
Maybe, the best-known approach is stochastic scheduling, where
uncertain processing times are taken to be stochastic variables. A
recent example can be found in [4], where a stochastic program-
ming approach for the project scheduling is proposed. Here, the
uncertainty of the durations is represented using a set of discrete
scenarios in which each scenario has a probability of occurrence.
The durations of activities are random variables which are supposed
to be independent and for which the individual distributions can be
estimated. More recently, in [5] a method for solving the resource
constrained project scheduling problem with uncertain activity
durations is given, where uncertain durations are described by
independent random variables with a known probability distribu-
tion function. However, it is sometimes the case that probability
distributions underlying durations are unknown and there is a lack
of statistical data to validate the choice of duration distributions. It
may even be argued that probability distributions allow us to model
the variability of repetitive tasks, but not uncertainty due to a lack
of information [6]. Even when durations are independent random
variables it is admitted that estimating the makespan distribution
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is, in general, intractable [7]. An alternative and complementary
approach to modelling ill-known processing times is to use fuzzy
numbers or, more generally, fuzzy intervals in the setting of
possibility theory. Fuzzy intervals share some of the disadvantages
of probability theory, in particular the need of providing the
possibility distribution that represents ill-known durations. How-
ever for, say, triangular fuzzy numbers the expert needs to only
provide an interval of possible values and the most typical value,
which is usually easier than accurately defining a probability
distribution. Quantitative possibility theory is said to provide a
natural framework, simpler and less data-demanding than prob-
ability theory, for handling incomplete knowledge about scheduling
data. The fuzzy approach has been around for more than two
decades and has received the attention of several researchers (cf.
[8,9]). In particular, considerable effort has been made to solve the
fuzzy JSP (FJSP), where task durations are modelled as fuzzy
numbers (most commonly, triangular fuzzy numbers). Some of
the existing approaches will be reviewed in Section 2.

Another characteristic of real-world problems is flexibility,
which is contemplated in the flexible JSP (fJSP in short), a variant
of the JSP where multiple machines can perform the same
operation (possibly with different processing times). This flexibil-
ity allows the system to absorb changes in the demand of work or
in the performance of the machines. On the other hand, it also
increases the difficulty of the problem, since a solution must also
consider the assignment of jobs to machines (job routings) in
addition to scheduling operations on the machines.

Fuzzy processing times and flexibility on the machines can be
considered simultaneously, as done for example in [10]. When this
is the case, we have the fuzzy flexible job-shop scheduling problem
(FfJSP). This will be the problem considered in this paper, with the
objective of minimising the makespan.

As a solving method, we propose to design a hybrid algorithm
combining a genetic algorithm with a local search strategy. This is
motivated by the success of this hybridisation not just for solving JSP
[11] but also for solving several extensions of it such as JSPwith setup
times [12], FJSP [13] or fJSP [14]. It is not possible however to directly
apply these existing methods to FfJSP, because the addition of both
flexibility and fuzzy processing times to the problem changes its
nature, and therefore well-known results, both theoretical and
empirical, regarding existing neighbourhood structures are no longer
applicable in the new setting of FfJSP. We need new neighbourhood
structures specific for this problem, with the corresponding study of
their properties. The benefit of having well-founded neighbourhood
structures is beyond their use in our local search strategy, since this
allows us to incorporate them to any search method based on
neighbourhoods or, if connectivity holds, they could also be used,
for instance, as a branching scheme in an exact search method.
Finally, although the use of heuristic strategies to generate the initial
population is less frequent in the literature, there are also authors
that have proved its efficacy in fJSP [15].

We shall propose an efficient hybrid algorithmwhich combines
a memetic algorithm with a heuristic strategy to generate initial
solutions. The initialisation strategy exploits the flexibility on the
machine assignment to build a varied set of high-quality solutions.
The memetic algorithm itself combines a genetic algorithm with
tabu search, inspired in the method presented in [14] to solve the
flexible job-shop scheduling problem with setup times. The tabu
search relies on exploring both moves in machine assignments
and in processing orders of critical operations. We propose two
new neighbourhood structures for the local search. For the first
structure, we shall prove that it verifies both feasibility and
connectivity properties, the latter ensuring asymptotic conver-
gence in probability to a global optimal solution. The second
neighbourhood is obtained by incorporating a filtering mecha-
nism that trims the first structure by discarding non-improving

neighbours, keeping feasibility and considerably reducing the size
of the set of neighbours at the cost of losing connectivity.
Additionally, a method based on constraint propagation is intro-
duced that allows us to speed-up the evaluation of new chromo-
somes. An extensive computational study will show that our
algorithm outperforms existing methods from the literature for
the same problem, while it gives results comparable to those of
the best available algorithms for the flexible job shop with
deterministic processing times.

The remainder of this paper is organised as follows: Section 2
reviews the literature on job-shop scheduling with flexibility and
with uncertainty in operation processing times. Section 3 is devoted
to the problem formulation while Section 4 describes the proposed
algorithm, including formal proofs of the properties of the neigh-
bourhood structure. In Section 5, we report and analyse the results
of the experimental study. Finally, in Section 6, some conclusions
are given.

2. Related work

Hybrid metaheuristics are classical methods for solving combi-
natorial optimisation problems due to the fact that they allow
algorithm designers to combine different search techniques and
benefit from their synergy. In particular, they have a long track of
success with scheduling problems. Even for the classical JSP,
researchers continually propose new algorithms designed from
different metaheuristics which outperform or at least are compar-
able to previous ones. Indeed, the algorithms proposed in [16,17]
are probably the most efficient approaches to the JSP with
makespan minimisation and both combine the i-TSAB algorithm
from [18] with other existing methods: a simulated annealing
algorithm in the first case and the solution-guided search method
in the second. More recently, a hybrid genetic tabu search “with
innovative initial solutions” is proposed in [19] which not only
solves several benchmark problems optimally but also demon-
strates to be capable of solving real-life job shop problems.

Regarding the FJSP, several metaheuristics have been proposed
since the 1990s, starting with the simulated annealing method
from [20]. In [21], the authors develop a GA to maximise several
objectives in a fuzzy decision making framework. This GA is later
improved in [22] using random keys. In [23], a particle swarm
optimisation algorithm is combined with some genetic operators.
In [24], a GA that searches in the so-called space of possibly active
schedules is proposed and a semantics for fuzzy schedules is
provided. In [13], we find a hybrid algorithmwhich combines a GA
with a very efficient local search method. More recently, we find a
great variety of nature-inspired methods for makespan minimisa-
tion: a swarm based neighbourhood search algorithm [25], a
hybrid algorithm, combining particle swarm optimisation with
tabu search [26] and an artificial bee colony algorithm [27].

It is also in the 1990s that flexibility in JSP was first addressed by
researchers, after the seminal paper [28], and has ever since been the
object of intensive research. From the first works, such as [29], where
the machine assignment and the scheduling of operations are
studied separately, until now, many are the approaches proposed
for the fJSP. Among others, a tabu search algorithm is proposed in
[30] and is later improved with two neighbourhood structures in
[31]. Ref. [15] presents a GA that incorporates different strategies for
generating the initial population while a hybrid genetic algorithm
combined with a variable neighbourhood descent search is given in
[11]. More recently, approaches such as the discrepancy search
proposed in [32], the hybrid harmony search and large neighbour-
hood search from [33] or the genetic algorithm combined with tabu
search from [14] obtain the best results so far for many problem
instances.
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Compared to the FJSP and the fJSP, the combination of
flexibility and uncertainty in FfJSP has received limited albeit
increasing attention. Among the most representative proposals,
we mention the genetic algorithm from [34], the hybrid arti-
ficial bee colony algorithm given in [35], the estimation distribu-
tion algorithm from [36], the co-evolutionary algorithm from
[37] or the swarm-based neighbourhood search algorithm from
[38]. These last four algorithms are, to the best to our know-
ledge, the most competitive methods in the literature for this
problem.

3. Problem formulation

In the job shop scheduling problem, there is a set of jobs
J ¼ fJ1;…; Jng that must be processed on a set M¼ fM1;…;Mmg of
physical resources or machines, subject to a set of constraints. There
are precedence constraints, so each job Ji, i¼ 1;…;n, consists of Ni

operations Oi ¼ foi1;…; oiNi
g to be sequentially scheduled. There are

also capacity constraints, whereby each operation oij requires the
uninterrupted and exclusive use of one of the machines for its
whole processing time.

When flexibility is added to the JSP, an operation oij is allowed
to be executed on one machine out a given set MðoijÞ. The
processing time of the operation oij on machine MkAMðoijÞ is
denoted poijkAN. Notice that the processing time of an operation
may be different in each machine and that a machine may process
several operations of the same job. A solution to this problem
consists of an assignment to machines of all N¼∑n

i ¼ 1Ni opera-
tions in the set O¼⋃1r irnOi together with a schedule, i.e., an
allocation of starting times for each operation on the assigned
machine, which is feasible (i.e. all constraints hold). The objective
is to find an optimal solution according to some criterion, most
commonly that the makespan, which is the completion time of the
last task to finish, is minimal.

Finally, in the fuzzy flexible job shop, processing times poijk are
allowed to be fuzzy numbers (a particular case of which are
natural numbers), modelling the existing uncertainty regarding
the exact duration of an operation on a particular machine.

3.1. Uncertain durations

In real-life applications, it is often the case that the exact
processing time of operations is not known in advance. However,
based on previous experience, an expert may be able to provide
some qualitative information about what duration is more plau-
sible than another, estimating for instance an interval of possible
values for the processing time or its most typical value, and he/she
may even be able to assess whether some values in the interval
appear to be more plausible than others. This naturally leads to
modelling such durations using fuzzy intervals or fuzzy numbers
(see [20] and references therein for practical ways of eliciting
fuzzy intervals). Fuzzy intervals have been extensively studied in
the literature (cf. [39]). A fuzzy interval A is a fuzzy set on the reals
(with membership function μA : R-½0;1�) such that its α-cuts
Aα ¼ fuAR : μAðuÞZαg, αAð0;1�, are intervals. A fuzzy interval is
a fuzzy number if its α-cuts (denoted ½nα;nα�) are closed, its support
A0 ¼ fuAR : μAðuÞ40g is compact (closed and bounded) and there
is a unique modal value un, μAðunÞ ¼ 1. Clearly, real numbers can
be seen as a particular case of fuzzy ones.

The simplest model of fuzzy interval is a triangular fuzzy
number or TFN, using an interval ½a1; a3� of possible values and a
modal value a2 in it. For a TFN A, denoted A¼ ða1; a2; a3Þ, the

membership function takes the following triangular shape:

μAðxÞ ¼

x�a1

a2�a1
: a1rxra2

x�a3

a2�a3
: a2oxra3

0 : xoa1 or a3ox

8>>>>><
>>>>>:

ð1Þ

If TFNs are to be used to extend the flexible job shop to handle
uncertainty, two issues must be addressed: the precise meaning of
“minimal makespan” when such makespan is a TFN as well as the
means of extending the arithmetic operations of addition and
maximum to work with TFNs.

The fact that there is no natural total ordering in the set of TFNs
makes the concept “minimal makespan” ambiguous. In the litera-
ture on fuzzy job shop two main approaches to defining a total
ordering co-exist.

The membership function μQ of a fuzzy quantity Q can be
interpreted as a possibility distribution on the real numbers; this
allows us to define the expected value of a fuzzy quantity [40],
given for a TFN A by

E½A� ¼ 1
4 ða1þ2a2þa3Þ: ð2Þ

It induces a total ordering rE in the set of fuzzy intervals [20],
where for any two fuzzy intervals M;N MrEN if and only if
E½M�rE½N�. The expected value coincides with the neutral scalar
substitute of a fuzzy interval and can also be obtained as the centre
of gravity of its mean value or using the area compensation method,
which calculates areas under the membership function with an
interpretation in terms of imprecise probabilities [8]. Clearly, for
any two TFNs A and B, if 8 i; airbi, then ArEB.

Related to this is a ranking method widely used in the fuzzy
scheduling literature following the seminal papers of Sakawa et al.
[41,21]. It is based on using multiple numerical indices for ranking
fuzzy numbers, as suggested in [42]. In particular, for any TFN A,
three indices are considered: c1ðAÞ ¼ E½A�, c2ðAÞ ¼ a2 and c3ðAÞ ¼
a3�a1. Then, AoRB if c1ðAÞoc1ðBÞ or else if c1ðAÞ ¼ c1ðBÞ and
c2ðAÞoc2ðBÞ or else if c1ðAÞ ¼ c1ðBÞ, c2ðAÞ ¼ c2ðBÞ and c3ðAÞoc3ðBÞ.
Obviously, if AoEB, it is also the case AoRB.

In the fuzzy flexible job shop, we essentially need two opera-
tions on fuzzy numbers, the sum and the maximum. These are
obtained by extending the corresponding operations on real
numbers using the Extension Principle. However, computing the
resulting expression is cumbersome, if not intractable. For the sake
of simplicity and tractability of numerical calculations, it is fairly
common in the literature, following [20], to approximate the
results of these operations by interpolation, evaluating only the
operation on the three defining points of each TFN. It turns out
that the sum and its approximation coincide, so for any pair of
TFNs A and B

AþB¼ ða1þb1; a2þb2; a3þb3Þ: ð3Þ
Regarding the maximum, for any two TFNs A and B, if F denotes
their maximum and G¼maxIðA;BÞ ¼ ðmaxfa1; b1g;maxfa2; b2g;
maxfa3; b3gÞ its approximated value, it holds that

8αA ½0;1�; f
α
rg

α
; f αrgα: ð4Þ

where ½f
α
; f α� is the α-cut of F. In particular, F and G have identical

support and modal value, that is, F0 ¼ G0 and F1 ¼ G1. This
approximation has been widely used in the scheduling literature,
among others, in [20,24,43–48,23,21] or [49].

More recently, it has been proposed in [50] to approximate the
maximum using the above ranking method, so maxðA;BÞ �
maxRðA;BÞ where maxR ¼ A if AoRB and maxRðA;BÞ ¼ B otherwise.
Notice that maxRðA;BÞrE maxIðA;BÞ; 8A; B (and therefore
maxRðA;BÞrR maxIðA;BÞ too). Notice as well that it is not guaran-
teed that maxR maintains the support or the modal value of the
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actual maximum and, more generally, it is not coherent with the max
operation it is meant to approximate. As we shall see in the following,
this is of key importance for fuzzy scheduling and it is one of the
reasons why we choose to use maxI instead of maxR. Unless
otherwise stated and for the sake of a simpler notation, we shall
simply write max when referring to the interpolated maximum maxI .

3.2. Solution graph and criticality

A solution to the FfJSP may be alternatively viewed as a pair
ðα;πÞwhere α is a feasible assignment of each operation oijAO to a
machine MkAMðoijÞ, denoted αðoijÞ ¼ k, and π is a processing order
of the operations on all the machines in M (i.e., a machine
sequence) compatible with the job and the machine sequences
that may be represented by a topological ordering. For an opera-
tion oijAO let PJoij and SJoij denote the operations just before and
after oij in the job sequence, respectively, and PMoij and SMoij the
operations right before and after oij in the machine sequence in
a solution (α,π), respectively. The starting and completion times
of oij, denoted Soij and Coij , respectively, can be calculated as
Soij ¼maxðCPJoij

;CPMoij
Þ and Coij ¼ Soij þpoijk, where k¼ αðoijÞ. The

objective is to find a solution (α,π) that minimises the makespan,
i.e., the completion time of the last operation to end, denoted as
Cmaxðα;πÞ ¼maxoij AOCoij .

Since operation processing times are fuzzy intervals, the addi-
tion and maximum operations used to propagate constraints are
taken to be the corresponding operations on fuzzy intervals,
approximated for the particular case of TFNs as explained above.
The obtained schedule will be a fuzzy schedule in the sense that the
starting and completion times of all operations and the makespan
are fuzzy intervals, interpreted as possibility distributions on the
values that the times may take. However, the machine assignment
α and the operation processing ordering π that determine the
schedule are crisp; there is no uncertainty regarding the order and
the machines in which operations are to be processed.

The fuzzy schedule is therefore a predictive schedule, given
before the actual project execution. When the schedule is actually
executed and operations are processed according to the ordering
and machine assignment given by ðα;πÞ, their processing times
will no longer be uncertain and will take precise values in the
interval given by the original TFNs. Thanks to the coherence of the
approximated maximum maxI , we can be sure that all starting and
completion times (in particular, the makespan) will lie within the
support of the predicted fuzzy times. In particular, we can be sure
that if the fuzzy makespan is Cmax ¼ ðC1

max;C
2
max;C

3
maxÞ, all possible

executions of ðα;πÞ will have a crisp makespan in the interval
½C1

max;C
3
max� (being more likely those values around C2max). This is

not the case with maxR: a fuzzy schedule computed using maxR
may predict a fuzzy makespan which has no correspondence with
the crisp makespan obtained when the schedule is later executed.

Based on the above, we propose a solution graph model which
extends that from [51] to incorporate machine flexibility. According
to this model, a machine assignment α and a feasible operation

processing order π can be represented by an acyclic directed graph
Gðα;πÞ ¼ ðV ;A [ Rðα;πÞÞ where each node x in V represents either
an operation of the problem, labelled with the machine to which it
has been assigned Mk, k¼ αðxÞ, or one of the dummy nodes start
and end, which are fictitious operations with processing time 0. Arcs
in A represent job processing orders and the set Rðα;πÞ is parti-
tioned into subsets Rk, where Rk is a minimal set of arcs represent-
ing the processing order given by π for all operations assigned by α
to the machine Mk. Each arc is weighted with the processing time
(a TFN in our case) of the operation at the source node in the mac-
hine where it will be processed.

To illustrate previous concepts, Fig. 1 shows a solution graph
and a Gantt chart (adapted to TFNs following [20]) where π ¼
fo21; o11; o22; o31; o23; o32; o33; o24; o12g and the assignment α is explicit
in the label of each node. In accordance with the graph model, there is
a node for each operation together with the dummy nodes start and
end. Solid arcs represent job processing orders while dotted arcs
represent machine processing orders. Each arc is labelled with the
processing time (the TFN) of the source node. In this example, the
processing order for operations in M1 is o21, o31, o33; the processing
order for operations in machineM2 is o11; o23; o32; o34 and, finally, only
operation o22 is to be processed in machineM3. On the right-hand side
of Fig. 1, the Gantt chart represents the corresponding partial
schedules on each job. For instance, the fuzzy time gap when
operation o23 is being processed corresponds to the green coloured
polygon labelled o23. This polygon is delimited on the left by the
starting time (6, 7, 10) and on the right by the completion time (7, 9,
13); notice that in the case that starting and completion times were
real numbers, the polygon would become a rectangle, which is the
standard way of representing operation execution times in determi-
nistic Gantt charts. Additionally, the fuzzy makespan and its expected
value are depicted below the job partial schedules, making it possible
to appreciate which operation contributes to each component of the
makespan.

The way to confront criticality in the fuzzy framework is it not
unique. Here we adopt the definition from [51] where, given a
solution graph Gðα;πÞ, three parallel solution graphs Giðα;πÞ,
i¼ 1;2;3, are defined with identical structure to Gðα;πÞ but where
the cost of any arc ðx; yÞ is pxki , the ith component of pxk, for k¼ αðxÞ.
Since durations in each parallel graph Giðα;πÞ are deterministic, a
critical path in Giðα;πÞ is the longest path from node start to node
end. The set of critical paths in Gðα;πÞ is then defined as the union
of critical paths in Giðα;πÞ; i¼ 1;2;3. Nodes and arcs in a critical
path are also termed critical. A critical path is naturally decom-
posed into critical blocks B1;…;Br , where a critical block is a
maximal subsequence of tasks in a critical path requiring the
same machine and such that two consecutive operations of the
block do not belong to the same job. Notice that the makespan
of the schedule is not necessarily the cost of a critical path, but
each component Ci

maxðα;πÞ is the cost of a critical path in the
corresponding solution parallel graph Giðα;πÞ. This will prove an
important point when defining the neighbourhood structure in
Section 4.4.

o11M2 

endstart

o12M1 

o21M1 o24M2 o22M3 o23M2 
(2,3,6) (4,4,4) 

o31M1 o32M2 (2,3,5) (3,4,6) o33M1 

(0,0,0) 

(2,3,6) 

(3,4,7) 

(3,4,6) 
(1,2,3)

(1,2,3) (6,8,10) 

(3,5,7) 

(2,3,5) 

(2,4,5) 

(0,0,0) 

(0,0,0) 
(2,4,5) 

(3,4,7) 

Fig. 1. A feasible schedule to a problem with three jobs and three machines. The makespan is (16, 22, 31). (a) Solution graph. (b) Gantt chart (job-oriented). (For
interpretation of the references to color in this figure caption, the reader is referred to the web version of this paper.)
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4. The hybrid algorithm

The long record of good results obtained with hybrid methods that
combine genetic algorithms (GA) and different local search methods,
in particular Tabu Search (TS), supports the choice of this kind of
metaheuristic [11,13,10]. It is well known that a key component for the
success of a TS algorithm is the neighbourhood structure used in it.
Here we propose a neighbourhood structure for the FfJSP that fulfills
two important properties: feasibility and connectivity. We also incor-
porate new mechanisms to speed-up the evaluation of the individuals
and a neighbour filter that allows the algorithm to discard a great
number of non-improving ones, thus reducing the size of the
neighbourhood and increasing the chance for improvement. Filtering
is particularly important in the fuzzy framework as the number of
feasible neighbours of a solution is considerably larger than in the
crisp case. Regarding the initial population, a wise generation of
heuristic solutions can help to improve the convergence of the
memetic algorithm compared to starting from an initial population
composed by only random solutions [15]. This is especially interesting
when dealing with large instances [52].

The main steps of this hybrid algorithm are the following. In the
first step the initial population is generated by the heuristic algo-
rithm (FfInsertion) described below. Then the genetic algorithm
iterates over a number of generations. In each iteration, a new
generation is built from the previous one by applying the usual
genetic operators. Tabu search is applied to every schedule produced
either by the initialisation heuristic algorithm or by the GA; the
corresponding chromosome is rebuilt from the improved schedule
obtained by TS so its characteristics can be transferred to the
subsequent offsprings (effect known as the Lamarckian evolution).
The flow chart of the resulting hybrid algorithm can be seen in Fig. 2.

In the following, we describe in more detail these components:
the genetic algorithm, the heuristic seeding strategy, and the tabu
search algorithm, including the neighbourhood structures and the
makespan estimation procedure.

4.1. Genetic algorithm

We consider here a GA previously used in [14] for tackling
other variants of the JSP and extend it to the FfJSP. The main
characteristics of this GA are the following. In the first step, the
initial population (obtained either randomly or by some heuristic
procedure) is evaluated. Then the GA iterates over a number of
generations. In each iteration a new generation is built from the
previous one by applying the genetic operators of selection,
recombination and replacement. In the selection phase all chro-
mosomes are randomly grouped into pairs, and then each one of
these pairs is mated to obtain two offspring. Finally, the replace-
ment is carried out as a tournament selection from each pair of
parents and their two offspring. This algorithm differs slightly
from the classic genetic algorithms in that the selective pressure is
introduced in the replacement instead of in the selection phase.

To codify chromosomes we have chosen the two-vector repre-
sentation [11], which is widely used in the flexible job-shop
problem and its fuzzy version with slight differences. This encod-
ing is quite natural because the fJSP is a combination of machine
assignment and operation scheduling decisions, so a solution can
be expressed by two vectors v1 and v2, v1 representing the
machines assigned to the operations and v2 representing the
processing sequences of operations on the machines.

The operation-sequence vector is based on permutations with
repetition for the JSP [53]. It is a permutation of the set of operations,
each being represented by its job number. For example, if we have a
problem with three jobs: J1 ¼ fo11; o12g; J2 ¼ fo21; o22; o23; o24g;
J3 ¼ fo31; o32; o33g, then the sequence v2¼ (2 1 2 3 2 3 3 2 1) is a
valid vector that represents the topological order π ¼ fo21; o11; o22; o31;

o23; o32; o33; o24; o12g. With this encoding, every permutation produces
a feasible processing order.

Regarding the machine-assignment vector, at a given position it
has the number of the machine assigned to the operation located
at the same position in the operation-sequence vector. For exam-
ple, if we consider the sequence vector above, then the machine
vector v1 ¼ (1 2 3 1 2 2 1 2 1), indicates that the operations o21, o31,
o33 and o12 use the machine M1, the operations o11, o23, o32 and o24
use the machine M2, and only the operation o22 uses the machine
M3 (that is, αðo21Þ ¼ αðo31Þ ¼ αðo33Þ ¼ αðo12Þ ¼ 1, αðo11Þ ¼ αðo23Þ ¼
αðo32Þ ¼ αðo24Þ ¼ 2 and αðo22Þ ¼ 3).

For chromosome mating, the genetic algorithm uses an extension
of the well-known Job Order Crossover (JOX). Given two parents, JOX
selects a random subset of jobs and copies their genes to one offspring
in the same positions as in the first parent, then the remaining genes
are taken from the second parent so that they maintain their relative
ordering. To create the second offspring, the parents change their
roles. In order to extend this operator to the flexible case, we also need
to consider the machine-assignment vector. We propose to choose for
every operation the corresponding assignment in the parent it comes
from. For instance, let us consider the following two parents:

Assignment Sequence

Parent1 (1 2 3 1 2 2 1 2 1) (2 1 2 3 2 1 3 2 3)
Parent2 (3 2 3 1 3 2 1 3 3) (1 1 2 2 3 3 2 2 3)

Assuming that the selected subset of jobs (in bold) includes only
job 2, then

Assignment Sequence

Offspring1 (1 3 3 2 2 3 2 2 3) (2 1 2 1 2 3 3 2 3)
Offspring2 (2 1 3 1 2 1 1 3 1) (1 3 2 2 1 3 2 2 3)

The operator JOX may swap any two operations requiring the
same machine; this is an implicit mutation effect. This is the
reason we have chosen not to use any explicit mutation operator.
In consequence, parameter setting in the experimental study is
considerably simplified, because crossover probability is set to

Fig. 2. Flow chart of the hybrid algorithm.
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1 and mutation probability needs not be specified. With this
setting, we have obtained results similar to those obtained with
a lower crossover probability and a low probability of applying
mutation operators. Also, some authors, for example [54] or [55],
have already noticed that a mutation operator does not play a
relevant role in a genetic algorithm hybridised with local search.

To evaluate chromosomes, we need to generate schedules,
obtaining their makespan and compute the expected value thereof
(this constitutes the fitness value). To do so, we have used a simple
decoding algorithm: operations are scheduled in the machines
given by the machine-assignment vector at the earliest possible
instant that maintains the order in which they appear in the
operation-sequence vector of the chromosome. In other words, we
produce a possibly semiactive schedule, which means that the
possibility of that no operation can start earlier without altering
the operation sequence for a given machine assignment is 1.

4.2. Heuristic seeding

To generate initial solutions we schedule operations in an
insertion mode but taking advantage of the flexibility. Let Ω
denote the set of operations that can be scheduled at the current
stage (initially, this set contains the first operation from each job).
We select a random operation oij in Ω and compute its earliest
completion time, C⋆, considering all the machines where it can be
processed. Then, we randomly select a machine MkAMðoijÞ in
which oij may finish at C⋆ and schedule oij in machine Mk at its
earliest starting time, given by C⋆�poijk. oij is removed fromΩ and
its successor in the job sequence is added to Ω, provided that it
exists. The process finishes when Ω becomes empty.

To understand what is an insertion mode and indeed how C⋆ is
computed, we define a feasible insertion interval for a operation oij
in a machine MkAMðoijÞ to be a time interval ½tSk; tEk � in which
machine Mk is idle and such that oij can be processed within that
time interval without violating precedence constraints, that is,
tSkþpoijkrtEk , and tSkZCoiðj� 1Þ (if j¼0, Coiðj� 1Þ is taken to be 0). Then,
the earliest starting time for operation oij in machine Mk, denoted
ESToijk, is the smallest tk

S that can be found. Thus, the earliest
completion time for oij is C⋆ ¼min fESToijkþpoijk;MkAMðoijÞg. We
schedule oij in any machine Mk such that ESToijkþpoijk ¼ C⋆.

The pseudocode description of this fuzzy flexible insertion
algorithm (FfInsertion) is shown in Algorithm 1.

Algorithm 1. The FfInsertion.

Input A FfJSP instance
Output An operation processing order and a machine

assignment which determines a schedule
Ω’foi1;1r irng;
while Ωa∅ do
oij’ an operation selected at random from Ω;
for each MkAMðoijÞ do
Compute ESToijk;

C⋆’min fESToijkþpoijk;MkAMðoijÞg;
K’fMkAMðoijÞ; ESToijkþpoijk ¼ C⋆g;
Choose a machine Mk⋆ from K at random;
Schedule the operation oij in machine Mk⋆ ;

{fix the value of Soij ¼ ESToijk
⋆ };

Ω’Ω�foijg
if j is not the last operation of job i then
Ω’Ω [ foiðjþ1Þg;

Build the sequence and the assignment vectors according to
the created schedule;
return The schedule S given by fSoij : 1r irn;1r jrNig and
the sequence and assignment vectors

4.3. Tabu search

Tabu search (TS) is an advanced local search technique, pro-
posed in [56,57], which may select non-improving neighbours in
order to escape from local optima. To avoid revisiting recently
visited solutions and so to promote the exploration of new
promising regions of the search space, it maintains a tabu list
with a set of moves which are not allowed when generating new
neighbourhoods. TS has a solid record of good empirical perfor-
mance, often used in combination with other metaheuristics. In
particular, as already mentioned in Section 2, the i-TSAB algorithm
is the basis for two of the state-of-the-art approaches to JSP.

The general scheme of TS algorithm used herein is similar to
other TS algorithms proposed in the literature, for instance in [58].
In the first step the initial solution, generated by the GA, is
evaluated and it then iterates for a number of steps. At each
iteration, the neighbourhood of the current solution is calculated
and one of the neighbours is selected as new solution. Neighbours
are evaluated using a makespan estimate, so the selection criterion
is based on selecting the neighbour with lowest expected value of
estimated makespan. A neighbour is tabu if it is generated by
reversing a tabu arc or by assigning a tabu machine to an
operation, unless its estimated expected makespan is better than
that of the current best solution. Additionally, we use the dynamic
length schema for the tabu list and the cycle checking mechanism
as they were proposed in [58]. TS finishes after a number of
iterations without improvement, returning the best solution found
so far.

Two key points of this TS algorithm are the definition of the
neighbourhood structure and the method used to estimate the
neighbour's makespan. The next two subsections describe, respec-
tively, new neighbourhood structures for FfJSP (including some
properties thereof) and the procedure for makespan estimation.

4.4. Neighbourhood structure

Clearly, a central element in any local search procedure is the
definition of neighbourhood. For the crisp job shop, a well-known
neighbourhood, which relies on the concepts of critical path and
critical block, is that proposed in [59], later extended to the fuzzy
case in [51] using the given definition of criticality. In this
structure, given a operation processing order, π, the neighbour-
hood of π is the set of operation processing orders obtained from π
by reversing single critical arcs. Adding flexibility to the problem
requires considering the assignment of machines to operations as
well. We thus propose to extend the neighbourhood from [51] to
consider also all the moves that result from changing the machine
assignment of a single critical operation. The resulting neighbour-
hood is termed NAP and it is obtained as the union of other two,
termed NA and NP. NAP is quite similar in its motivation and
definition to the structure proposed in [14] for the SDST-fJSP;
however, we shall see that the different nature of the FfJSP results
in significant differences, for instance, conditions to discard
unfeasible neighbours are no longer necessary.

Definition 1 (Neighbourhood NA). Let α be a machine assignment,
π a feasible operation processing order, x an operation and
k0AMðxÞ a machine such that k0aαðxÞ. Let α〈x;k0〉 denote the
assignment obtained from α after reassigning operation x to
machine k0. The neighbourhood structure NA obtained from α is
defined as NAðα;πÞ ¼ fðα〈x;k0〉;πÞ : x is critical; k0AMðxÞ; k0aαðxÞg.

Definition 2 (Neighbourhood NP). Let α be a machine assignment
and π a feasible operation processing order. Given an arc
v¼ ðx; yÞARðα;πÞ, let πðvÞ denote the processing order obtained
from π after reversing arc v in Gðα;πÞ. The neighbourhood
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structure obtained from π, NP, is given by NPðα;πÞ ¼
fðα;πðvÞÞ : vARðα;πÞ is in a critical block g.

For a fixed assignment this neighbourhood coincides with that
defined in [51] for the FJSP.

Notice that while NA concerns both an operation x and a
machine k0, NP concerns the arc formed by a pair of operations
v¼ ðx; yÞ.

Definition 3. NAPðα;πÞ ¼NAðα;πÞ [ NPðα;πÞ.
According to the following property it makes sense in the

above definitions to discard non-critical arcs or operations.

Proposition 1. Let α be a machine assignment, π a feasible proces-
sing order, β¼ α〈x;k0〉 and σ ¼ πðvÞ where x and v are not critical in
Gðα;πÞ. Then
8 i; Ci

maxðα;πÞrCi
maxðα;σÞ:

8 i; Ci
maxðα;πÞrCi

maxðβ;πÞ: ð5Þ

This property follows immediately from the definition of critical
arcs and activities.

In addition, the neighbourhood NAP has two highly desirable
properties: feasibility and connectivity, which are stated in the
following two theorems.

Theorem 1. Let α be a machine assignment and let π be a feasible
operation processing order; then all elements in NAPðα;πÞ are feasible.

Proof. Feasibility of neighbours obtained with NP is proved in [51].
Notice that neighbours in NA are defined so they maintain the
processing order of operations π, and therefore they are feasible. □

This result allows the algorithm to limit the local search to a
subspace of feasible operation orders and so it avoids feasibility
checking on the neighbours, hence reducing the computational load.

Now, in order to establish the connectivity property, we will
follow a similar reasoning as [59] to prove this property for the
structure N defined for the classical JSP. In our case, the reasoning
is more complicated as we have to deal with flexibility and
uncertainty. In fact, in the absence of these characteristics, NAP is
the same as N. Hence, we start with the following Lemma.

Lemma 1. Let ðα;πÞ be a feasible solution, Gðα;πÞ ¼ ðV ;A [ Rðα;πÞÞ
its disjunctive graph and ðαn;πnÞ an optimal solution. Let us define

W ð1Þ
α;πðαn;πnÞ ¼ fv¼ ðx; yÞARðα;πÞ:

v is critical in Gðα;πÞ; ðy; xÞARðαn;πnÞg ð6Þ
where Rðα;πÞ denotes the transitive closure of Rðα;πÞ,
W ð2Þ

α;πðαn;πnÞ ¼ fxAV : x is critical in Gðα;πÞ;αðxÞaαnðxÞg; ð7Þ
and

Wα;πðαn;πnÞ ¼W ð1Þ
α;πðαn;πnÞ [ W ð2Þ

α;πðαn;πnÞ ð8Þ
i.e., Wα;πðαn;πnÞ is the set of critical arcs (x,y) in Gðα;πÞ such that
there exists a path from y to x in Rðαn;πnÞ together with the set of
critical operations in Gðα;πÞ assigned to a different machine in αn.

If holds that if ðα;πÞ is not optimal, then Wα;πðαn;πnÞa∅ or
equivalently, if Wα;πðαn;πnÞ ¼∅ then ðα;πÞ is optimal.

Proof. We shall first prove that if ðα;πÞ is not optimal, there is at
least a critical arc in Rðα;πÞ or a critical operation x such that
αðxÞaαnðxÞ.

Suppose that there are no critical arcs in Rðα;πÞ and that for every
critical operation x it holds that αðxÞ ¼ αnðxÞ, that means that all
critical arcs in Gðα;πÞ belong to A. Therefore, for all i, all critical paths
in Giðα;πÞ belong to A. Hence, in each Giðα;πÞ there exists a critical

path where all arcs belong to A and such path is optimal in Giðα;πÞ
(for every i, a path where all arcs belong to the same job is a lower
bound of Cmax

i ) for this assignment α. In principle, in the presence of
flexibility this does not guarantee the optimality of the solution, as the
processing time of operations in the path depends on the machine
assignment, which may not be the same as in the optimal solution.
However, since we are also supposing that for every critical operation
x in Giðα;πÞ αðxÞ ¼ αnðxÞ, we can conclude that ðα;πÞ is optimal.

Secondly, we shall prove that if ðα;πÞ is not optimal, then there
exists some critical arc v¼ ðx; yÞ such that ðy; xÞARðαn;πnÞ or there
exists a critical operation x such that αðxÞaαnðxÞ.

Let us now assume that all critical arcs v¼ ðx; yÞARðα;πÞ verify
that ðx; yÞARðαn;πnÞ and that all critical operations x in Gðα;πÞ it
holds that αðxÞ ¼ αnðxÞ. The set of critical arcs in Gðα;πÞ is the
union of the set of critical arcs across all parallel disjunctive
graphs. Therefore, the assumption means that for all i all critical
arcs in Riðα;πÞ belong to the transitive closure Riðαn;πnÞ. Hence,
a critical path Pi in Giðα;πÞ is also a path in Giðαn;πnÞ ¼
ðV ;A [ Riðαn;πnÞÞ. As above, unlike the non-flexible case, the
length of Pi in Giðα;πÞ may be different from its length in
Giðαn;πnÞ because it depends on the machine assignment, but
since we are supposing that for all operations in Pi αðxÞ ¼ αnðxÞ,
then the length of Pi in Giðαn;πnÞ is the same as in Giðα;πÞ. By
definition of transitive closure, there is a path in Giðαn;πnÞ with
length greater or equal than it and the length of that path is
obviously less or equal than the length of a critical path in
Giðαn;πnÞ. Let Qi denote an arbitrary critical path in Giðαn;πnÞ and
let JQi J denote its length. It holds that

8 i;Ci
maxðα;πÞ ¼ JPi Jr JQi J ¼ Ci

maxðαn;πnÞ
In consequence, E½Cmaxðα;πÞ�rE½Cmaxðαn;πnÞ�. But, since ðαn;πnÞ is
optimal, it must be the case that E½Cmaxðαn;πnÞ�rE½Cmaxðα;πÞ�,
therefore E½Cmaxðαn;πnÞ� ¼ E½CmaxðσÞ� and ðα;πÞ is optimal.

Then, if ðα;πÞ is not optimal, either there exists a critical arcs
v¼ ðx; yÞARðα;πÞ verifying that ðx; yÞ=2Rðαn;πnÞ or there exists a
critical operation x such that αðxÞaαnðxÞ. In the first case, either
ðy; xÞARðαn;πnÞ or x and y are not related in Rðαn;πnÞ, i.e.
αnðxÞaαnðyÞ, but given that αðxÞ ¼ αðyÞ, at least one of them,
suppose it is x, verifies that αnðxÞaαðxÞ. □

Theorem 2. NAP verifies the connectivity property, that is, for every
non-optimal solution ðα;πÞ we may build a finite sequence of
transitions of NAP leading from ðα;πÞ to a globally optimal solution.

Proof. Let ðαn;πnÞ be any optimal solution and let fλkgkZ0 be the
sequence of solutions defined recursively as follows:

λ0 ¼ ðα;πÞ.
λkþ1 is obtained from λk by reversing an arc vAW ð1Þ

λk
ðαn;πnÞ or

by assigning αnðxÞ to an operation xAW ð2Þ
λk
ðαn;πnÞ.

Notice that λkþ1 is obtained from λk using a move from NAP so,
by Theorem 1, 8k λk is a feasible solution. Let us prove that the
above sequence is finite. For any feasible solution ðα;πÞ, we define
the following sets:

Mð1Þ
α;πðαn;πnÞ ¼ fv¼ ðx; yÞARðα;πÞ : ðy; xÞARðαn;πnÞg;

Mð1Þ
α;πðαn;πnÞ ¼ fv¼ ðx; yÞARðα;πÞ : ðy; xÞARðαn;πnÞg;

Mð2Þ
α;πðαn;πnÞ ¼ fxAV : αðxÞaαnðxÞg;

Mð3Þ
α;πðαn;πnÞ ¼ ffx; yg : αnðxÞ ¼ αnðyÞ;αðxÞaαnðxÞg;

Mα;πðαn;πnÞ ¼Mð1Þ
α;πðαn;πnÞ [ Mð2Þ

α;πðαn;πnÞ [ Mð3Þ
α;πðαn;πnÞ;

and

Mα;πðαn;πnÞ ¼Mð1Þ
α;πðαn;πnÞ [ Mð2Þ

α;πðαn;πnÞ [ Mð3Þ
α;πðαn;πnÞ:

The relation between Mð1Þ
α;π and W ð1Þ

α;π above and between Mð2Þ
α;π

and W ð2Þ
α;π is clear. As for Mð3Þ

α;π , it is the set of non-directed arcs
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between operations which are processed in the same machine in
the optimal solution ðαn;πnÞ and such that at least one of them is
processed in other machine in the current assignment α; Rðαn;πnÞ
contains one arc for every element in Mð3Þ

α;π . Notice that Mð3Þ
α;π

includes a non-directed arc for every arc that might appear in
Mð1Þ

α;π when moving from λk to λkþ1. Indeed, if an operation x is
assigned to αnðxÞ, its relative position with respect to the rest of
the operations in that machine may not be the same as in πn, in
which case the size of Mð1Þ

α;π increases (and at the same time Mð3Þ
α;π

decreases in at least the same amount).
Clearly, Wα;πðαn;πnÞ �Mα;πðαn;πnÞ �Mα;πðαn;πnÞ. Let JMα;πðαn;

πnÞJ and JMα;πðαn;πnÞ J denote their cardinals. If λk is not optimal, by
Lemma 1, there exists a critical arc v¼ ðx; yÞ such that ðy; xÞARðαn;πnÞ
or there exists a critical operation x such that αðxÞaαnðxÞ thus making
it possible to obtain λkþ1. If λkþ1is obtained from λk by reversing an
arc vAW ð1Þ

λk
ðαn;πnÞ, then

JMð1Þ
λkþ 1

ðαn;πnÞ J ¼ JMð1Þ
λk
ðαn;πnÞ J�1;

and, since no machine assignment has changed

JMλkþ 1
ðαn;πnÞ J ¼ JMλk ðαn;πnÞ J�1:

On the other hand, if λkþ1 is obtained from λk by assigning
αnðxÞ to a critical operation xAMð2Þ

λk
ðαn;πnÞ, then

JMð2Þ
λkþ 1

ðαn;πnÞJ ¼ JMð2Þ
λkþ 1

ðαn;πnÞj�1;

and from Mð3Þ
λkþ 1

ðαn;πnÞ disappear all pairs fx; yg such that the

machine assigned to y in λk is αnðxÞ. If any of these pairs

corresponds to a new arc v¼ ðx; yÞ in Mλkþ 1
ðαn;πnÞ such that

ðy; xÞARðαn;πnÞ, the arc will be added to Mð1Þ
λkþ 1

ðαn;πnÞ. However,

for every new element in Mð1Þ , the corresponding one will

disappear from Mð3Þ. Else, if no element is added to Mð1Þ , its

cardinal will remain the same, while Mð3Þ may loose some of its
elements. In consequence

JMλkþ 1
ðαn;πnÞ Jr JMλk ðαn;πnÞ J�1:

Therefore, in the worst case, for k⋆ ¼ JMα;πðαn;πnÞ J , we have an
optimal solution. □

As mentioned above, connectivity is an important property for
any neighbourhood used in local search. It ensures the non-
existence of starting points from which the local search cannot
reach a global optimum. It also ensures asymptotic convergence in
probability to a globally optimal order. Additionally, although the
neighbourhood structure is used in a heuristic procedure in this
paper, the connectivity property would allow us to design exact
methods for fuzzy flexible job shop.

Preliminary experimental results with NP have endorsed the
good theoretical behaviour, obtaining good expected makespan
values; however, the large size of the neighbourhood structure
for the fuzzy case results in an extremely high computa-
tional load. The fact that for a fixed assignment α, NP is the
neighbourhood structure proposed in [51] for FJSP allows us to
profit from the following result, which can be seen as a filtering
mechanism that trims the NAP structure by discarding non-
improving neighbours:

Proposition 2. For a given solution ðα;πÞ reversing a critical arc
which is not at the extreme of a critical block does not improve the
expected makespan

Proof. See Theorem 2 in [51]: since reversing an arc does not
change any machine assignment, the same reasoning applies and,
in consequence, the length of the critical paths that existed before

the move and whose arc has been reversed, remain unchanged
after the move, so the expected makespan cannot improve. □

This suggests defining the following reduced neighbourhoods:

Definition 4. NP
r ¼ fvANP : v is in an extreme of a critical block g.

Definition 5. NAP
r ¼NA [ NP

r .

Clearly, NAP
r DNAP and hence it contains only feasible neigh-

bours. According to Proposition 2, the discarded neighbours in
NAP�NAP

r are always non-improving ones; however, connectivity
no longer holds. In [45] an analogous reduction for the FJSP was
shown to be much more efficient than the original structure and,
in [60], similar criteria are used to omit some moves provided that
they do not generate better solutions than the current ones for
fJSP.

4.5. Makespan estimate

The most time-consuming part of evolutionary algorithms is
usually the fitness evaluation. The use of approximate fitness
functions in order to gain in efficiency is not new; for example
in [61], the authors propose to use surrogate functions to this end.
In scheduling problems, it is often possible to accurately estimate
the makespan after a move, even without resorting to surrogate
functions. In this section, we show how this can be done for the
FfJSP.

In order to simplify expressions, we extend to the fuzzy and
flexible framework, the well-known concepts of head and tail of
an operation. For a solution graph Gðα;πÞ and an operation x, the
head of x, denoted rx, is the starting time of x, a TFN given by
rx ¼maxfrPJx þpPJxk1 ; rPMx þpPMxkg; being k¼ αðxÞ and k1 ¼ αðPJxÞ. At
the same time, the tail of x, denoted qx, is the time lag between the
moment when x is finished until the completion time of all tasks
that must be processed after x, a TFN given by qx ¼maxfqSJx þ
pSJxk2 ; qSMx

þpSMxkg, where k2 ¼ αðSMxÞ.
Clearly, the makespan coincides with both the head of the last

operation and the tail of the first operation: Cmax ¼ rend ¼ qstart .
There are also other basic properties that hold for each parallel
graph Giðα;πÞ: rxi is the length of the longest path from node start
to node x; qixþpix is the length of the longest path from node x to
node end; and rixþpixþqix is the length of the longest path from
node start to node end through node x, i.e., it is a lower bound on
Ci
maxðα;πÞ, being equal if x belongs to a critical path in Giðα;πÞ.
Let us start by considering moves in NP. If ðα;πÞ is a solution

and v¼ ðx; yÞ is a critical arc in Gðα;πÞ, reversing arc v produces a
feasible solution ðα;σÞ with σ ¼ πðvÞ. Let r and q denote the heads
and tails in Gðα;πÞ (before the move) and let r0 and q0 denote the
heads and tails in Gðα;σÞ (after the move). For every operation a
previous to x in π, ra ¼ r0a and for every operation b posterior to y in
π, qb ¼ q0b. For x and y, the heads and tails after the move are
calculated as follows:

r0y ¼maxfrPJy þpPJyk3 ; rPMx þpPMxkg;
r0x ¼maxfrPJx þpPJxk1 ; r

0
yþpykg;

q0x ¼maxfqSJx þpSJxk2 ; qSMy
þpSMykg;

q0y ¼maxfqSJy þpSJyk4 ; q
0
xþpxkg; ð9Þ

where k¼ αðxÞ ¼ αðyÞ, k1 ¼ αðPJxÞ, k2 ¼ αðSJxÞ, k3 ¼ αðPJyÞ and
k4 ¼ αðSJyÞ. Given this, the estimate of the makespan after the
move is Ce

maxðα;σÞ ¼maxfr0xþpxkþq0x; r
0
yþpykþq0yg. This is a lower

bound on the makespan of ðα;σÞ.
Regarding moves in NA, let x be a critical operation in ðα;πÞ and

k¼ αðxÞ, assigning x to another machine Mk0 AMðxÞ maintaining
the processing order π produces a new feasible solution ðβ;πÞ,
where β¼ α〈x;k0〉, i.e., βðyÞ ¼ αðyÞ for all yax and βðxÞ ¼ k0. Again,
the head of the operations before x and the tail of the operations
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after x do not change; while the head and tail for x after the move
are given by

r0x ¼maxfrPJx þpPJxk1 ; rPMx þpPMxk
0 g;

q0x ¼maxfqSJx þpSJxk2 ; qSMx
þpSMxk

0 g: ð10Þ

Therefore, the makespan of ðβ;πÞ can be estimated as Ce
maxðβ;πÞ ¼

r0xþpxk0 þq0x, which is also a lower bound on the makespan of
ðβ;πÞ.

5. Experimental study

The purpose of this experimental study is twofold: first, to
analyse the behaviour of the proposed Hybrid Genetic Tabu Search
(HGTS) algorithm and, second, to compare it with the state-of-the-
art. For the first purpose we consider the components of HGTS (the
Heuristic Initial Population (HIP) generator, the GA and the TS)
both separately and in combination. To compare HGTS with the
state-of-the-art, we start by considering the best approaches for
the FfJSP, which to our knowledge are those proposed in [35–38].
HGTS is further tested on fJSP instances (with no uncertainty); this
allows us to establish comparisons with a large number of
algorithms from the literature on a varied set of instances. We
conclude this empirical study proposing a new benchmark for the
FfJSP with larger and harder instances than those of the current
benchmarks.

After a series of preliminary experiments, the following setting
for HGTS has been chosen: the population size is 100 chromo-
somes and the stopping criterion for the GA is 20 generations
without improving the best solution, while for the TS, the number
of iterations without improvement depends on the average size of
the instances of the different benchmarks (details are given later).
HGTS has been implemented in Cþþ and the target machine is a
PC with a Xeon E5520 processor and 24 GB RAM. For each problem
instance, we have launched 30 runs and considered as perfor-
mance metric the mean relative error (MRE) with respect to a
lower bound of the makespan, calculated for the fJSP instances as

MRE¼ ðCmax�LBÞ=LB� 100 ð11Þ
where LB is the instance's makespan lower bound, and for the FfJSP
instances as

MRE¼ ðE½Cmax��LBF Þ=LBF � 100 ð12Þ
where LBF is a lower bound of the expected makespan. The lower
bounds for most of the fJSP instances are those reported in [31]. To
obtain lower bounds for fuzzy instances, we adapt the lower
bound proposed in [62] for JSP to the fuzzy and flexible setting as
follows:

LBF ¼ E max
i

∑
Ni

j ¼ 1
pmoij

( )" #
ð13Þ

where pmoij ¼min fpoijk;MkAMðoijÞg.
Regarding the benchmarks for the FfJSP, we consider here those

proposed in [34,37,38] with six instances altogether. Instances

01 and 02 have 10 jobs, 10 machines and 40 operations each
ð10� 10� 40Þ. Instances 03 and 04 are 10� 10� 50 and instances
05 and 06 are 15� 10� 80. All instances have total flexibility, i.e.,
any operation can be executed on any machine. For these
instances, the stopping criterion for the TS is 50 iterations without
improvement.

In [38], the authors report results on six more FfJSP instances
which are obtained as fuzzified versions of fJSP instances from
[63,64,29]. In this case, the fuzzy processing times of operations
are not explicitly reported but a method to generate the TFNs is
given instead, so the modal value is the original crisp duration, and
the lower and upper defining points are randomly chosen from
some intervals. In consequence, it is impossible to work with
exactly the same instances. Additionally, the solutions reported in
[38] are not fully consistent with the described fuzzifying method.
For example, for the instance with 10 jobs and six machines from
[63], even if the TFNs are formed by assigning to each defining
point the smallest possible value (the lower endpoint of each
interval as proposed in [38]), the lower bound of the expected
makespan obtained from Eq. (13) is 312; however, the expected
values reported in [38] for the average and the best solutions are
273.53 and 167.25 respectively. For these reasons, we have not
considered these instances on our experimental study for the FfJSP.
We do however consider the original crisp fJSP instances from
[63,64] and Brandimarte [29] in Section 5.3.

5.1. Analysis of the HGTS

We start the analysis of HGTS by considering the effect of the
initial population. To this end, we obtain two different initial
populations, one generated using the heuristic from Section 4.2
and the other one, randomly. The best and average values (the
latter between brackets) of the expected makespan in both
populations can be seen in the third and fourth columns of
Table 1, labelled Rd.IP and HIP, respectively. These clearly show
the higher quality of the heuristic population. The table also
contains results for the GA both with random and heuristic initial
populations (fifth and sixth columns respectively, labelled RGA
and HGA), results for the heuristic strategy used as production rule
(seventh column, labelled H), results for the TS both with random
and heuristic initial population (eighth and ninth columns,
labelled RTS and HTS) and results for the combination of GA and
TS with heuristic population, i.e., HGTS (last column). Each row in
the table corresponds to a problem instance, with the instance
identifier in the first column and the previously best known
solution in the second column; additionally, the last row reports
the average MRE across all instances w.r.t. the lower bound as
explained above.

The results for RGA, HGA, H, RTS, HTS and HGTS in Table 1
correspond to the case where all methods are given the same
running time: HGTS stops following the criterion given above,
while HGA and RGA stop after they have been running for the
same time as HGTS, H iteratively applies the heuristic scheduling

Table 1
Analysis of the components of HGTS for FfJSP.

Ins pBKS Rd.IP HIP RGA HGA H RTS HTS HGTS

01 30.25 66.28 (97.85) 32.03 (37.19) 38.75 (40.45) 30.50 (31.15) 29.00 (29.60) 28.50 (28.70) 28.50 (28.53) 28.50 (28.50)
02 45.25 87.60 (127.7) 46.90 (54.58) 53.75 (57.60) 45.75 (46.80) 45.25 (45.55) 45.25 (45.25) 45.25 (45.25) 45.25 (45.25)
03 47.75 98.23 (139.6) 49.65 (56.93) 61.75 (63.70) 47.00 (48.18) 45.50 (46.00) 44.50 (44.78) 44.50 (43.53) 43.50 (43.68)
04 38.00 82.05 (115.5) 38.83 (44.72) 49.00 (51.33) 37.75 (38.25) 35.75 (36.18) 35.25 (35.38) 35.00 (35.08) 34.25 (34.28)
05 62.00 126.1 (167.3) 63.23 (69.58) 73.50 (76.13) 60.75 (61.63) 58.50 (59.18) 56.50 (56.95) 53.75 (54.30) 51.50 (52.15)
06 63.75 117.4 (156.7) 61.73 (67.96) 72.25 (74.25) 59.00 (60.78) 57.00 (57.53) 55.50 (56.18) 53.25 (53.58) 51.25 (51.90)

MRE 25.60 154.3 (254.7) 28.10 (45.09) 53.19 (59.51) 23.00 (25.59) 18.54 (19.92) 16.11 (16.87) 13.83 (14.27) 11.24 (11.88)
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schema FfInsertion to random orderings until the same time as
HTGS is consumed and HTS and RTS are launched iteratively from
different solutions generated with the heuristic algorithm (or by
random in the case of RTS) until the same time is used.

Notice that despite the difference in quality of the initial
populations, this difference does not always translate into differ-
ent results after the search, with the three algorithms under
consideration presenting quite different sensitivities to this initial
population. The GA is the method that benefits most from the
heuristic seeding (57% improvement w.r.t. starting from a random
population). This improvement is reduced to 15% for the TS, being
negligible in all instances except the two largest ones (05 and 06).
Finally, the benefit becomes insignificant for the hybrid algorithm
HGTS in this benchmark (this is the reason that no column is
added for the combination of GA and TS with random initial
population). We believe that this may be explained by the fact that
these instances are not challenging enough to appreciate the
contribution of the heuristic seeding to the overall performance
of the HGTS. In Section 5.4, we will introduce larger instances and
use them to further analyse the influence of the different initial
populations. In the remaining of the experimental study, we
consider heuristic initial populations.

In addition, we can assess the potential of the proposed
heuristic strategy, with H being able to yield quite competitive
solutions. This is due both to the large number of solutions that
can be generated in the running time given to H and to the
diversity among them. However, even these solutions are far from
the quality of those obtained with HTS (40% worse), and even
further from the solutions provided by HGTS (68% worse).

We must however be cautious when comparing HTS or H with
HGA based on the results from Table 1, since HGA is somewhat
hindered by the parameterisation used. Indeed, HGA has the same
population size as HGTS but a different stopping criterion (same
time as HGTS). This parameterisation has been chosen to assess as
fairly as possible the contribution of the TS in terms of intensifica-
tion to the final algorithm HGTS w.r.t. HGA, but it has the down-
side effect of not showing the full potential of HGA on its own. On
the other hand, we can appreciate how the genetic algorithm (RGA
or HGA) manages to evolve the initial population (Rd.IP or HIP,
respectively). When it starts from random individuals, it has a
drastic effect in the MRE values and it provides a noticeable
reduction when it starts from heuristic individuals.

Finally, the results illustrate the synergy that exists between the
search strategies that are combined in HGTS, with HGTS reducing
the average MRE nearly 17% w.r.t. HTS, more than 40% w.r.t. H and
54% w.r.t. HGA, showing that this combination obtains better results
than either GA or TS when run separately. In summary, HGTS
provides a good symbiosis between a good starting point (provided
by H) and a good combination of exploration, thanks to the GA, and
exploitation, thanks to the iterative improvement of the TS.

In the next section we analyse these results in more detail in
the context of comparison with other existing methods.

5.2. Comparison with the state-of-the-art in the FfJSP

In order to compare HGTS with the state-of-the-art, we con-
sider the best methods proposed so far for the FfJSP: the Co-
evolutionary Genetic Algorithm (CGA) proposed by Lei [37], the
Swarm-based Neighbourhood Search Algorithm (SNSA) proposed
by Lei and Guo [38], the Hybrid Artificial Bee Colony Algorithm
(hABC) proposed by Wang et al. [35] and the Estimation Distribu-
tion Algorithm (EDA) proposed by Wang et al. [36]. CGA is
implemented in Microsoft Visual Cþþ 6.0 and run on a 512MB
RAM 1.7 GHz PC, it uses a population of 150 chromosomes and a
number of 1000 generations and the time taken ranges from 8 to
11 s for a single run. SNSA is coded in Microsoft Visual Cþþ
6.0 and run on a 2GB RAM 2.2 GHz PC, the swarm size is 100, the
number of iterations is limited to 500 and the time taken varies
from 9 to 14 s a single run. hABC is implemented in Cþþ and run
on a 3.2 GB RAM 2.83 GHz PC with a population of 2� n�m
chromosomes, n�m steps for local search and a limit of 20 trials
without improving a source of food; the time taken varies
between 11 and 15 s per single run. Finally, EDA is coded in
Cþþ and run on Thinkpad T420 2 GB RAM 2.3 GHz; the para-
meters are set as follows: population size of 150, percentage of
superior sub-population from population ν¼20, and learning rates
α¼0.3 and β¼0.1; the time taken ranges between 4 and 10 s per
single run. In all cases, the reported results correspond to the best
and average solutions in 20 runs.

Table 2 shows the results obtained by CGA, SNSA, hABC, EDA
and HGTS on the six instances 01–06 provided these data are
available. Unfortunately, some of the references do not report
results for at least one of the largest instances 05 and 06; when
this is the case, the corresponding cell in Table 2 is left empty. For
each method and instance, the table reports the best and average
makespan (the latter between brackets). Additionally, the second
column contains the lower bound for the expected makespan
calculated according to (13) and the last column shows the average
time taken by HGTS in a single run. It is worth noting that the
results for HGTS correspond to using the reduced neighbourhood
Nr
AP instead of NAP, since they provide very similar results (compare

with Table 1). Rows 7, 8 and 9 include average MRE values (across
the first 4, 5 and all 6 instances respectively) for all methods for
which we have available data. Finally, the last row in Table 2,
labelled #best, indicates the number of instances where each
method obtains the best-known solution. In bold are the best
known solutions, with a superindex “a” in the case that our
method improves the previous best-known solution, and with a
superindex “b” in the case it is the optimal solution.

Table 2
Summary of results in the FfJSP.

Ins LBf CGA SNSA hABC EDA HGTS THGTS (s)

01 28.50 30.00 (30.18) 30.25 (31.68) 30.50 (32.15) 30.00 (33.18) 28.50a,b (28.50) 5.8
02 45.00 45.75 (47.45) 45.25 (47.05) 45.75 (47.70) 45.75 (46.35) 45.25 (45.25) 3.4
03 43.50 47.75 (51.00) 47.50 (51.25) 47.75 (50.70) 45.75 (47.53) 43.50a,b (43.64) 11.7
04 33.50 37.75 (40.80) 39.25 (40.80) 38.00 (40.45) 35.75 (37.78) 34.25a (34.29) 12.7
05 37.50 62.00 (65.95) 65.75 (68.53) 54.75 (57.68) 51.00a (51.83) 51.6
06 40.25 63.75 (65.65) 50.25a (51.50) 53.3

MRE(01–04) 7.35 (15.22) 8.26 (14.31) 7.97 (14.03) 4.70 (10.35) 0.70 (0.81)
MRE(01–05) 18.94 (27.35) 21.68 (28.00) 12.96 (19.04) 7.76 (8.29)
MRE(01–06) 27.80 (33.85) 10.61 (11.54)

#Best 0 1 0 0 6
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Clearly, HGTS outperforms all the other four methods across the
six instances in best and average expected makespan. It obtains the
best-so-far solutions in all instances, improving the previously best-
known solutions in 5 of them. In fact, even the average makespan
value of HGTS improves the best value obtained with the other
methods in all but one instance (02). Moreover, for instances 01 and
03, HGTS obtains the optimal solution, since its expected makespan
coincides with the lower bound LBf. With respect to run times, it is
worth mentioning that EDA requires considerably less time than
HGTS, even CPU times are not directly comparable due to differ-
ences in target machines. The reason may be that HGTS is a more
complex metaheuristic and needs more time to converge.

It is important to remark that all the available results for the
three algorithms CGA, SNSA, hABC and EDA have been obta-
ined using the maximum approximation maxR, while HGTS uses
maxI .1 This however should not be a problem in this case, since
maxRðA;BÞrmaxIðA;BÞ for every pair of TFNs A and B, meaning
that if all algorithms were to use the same maximum approxima-
tion the difference in favour of HGTS would either be the same or
even greater. Just for the sake of completeness, we have evaluated
the solutions obtained by HGTS (the operation processing order
together with the machine assignment) using maxR instead of
maxI . Obviously, the resulting expected makespan does not get
worse in any case. More interestingly, the results are very similar:
the best MRE obtained with maxR is 10.18% versus 10.61% with
maxI and the average is 11.20% versus 11.54%. We may conclude
that the comparison between HGTS and the state-of-the-art
algorithms CGA, SNSA, hABC and EDA is not affected by the
maximum operation, being in all cases favourable to the new
method.

5.3. Comparison with the state-of-the-art in the fJSP

To enhance the significance of the experimental study, we have
conducted experiments to compare HGTS with the state-of-the-art
approaches for the fJSP. The motivation is that the deterministic
version of the problem has been considered in a large number of
research works over the last two decades, so we can expect the
best approaches proposed so far to be really refined, making it a
challenge to improve or even match their results. Therefore, if
HGTS (designed for FfJSP) were at least similar to some of the best
approaches for the fJSP, this fact would be another strong evidence
of the good performance of HGTS.

We have considered six benchmark sets: the XWdata from
[64,65], the set of instances from [63], the BRdata from Brandimarte
[29], the BCdata from [66], the DPdata from [30] and the HUdata
from [67], making a total of 186 instances (we refer the interested
reader to the original references for further detail on these test
beds). For every test bed, HGTS is compared with the best available
results in the literature. To reduce the computational load, our
method uses the reduced neighbourhood.

For XWdata, our method is compared with the Knowledge-Based
Ant Colony Optimization method (KBACO) by Xing et al. from [68],
the Tabu Search with an efficient Public Critical Block neighbour-
hood structure (TSPCB) by Li et al. from [69], the Artificial Bee
Colony (ABC) by Wang et al. from [70] and the bi-population based
estimation of distribution algorithm (BEDA) by Wang et al. from
[71]. The results reported in the literature together with those
obtained with HGTS can be seen in Table 3: each row corresponds
to an instance in the test bed, with its identifier in the first column
and the makespan lower bound in the second column. In the
absence of other information, we have calculated lower bounds for

these instances using Eq. (13) (without expected values as it
corresponds to crisp instances). The next five columns correspond
each to one of the methods above, showing the best and average
makespan values (the latter between brackets) obtained on that
instance. Finally, the last column shows the average time (in
seconds) taken by a single run of HGTS on that instance; these
are included for the sake of completeness, even though we are
aware that these times may not be fairly comparable to the times
reported in the above references due to the differences on the
running environments and the target machines. As we can observe,
for three instances HGTS obtains the optimal solution in every
single run, while for the remaining instances it reaches the best-
known solution, as it is also the case with the other methods.

The results on Thomalla's benchmark [63] are compared with
the results reported for the PSO by Girish and Jawahar [72]
together with those obtained by ILOG OPL Studio, also reported
in [72]. In this paper best-known solution (BKS) values are also
given. All these data, together with the data regarding HGTS can be
seen in Table 4, following the same format as Table 3 above. Again,
the LBs for these instances are computed using Eq. (13). We can
see that HGTS obtains the previously known BKS both in average
and best values for the first two instances and establishes a new
BKS for the third instance. In fact, in two cases it yields the optimal
solution; this optimal solution was already known for instance
EX1 but, more interestingly, it is established for the first time by
HGTS for instance EX3.

For the following three test beds (the most widely used in
the literature), unless otherwise stated, we compare HGTS with
the tabu search (TS) by Mastrolilli and Gambardella from [31], the
hybrid genetic algorithm (hGA) by Gao, Sun and Gen from [11],
the climbing depth-bounded discrepancy search (CDDS) by Hmida
et al. from [32], the hybrid harmony search and large-scale
neighbourhood search algorithm (HHS/LNS) by Yuan and Xu from
[33], and the genetic algorithm hybridised with tabu search
(GAþTS) by González et al. from González et al. [14].

Considering the size of the instances, the stopping criterion for
TS is 200 iterations without improvement for the BCdata and
BRdata families and 400 iterations without improvement for the
DPdata dataset. As above, for the sake of completeness, we report
the time taken by a single run of HGTS to solve each instance. It is
however worth mentioning that HGTS has been designed for fuzzy

Table 3
Summary of results in the fJSP: XWdata.

Ins LB KBACO TSPCB ABC BEDA HGTS T (s)

Case 1 11 11 (11.0) 11 (11.0) 11 (11.0) 11 (11.0) 11b (11.0) 0.3
Case 2 12 14 (14.3) 14 (14.2) 14 (14.0) 14 (14.0) 14 (14.0) 2.2
Case 3 11 11 (11.0) 11 (11.0) 11 (11.0) 11 (11.0) 11b (11.0) 2.1
Case 4 7 7 (7.4) 7 (7.1) 7 (7.0) 7 (7.0) 7b (7.0) 7.3
Case 5 10 11 (11.3) 11 (11.7) 11 (11.0) 11 (11.0) 11 (11.0) 1.3

MRE 5.33 (7.58) 5.33 (7.35) 5.33 (5.33) 5.33 (5.33) 5.33 (5.33)
#Best 5 5 5 5 5

Table 4
Summary of results in the fJSP: Thomalla Benchmark.

Ins LB PSO ILOG HGTS T (s)

EX1 117 117 117 117b (117) 0.11
EX2 95 109 109 109 (109) 0.62
EX3 316 328 675 316a,b (316) 4.33

MRE 6.18 42.78 4.91 (4.91)
#Best 2 2 3

1 We have already motivated in Section 3.1 our choice of the maxI operator
for HGTS.
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instances so, to run it on deterministic problems, every instance
has been converted into a fuzzy one (given that every real number
r can be represented as the TFN ðr; r; rÞ). In consequence, CPU times
may be expected to be about three times longer than those
required by a simplified algorithm specifically designed for the
fJSP. Despite of this, CPU times with HGTS are not significantly
longer than those reported in the references above for the other
algorithms. A detailed comparison in [33] states that the computa-
tional effort of HHS/LNS is comparable with that of hGA but it is
much longer than those of TS and CDDS. Taking into account that
the target machines are very similar, following the comparison
framework explained in [33], we could consider that HHS/LNS
takes 20% longer than HGTS. However, as there are factors other
than the language and the machine that influence the computa-
tional time, this comparison is only indicative.

Tables 5, 6 and 7 show the results of the experiments on the
BRdata, the BCdata, and DPdata benchmarks, respectively. The
format is analogous to the tables above, however, in this case,
the lower bound is the value reported in [31]. We also include two
more rows which serve as summary, containing MRE values and
the number of instances for which a method reaches the best-
known solution.

For the BRdata benchmark, results in Table 5 shows that HGTS
improves the previously best-known solution in one instance
(MK06) and obtains the best-known solution in 9 of 10 instances,
something done only by hGA. In terms of MRE, HGTS is the best
method if we consider the best makespan and the second best if
we consider average makespan instead. Fig. 3 shows the job-
oriented Gantt chart of the new best solution encountered for the
instance MK06.

The results for the BCdata in Table 6 incorporate best makespan
values for yet another method from the literature, the parallel
double-level metaheuristic approach (TSBM2h) proposed by
Bozejko et al. [60]. The reason is that it reports detailed good
results on this benchmark but not for the remaining test beds.
Also, HHS/LNS is omitted in this table because for this benchmark
only the MRE average value for the best solutions (22.43) is
reported in [33]. As we can see, for the BCdata HGTS obtains the
best-known solution in 19 of 21 instances. Moreover, in one of
these instances (seti5c12), HGTS improves the previously best-
known solution. Additionally, HGTS obtains the best MRE values
for both the best and the average makespan among all the
algorithms considered, even if differences are small.

On the DPdata benchmark, HGTS improves the previously best-
known solution in three instances (10a, 13a and 16a) and in other
three instances (01a, 03a and 04a) it obtains the optimal solution.
Additionally, HGTS yields the best the MRE values both for the best
and average makespan from all the six algorithms considered.

Finally, for the HUdata set, Fig. 4 provides a summary of the
results (detailed results for HGTS on these data are openly available
on the web2). In this case we only report results for TS, hGA, CDDS
and HGTS, since results on this benchmark are not available for
the other methods. Also, the figure portrays MRE values for the
average makespan across groups of instances; the reason is that
the makespan results reported in [11,32] for this benchmark are
averages on the same groups. We can observe that HGTS performs
slightly better than the other approaches on the instances of the
edata subset, which seems to be the hardest of the set. Moreover,
HGTS reaches the optimal solution in 77 instances (27 edata, 19
rdata and 31 vdata), improves the best-known solution given in [31]
in 26 instances (12 edata, 12 rdata and 2 vdata) and reaches the
best-known solution in other 90 instances (29 edata, 28 rdata and
33 vdata) of the 129 instances of the test bed.

Overall, for the crisp version of the problem, we have tested
186 instances, reaching the best-known solution for 160 of them.
Furthermore, 87 out of these 160 solutions are optimal. Also, HGTS
improves the previously best-known solution in 31 instances.

To further avail the quality of the proposed method, we have
done some statistical tests to analyse differences between HGTS and
other algorithms from the literature. Following [73], since we have
multiple-problem analysis, we have used non-parametric statistical
tests. First, we have run a Shapiro–Wilk test to confirm the non-
normality of the data. Then we have used paired Wilcoxon signed
rank tests to compare the medians of the MRE values between
HGTS and each of the other methods, provided that results for
single instances are available, that is, we have considered the sets
BRdata [ BCdata [ DPdata and the methods TS, hGA, CDDS and
GAþTS. In all these tests, the level of confidence used was 95% and
the alternative hypothesis was “the difference between the errors of
the HGTS and the method tested is smaller than 0”. The p-values
obtained with these tests (TS: 0.0001086, hGA: 0.03996, CDDS:
0.000526, GAþTS: 0.001188) show that there exist statistically
significant differences between HGTS and some of the methods of
the state-of-the-art in fJSP on these benchmarks.

In summary, we can conclude that HGTS clearly outperforms the
previous results for the FfJSP and, in the deterministic setting of fJSP,
it is slightly but significantly better than the state-of-the-art.

5.4. A new benchmark for the FfJSP

As we have seen that there are but a few FfJSP instances openly
available in the literature and, in addition, the optimal solution for
some of these instances has already been found and proven. This
motivates us to propose here a new set of more challenging
problems and provide preliminary results of our algorithm on
them for future comparisons.

We base the new instances on well-known crisp fJSP problems
and add uncertainty to the durations based on the ideas from [25]
but using a wider interval for the third defining point, as it is more
likely (and critical) for an operation to take longer time than
expected instead of a shorter one. Let p be the real duration of a
task in somemachine, from this we build a TFN P ¼ ðp1; p2; p3Þwhere
p2 ¼ p and p1 and p3 are random positive integer values verifying
that p1A ½0:85p; pÞ and p3A ½2p�p1;1:2p�. In the case that no integer
value exists in the interval ½0:85p;pÞ, we set p1 ¼maxf1; p�1g, and if
there is no integer value in ½2p�p1;1:2p�, p3 takes a random value in
½pþ1; pþ2�. In this way, unlike the instances in [25], the generated
TFNs always verify that p2�p1rp3�p2 and therefore E½P�Zp. It is
easy to prove that, thanks to this inequality, for these instances the
optimal solution of the original crisp problem (or any lower bound
thereof, usually better than the raw LB defined in Eq. (13)) provides a
lower bound for the expected makespan of the fuzzy solution,
allowing to measure relative errors more accurately. The crisp
problems we take to build the benchmark are the largest ones,
regarding the number of operations, from the common-use bench-
marks DPdata, BRdataand BCdata, as we conjecture they provide
bigger room for improvement. More precisely, we fuzzify instances
07a to 18a from DPdataand instance Mk10from BRdata, all of them
having more than 240 operations. Instance MK09, which has the
same size, has been discarded because all authors obtain the same
results, both in best and average makespan values, which leads us to
think that no further improvement is possible on this problem. The
new fuzzy instances thus generated are openly available on the web.3

This set of larger and harder FfJSP instances allow us to better
evaluate the behaviour of our algorithm using the neighbourhood
NAP, for which connectivity holds, instead of using the reduced

2 Repository section in http://www.di.uniovi.es/iscop. 3 Repository section in http://www.di.uniovi.es/iscop.
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Table 5
Summary of results in the fJSP: BRdata.

Ins LB TS hGA CDDS HHS/LNS GAþTS HGTS T (s)

Mk01 36 40 (40) 40 (40) 40 (40) 40 (–) 40 (40) 40 (40) 5
Mk02 24 26 (26) 26 (26) 26 (26) 26 (–) 26 (26) 26 (26) 15
Mk03 204 204 (204) 204 (204) 204 (204) 204 (–) 204 (204) 204b (204) 2
Mk04 48 60 (60) 60 (60) 60 (60) 60 (–) 60 (60) 60 (60) 10
Mk05 168 173 (173) 172 (172) 173 (174) 172 (–) 172 (172) 172 (172) 18
Mk06 33 58 (58) 58 (58) 58 (59) 58 (–) 58 (58) 57a (58) 63
Mk07 133 144 (147) 139 (139) 139 (139) 139 (–) 139 (139) 139 (139) 33
Mk08 523 523 (523) 523 (523) 523 (523) 523 (–) 523 (523) 523b (523) 3
Mk09 299 307 (307) 307 (307) 307 (307) 307 (–) 307 (307) 307 (307) 24
Mk10 165 198 (199) 197 (197) 197 (198) 198 (–) 199 (200) 198 (199) 104

MRE 15.41 (15.83) 14.92 (14.92) 14.98 (15.35) 14.98 (–) 15.04 (15.13) 14.67 (15.02)
#Best 6 9 8 8 8 9

–means that the corresponding data is not available.

Table 6
Summary of results in the fJSP: BCdata.

Ins LB TS hGA CDDS TSBM2h GAþTS HGTS T (s)

mt10c1 655 928 (928) 927 (927) 928 (929) 927 (–) 927 (927) 927 (927) 13
mt10cc 655 910 (910) 910 (910) 910 (911) 908 (–) 908 (909) 908 (910) 13
mt10x 655 918 (918) 918 (918) 918 (918) 922 (–) 918 (922) 918 (918) 15
mt10xx 655 918 (918) 918 (918) 918 (918) 918 (–) 918 (918) 918 (918) 12
mt10xxx 655 918 (918) 918 (918) 918 (918) 918 (–) 918 (918) 918 (918) 12
mt10xy 655 906 (906) 905 (905) 906 (906) 905 (–) 905 (905) 905 (905) 13
mt10xyz 655 847 (850) 849 (849) 849 (851) 849 (–) 849 (850) 847 (850) 18

setb4c9 857 919 (919) 914 (914) 919 (919) 914 (–) 914 (914) 914 (914) 16
setb4cc 857 909 (912) 914 (914) 909 (911) 907 (–) 907 (907) 907 (908) 15
setb4x 846 925 (925) 925 (931) 925 (925) 925 (–) 925 (925) 925 (925) 15
setb4xx 846 925 (926) 925 (925) 925 (925) 925 (–) 925 (925) 925 (925) 14
setb4xxx 846 925 (925) 925 (925) 925 (925) 925 (–) 925 (925) 925 (925) 15
setb4xy 845 916 (916) 916 (916) 916 (916) 910 (–) 910 (910) 910 (910) 19
setb4xyz 838 905 (908) 905 (905) 905 (907) 903 (–) 905 (905) 905 (905) 15

seti5c12 1027 1174 (1174) 1175 (1175) 1174 (1175) 1174 (–) 1171 (1173) 1170a (1171) 41
seti5cc 955 1136 (1136) 1138 (1138) 1136 (1137) 1136 (–) 1136 (1137) 1136 (1137) 34
seti5x 955 1201 (1204) 1204 (1204) 1201 (1202) 1198 (–) 1199 (1200) 1199 (1201) 38
seti5xx 955 1199 (1201) 1202 (1203) 1199 (1199) 1197 (–) 1197 (1198) 1197 (1198) 34
seti5xxx 955 1197 (1198) 1204 (1204) 1197 (1198) 1197 (–) 1197 (1197) 1197 (1198) 31
seti5xy 955 1136 (1136) 1136 (1137) 1136 (1138) 1136 (–) 1136 (1137) 1136 (1137) 34
seti5xyz 955 1125 (1127) 1126 (1126) 1125 (1125) 1128 (–) 1127 (1128) 1125 (1126) 43

MRE 22.53 (22.63) 22.61 (22.66) 22.54 (22.60) 22.45 (–) 22.42 (22.49) 22.39 (22.46)
#Best 11 10 10 17 16 19

Table 7
Summary of results in the fJSP: DPdata.

Ins LB TS hGA CDDS HHS/LNS GAþTS HGTS T (s)

01a 2505 2518 (2528) 2518 (2518) 2518 (2525) 2505 (2513) 2505 (2511) 2505b (2505) 122
02a 2228 2231 (2234) 2231 (2231) 2231 (2235) 2230 (2231) 2232 (2234) 2230 (2234) 205
03a 2228 2229 (2230) 2229 (2229) 2229 (2232) 2228 (2229) 2229 (2230) 2228b (2230) 181
04a 2503 2503 (2516) 2515 (2518) 2503 (2510) 2506 (2506) 2503 (2504) 2503a (2503) 112
05a 2189 2216 (2220) 2217 (2218) 2216 (2218) 2212 (2215) 2219 (2221) 2214 (2218) 208
06a 2162 2203 (2206) 2196 (2198) 2196 (2203) 2187 (2192) 2200 (2204) 2193 (2198) 260

07a 2187 2283 (2298) 2307 (2310) 2283 (2296) 2288 (2303) 2266 (2286) 2270 (2280) 344
08a 2061 2069 (2071) 2073 (2076) 2069 (2069) 2067 (2074) 2072 (2075) 2070 (2074) 318
09a 2061 2066 (2067) 2066 (2067) 2066 (2067) 2069 (2073) 2066 (2067) 2067 (2069) 376
10a 2178 2291 (2306) 2315 (2315) 2291 (2303) 2297 (2302) 2267 (2273) 2247a (2266) 369
11a 2017 2063 (2066) 2071 (2072) 2063 (2072) 2061 (2067) 2068 (2071) 2064 (2069) 294
12a 1969 2034 (2038) 2030 (2031) 2031 (2034) 2027 (2036) 2037 (2041) 2027 (2033) 486

13a 2161 2260 (2266) 2257 (2260) 2257 (2260) 2263 (2269) 2271 (2276) 2250a (2264) 416
14a 2161 2167 (2168) 2167 (2168) 2167 (2179) 2164 (2168) 2169 (2171) 2170 (2173) 396
15a 2161 2167 (2167) 2165 (2165) 2165 (2170) 2163 (2166) 2166 (2166) 2168 (2169) 523
16a 2148 2255 (2259) 2256 (2258) 2256 (2258) 2259 (2266) 2266 (2271) 2246a (2257) 384
17a 2088 2141 (2144) 2140 (2142) 2140 (2146) 2137 (2141) 2147 (2150) 2142 (2146) 483
18a 2057 2137 (2140) 2127 (2131) 2127 (2132) 2124 (2128) 2138 (2141) 2129 (2133) 650

MRE 2.01 (2.24) 2.12 (2.19) 1.94 (2.19) 1.89 (2.13) 1.99 (2.17) 1.73 (1.98)
#Best 5 3 5 12 3 8
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structure Nr
AP, which contains less neighbours and therefore has

been used across all the experimental analysis above. As already
mentioned, the loss of the connectivity is relatively unimportant in
our case, given that the neighbourhood is used within a meta-
heuristic, whereas the reduction in neighbourhood size obtained
by discarding non-improving neighbours augments the chance of
obtaining improving ones. This is confirmed by our experimental
results, which show that the MRE for the best and average
expected makespan obtained with Nr

AP in each instance are slightly
better (7% MRE improvement). However, the most relevant fact is
that since NAP generates more neighbours, the runtime of HGTS
using NAP is 21% longer than the runtime using Nr

AP.
As advanced in Section 5.1, this more challenging benchmark also

allows us to better evaluate the effect of the heuristic seeding in the

HGTS. Fig. 5 depicts the average MRE values and CPU times obtained
with the hybrid algorithm GAþTS both using heuristic seeding and
starting with a random population given three different stopping
criteria for the tabu search: 50, 100 and 400 maximum number of
iterations without improvement. It is clear that MRE values are slightly
smaller when using heuristic seeding and, moreover, the CPU time
spent in generating this heuristic initial population is compensated
when the local search takes longer. This can be interpreted as a result
of the fact that the heuristic seeding helps the local search to find good
solutions quickly not only in the first iterations but along the whole
evolutive process.

Finally, Table 8 contains the results of 30 runs of our algorithm
HGTS on every instance of the new benchmark. Each row corre-
sponds to one of these instances, with the identifier in the first

Fig. 3. Gantt chart, job-oriented, of new best solution of instance MK06 from BRdata.
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Fig. 4. Main relative errors on the HUdata.
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column (Ins). The LB values in the second column are the available
lower bounds of the original crisp problem (which are also valid LBs
for the expected makespan). The next four columns correspond to
makespan results: the columns with the header “Best” contain the
best makespan (a TFN) together with its expected value obtained
across the 30 runs and the next two columns, with headers “Avg”
and “Std. Dev.” contain the average and standard deviation values
for the expected makespan across these 30 runs. Finally, the last
columnwith header “T(s)” reports the average time per run of HGTS
in seconds. Notice that due to the fuzzification method used to
generate the problems (with asymmetric TFNs stretched to the
right), the expected makespan values are necessarily greater that
the values obtained by the same algorithm on the corresponding
original crisp problem. Furthermore, we can see that the runtime
required for solving the fuzzy instances is in average a 13% longer
than the time required for the original crisp problems, illustrating
the increased difficulty of handling uncertainty.

6. Conclusions

We have considered the FfJSP, a variant of the job shop problem
which incorporates both flexibility in machine assignment and
uncertainty in operation durations, in an attempt to reduce the
gap between academic and real-world problems. We have proposed
a new hybrid algorithmwhich combines a GA with TS and heuristic
seeding. The new heuristic method to generate initial solutions
benefits from the flexible nature of the problem and generates
high-quality and diverse initial solutions which provide a starting
point for the GA, enhancing its exploitation ability. The designed TS

algorithm is then applied to every newly generated chromosome in
the GA. A key point for the TS is the neighbourhood structure. We
have proposed here two new structures. For the first one, we have
proved that it verifies both feasibility and connectivity, the latter
ensuring asymptotic convergence in probability to a global optimal
solution. The second neighbourhood is obtained by incorporating a
filtering mechanism that trims the first structure by discarding non-
improving neighbours; this second neighbourhood keeps the fea-
sibility property and considerably reduces the size of the first one at
the cost of losing connectivity. Finally, a method based on constraint
propagation has been introduced that allows us to speed-up the
evaluation of new chromosomes. We have tested the resulting
algorithm, HGTS, on a varied set of 205 instances, considering both
deterministic and fuzzy instances of fJSP from the literature to
enhance the significance of the study. The extensive experimental
results clearly show that not only does the hybrid algorithm benefit
from the synergy among its components, improving each of them
when run separately for the same time, but it is also quite
competitive with the state-of-the-art in solving both crisp and
fuzzy instances, providing new best-known solutions for a number
of these test instances. Finally, we have argued that the existing
FfJSP benchmarks are not challenging enough and, in consequence,
we have proposed a newmore challenging benchmark and we have
provided the first makespan results for the new instances with
HGTS. We hope that these provide a basis for future research on the
FfJSP problem.
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7.3 A particle swarm solution based on lexicographical
goal programming for a multiobjective fuzzy open shop
problem

In this section, we include the following publication.

• Title: A particle swarm solution based on lexicographical goal programming for a
multiobjective fuzzy open shop problem.

• Journal: AI Communications.

• Year: 2015.

• Impact Factor (JCR 2013): 0.466

• Impact Factor (5-year): 0.582

• Journal Ranking:

– Computer Science, Artificial Intelligence: 105/121 Q4 (T3)

This publications contains pieces of work described in Sections 4.2.1 and 4.3.1.
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1. Introduction

The open shop scheduling problem (OSP) is a prob-
lem with an increasing presence in the literature and
clear applications in industry, for instance, in testing
facilities, where units go through a series of diagnos-
tic tests that need not be performed in a specified
order and where different testing equipment is usu-
ally required for each test [33]. Traditionally, the open
shop as well as other scheduling problems have been
treated as deterministic, assuming precise knowledge
of all data involved, in contrast with the uncertainty
and vagueness pervading real-world problems. To re-
duce the gap between theory and applications, an in-
creasing part of the research is devoted to modelling
this lack of certainty with great diversity of approaches
[21]. In particular, fuzzy sets have been used in differ-
ent manners to represent incomplete or vague states of

*Corresponding author: Inés González-Rodríguez, Departamento
de Matemáticas, Estadística y Computación, Facultad de Ciencias,
Universidad de Cantabria, Av. Los Castros s/n, 39005, Santander,
Spain. E-mail: ines.gonzalez@unican.es.

information [10]: using fuzzy priority rules with lin-
guistic qualifiers, modelling soft as well as fuzzy tem-
poral constraints, and as a means of improving solution
robustness, a much-desired property in real-life appli-
cations [3,24,32,43].

The open shop is NP-complete for a number of ma-
chines m � 3, so approaches to solving it usually
make use of metaheuristic techniques. In particular, in
[1] a heuristic approach is proposed to minimise the
expected makespan for an open shop problem with
stochastic processing times and random breakdowns;
in [18] a genetic algorithm is combined with a local
search method to minimise the expected makespan of
an open shop with fuzzy durations; a particle swarm
optimisation algorithm is used to minimise the ex-
pected fuzzy makespan in [31] and a possibilistic
mixed-integer linear programming method is proposed
in [30] for an OSP with setup times, fuzzy processing
times and fuzzy due dates to minimize total weighted
tardiness and total weighted completion times. Far
from being trivial, extending heuristic strategies to un-
certain settings usually requires a significant reformu-
lation of both the problem and solving methods.

0921-7126/15/$35.00 © 2015 – IOS Press and the authors. All rights reserved
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Additionally, many real-life applications require
taking into account several conflicting points of view
corresponding to multiple objectives. Pareto optimality
is undoubtedly the most extended approach to multi-
criteria optimisation but, quoting [12], “it is not the end
of the story”. Among the alternative approaches, lex-
icographic and goal programming methods are some
of the most popular ones [6]. The philosophy behind
goal programming can be traced back to the theories
of rational decision developed in the 1950s, especially
the concept of satisficing solutions: in a complex en-
vironment, the decision maker’s aim may be to reach
a certain satisfactory level for every relevant objec-
tive, rather than optimising its value [34]. Also, lex-
icographic problems arise naturally when conflicting
objectives exist that have to be considered in a hier-
archical manner. Recent examples of real-world prob-
lems where these techniques are applied can be found
in [8,9] and [27]. Additionally, there exist interest-
ing relationships between lexicographic and Pareto-
optimal solutions. Indeed, “lexicographic minimisa-
tion is well-suited to seek a compromise between
conflicting interests, as well as reconciling this require-
ment with the crucial notion of Pareto-optimality” [4].

In the sequel, we describe an open shop problem
with fuzzy durations and crisp due dates and where the
objective is to minimise both the project’s makespan
and the maximum tardiness w.r.t. the given job due
dates. We adopt a generic multiobjective model so the
objective function is defined in order to lexicograph-
ically minimise the expected values of several fuzzy
goals (here, makespan and tardiness). In addition to the
priority structure for the lexicographical minimisation,
target levels for each objective are introduced, in order
to balance possibly incompatible goals. The resulting
problem is solved by means of a multiobjective parti-
cle swarm optimisation (MOPSO) algorithm searching
in the space of possibly active schedules. We evaluate
the performance of the MOPSO algorithm on a set of
problem instances based on the expected values of each
objective.

The rest of the paper is organised as follows. In Sec-
tion 2 we describe how to work with fuzzy numbers.
Section 3 is devoted to the fuzzy open shop problem,
including the definition of the main concepts related to
this problem as well as the multiobjective model pro-
posed herein and a semantics for fuzzy schedules. In
Section 4 a particle swarm optimisation algorithm is
proposed to solve the resulting problem. Section 5 in-
cludes a parametric analysis of this algorithm, an ex-
perimental evaluation of the obtained results as well an

additional analysis based on the semantics of the fuzzy
solutions. Finally, in Section 6 we offer some conclu-
sions and proposals for future work.

2. Uncertain processing times

In real-life applications, it is often the case that the
exact duration of a task is not known in advance. How-
ever, based on previous experience, an expert may be
able to estimate an interval for the possible process-
ing time or its most typical values. In the literature, it
is common to use fuzzy intervals to represent such ill-
known processing times, as an alternative to probabil-
ity distributions, which require a deeper knowledge of
the problem and usually yield a complex calculus.

As a natural extension of human originated confi-
dence intervals we find fuzzy intervals, where some
values appear to be more plausible than others. Fuzzy
intervals and fuzzy numbers have been extensively
studied in the literature (cf. [11]). A fuzzy interval N
is a fuzzy set on the reals (with membership function
μN : R → [0, 1]) such that its α-cuts Nα = {u ∈
R: μN (u) � α}, α ∈ (0, 1], are intervals. A fuzzy in-
terval is a fuzzy number if its α-cuts (denoted [nα, nα])
are closed, its support N0 = {u ∈ R: μN (u) > 0}
is compact (closed and bounded) and there is a unique
modal value u∗, μN (u∗) = 1. Clearly, real numbers
can be seen as a particular case of fuzzy ones.

The simplest model of fuzzy interval is a triangular
fuzzy number or TFN, using an interval [a1, a3] of pos-
sible values and a single plausible value a2 in it. For
a TFN A, denoted A = (a1, a2, a3), the membership
function takes the following triangular shape:

μA(x) =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

x − a1

a2 − a1 : a1 � x � a2,

x − a3

a2 − a3 : a2 < x � a3,

0 : x < a1 or a3 < x.

(1)

In order to work with fuzzy numbers, it is necessary
to extend the usual arithmetic operations on real num-
bers. In particular, for the open shop we need to com-
pute the addition, substraction and maximum of fuzzy
numbers. In general, this is done using the Extension
Principle, but computing the resulting equation is cum-
bersome, if not intractable. It can be somewhat sim-
plified if the function f : R2 → R to be extended is
continuous and isotonic; in this case, the First Decom-
position theorem provides us with a simpler formula
based on evaluating f on each α-cut.
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For the addition and substraction of TFNs, this boils
down to operating on the three defining points, that is,
for any pair of TFNs M and N :

M + N =
(
m1 + n1, m2 + n2, m3 + n3),

(2)
M − N =

(
m1 − n3, m2 − n2, m3 − n1).

Unfortunately, for the maximum of TFNs there is
no such simplified expression and its computation
in general requires evaluating maxima of all α-cuts,
α ∈ (0, 1]. Also, the set of TFNs is not closed un-
der the maximum operation. For the sake of simplicity
and tractability of numerical calculations, we follow
Fortemps [13] and approximate all results of isotonic
algebraic operations on TFNs by a TFN, so instead of
evaluating the intervals corresponding to all α-cuts, we
evaluate only those intervals corresponding to the sup-
port and α = 1, which is equivalent to working only
with the three defining points of each TFN. This is an
approach also taken, for instance, in [7,26] and [29].
For any two TFNs M and N , their maximum will then
be approximated as follows:

max(M , N )

∼
(
max

(
m1, n1), max

(
m2, n2),

max
(
m3, n3)). (3)

Despite not being equal, if F denotes the actual maxi-
mum and G its approximated value, it holds that ∀α ∈
[0, 1], f

α
� g

α
, fα � gα. In particular, F and G

have identical support and modal value: F0 = G0 and
F1 = G1. The approximated maximum can be trivially
extended to n > 2 TFNs.

The membership function μQ of a fuzzy quantity Q
can be interpreted as a possibility distribution on the
real numbers; this allows to define the expected value
of a fuzzy quantity [28], given for a TFN A by E[A] =
1
4 (a1 + 2a2 + a3). The expected value coincides with
the neutral scalar substitute of a fuzzy interval and can
also be obtained as the centre of gravity of its mean
value or using the area compensation method [10]. It
induces a total ordering �E in the set of fuzzy intervals
[13], where for any two fuzzy intervals M , N , M �E
N if and only if E[M ] � E[N ].

3. The fuzzy open shop scheduling problem

The open shop scheduling problem, or OSP in short,
consists in scheduling a set of n jobs J1, . . . , Jn to be

processed on a set of m physical resources or machines
M1, . . . , Mm. Each job Ji consists of m tasks or op-
erations oij (j = 1, . . . , m), where oij requires the
exclusive use of a machine Mj for its whole process-
ing time pij without preemption, i.e. all tasks must be
processed without interruption. In total, there are mn
tasks, {oij , 1 � i � n, 1 � j � m}. Additionally, for
each job Ji there may be a due date di, i = 1, . . . , n
before which it is desirable that the job be terminated.
A solution to this problem is a schedule – an allocation
of starting times for all tasks – which is feasible, in the
sense that all constraints hold, and is also optimal ac-
cording to some criteria. Here, we shall consider two
objectives: minimising the makespan Cmax, that is, the
time lag from the start of the first task until the end of
the last one, as well as minimising the maximum tardi-
ness Tmax, that is, the maximum delay of any job with
respect to its due date. This problem may be denoted
O|di|multicrit(Cmax, Tmax) using the three-field nota-
tion from [19], extended to multiobjective problems as
proposed in [20].

3.1. Fuzzy schedules from crisp task orderings

A schedule for a open shop problem of size n×m (n
jobs and m machines) may be determined by a decision
variable z = (z1, . . . , znm) representing a task process-
ing order, where 1 � zl � nm for l = 1, . . . , nm. This
is a permutation of the set of tasks where each task oij

is represented by the number (i − 1)m + j. The task
processing order represented by the decision variable
uniquely determines a feasible schedule; it should be
understood as expressing partial orderings for every set
of tasks requiring the same machine and for every set
of tasks belonging to the same job.

Let us assume that the processing time pij of each
task oij , i = 1, . . . , n, j = 1, . . . , m is a fuzzy variable
(a particular case of which are TFNs), so the problem
may be represented by a matrix of fuzzy processing
times p of size n×m. For a given task processing order
z and a task oij , its starting time Sij(z, p) is the max-
imum between the completion times of the task pre-
ceding oij in its job, let it be denoted oik, and the task
preceding oij in its machine, let it be denoted olj :

Sij(z, p) = max
(
Cik(z, p), Clj(z, p)

)
, (4)

where Cik(z, p) or Clj(z, p) are taken to be zero if
oij is the first task to be processed either in its job or
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its machine. Then, its completion time Cij(z, p) is ob-
tained by adding its duration pij to Sij(z, p):

Cij(z, p) = Sij(z, p) + pij . (5)

The completion time of a job Ji will then be the
maximum completion time of all its tasks, that is,
Ci(z, p) = max1�j�m{Cij(z, p)}. Then, the tardi-
ness with respect to the due date di for job Ji will be
Ti(z, p) = max(Ci(z, p) − di, 0) (notice that both di
and 0 can be seen as particular cases of fuzzy num-
bers).

For this schedule, the fuzzy makespan Cmax(z, p) and
the fuzzy maximum tardiness (fuzzy tardiness for short)
Tmax(z, p) are defined as follows:

Cmax(z, p) = max
1�i�n

(
Ci(z, p)

)
, (6)

Tmax(z, p) = max
1�i�n

(
Ti(z, p)

)
. (7)

In the case where no confusion is possible, we may
drop the decision variable z and the processing times
matrix p and simply write Cmax and Tmax.

Given a fuzzy schedule, our objective is to op-
timise its makespan and maximum tardiness. How-
ever, it is not trivial when dealing with fuzzy values
to decide on the precise meaning of “optimality”,
since neither the maximum nor its approximation
define a total ordering in the set of TFNs. Using
ideas similar to stochastic scheduling, we use the
total ordering provided by the expected value and
consider that the objective is to minimise the ex-
pected makespan E[Cmax] and the expected tardiness
E[Tmax], so the resulting problem may be denoted
O|fuzzpi, di|multicrit(E[Cmax], E[Tmax]).

Let us illustrate the previous definitions with an ex-
ample. Consider a problem of 3 jobs and 2 machines

with the following matrices for fuzzy processing times
and due dates:

p =

( (3, 4, 7) (3, 4, 7)
(2, 3, 3) (4, 5, 6)
(3, 4, 6) (1, 2, 4)

)
, d =

( 10
6
16

)
.

Here p21 = (2, 3, 3) is the processing time of task
o21, the task of job J2 to be processed in machine
M1 and d2 = 6 is the due date for job J2. Figure 1
shows the Gantt chart adapted to TFNs of the sched-
ule given by the decision variable z = (1, 4, 6, 3, 5, 2);
it is inspired in the charts appearing in [13] and it
represents the partial schedules on each job obtained
from this decision variable. Tasks must be processed
in the following order: o11, o22, o32, o21, o31, o12.
Given this ordering, the starting time for task o21 will
be the maximum of the completion times of o22 and
o11, which are respectively the preceding tasks in the
job and in the machine: S21 = max(C22, C11) =
max((4, 5, 6), (3, 4, 7)) = (4, 5, 7). Consequently, its
completion time will be C21 = S21 + p21 = (4, 5, 7) +
(2, 3, 3) = (6, 8, 10). The fuzzy time gap when task
o21 is processed corresponds to the shaded polygon la-
belled o21 in the left-hand side of Fig. 1. This polygon
is determined on the left by the starting time (4, 5, 7)
and on the right by the completion time (6, 8, 10);
notice that in the case that starting and completion
times were real numbers, the polygon would turn into
a rectangle, which is the standard way of represent-
ing task execution times in deterministic Gantt charts.
The makespan can be easily calculated as Cmax =
(9, 12, 17), so E[Cmax] = 12.5. This fuzzy makespan
is also depicted above the job partial schedules in
Fig. 1; it can be seen that the first and second com-
ponents of Cmax are determined by the last task of J3
whilst the third component of Cmax is determined by

Fig. 1. Gantt chart of the schedule represented by the decision variable (1, 4, 6, 3, 5, 2) for the example in Section 3.1.
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the last task of job J1. Regarding due dates, depicted
as vertical lines on each partial schedule, job J3 always
terminates before d3, whereas the execution times of
the last tasks for J1 and J2 overlap with their respec-
tive due dates d1 and d2. Indeed, T3 = 0, whereas for
job J2, T2 = (0, 2, 4), and analogously T1 = (0, 1, 7).
Hence, the maximum tardiness will be Tmax = (0, 2, 7)
and E[Tmax] = 2.75. These job and maximum tar-
diness values (all of them TFNs) are depicted on the
right-hand side of Fig. 1, illustrating which job deter-
mines each component of the maximum tardiness.

3.2. Multiobjective models

With multiple goals it is often the case that some
are achievable only at the expense of others. A well-
established approach to dealing with multiple and pos-
sibly conflicting objectives is lexicographic goal pro-
gramming [39]. It assumes there exists a hierarchy of
importance for these goals so as to satisfy as many as
possible in the specified order.

In general, for k objectives f1, . . . , fk such priority
structure should be established by the decision maker
(DM) and may be represented by a one-to-one map-
ping ρ from {f1, . . . , fk} onto {1, . . . , k}, such that
ρ(fi) is the priority level of fi, i = 1, . . . , k, where
1 represents the highest priority. For instance, if f1 =
Cmax and f2 = Tmax and the DM considers that the
most prioritary objective is minimising the expected
tardiness, then ρ(f2) = 1. Without loss of generality,
in the remaining of this section we can assume that the
objective functions fi, i = 1, . . . , k are ordered accord-
ing to their priority, that is, ρ(fi) = i. Then, based on
similar ideas presented for the job shop in [17] we may
formulate the following expected multiobjective model
for the fuzzy open shop problem (FOSP):

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

lexmin
(
E

[
f1(z, p)

]
, . . . , E

[
fk(z, p)

])

subject to:
1 � zl � nm, l = 1, . . . , nm,
zl �= zk, k �= l, l, k = 1, . . . , nm,
zl ∈ Z+, l = 1, . . . , nm,

(8)

where lexmin denotes lexicographically minimising
the objective vector.

Pure lexicographical models may get stuck in the
first goals and never consider the remaining ones. To
balance the multiple conflicting objectives, we may use
a goal programming model and consider target lev-
els established by the DM for the different objectives,
so E[fi(z, p)] should not exceed a given target value

bi � 0, i = 1, . . . , k. This translates into the following
goal constraints:

E
[
fi(z, p)

]
+ Δ−

i − Δ+
i = bi,

i = 1, . . . , k, (9)

where Δ+
i , the positive deviation from the target,

should be minimised. We thus obtain the following ex-
pected goal multiobjective model for the FJSP:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

lexmin
(
Δ+

1 , . . . , Δ+
k

)

subject to:
E

[
fi(z, p)

]
+ Δ−

i − Δ+
i = bi,

i = 1, . . . , k,
Δ−

i , Δ+
i � 0, i = 1, . . . , k,

1 � zl � nm, l = 1, . . . , nm,
zl �= zk, k �= l, l, k = 1, . . . , nm,
zl ∈ Z+, l = 1, . . . , nm.

(10)

Notice that (8) is a particular case of (10). Indeed, the
latter is general enough to comprise all possible fuzzy
goals, priority structures and target levels established
by the DM.

The resulting problem may be denoted O|fuzzpi,
di|LexGP(E[f1], . . . , E[fk]) according to the three-
field notation from [19] extended to multicriteria
scheduling in the spirit of [20] and [41].

3.3. Semantics for fuzzy schedules

In [16], a semantics for fuzzy schedules was pro-
posed and then used to measure the performance of
such schedules in real environments. According to this
semantics, solutions to the fuzzy job shop (and by ex-
tension to the FOSP) are interpreted as a-priori solu-
tions, found when the duration of tasks is not exactly
known. In this setting, it is impossible to predict what
the exact time-schedule (exact task starting times) will
be, because it depends on the realisation of the task’s
durations, which is not known yet. Each schedule cor-
responds to a crisp ordering of tasks; it is not until tasks
are executed according to this ordering that we know
their real duration and, hence, obtain a real sched-
ule, the a-posteriori solution with crisp job comple-
tion times. Hence, the main interest of a solution to the
FOSP would lie in the ordering of tasks that it provides
a priori, when information about the problem is incom-
plete. Ideally, this ordering should yield good sched-
ules in the moment of its practical use, when tasks do
have real durations.
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Given this interpretation, for each fuzzy problem,
we propose to run a Monte-Carlo simulation to evalu-
ate the behaviour of the fuzzy solution across different
real environments. In particular, a family of K crisp
open shop problems is generated from the fuzzy prob-
lem, so they can be interpreted as its realisations. Such
possible realisations are simulated by generating exact
durations for each task at random according to differ-
ent scenarios.

Here we shall consider four different scenarios to
cover a wide range of possible situations correspond-
ing to the cases where a-priori estimations of task dura-
tions are respectively accurate, pessimistic, optimistic
or very inaccurate. This translates into generating crisp
durations (possible realisations) as follows:

• Scenario I: The crisp duration of task oij corre-
sponds to a probability distribution which is co-
herent with the possibility distribution defined by
the fuzzy duration pij .

• Scenario II: From an optimistic point of view,
given the fuzzy duration (p1, p2, p3), the crisp
duration is generated randomly in the interval
[p1, p1 + 0.25(p3 − p1)].

• Scenario III: From a pessimistic point of view,
given the fuzzy duration (p1, p2, p3), the crisp du-
ration is generated randomly in the interval [p3 −
0.25(p3 − p1), p3].

• Scenario IV: In a particularly adverse scenario
characterized by a wrong prediction, given the
fuzzy duration (p1, p2, p3), the crisp duration is
generated randomly in the interval [p1, p1 +
0.25(p3 − p1)] ∪ [p3 − 0.25(p3 − p1), p3].

Given a solution to the FOSP, we consider the or-
dering of tasks it provides, represented by the decision
variable z. For a crisp version of the FOSP, let pc be the
matrix of crisp durations where pc

ij is the a-posteriori
duration of task oij , generated according to one of the
four scenarios above. Then, the ordering z can be used
to obtain a crisp time-schedule as explained in Sec-
tion 3.1, using real durations instead of fuzzy ones. If
instead of a single crisp instance we consider the whole
family of K crisp problems, each with a duration ma-
trix pc

k, we obtain K values of makespan Cmax(z, pc
k)

and K values of tardiness Tmax(z, pc
k), k = 1, . . . , K.

In the context of the lexicographic goal programming
model, the performance of a solution can then be as-
sessed using the percentage of the K instances where
the solution satisfies the objective target values, giv-
ing more weight to the objective with highest priority,
given the hierarchical nature of the proposed model.

Notice that the idea of evaluating different alterna-
tives according to various scenarios as a way of deal-
ing with imprecise or poorly defined data is not new.
In fact, there is a clear connection between the seman-
tics for fuzzy schedules and the related performance
measure proposed herein and the increasingly popular
concept of robustness. Indeed, a “robust” solution is,
intuitively, a solution that performs “well” or “not too
bad” in all scenarios [23], and an approach based on
finding robust solutions should prevent from taking de-
cisions with disastrous consequences in the case that a
particularly adverse scenario should prevail at the end.

4. Particle swarm optimisation for the FOSP

Particle swarm optimisation (PSO) is a population-
based stochastic optimisation technique inspired by
bird flocking or fish schooling [25]. In PSO, each po-
sition in the search space corresponds to a solution of
the problem and particles in the swarm cooperate to
explore the space and find the best position (hence best
solution). Particle movement is mainly affected by the
three following factors:

• Inertia: Velocity of the particle in the latest itera-
tion.

• pbest: The best position found by the particle.
• gbest: The best position found by the swarm so

far (“the best pbest”).

Potential solutions are represented by particles flying
through the problem space, changing their position and
velocity to follow the current optimum particles pbest
and gbest. A generic PSO algorithm can be found in
Algorithm 1: first, the initial swarm is generated and
evaluated and then the swarm evolves until a termi-
nation criterion is satisfied. In each iteration, a new
swarm is built from the previous one by changing the
position and velocity of each particle to move towards
its pbest and gbest locations.

In [31] a PSO algorithm was proposed to minimise
the expected makespan of fuzzy open shop. This al-
gorithm was in turn inspired by the method proposed
in [37] for the deterministic OSP, which improved the
best results published so far. Here we extend this al-
gorithm to the multiobjective setting described in the
previous section.
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Algorithm 1. A generic PSO algorithm
Input A FOSP instance
Output A schedule for the input instance

Generate and evaluate the initial swarm;
Compute gbest and pbest for each particle;
while no Termination Criterion is satisfied do

for each particle k do
for each dimension d do

Update velocity vk
d ;

Update position xk
d;

Evaluate particle k;
Update pbest and gbest values;

return The schedule from the best particle
evaluated so far

4.1. Position representation and evaluation

Particle positions are represented using a priority-
based representation. A decision variable z is encoded
as a priority array xk = (xk

l )l=1,...,nm, where xk
l de-

notes the priority of task l, so a task with smaller xk
l

has a higher priority to be scheduled.
Given a decision variable z, which is a permutation

of tasks representing an OSP solution, we can trans-
fer this permutation to a priority array as follows. First,
from z we obtain a position array, denoted posz, such
that posz

l is the position of task l in z (posz
l = i if and

only if zi = l). For instance, given the following deci-
sion variable for a problem with n = 2 jobs and m = 3
machines:

z = (4, 1, 5, 2, 3, 6)

the position array for the above decision variable is:

posz = (2, 4, 5, 1, 3, 6).

Then, the priority array x is obtained by setting xl to a
random value in the interval (posz

l −0.5, posz
l +0.5), so

a task with smaller xl has higher priority to be sched-
uled. For the above permutation, a possible particle po-
sition would be:

x = (2.3, 3.7, 5.4, 0.8, 2.8, 5.9).

Conversely, from every particle position x we can ob-
tain a position array posx where posx

i is the position
of xi if the elements of x were reordered in non-
decreasing order. Given this representation, the PSO

Algorithm 2. pFG&T

Input A FOSP instance and a particle position xk

Output A schedule for the input instance consider-
ing the priorities given by xk

Ω ← {1, . . . , nm};
while Ω �= ∅ do

Compute {Sl: l ∈ Ω} and {Cl: l ∈ Ω}
considering only tasks previously scheduled;
C∗ ← minl∈Ω{E[Cl]};
S∗ ← minl∈Ω{E[Sl]};
Identify the conflict set O ← {l: E[Sl] <
S∗ + δ × (C∗ − S∗), l ∈ Ω};
Choose the task l∗ from O with smallest xk

l ;
Schedule the operation l∗; /*fix Sl∗*/
Ω ← Ω − {l∗};

return The schedule s given by {Sl: l ∈ {1, . . . ,
nm}}

does not record in gbest and pbest the best positions
found so far, but rather the corresponding priority ar-
rays.

A particle may be decoded in several ways. For the
crisp job shop and by extension for the open shop, it
is common to use the G&T algorithm [14], which is
an active schedule builder. A schedule is active if one
task must be delayed for any other one to start earlier.
Active schedules are good in average and, most impor-
tantly, the space of active schedules contains at least an
optimal one, that is, the set of active schedules is domi-
nant. For these reasons it is worth to restrict the search
to this space. In [15] a narrowing mechanism was in-
corporated to the G&T algorithm in order to limit ma-
chine idle times using a delay parameter δ ∈ [0, 1],
thus searching in the space of so-called parameterised
active schedules. In the deterministic case, for δ < 1
the search space is reduced so it may no longer con-
tain optimal schedules and, at the extreme δ = 0 the
search is constrained to non-delay schedules, where a
resource is never idle if a requiring task is available.
This variant of G&T has been applied in [37] to the de-
terministic OSP, under the name “parameterized active
schedule generation algorithm”.

Algorithm 2, denoted pFG&T, is an extension of pa-
rameterised G&T to the case of fuzzy processing times
proposed in [31]. It should be noted that, due to the un-
certainty in task durations, even for δ = 1, we cannot
guarantee that the produced schedule will indeed be ac-
tive when it is actually performed (and tasks have exact
durations). We may only say that the obtained fuzzy
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schedule is possibly active. Throughout the algorithm,
Ω denotes the set of tasks that have not been scheduled,
xk the priority array and Sl and Cl the starting and
completion time of task oij such that l = (i−1)m+ j.
Notice that the pFG&T algorithm may change the task
processing order given by the particle position.

4.2. Particle movement and velocity

Particle velocity is traditionally updated depending
on the distance to gbest and pbest. Instead, this PSO
only considers whether the position value xk

l is larger
or smaller than pbestkl (gbestl). For any particle, its ve-
locity is represented by an array of the same length as
the position array where all the values are in the set
{−1, 0, 1}. The initial values are set randomly and up-
dating is controlled by the inertia weight w and proba-
bilities p1, p2 ∈ [0, 1] such that p1 + p2 � 1. For each
particle k and dimension d, if vk

d �= 0, vk
d will be set to

0 with probability 1 −w, meaning that if xk
d was either

increasing or decreasing, xk
d stops at this iteration. Af-

ter this, if vk
d = 0 (the particle has stopped either in this

or in previous iterations), with probability p1, vk
d and

xk
d will be updated depending on pbestkd and with prob-

ability p2 they will be updated depending on gbestd,
always introducing an element of randomness. Further
detail on particle updating is given in Algorithm 3.

Position mutation. After a particle moves to a new
position, we randomly choose a task and then mutate
its priority value xk

d independently of vk
d with probabil-

ity pm. For a problem of size n × m, if xk
d < (nm/2),

xk
d will take a random value in [mn − n, mn], and

vk
d = 1; otherwise (if xk

d > (nm/2)), xk
d will take a

random value in [0, n] and vk
d = −1.

Diversification strategy. If all particles have the
same pbest solutions, they may get trapped into lo-
cal optima. To prevent such situation, a diversification
strategy is proposed in [37] that keeps the pbest so-
lutions different. In this strategy, the pbest solution of
each particle is not the best solution found by the parti-
cle itself, but one of the best N solutions found by the
swarm so far, where N is the size of the swarm. Once
any particle generates a new solution, the pbest solu-
tions will be updated as follows: if the new solution
equals the objective values of any pbest solution, the
latter will be replaced with the new solution; else if the
new solution is better than the worst pbest solution and
it is different from all pbest solutions, then the worst
pbest solution is replaced by the new one.

Algorithm 3. Particle movement

Input A particle position xk and velocity vk, best
particle and swarm positions pbestk and gbest,
inertia w and probabilities p1, p2

Output The updated particle position xk and ve-
locity vk

for each dimension d do
generate random value rand ∼ U (0, 1);
if vk

d �= 0 and rand � w then
vk
d ← 0;

if vk
d = 0 then

generate random value rand ∼ U (0, 1);
if rand � p1 then

if pbestkd � xk
d then vk

d ← 1;
else vk

d ← −1;
generate random value rand2 ∼ U (0, 1);
xk

d ← pbestkd + rand2 − 0.5;
else if p1 < rand � p1 + p2 then

if gbestd � xk
d then vk

d ← 1;
else vk

d ← −1;
generate random value rand2 ∼ U (0, 1);
xk

d ← gbestd + rand2 − 0.5;
else

xk
d ← xk

d + vk
d ;

return The updated particle position xk and
velocity vk

5. Experimental evaluation

We now proceed to empirically evaluate the pro-
posed method in several steps, using a total of 120
problem instances. First, a parametric analysis will be
conducted to decide on a good parameter-configuration
for the PSO as well as for the schedule generation al-
gorithm pG&T. Then, we will present results of ex-
pected makespan and tardiness minimisation obtained
by the PSO considering two different objective prior-
ity structures. As no multiobjective approach to fuzzy
open shop can be found in the literature, we shall com-
pare the multiobjective PSO to the single-objective
PSO that considers only the primary objective and we
shall also compare it with a memetic algorithm from
the literature. We will then proceed to analyse the re-
lationship between the lexicographic solutions and so-
lutions of a dominance-based approach. Finally, we
shall present an analysis of the solutions obtained with
the PSO based on the a-posteriori semantics of fuzzy
schedules introduced in Section 3.3.
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5.1. Experiment setting

For the experimental evaluation, we use some of the
instances proposed in [18]. These were obtained based
on the well-known benchmark from [5], which con-
sists of 6 families, denoted J3, J4, . . . , J8, of sizes
3 × 3, 4 × 4, . . . , 8 × 8, containing 8 or 9 instances
each. Each family is divided into three sets of prob-
lems per0, per10 and per20 according to the differ-
ence between minimum and maximum workloads of
jobs and machines (the number in the name refers to
this difference in percentage). We shall only consider
the largest instances, pertaining to the blocks of size
7 × 7 and 8 × 8, comparing our results to those of the
memetic algorithm (MA) proposed in [18]. There are
10 fuzzy versions of each original problem instance,
generated by transforming the original crisp process-
ing times into symmetric TFNs such that their modal
value corresponds to the original duration. To add a
crisp due date di for each job Ji we follow [2] and
compute di = TF

∑m
j=1 p2

ij , where TF is the tightness
factor for the due date, in our case, TF = 1.1.

Given the method for generating due dates, in per0
instances, where all jobs have the same workload (and
consequently the same due-date), the difference be-
tween tardiness and makespan is only a constant (the
due date value). Both objectives are thus strongly
correlated, making these instances unsuitable for our
multi-objective study. Hence for the experimental anal-
ysis we shall restrict to the instances per10 and per20
of size 7 × 7 and 8 × 8 (in total, 120), these being the
hardest problems to solve considering both objectives.
These problem instances and more detailed results of
the experiments presented in this section can be found
at http://www.di.uniovi.es/iscop.

Given the two fuzzy goals f1 = Cmax and f2 =
Tmax, we consider four objective functions: two single-
objective functions given by the expected values E[f1]
and E[f2] and two multiobjective functions that result
from incorporating two different priority structures in
expression (10). The first multiobjective function, de-
noted l12, corresponds to the priority structure defined
by ρ(fi) = i, that is, the most prioritary goal is the
makespan f1. The second objective function l21 corre-
sponds to ρ(f1) = 2, ρ(f2) = 1, i.e. the most prior-
itary goal is to minimise tardiness. These hierarchies
correspond to probably the most common objectives in
the open shop literature, namely minimise makespan
or maximise due-date satisfaction.

5.2. Parametric analysis

As an initial configuration for the PSO, we take the
best parameter values obtained in [37]: swarm size
N = 60, guiding probabilities p1 = 0.7, p2 = 0.1, mu-
tation probability 1 and inertia weight w linearly de-
creasing from 0.9 to 0.3. Regarding the filtering mech-
anism of the search space given in the schedule gen-
erator, in [31] it is suggested to take δ = 0.25 for the
instances considered herein. The termination criterion
is the number of iterations, which depends on the prob-
lem size: 2800 for 7 × 7 instances and 3000 for 8 × 8
instances. Finally, to fix the target values we emulate
the DM and use the experience gained using E[f1] and
E[f2] as single objectives, setting b1 (resp. b2) equal to
the worst value of E[f1] (E[f2]) across 30 runs of the
PSO.

To measure the quality of each configuration, since
in most of the problems the target value of the objec-
tive with highest priority is reached, we compute the
distance from the average solution (across the 10 runs)
to the target value of the secondary objective and try to
minimise it. To compare results on different instances,
distance values are normalised and finally, for those in-
stances where the algorithm does not reach the target
with highest priority, we set the normalised distance to
1 in order to penalise that configuration. Tables and fig-
ures in the following show the average of these values
across all instances.

5.2.1. PSO algorithm parameters
Starting with this initial configuration, we proceed

to perform a parametric analysis for the algorithm. In
this analysis, we try different values for the PSO algo-
rithm’s parameters (in bold we highlight the values of
the starting configuration):

• Inertia: Linearly decreasing from ωs to ωe, with
ωs ∈ {0.5, 0.7, 0.9} and ωe ∈ {0.1, 0.3, 0.5}.

• Mutation probability: Values in {0, 0.25, 0.50,
0.75, 1}.

• Guiding probabilities p1 and p2: all possible pairs
of the values in {0.1, 0.3, 0.5, 0.7, 0.9}, provided
that they add up to a maximum of 1.

The main drawback of a full factorial design is its
high computational cost, especially when the number
of parameters (factors) or their domain values are large,
that is, a very large number of experiments must be
realised [38]. A common approach to parameter set-
ting in the literature is to resort to a sequential design:
this has the advantage of keeping the complexity of
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the parametric analysis within reasonable bounds at the
cost of failing to fully consider possible interactions
between different parameters. This may raise concerns
about the influence of the sequential parameter order-
ing on the final results. In our experimental analysis
we have actually tried the 6 possible orderings for the
three parameters under consideration, obtaining in the
end three different winning configurations (there exist
different orderings yielding the same setup):

• Inertia ω from 0.7 to 0.3, guiding probabilities
p1 = 0.9, p2 = 0.1 and mutation probability
pm = 1.0;

• Inertia ω from 0.9 to 0.3, guiding probabilities
p1 = 0.9, p2 = 0.1 and mutation probability
pm = 0.5;

• Inertia ω from 0.7 to 0.5, guiding probabilities
p1 = 0.7, p2 = 0.1 and mutation probability
pm = 1.0.

While the initial configuration from [37] obtains an av-
erage distance value of 0.55, the above configurations
obtain, respectively, average distance values equal to
0.335, 0.341 and 0.324. The latter is the one offering
best results in terms of quality, although differences be-
tween configurations are quite small. This configura-
tion is also the one with smallest variation depending
on the objective function used (l12 or l21). For these
reasons, the ordering followed to obtain the third con-
figuration will be taken to be the best one.

We now describe in detail the process followed to fix
parameter values with this ordering. Starting with the
initial algorithm’s setup from [37], at each step, we run
the PSO with l12 and l21 10 times on a fuzzy instance
of each 8 × 8 problem, testing different values for a
each parameter as follows: first inertia, then mutation
probability and finally guiding probabilities.

Figure 2 shows the average across the 8×8 problems
of the normalised distance values obtained with l12 and
l21 using different inertia values linearly decreasing in
the intervals specified on the X-axis. An additional bar
has been added to show the “overall” performance of
the algorithm, corresponding to the average value ob-
tained using both objective functions. We can see that
the best configuration for this average value is to have
inertia going from 0.7 to 0.5; this is also a good con-
figuration for both objective functions l12 and l21 indi-
vidually.

Once the inertia is fixed, we try different mutation
probability values pm. Figure 3 illustrates the impor-
tance of this parameter for the behaviour of the algo-
rithm, with larger probability values yielding the best

Fig. 2. Algorithm’s performance with varying inertia weight.

Fig. 3. Algorithm’s performance with varying mutation probability.

results. As it happens in the single-objective version of
the PSO, the best option is to mutate the particles with
probability pm = 1. High mutation probabilities may
strike the reader as unexpected but are not unusual in
the literature for discrete combinatorial optimisation.
Indeed, in traditional PSO all dimensions are typically
independent of each other, so particle updates are per-
formed independently in each dimension with larger
velocity values allowing the particle to explore more
distant areas. However, in PSO for discrete optimisa-
tion – such as the one in this paper, where dimensions
codify task relative orders – independence no longer
holds and velocity is limited to absolute values repre-
senting differences instead of distances between parti-
cles, thus reducing the exploration potential. Mutation
– which in our case, translates to changing the relative
order of one of the nm tasks – is introduced to deal
with this shortcoming, reducing the possibility of get-
ting easily trapped into local minima [22].

After fixing the mutation probability, we test the
guiding probabilities p1 and p2; the results are shown
in Table 1. At first sight, it is tempting to conclude that
the best option in terms of normalised distance is to
take p1 = 0.9, p2 = 0.1; however results vary greatly
with the objective function used (0.06 for l21 but 0.13
for l12). If we look at the results obtained for p1 = 0.7,
p2 = 0.1, there is little change in the average dis-
tance value but in this case the quality of the solution
is clearly more independent of the objective function
used. Consequently, we take p1 = 0.7, p2 = 0.1 as the
optimal configuration.
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Table 1

Algorithm’s performance with varying guiding probabilities

Values l12 l21 Average

p1 = 0.1, p2 = 0.1 0.49 0.34 0.42

p1 = 0.1, p2 = 0.3 0.60 0.78 0.69

p1 = 0.1, p2 = 0.5 0.80 0.78 0.79

p1 = 0.1, p2 = 0.7 0.94 0.80 0.87

p1 = 0.1, p2 = 0.9 0.97 0.83 0.90

p1 = 0.3, p2 = 0.1 0.23 0.32 0.28

p1 = 0.3, p2 = 0.3 0.57 0.37 0.47

p1 = 0.3, p2 = 0.5 0.46 0.58 0.52

p1 = 0.3, p2 = 0.7 0.70 0.64 0.67

p1 = 0.5, p2 = 0.1 0.23 0.14 0.19

p1 = 0.5, p2 = 0.3 0.47 0.29 0.38

p1 = 0.5, p2 = 0.5 0.49 0.32 0.41

p1 = 0.7, p2 = 0.1 0.11 0.09 0.10

p1 = 0.7, p2 = 0.3 0.15 0.25 0.20

p1 = 0.9, p2 = 0.1 0.13 0.06 0.09

Fig. 4. Evolution of E[f1] and E[f2] using l12 for j8-per20-0
instance.

Regarding the stopping criterion, we keep the num-
ber of iterations proposed initially. To illustrate that
this ensures proper convergence, Fig. 4 shows the av-
erage evolution of l12 along 3000 iterations for one
of the fuzzy instances generated from J8-per20-0. We
can see how, initially, the algorithm minimises the ex-
pected makespan while the behaviour of the expected
tardiness is erratic. However, once the algorithm has
reached the expected makespan target (around itera-
tion 600), it starts to mimimise tardiness as well. The
remaining instances follow the same convergence pat-
tern.

We now test the effect of increasing the swarm size.
Notice that this may affect the runtime, being and im-
portant penalisation factor. A common approach in the
literature is to measure the computational effort of a
metaheuristic in terms of the number of objective func-
tion evaluations, which is independent of the computer
system. For this reason, we adjust the number of iter-

Table 2

Algorithm’s performance with varying swarm size

Swarm size l12 l21

60 0.17 0.30

80 0.45 0.39

100 0.28 0.44

Table 3

Algorithm’s performance with varying the delay parameter

Delay value δ l12 l21 Average

0 0.59 0.83 0.71

0.25 0.01 0.07 0.04

0.5 0.09 0.10 0.10

0.75 0.90 0.85 0.87

1 1.00 1.00 1.00

ations so the PSO evaluates the same number of parti-
cles for all possible values of swarm size. We try three
different swarm sizes: 60, 80 and 100, with 3000, 2250
and 1800 iterations respectively so the number of eval-
uations is kept the same.

The performance of the obtained solutions, mea-
sured in terms of normalised distance to the target
value of the secondary objective, can be seen in Ta-
ble 2; attending to these values, the option providing
the best objective values at the same computational
cost is to keep 60 particles in the swarm. This would
be in line with the results obtained for continuous PSO
in [42], where medium swarm sizes obtain the best re-
sults.

5.2.2. Parameterisation of the search space
There is another parameter in the algorithm, the

delay parameter δ used by the schedule builder (Al-
gorithm 2). Notice that, unlike the other parameters,
the differences in algorithm performance due to vari-
ations of the delay are a consequence of changes in
the search space explored not in the search process fol-
lowed by the PSO algorithm. We have tried four pos-
sibilities: δ = 0, which corresponds to exploring the
set of non-delay schedules; δ = 1, to explore the set of
active schedules; and δ = 0.25, 0.5, and 0.75, to ex-
plore three proper subsets of the space of active sched-
ules. Table 3 shows the results (normalised distances to
the target values of the secondary objectives) obtained,
showing that both multi-objective approaches perform
better for δ = 0.25.

5.3. Results of the multiobjective optimisation

Given the optimal configuration obtained with the
above parametric analysis, we now proceed to eval-
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Table 4

Results obtained by the MOPSO

Prob. Obj. Size 7 × 7 Size 8 × 8

E[Cmax] E[Tmax] E[Cmax] E[Tmax]

Avg. Std. dev. Avg. Std. dev. Avg. Std. dev. Avg. Std. dev.

per10-0 E[f1] 1030 2.26 19.2 5.79 1050 2.64 23.0 5.70

l12 1031 1.66 14.3 3.41 1052 2.42 18.5 4.42

E[f2] 1056 9.14 11.1 0.92 1072 10.62 13.5 1.32

l21 1040 5.80 11.8 0.97 1061 7.93 14.8 1.19

per10-1 E[f1] 1017 1.22 20.1 1.46 1030 3.76 30.3 7.88

l12 1018 1.71 19.5 1.66 1033 3.75 23.5 5.65

E[f2] 1048 9.29 12.0 1.32 1064 11.44 14.1 1.52

l21 1036 5.34 13.8 0.67 1049 10.89 15.6 1.32

per10-2 E[f1] 1031 2.74 25.1 7.36 1033 5.58 27.4 7.67

l12 1033 3.51 21.1 5.76 1036 5.03 20.8 5.45

E[f2] 1066 12.25 11.5 1.14 1063 13.04 14.2 1.53

l21 1058 8.93 12.6 1.47 1052 10.13 15.8 1.47

per20-0 E[f1] 1001 0.12 72.4 10.75 1016 2.64 99.4 20.65

l12 1001 0.31 46.8 9.68 1019 2.09 72.1 20.19

E[f2] 1030 8.95 15.8 0.74 1071 11.58 13.4 1.32

l21 1021 7.92 16.9 0.97 1059 11.38 14.7 1.21

per20-1 E[f1] 1028 2.43 90.1 22.84 1001 0.86 93.1 20.29

l12 1031 1.74 56.0 18.98 1003 0.92 57.0 21.40

E[f2] 1081 7.54 16.4 0.93 1023 9.87 16.9 1.58

l21 1073 9.44 17.5 1.27 1013 7.42 18.6 1.61

per20-2 E[f1] 1021 2.41 65.6 26.56 1014 2.49 78.6 23.70

l12 1023 2.31 49.9 23.11 1018 2.35 47.3 17.11

E[f2] 1072 15.01 14.7 1.28 1060 15.25 15.0 1.59

l21 1059 12.72 16.4 1.34 1048 12.51 16.3 1.56

uate the performance of the multiobjective PSO al-
gorithm in terms of objective-value minimisation. As
mentioned above, we run the PSO with the single-
objective functions f1 = Cmax and f2 = Tmax (min-
imising their expected values) as well as two different
multiobjective functions, l12 and l21, corresponding to
the two possible priority structures for f1 and f2.

Table 4 contains a summary of the results: for each
objective function we measure E[f1] and E[f2] in
the obtained schedule and compute the average val-
ues and standard deviations across the 30 executions
of the PSO and the 10 fuzzy instances generated from
the same original problem. According to this table, the
multiobjective versions with l12 and l21 behave simi-
larly to the corresponding single-objective ones, E[f1]
and E[f2] regarding their primary goal. Additionally,
they improve considerably on the other goal. Indeed,

in all instances, l12 reaches the expected makespan tar-
get while the expected tardiness values obtained with
l12 are 26% better in average than using E[f1], being
better in all problem instances. If we measure the re-
duction of the gap between the expected tardiness and
its corresponding target, the multi-objective approach
l12 is 49% better than using E[f1] in average. Clearly,
minimising the makespan does not always imply min-
imising tardiness. If we now compare l21 with E[f2],
results are similar: in all instances l21 reaches the ex-
pected tardiness target whereas the gap between the ex-
pected makespan and its target value is reduced 43% in
average when the multi-objective approach is used.

According to Table 4, the improvement in expected
tardiness with l12 is greater for per20 problems than for
per10 ones. This is not surprising: with higher work-
load variability, due dates are less uniform in per20 in-
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Fig. 5. Comparison between E[f1] and l12 regarding the secondary
objective function (E[Tmax]).

Fig. 6. Comparison between E[f2] and l21 regarding the secondary
objective function (E[Cmax]).

stances. Indeed when only expected makespan is op-
timised, tardiness values are considerably larger for
per20 than for per10 instances, the latter being closer
to their target values. In consequence, for per20 in-
stances there is greater room for improvement. Fig-
ures 5 and 6 illustrate the behaviour of the algorithms
l12 and l21 with respect to the single criteria algorithms.
As they always reach the goal having the highest pri-
ority, the figures plot only the values for the function
with least priority.

Notice that comparisons between different multiob-
jective functions do not make sense, as they model dif-
ferent priority requirements. In a hierarchical approach
such as this, the decision maker is responsible for es-
tablishing an adequate hierarchy among goals accord-
ing to his/her knowledge of the problem. The rele-
vance of the target values and the resulting influence
in a good performance of the algorithm must be taken
into account. In the case of a very hard target for the
objective with highest priority, the algorithm behaves
like the corresponding single-objective one. In experi-
ments not reported here we have tried different values
for tardiness target and the results showed that for a
difficult target, l21 behaves similarly to E[f2] in terms
of makespan and tardiness. On the other hand, when
the tardiness target is relaxed, l21 reached the target in

Table 5

Comparison of results for E[Cmax]

Problem Size 7 × 7 Size 8 × 8

MA-E[f1] PSO-l12 MA-E[f1] PSO-l12

per10-0 1066.04 1031.37 1083.08 1052.32

per10-1 1052.36 1017.89 1065.86 1032.83

per10-2 1067.27 1032.89 1070.77 1036.19

per20-0 1004.22 1000.97 1036.72 1019.14

per20-1 1043.73 1030.87 1013.79 1002.53

per20-2 1042.05 1022.96 1034.66 1017.77

early iterations of the algorithm and then optimised the
makespan, thus behaving like E[f1].

Finally, we compare the PSO using l12 with the
single-objective MA algorithm from [17]. Table 5 con-
tains expected makespan results for both methods, with
average solutions obtained by both methods across the
10 fuzzy instances of each original crisp problem, MA
optimising only E[Cmax] and PSO with l12. In [31] the
PSO optimising E[Cmax] compared favourably with
the MA algorithm and we see that this is still the case
when we use the multiobjective function l12.

5.4. Relationship with Pareto-optimality

Dominance-based algorithms constitute the most
common approach to multiobjective optimisation
problems. Their aim is to find sets of non-dominated
solutions, also known as Pareto-optimal or efficient
solutions. There are known relationships between lex-
icographically optimal solutions and efficient solu-
tions; in particular, a lexicographically optimal solu-
tion is always non-dominated and optimal solutions to
a lexicographical goal-programming problem are non-
dominated solutions to the problem of minimising de-
viations w.r.t. to target values [12].

The aim of this section is to empirically explore
the relationship between the solutions obtained by
our algorithm and those obtained by a multiobjec-
tive dominance-based approach, which assumes that
no hierarchy can be established among objectives. To
this end, we modify our PSO to handle sets of non-
dominated solutions, in the same way that the original
PSO from [37] is changed to become a multiobjective
dominance-based PSO (DB-PSO for short) in [35] and
[36].

The resulting DB-PSO is run 10 times on the per20
family of problems, these being the instances with the
smallest correlation between the objective functions.
Figure 7 illustrates the behaviour in the objective space
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of the solutions obtained by DB-PSO for a per20-0 in-
stance, with a vertical and a horizontal line marking
the target values for each objective. If Si denotes the
set of non-dominated solutions obtained on the ith run,
i = 1, . . . , 10, the circles in the figure represent the so-
lutions in the union S = S1∪S2∪· · ·∪S10. We can ap-
preciate the familiar shape or distribution usually ob-
tained by dominance-based algorithms. Additionally,
the dotted line is formed by joining the solutions in the
set PO1 of non-dominated elements from S.

Also in Fig. 7 we can see solutions obtained with
the lexicographic approach: there is a set S12 =
{s1

12, . . . , s10
12} of ten solutions (represented as trian-

gles) which correspond to 10 runs of the PSO algo-
rithm with the objective function l12 and another set
S21 = {s1

21, . . . , s10
21} of ten solutions (represented as

squares) obtained with 10 runs using l21. The solid
line is obtained by connecting all the elements in
PO2, the set of non-dominated solutions in the union
S ∪ S12 ∪ S21 of all solutions. We can appreciate how
the lexicographic solutions complement those obtained
by the DB-PSO, by focusing on the “extreme ends” of
the non-dominated front.

In order to obtain quantitative results, we take for
every per20 problem 10 lexicographic solutions si

kl,
i = 1, . . . , 10, k �= l, k, l ∈ {1, 2} and 10 sets of non-
dominated solutions Sj , j = 1, . . . , 10, and we count
all pairs (si

kl, S
j) out of the 100 possible ones where

si
kl is a member of the set of non-dominated solutions

from {si
kl} ∪ Sj (in other words, si

kl is not dominated
by any solution in Sj). It turns out that, in average
across all per20 problems, si

12 is part of the set of non-
dominated solutions in 88% of the cases; this propor-
tion grows to 95% when l21 is used instead of l12. It
is also remarkable that in 77% of the cases, a solution
si

21 is non-dominated by the solutions in Sj and at the
same time does not dominate the solutions in Sj ; we
believe this stems from the fact that the target values
fixed for tardiness are hard to achieve.

Fig. 7. Solutions obtained with l12, l21 and DB-PSO across 10 runs
on J8-per20-0 instance.

5.5. Study using a-posteriori semantics

To evaluate our proposal in terms of the semantics
for fuzzy schedules described in Section 3.3, we use
the six largest problems – those from j8-per10-0 to j8-
per20-2 – and we take a single fuzzy instance of each
one. This provides a sufficiently diverse set of problem
instances while keeping it to a reasonable size given
the computational cost of the following experimental
study. In particular, here we take the first-generated
fuzzy instance of each original problem. We run l12
on the fuzzy problem instances 30 times, thus obtain-
ing 30 permutations zF

1 , . . . , zF
30 representing 30 solu-

tions for each instance. Now, one of these permuta-
tions needs to be selected as the solution representa-
tive of the performance of the PSO on the fuzzy prob-
lem. This selection should be made so as to avoid as
much as possible the random effect of stochastic algo-
rithms. For this reason, we consider the set of 30 vec-
tors of objective values obtained with the permutations
and take the permutation lying closest to the centre of
gravity of this set. Then, in order to establish a com-
parison, we repeat the process running the PSO algo-
rithm on the original crisp problems, thus obtaining 30
new permutations zC

1 , . . . , zC
30 for each problem from

which one is selected following the same criterion as
above. This provides us with prototypical solutions zF

and zC of the fuzzy and crisp instance of each problem,
which correspond to taking into account or overlook-
ing the uncertainty in task durations during the search
of a solution. We can now compare these two prototyp-
ical solutions based on the a-priori semantics, gener-
ating four sets containing 1000 deterministic instances
each, which correspond to the possible realisations of
the problem according to the four scenarios described
in Section 3.3.

To compare the fuzzy solutions zF with the crisp
ones zC , we shall use the percentage of instances (a-
posteriori realisations of the problem) where the target
values are satisfied, paying special attention to the ob-
jective with highest priority. Table 6 contains the av-
erage of these percentage values across all instances.
It only reports results under scenarios I and IV be-
cause results under the remaining scenarios are trivial:

Table 6

Percentage of instances that reach the target value

Makespan Tardiness

zF zC zF zC

Scenario I 48% 37% 41% 46%

Scenario IV 12% 7% 21% 17%
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100% satisfaction in scenario II – where all durations
are small – and 0% in scenario III – where all durations
are large and the target is never reached.

For the non-trivial scenarios, the fuzzy solutions per-
form clearly better in terms of makespan, which is the
highest-priority goal. For scenario I, the percentage of
instances that reach the makespan target when sched-
uled with the fuzzy permutations is a 30% higher than
when the crisp permutations are used. More impor-
tantly, when the initial fuzzy durations are not accu-
rately estimated (scenario IV), fuzzy solutions reach
target values over 70% times more than the crisp ones.
Regarding the secondary objective, we can observe
that under scenario I the percentage of instances that
the percentage of instances where the tardiness target is
reached is slightly higher when they are scheduled us-
ing the crisp permutation. However, the tardiness target
is reached more often when permutations are obtained
using fuzzy information under scenario IV, when dif-
ferences between “a priori” predictions and real dura-
tions are bigger.

For a better insight into the behavior of the task pro-
cessing orders given by the PSO when the fuzzy in-
formation is maintained along the search, versus those
that only use the most likely information, we present
some figures that illustrate different characteristics on
a particular instance, j8-per10-0.

Figure 8 shows box-plots corresponding to make-
span and tardiness values obtained by the samples gen-
erated in each scenario evaluating the two processing
orders zF and zC (identified as “fuzzy” and “crisp” in
the figure) across the 1000 crisp instances. This graphic
shows that the smallest values are obtained under sce-
nario II, being 0 in tardiness. On the opposite, scenario
III yields the largest values; this is also the scenario
where the differences between the crisp and the fuzzy
permutations are larger, specially for tardiness values.

The overall performance across all scenarios is slightly
better for the fuzzy permutation, being clearly better
under scenario III.

Figures 9–11 illustrate other properties for the same
instance. The left-hand side of each figure corresponds
to makespan values while the right-hand side corre-
sponds to tardiness values. Each subfigure contains two
triangles (TFNs) corresponding to the makespan (resp.
tardiness) obtained after scheduling the original fuzzy
problem following the task orderings zF and zC . To-
gether with the TFNs, we depict the normalised his-
tograms of the corresponding crisp makespan values
Cmax(zC , pc

l ) and Cmax(zF , pc
l ), l = 1, . . . , 1000 and

crisp tardiness values Tmax(zC , pc
l ) and Tmax(zF , pc

l )
under scenarios I, III and IV. Scenario II is again not in-
cluded because of its trivial behaviour explained above.
Even if these figures correspond to a single instance,
they illustrate a standard behaviour across all instances.
For example, the TFNs obtained with the fuzzy order-
ing zF always less width than those obtained with the
crisp ordering zC . This naturally translates into his-
tograms with smaller spread. We also observe a strong
correlation between the shape of the TFNs and the his-
tograms under scenario I, reinforcing the interpretation
of the fuzzy objective values as possibility distribu-
tions on the actual values that the objectives may take
when tasks are actually executed and take exact dura-
tions (assuming that the original fuzzy durations are
accurately estimated). Finally, under scenarios III and
IV the behaviour of zF is clearly better than that of zC ,
with significant differences for the histograms.

Finally, we would like to show not just an instance
or an average behaviour, but the situation of the whole
sample. In Fig. 12 we depict, for each permutation zF

and zC and each a-posteriori scenario, the objective
values for the 1000 crisp instances (a-posteriori real-
isations) as a cloud of bidimensional points together

Fig. 8. Box plots for crisp makespan and tardiness values for instance j8-per10-0 under each scenario.
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Fig. 9. Cmax(zF , p), Cmax(zC , p), Tmax(zF , p), Tmax(zC , p), and histograms of crisp Cmax and Tmax values obtained with zF and zC for
instance j8-per10-0 under scenario I.

Fig. 10. Cmax(zF , p), Cmax(zC , p), Tmax(zF , p), Tmax(zC , p), and histograms of crisp Cmax and Tmax values obtained with zF and zC for
instance j8-per10-0 under scenario III.

Fig. 11. Cmax(zF , p), Cmax(zC , p), Tmax(zF , p), Tmax(zC , p), and histograms of crisp Cmax and Tmax values obtained with zF and zC for
j8-per10-0 under scenario IV.

with a cross marking the centre of gravity of that cloud
of points. Regarding both objective values, fuzzy per-
mutations are overall clearly better than the crisp ones:
for makespan crisp solutions are “on the right” of fuzzy
ones and also for tardiness fuzzy solutions are “under”
the crisp ones. Differences are greatest under scenario
III, that is, when several delays occur for all tasks.

A summary of the above would be that the solutions
obtained when the algorithm takes into account the un-
certainty in task durations are more robust than those
obtained considering only the most plausible duration
for each task. When the real durations are close to the

modal value (scenario I) both methods have a similar
behaviour but when there are incidences and task du-
rations increase (scenario III), then fuzzy solutions be-
come much more reliable.

6. Conclusions and future work

We have considered an open shop problem with
uncertain durations modelled using TFNs and where
the goal is to find a schedule optimising the fuzzy
makespan and fuzzy maximum tardiness. We have pro-
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Fig. 12. Clouds of points with objective values for the scenario-samples generated for instance J8-per-10-0. (a) Scenario I. (b) Scenario II.
(c) Scenario III. (d) Scenario IV.
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posed to formulate the multiobjective problem as a lex-
icographical fuzzy goal programming model according
to a generic priority structure and target levels estab-
lished by the decision maker, using the expected value
of the fuzzy quantities. As solving method, a PSO
with codification based on priority arrays has been de-
scribed. After experimentally tuning the algorithm’s
parameter values, we have presented experimental re-
sults on fuzzy versions of well-known crisp problem
instances that illustrate the potential of both the pro-
posed multiobjective formulation and the PSO. We
have also seen how the lexicographical-approach solu-
tions complement the solutions obtained with a Pareto-
like approach, appropriate for the case when no hier-
archy can be established for the objectives. Finally, we
have studied with an analysis of possible a-posteriori
behaviour of solutions the advantages of modelling the
uncertainty and incorporating it to the solving pro-
cess instead of using a deterministic algorithm on crisp
problems considering only the modal values.

In the future, the multiobjective approach will be
further analysed on a more varied set of problem in-
stances, considering the influence of the target values
as well as measuring the robustness of the obtained
solutions. It would also be interesting to extend our
PSO algorithm to automatically tune the parameters as
suggested, for instance, in [40]. Finally, we would like
to study different schedule generation schemes for the
fuzzy OSP: their theoretical properties and their influ-
ence in the search metaheuristic’s outcome.
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Abstract In this paper we consider a variant of the open

shop problem where task durations are allowed to be

uncertain and where uncertainty is modelled using fuzzy

numbers. Solutions to this problem are fuzzy schedules,

which we argue should be seen as predictive schedules,

thus establishing links with the concept of robustness and a

measure thereof. We propose a particle swarm optimization

(PSO) approach to minimise the schedule’s expected

makespan, using priorities to represent particle position, as

well as a decoding algorithm to generate schedules in a

subset of possibly active ones. Our proposal is evaluated on

a varied set of several benchmark problems. The experi-

mental study includes a parametric analysis, results of the

PSO compared with the state-of-the-art, and an empirical

study of the robustness of taking into account uncertainty

along the scheduling process.

Keywords Open shop scheduling � Fuzzy durations �
Particle swarm optimisation � Robustness

1 Introduction

The open shop scheduling problem is a problem with an

increasing presence in the scheduling literature and with

clear applications in industry—consider for instance testing

facilities, where units go through a series of diagnostic tests

that need not be performed in a specified order and where

different testing equipment is usually required for each test

[27]. For a number of machines m C 3, this problem is NP-

complete; in consequence, it is usually tackled via meta-

heuristic techniques. For makespan minimisation, in [15]

two heuristic methods to obtain a list of operation priorities

are described and later used in a list-scheduling algorithm;

[23] proposes a tabu search algorithm; ant colony optimi-

sation is hybridised with beam search in [3]; [30] proposes

a solution based on particle swarm optimisation; ant bee

colony optimisation is used in [18] and a hybrid genetic

algorithm is proposed in [1]. These last three algorithms

conform the state-of-the art for open shop with makespan

minimisation.

To enhance the range of applications of scheduling, part

of the research is devoted to incorporating the uncertainty

and vagueness pervading real-world situations. Part of this

uncertainty translates into variability of input data which

can be somehow modelled and anticipated, leading to

proactive or robust scheduling [16]. The approaches are

diverse and, among these, fuzzy sets have been used in a

wide variety of ways [5, 6]. Far from being trivial, incor-

porating uncertainty and extending heuristic strategies to

the resulting setting usually requires a significant refor-

mulation of both the problem and solving methods. Some
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heuristic methods have so far been proposed for fuzzy flow

and job shop problems, where uncertain durations are

modelled via fuzzy sets; among others, in the last years we

find genetic algorithms in [12, 22], a fuzzy-neural approach

in [32], a memetic algorithm combining evolution and

local search in [28], swarm-based neighbourhood search in

[33] or differential evolution in [17]. However, to the best

of our knowledge, the open shop problem has received

little attention in the fuzzy framework: in [21] fuzzy sets

are used to represent flexible job start and due dates, a

possibilistic mixed-integer linear programming method is

proposed in [25] for a multiobjective open shop with setup

times, fuzzy processing times and fuzzy due dates and in

[26] a genetic algorithm is proposed to solve the open shop

with fuzzy durations, and in [11] this genetic algorithm is

combined with a local search method.

In the following, we consider the fuzzy open shop problem

with expected makespan minimisation, denoted O|fuzzpi|E[C-

max] and propose a particle swarm technique to solve it. The rest

of the paper is organized as follows. In Sect. 2 we formulate the

problem and associated concepts and introduce a measure of

robustness. Then, in Sect. 3, we describe the main components

of the particle swarm optimisation (PSO) algorithm proposed

to solve the problem. Section 4 includes a parametric analysis

of the PSO, experimental results to evaluate the competitive-

ness of our proposal and an additional analysis of the usefulness

of scheduling with fuzzy durations in order to improve solution

robustness. Finally, in Sect. 5 we summarise the main con-

clusions and propose ideas for future work.

2 Open shop scheduling with uncertain durations

The open shop scheduling problem, or OSP in short, consists

in scheduling a set of n jobs J1; . . .; Jn to be processed on a set

of m physical resources or machines M1; . . .;Mm: Each job

consists of m tasks or operations, each requiring the exclu-

sive use of a different machine for its whole processing time

without preemption, i.e. all operations must be processed

without interruption. In total, there are n 9 m tasks (nm for

short), denoted {oij, 1 B i B n, 1 B j B m}. A solution to

this problem is a schedule—an allocation of starting times

for all tasks—which is feasible, in the sense that all con-

straints hold, and is also optimal according to some criterion.

Here, the objective will be minimising the makespan Cmax,

that is, the time lag from the start of the first task until the end

of the last one, a problem often denoted O||Cmax in the lit-

erature [14].

2.1 Uncertain durations

In real-life applications, it is often the case that it is not

known in advance the exact time it will take to process one

operation and only some uncertain knowledge is available,

for instance, an interval of possible durations, or a most

likely duration with a certain error margin. Such knowl-

edge can be modelled using a triangular fuzzy number or

TFN, given by an interval [n1, n3] of possible values and a

modal value n2 in it [7]. For a TFN N, denoted

N = (n1, n2, n3), the membership function takes the fol-

lowing triangular shape:

lNðxÞ ¼
x�n1

n2�n1 : n1� x� n2

x�n3

n2�n3 : n2\x� n3

0 : x\n1 or n3\x

8<
: ð1Þ

In the open shop, we essentially need two operations on

processing times (fuzzy numbers), the sum and the maxi-

mum. These are obtained by extending the corresponding

operations on real numbers using the Extension Principle.

However, computing the resulting expression is cumber-

some, if not intractable. For the sake of simplicity and

tractability of numerical calculations, we follow [8] and

approximate the results of these operations, evaluating the

operation only on the three defining points of each TFN. It

turns out that for any pair of TFNs M and N, the approx-

imated sum M ? N & (m1 ? n1, m2 ? n2, m3 ? n3)

coincides with the actual sum of TFNs; this is not neces-

sarily so for the maximum max{M, N} &
(max{m1, n1}, max{m2, n2}, max{m3, n3}), although they

have identical support and modal value.

The membership function of a fuzzy number can be

interpreted as a possibility distribution on the real numbers.

This allows to define its expected value [24], given for a

TFN N by E½N� ¼ 1
4
ðn1 þ 2n2 þ n3Þ: It coincides with the

neutral scalar substitute of a fuzzy interval and the centre

of gravity of its mean value [6]. It induces a total ordering

B E in the set of fuzzy intervals [8], where for any two

fuzzy intervals M;N M� EN if and only if E[M] B E[N].

2.2 Fuzzy open shop scheduling

If processing times of operations are uncertain and such

uncertainty is modelled using TFNs, the resulting schedule

is fuzzy in the sense that starting and completion times for

each operation and hence the makespan are TFNs, where

each TFN can be seen as a possibility distribution on the

actual values that the corresponding time may take. How-

ever, there is no uncertainty regarding the order in which

operations must be processed.

Indeed, a schedule for an open shop problem of size

n 9 m (n jobs and m machines) may be determined by a

priority vector p ¼ ðp1; . . .; pnmÞ representing a task pro-

cessing order, where 8k; l ¼ 1; . . .; nm 1 B pl B nm and, if

k = l, then pk = pl, that is, p is a permutation of the set of

tasks where each task oij may be represented by the number

146 J. J. Palacios et al.
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(i - 1)m ? j. The task processing order represented by the

priority vector uniquely determines a feasible schedule; it

should be understood as expressing partial orderings for

every set of tasks requiring the same machine and for every

set of tasks requiring the same job.

Let us assume that the processing time pij of each task

oij; i ¼ 1; . . .; n; j ¼ 1; . . .;m is a TFN, so the problem may

be represented by a matrix of fuzzy processing times p of

size n 9 m. For a given priority vector p and a task oij, its

starting time Sijðp; pÞ is the maximum between the com-

pletion times of the task preceding oij in its job according to

p, let it be denoted oik, and the task preceding oij in its

machine according to p, let it be denoted olj:

Sijðp; pÞ ¼ maxðCikðp; pÞ;Cljðp; pÞÞ ð2Þ

where Cikðp; pÞ or Cljðp; pÞ are taken to be zero if oij is the

first task to be processed either in its job or its machine.

Then, its completion time Cijðp; pÞ is obtained by adding its

duration pij to Sijðp; pÞ:

Cijðp; pÞ ¼ Sijðp; pÞ þ pij ð3Þ

The completion time of a job Ji will then be the maxi-

mum completion time of all its tasks, that is,

Ciðp; pÞ ¼ max
1� j�m

fCijðp; pÞg ð4Þ

so the fuzzy makespan Cmaxðp; pÞ will be given by the

following:

Cmaxðp; pÞ ¼ max
1� i�n

Ciðp; pÞð Þ ð5Þ

In the case where no confusion is possible, we may drop

the priority vector p and the processing times matrix p and

simply write Cmax.

An important issue with fuzzy times is to decide on the

meaning of ‘‘optimal makespan’’. It is not trivial to opti-

mise a fuzzy makespan, since neither the maximum nor its

approximation define a total ordering in the set of TFNs.

Using ideas similar to stochastic scheduling, we follow the

approach taken for the fuzzy job shop in [13]. Given the

total ordering provided by the expected value, we consider

that the objective is to minimise the expected makespan

E[Cmax]. The resulting problem may be denoted O|fuzz

pi|E[Cmax] using the three-field notation [14].

Let us illustrate the previous definitions with an exam-

ple. Consider a problem of three jobs and two machines

with the following matrix for fuzzy processing times:

p ¼
ð3; 4; 7Þ ð3; 4; 7Þ
ð2; 3; 3Þ ð4; 5; 6Þ
ð3; 4; 6Þ ð1; 2; 4Þ

0
@

1
A

Here p21 = (2, 3, 3) is the processing time of task o21,

the task of job J2 to be processed in machine M1. Figure 1

shows the Gantt chart adapted to TFNs of the schedule

given by the priority vector p = (1, 4, 6, 3, 5, 2). It rep-

resents the partial schedules on each machine obtained

from this decision variable. Tasks must be processed in the

following order: o11, o22, o32, o21, o31, o12. Given this

ordering, the starting time for task o21 will be the maximum

of the completion times of o22 and o11, which are respec-

tively the preceding tasks in the job and in the machine:

S21 ¼ maxðC22;C11Þ ¼ maxðð4; 5; 6Þ; ð3; 4; 7ÞÞ ¼ ð4; 5; 7Þ:

Consequently, its completion time will be

C21 ¼ S21 þ p21 ¼ ð4; 5; 7Þ þ ð2; 3; 3Þ ¼ ð6; 8; 10Þ:

Also, it is easy to see that the makespan is

Cmax = (9, 12, 17), so E[Cmax] = 12.5.

2.3 Robust schedules

A fuzzy schedule does not provide exact starting times for

each task. Instead, it gives a fuzzy interval of possible

values for each starting time, provided that tasks are exe-

cuted in the order determined by the schedule. In fact, it is

impossible to predict what the exact time-schedule will be,

because it depends on the realisation of the tasks durations,

which is not known yet. This idea is the basis for a

semantics for fuzzy schedules from [12] by which solutions

to the fuzzy open shop should be understood as a-priori

solutions, also called baseline or predictive schedules in the

literature [16]. These solutions are found when the duration

of tasks is not exactly known and a set of possible scenarios

must be taken into account. When tasks are executed

according to the ordering provided by the fuzzy schedule

we shall know their real duration and, hence, obtain a real

(executed) schedule, the a-posteriori solution with deter-

ministic times.

Clearly, fuzzy solution should yield reasonably good

executed schedules in the moment of its practical use. Also,

the estimates for starting and completion times and, in

particular, for the makespan, should be reasonably accurate

for each possible scenario of task durations. This leads us

to the concept of solution robustness. As [19] puts it,

‘‘Intuitively, a solution can be considered as robust if it

Fig. 1 Gantt chart of the schedule represented by the priority vector

(1, 4, 6, 3, 5, 2)
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behaves ‘‘well’’ or ‘‘not too bad’’ in all the scenarios.’’ This

is the idea underlying a definition of �-robustness given in

[2] for stochastic scheduling which can be adapted to the

fuzzy open shop as follows.

A predictive schedule is considered to be robust if the

quality of the eventually executed schedule is close to the

quality of the predictive schedule. In particular, a predic-

tive schedule with objective value fpred is �-robust for a

given � if the objective value fexec of the eventually exe-

cuted schedule is such that:

ð1� �Þ� f exec

f pred
�ð1þ �Þ ð6Þ

or, equivalently,

jf exec � f predj
f pred

� � ð7Þ

That is, the relative error of the estimation made by the

predictive schedule is bounded by �. Obviously, the smaller

� is, the better.

3 Particle swarm optimization for the FOSP

Given the complexity of the open shop, different meta-

heuristic techniques have been proposed to solve the gen-

eral m-machine problem. In particular, a method based on

particle swarm optimisation has been proposed in [30]

which is considered the state-of-the-art for crisp open shop.

Particle swarm optimisation (PSO) is a population-based

stochastic optimisation technique inspired by bird flocking

or fish schooling [20]. In PSO, each position in the search

space corresponds to a solution of the problem and parti-

cles in the swarm cooperate to find the best position (hence

best solution) in the space. Particle movement is mainly

affected by the three following factors:

– Inertia: Velocity of the particle in the latest iteration.

– pbest: The best position found by the particle.

– gbest: The best position found by the swarm so far (the

best pbest).

The potential solutions or particles fly through the

problem space changing their position and velocity by

following the current optimum particles pbest and gbest.

Algorithm 1 describes the structure of a generic PSO

algorithm. First, the initial swarm is generated and evalu-

ated. Then the swarm evolves until a termination criterion

is satisfied and in each iteration, a new swarm is built from

the previous one by changing the position and velocity of

each particle following its pbest and gbest locations.

Following this general structure, we now extend the

successful algorithm from [30] to the fuzzy framework.

3.1 Position representation and evaluation

We use a priority-based representation for particle posi-

tions. Thus a schedule is encoded as a priority matrix

Xk ¼ ðxk
ijÞi¼1...n;j¼1...m, where xk

ij denotes the priority of

operation oij, the task of job i processed on machine j. An

operation with smaller xk
ij has a higher priority to be

scheduled.

If we represent a FOSP solution as a task processing

order p, which is a permutation of tasks, we can transfer

this permutation to a priority matrix and viceversa. For

instance, given the following solution for a problem of size

3 9 3:

p ¼ o11 o13 o23 o12 o31 o33 o21 o32 o22ð Þ

a particle in the space can be obtained by randomly setting

xij in the interval p� 0:5; pþ 0:5ð Þ where p is the location

of oij in p. Therefore, the operation with smaller xij has

higher priority to be scheduled. The above permutation list

can be transferred to:

Xk ¼
1:2 4:0 1:7
6:6 9:4 2:7
5:3 7:9 6:4

0
@

1
A

Decoding of a particle may be done in different ways.

For the crisp job shop and by extension for the open shop,

it is common to use the G&T algorithm [9], which is an

active schedule builder. A schedule is active if one task

must be delayed for any other one to start earlier. Active

schedules are good in average and, most importantly, the

space of active schedules contains at least an optimal one,

that is, the set of active schedules is dominant. For these

reasons it is worth to restrict the search to this space. In

[10] a narrowing mechanism was incorporated to the G&T

algorithm in order to limit machine idle times by means of

a delay parameter d 2 ½0; 1�, thus searching over the space

of so-called parameterised active schedules. In the deter-

ministic case, for d\ 1 the search space is reduced so it
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may no longer contain optimal schedules and, at the

extreme d = 0 the search is constrained to non-delay

schedules, where a resource is never idle if a requiring

operation is available. This variant of G&T has been

applied in [30] to the deterministic OSP, under the name

‘‘parameterized active schedule generation algorithm’’.

In Algorithm 2 we propose an extension of parameter-

ised G&T to the case of fuzzy processing times, denoted

pfG&T. It should be noted that, due to the uncertainty in

task durations, even for d = 1, we cannot guarantee that

the produced schedule will indeed be active when it is

actually performed (and tasks have exact durations). We

may only say that the obtained fuzzy schedule is possibly

active. Throughout the algorithm, X denotes the set of the

operations that have not been yet scheduled, Xk the priority

matrix, Sij the starting time of the operation oij and Cij the

completion time of the operation oij.

Let us illustrate the decoding algorithm with an exam-

ple. Consider the problem proposed in Sect. 2.2 to illustrate

the concept of fuzzy schedule and the following priority

matrix for it:

Xk ¼
1:2 5:3
2:7 1:7
4:0 6:4

0
@

1
A

Figure 2 shows the Gantt chart of the partial schedule in

which the operations o11, o22 and o21 have been already

scheduled. In this situation, X ¼ fo12; o31; o32g: Table 1

depicts the values of the starting and completion times of

the operations in X in this iteration of the algorithm as well

as its expected values. The s* and c* values are shown in

bold. Considering d = 1, the conflict set is O = {o12, o32}.

Operation o31 is not contained in the O set, although it has

the highest priority in X, because the possibility that

operation o32 can be completed before the earliest begin-

ning of o31 is 1, so by selecting o31 before o31 we would

generate a non possibly active schedule. Additionally,

reducing the d value to 0.1, the set of operations that are

candidates to be scheduled is further restricted to

O = {o32} even though o32 is the lowest-priority operation

of X.

Notice that the pfG&T algorithm only uses the priority

vector to break ties among tasks in the conflict set, so the

task processing order in the resulting schedule may differ

from that in the particle. Given that the essence of a particle

is the task ordering it represents, gbest and pbest do not

record the actual best positions found so far, but rather the

best operation sequences of the schedules generated by the

decoding operator.

3.2 Particle movement and velocity

Particle movement depends not only on its position, but also

on its velocity. For any particle, its velocity is represented by

an array of the same length as the position array where all the

values are in the set { - 1, 0, 1}. Initially, the values in the

array are set at random. Afterwards, particle position and

velocity are updated depending on gbest and pbest. Tradi-

tionally, this updating depends on distance values. Instead,

this PSO considers whether the position value xk
ij is larger or

smaller than pbestk
ij (gbestij). Updating is controlled at the

beginning of each iteration by the inertia weight w as well as

two other constants 0 B C1,C2 such that C1 ? C2 B 1,

representing the probability that the updating is guided

either by pbest or by gbest. Further detail on the updating

process can be found in Algorithm 3.

Fig. 2 Gantt chart of the partial schedule for the example in Sect. 2.2

where only o11, o22 and o21 have been scheduled

Table 1 Partial schedule values

Oper. Sij E[Sij] Cij E[Cij]

o12 (4,5,7) 5.25 (7,9,14) 9.75

o31 (6,8,10) 8.00 (9,12,16) 12.25

o32 (4,5,6) 5.00 (5,7,10) 7.25
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3.2.1 Position mutation

In order to introduce diversity, after a particle moves to a

new position, we mutate it with probability pM by choosing

an operation and then randomly changing its priority value

xk
d independently of vk

d. As in [30], for a problem of size

n 9 m, if xk
d\ nm=2ð Þ, xk

d will take a random value in

[mn - n, mn], and vk
d ¼ 1; else, if xk

d [ nm=2ð Þ, xk
d will

take a random value in [0,n] and vk
d ¼ �1.

3.2.2 Diversification strategy

If all particles have the same pbest solutions, they will be

trapped into local optima. To prevent such situation, a

diversification strategy is adopted that keeps the pbest

solutions different. In this strategy, the pbest solution of

each particle is not the best solution found by the particle

itself, but one of the best N solutions found by the swarm

so far, where N is the size of the swarm. Once any particle

generates a new solution, the pbest solutions will be

updated in certain cases as follows:

– if the makespan of the particle solution equals that of

any pbest solution, replace that pbest solution with the

new particle solution;

– if the makespan of the particle solution improves the

worst pbest solution and is different from all pbest

solutions, set the worst pbest solution to be the particle

solution.

4 Experimental evaluation

We now proceed to empirically evaluate the proposed

method in several steps, using a total of 520 problem

instances. First, a parametric analysis will be conducted to

decide on a good parameter-configuration for the PSO

search process as well as for the schedule generation

algorithm pG&T. Then, we present results of expected

makespan minimisation obtained by the PSO and we

compare them with the best results obtained so far in the

literature by a memetic algorithm. Finally, we shall present

some results to illustrate the benefits in terms of robustness

of using fuzzy numbers along the scheduling process,

instead of the more straightforward approach of scheduling

a crisp problem that results from defuzzification.

4.1 Experiment setting

For the experimental study we use the test bed given in

[11], where the authors follow [8] and generate a set of

fuzzy problem instances from well-known open shop

benchmark problems [4]. Given a crisp problem instance,

each crisp processing time t is transformed into a sym-

metric fuzzy processing time p(t) such that its modal value

is p2 = t and p1, p3 are random values, symmetric w.r.t. p2

and generated so the TFN’s maximum range of fuzziness is

30 % of p2. The original problem instances consist of six

families, denoted J3; J4; . . .; J8, of sizes 3 9 3 to 8 9 8,

containing 8 or 9 instances each. Ten fuzzy versions of

each crisp problem instance were generated, so in total

there are 520 problem instances. The obtained benchmark

instances for the fuzzy open shop are available at http://

www.di.uniovi.es/iscop.

If a lower bound for the expected makespan were

known, the algorithm’s performance may be evaluated by

measuring the distance between the obtained expected

makespan and the lower bound. Thanks to the symmetry in

the TFNs, the optimal solution (if known) to the crisp

problem provides a lower bound, denoted LBc, for the

expected makespan of the fuzzified version [8]. An alter-

native lower bound LBf can be obtained directly from the

fuzzy instance as follows:

LBf ¼ E max max
j

Xn

i¼1

pij

( )
;max

i

Xm

j¼1

pij

( )( )" #
ð8Þ
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This lower bound adapts the lower bound proposed in

[31] for crisp problems to the fuzzy setting. The maximum

of both quantities yield a tighter lower bound for the

expected makespan of the optimal solution:

LB ¼ maxðLBf ; LBcÞ if LBc is known

LBf otherwise

�
ð9Þ

We can now compute the makespan relative error with

respect to LB as follows:

RE ¼ E½Cmax� � LB

LB
ð10Þ

This relative error will be the basis for evaluating the

obtained results in the remaining of this section.

All the experiments reported in this section, correspond

to a C?? implementation running on a PC with Xeon

E5520 processor and 24 GB RAM running Linux (SL 6.0).

4.2 Parametric analysis

For the PSO we take as initial parameter configuration the

values proposed after a parameter analysis for the crisp

OSP in [30]: swarm size N = 60, C1 = 0.7, C2 = 0.1,

mutation probability PM = 1 and inertia weight w linearly

decreasing from 0.9 to 0.3. Regarding the filtering mech-

anism of the search space given in the schedule generator

pfG&T, an initial value of d = 0.25 is adopted. This has

been done after some preliminary experiments consisting

in generating random solutions in the search space with

varying values of d and adopting the value with better

solutions in average.

Starting with this initial configuration, we proceed to

perform a parametric analysis for both the PSO algorithm

and the decoding scheme. First, we try different values for

the PSO algorithm’s parameters (in bold we highlight the

values of the starting configuration) as follows:

– Stopping criterion: A maximum number of iterations

MaxIter less or equal than 5,000 iterations.

– Guiding constants C1 and C2: all possible pairs of the

values in {0.1, 0.3, 0.5, 0.7, 0.9}, provided that they

add up to a maximum of 1.

– Inertia: Linearly decreasing from xs to xe, with xs 2
f0:5; 0:7; 0:9g and xe 2 f0:1; 0:3; 0:5g.

– Mutation probability: Values in {0, 0.25, 0.50, 0.75,

1}.

– Swarm Size N: Values in {60, 80, 100}.

We follow an incremental process in which we test one

of the parameters until it is optimised, then we fix it and

proceed in the same way with the next one, until all the

parameters are fixed.

4.2.1 Stopping criterion MaxIter

First, for each problem size we estimate the number of

iterations MaxIter needed by the algorithm to converge.

The procedure to obtain this number of iterations is as

follows: For an arbitrary fuzzy instance of each original

crisp problem, the algorithm is run 10 times for 5,000

iterations. At each iteration, we record the average make-

span of all pbest elements in the swarm and calculate its

relative error w.r.t. the lower bound LB. Then, we pick the

first iteration for which this error will decrease less than

1 % in the next 100 iterations. This provides us with an

stopping iteration for each problem. Putting together all

problems of the same size, we select the number of itera-

tions in the third quartile as MaxIter for the group of

problem instances of the same size.The resulting values for

MaxIter depending on problem size can be seen in Table 2.

Additionally, Figure 3 shows the evolution of the expected

makespan for gbest and the average expected makespan for

pbest particles along 5,000 iterations of the PSO for

problem instance J8 - per10 - 1; it highlights the first

interval of 100 iterations where the error improvement is

less than 1 %.

4.2.2 Guiding constants C1 and C2

To decide on the values of the remaining parameters, at

each step, the PSO is run 10 times on a random fuzzy

Table 2 Final value for the

stopping criterion MaxIter

depending on problem size

Size MaxIter

3 9 3 100

4 9 4 100

5 9 5 750

6 9 6 1500

7 9 7 2100

8 9 8 2700

Fig. 3 Evolution along 5,000 iterations of E[Cmax] for gbest (in

black) and the average E[Cmax] for pbest (in grey) for j8-per10-1

instance; convergence is obtained at iteration 2700
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instance from each 8 9 8 original problem and the quality

of the configuration used is measured using RE, the relative

error w.r.t. the problem’s lower bound LB, averaged across

the 10 runs. First, we test the guiding probabilities C1 and

C2. Table 3 shows the average across the 8 9 8 problems

of the relative error RE. Two configurations (in bold in the

table) perform clearly better than the rest:

(C1, C2) = (0.7, 0.1) and (C1, C2) = (0.9, 0.1). Since the

latter yields slightly better results, we take it to be the

definite one.

4.3 Inertia weight bounds ws and we

Regarding the inertia parameter, Fig. 4 shows the average

RE obtained using different inertia values linearly

decreasing in the corresponding intervals [ws, we] on the X-

axis. As above there are two configurations (ws = 0.9 to

we = 0.3 and ws = 0.5 to we = 0.1) behaving similarly,

with slightly better results for the inertia going from 0.9 to

0.3. However, since there are two configurations which are

similar in terms of quality both for the guiding constants

and the inertia, we have additionally tested all the combi-

nations of those values. Table 4 shows the obtained results,

which support taking C1 = 0.9, C2 = 0.1 and w linearly

decreasing in [0.9, 0.3].

4.3.1 Mutation probability pM

Having fixed the inertia, we try different mutation proba-

bility values pM. Figure 5 illustrates the importance of this

parameter for the behaviour of the algorithm, with larger

probability values yielding the best results. As it happens in

the crisp version of the PSO, the best option is to mutate

the particles with probability pM = 1.

4.3.2 Swarm size N

Finally, we test different swarm sizes: 60, 80 and 100. Here

we need to pay attention not only to makespan values, but

also to runtime, this being an important penalisation factor.

Figure 6 shows the distance (bars) and runtime (line) of

each configuration. Clearly, although the largest swarm

size provides the best results in terms of relative error w.r.t.

the lower bound, the improvement does not compensate the

increased computation-time cost. In fact, if we increase the

swarm size from 60 to 100, RE decreases 4.3 % compared

Table 3 Algorithm’s performance with varying guiding constants C1

and C2

Values RE (%)

C1 = 0.1, C2 = 0.1 2.96

C1 = 0.1, C2 = 0.3 2.83

C1 = 0.1, C2 = 0.5 2.81

C1 = 0.1, C2 = 0.7 2.79

C1 = 0.1, C2 = 0.9 2.92

C1 = 0.3, C2 = 0.1 2.63

C1 = 0.3, C2 = 0.3 2.74

C1 = 0.3, C2 = 0.5 2.77

C1 = 0.3, C2 = 0.7 2.80

C1 = 0.5, C2 = 0.1 2.64

C1 = 0.5, C2 = 0.3 2.64

C1 = 0.5, C2 = 0.5 2.74

C1 ¼ 0:7;C2 ¼ 0:1 2.58

C1 = 0.7, C2 = 0.3 2.65

C1 ¼ 0:9;C2 ¼ 0:1 2.56

Fig. 4 Algorithm’s performance with varying inertia weight from ws

to we

Table 4 Algorithm’s performance depending on different combina-

tions of guiding constants and inertia weights

Guiding Inertia weights w

Constants 0:5! 0:1 0:9! 0:3

C1 = 0.7, C2 = 0.1 2.590 % 2.580 %

C1 = 0.9, C2 = 0.1 2.559 % 2.557 %

Fig. 5 Algorithm’s performance with varying mutation probability
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to a 67.3 % increase in runtime. Therefore, we keep

N = 60.

4.3.3 Delay parameter d

There is another parameter in the algorithm, the delay

parameter d used by the schedule builder (Algorithm 2).

Unlike the other parameters, the differences in algorithm

performance caused by variations of d are a consequence of

changes in the subset of the search space which is explored,

not of changes in the search process followed by the PSO

algorithm. We have tried five possibilities: d = 0, which

corresponds to exploring the set of non-delay schedules;

d = 1, to exploring the set of active schedules; and

d = 0.25, 0.5, 0.75, to exploring three proper subsets of

the space of active schedules. Table 5 reports the obtained

results, suggesting that the best performance of the PSO is

obtained with d = 0.25.

A summary of the parameter values (except MaxIter)

adopted after the parametric analysis can be seen in

Table 6.

4.4 Algorithm’s evaluation

To our knowledge, the best results obtained so far for the

FOSP have been published in [11]. In that paper, the GA

from [26] is combined with local search using a new

neighbourhood structure, providing a memetic algorithm

(MA) which not only improves on solution quality but is

also more ‘‘reliable’’ in the sense that there is less vari-

ability in solution quality across different executions. Thus,

in the following we shall evaluate our PSO in comparison

with this MA.

For the experimental evaluation, we shall use the opti-

mal configuration obtained above with the exception of the

smallest problems (3 9 3, 4 9 4). Here, since the search

space is small, we take d = 1 as delay value for the

pfG&T algorithm. This allows to explore the whole space

of active schedules, thus keeping the chance of finding an

optimal solution. For medium size problems (5 9 5,

6 9 6) and large problems (7 9 7, 8 9 8), we use the best

delay value found during the parametric analysis, that is,

d = 0.25.

To evaluate the performance, we run the proposed PSO

30 times for each problem instance, recording the best and

average relative error of the expected makespan with

respect to its lower bound across these 30 runs. Table 7

contains a summary of the results, with average values

across 30 executions on each the 80–90 instances of the

same size (detailed results for each problem, which require

520 rows, can be found at http://www.di.uniovi.es/iscop).

There are three columns per method, PSO and MA,

showing the Average of the Best values (AoB), the Average

of the Average values (AoA), and the average runtime in

seconds [T(s)] across 30 runs. We can see that the perfor-

mance of both PSO and MA is similar on the small (3 9 3,

4 9 4) problem instances. However, differences in solution

quality between the PSO and the MA increase with prob-

lem size, with the PSO obtaining better results. The aver-

age increase in RE value from the PSO to the MA across all

problems is 28 % for AoB and 108 % for AoA. It is

Fig. 6 Algorithm’s performance with varying swarm size N

Table 5 Algorithm’s performance with varying the delay parameter

d

Delay value d RE (%) Std. dev

0.00 3.44 2.32

0.25 2.56 1.96

0.50 2.73 2.02

0.75 3.32 2.26

1.00 5.95 3.38

Table 6 Parameter values adopted after the parametric analysis

Inertia Mutation Guiding const. Delay

w pm C1,C2 d

from 0.9 to 0.3 1 0.9, 0.1 0.25

Table 7 Comparison between PSO and MA

Problem family PSO MA

RE T(s) RE T(s)

AoB AoA AoB AoA

J3 0.112 0.112 0.05 0.112 0.112 0.13

J4 0.645 0.757 0.10 0.645 0.799 0.23

J5 0.667 0.687 1.29 0.874 2.234 1.29

J6 0.861 1.019 4.24 0.929 2.698 7.57

J7 1.591 1.971 9.76 2.425 4.710 14.46

J8 2.051 2.693 19.53 3.565 5.807 26.15
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noticeable that the a maximum increase in the value of

AoB in Table 7 is 74 % for problems of size 8 9 8.

More detailed results are presented in Table 8, where

each row corresponds to a set of ten fuzzy versions of each

of the original crisp problems of size 8 9 8. It shows rel-

ative makespan errors w.r.t. the lower bound for both

methods: the best (B) error and the average (A) error across

30 runs of each method. As expected, the PSO compares

favourably with MA in all instances. Notice as well that the

relative errors for the best (B) and average (A) solution do

not differ greatly, suggesting that the PSO is quite stable.

Figure 7 depicts the average relative makespan error for

each set of fuzzy problems, clearly illustrating the differ-

ence between the proposed PSO and the MA.

4.5 Why not simply defuzzify?

It is tempting to think that a simpler approach to fuzzy

open shop problems is to use defuzzification: substitute the

uncertain durations for a crisp value (e.g. their expected

value) and then solve the resulting deterministic open shop

problem. This would provide a deterministic predictive

schedule, including a task processing order. Tasks can then

be processed according to this order, even if their starting

times are likely to change given the variability in the

durations. The advantages of doing so are clear: a simpler

operational setting and the availability of different solving

methods from the literature. However, before embracing

defuzzification, we should also consider its effect (if any)

on the robustness of the obtained solutions.

In this subsection, we propose to evaluate, in terms of �-

robustness, the predictive schedules obtained with both

approaches: solving the fuzzy problem or, alternatively,

defuzzifying durations and solving the resulting crisp

problem. To do so, we simulate N possible realisations or

scenarios of the problem: crisp durations for tasks are

generated following a probability distribution which is

coherent with the possibility distribution defined by each

TFN. For each scenario i ¼ 1; . . .;N, let Ci
maxCmax

i denote

the makespan obtained by executing tasks according to the

ordering provided by a predictive schedule. Then, the mean

�-robustness of the predictive schedule, denoted �, is cal-

culated as:

� ¼ 1

N

XN

i¼1

jCi
max � Cpred

max j
C

pred
max

ð11Þ

where Cpred
max is the makespan estimated by the predictive

schedule. In our case, two predictive schedules are con-

sidered: the schedule obtained from solving the fuzzy

problem, so Cpred
max is the expected makespan E[Cmax], and

the schedule obtained from solving the defuzzified problem

where TFNs are substitued by their expected value, in

which case Cpred
max is a crisp makespan value.

For this robustness analysis, we concentrate on the

largest problem instances, those of size 8 9 8 and con-

sider, for each problem instance, N = 1000 deterministic

instances corresponding to possible realisations. Figure 8

depicts, for each problem, the mean �-robustness value of

each predictive schedule, the fuzzy one (denoted �F) and

the defuzzified one (denoted �C), across the N simulated

scenarios. Clearly, the predictive schedule obtained from

the fuzzy problem is much more robust (with smaller

prediction error �) than the schedule obtained from the

defuzzified problem. In fact, the robustness error of the

Table 8 Average RE (in %) for sets of problems of size 8 9 8

Problem PSO MA

B A B A

J8-per0-1 4.410 5.421 7.533 10.493

J8-per0-2 5.402 5.909 6.923 9.715

J8-per10-0 2.951 3.425 4.209 6.688

J8-per10-1 1.614 2.375 3.419 5.959

J8-per10-2 1.352 2.650 3.994 6.455

J8-per20-0 0.393 0.872 1.170 2.960

J8-per20-1 0.000 0.111 0.155 1.349

J8-per20-2 0.288 0.783 1.114 2.837

Fig. 7 Average makespan error

RE (%) for 8 9 8 problems
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defuzzified solution is always significantly higher than that

of the fuzzy solution, with error increases ranging from

28.03 to 170.51 % and an average error increase of

85.04 %. We may conclude that it is more robust to take

into account all the available information about task

durations and solve the fuzzy problem than solve the de-

fuzzified problem.

5 Conclusions and future work

We have considered an open shop problem with uncertain

durations modelled as triangular fuzzy numbers where the

objective is to minimise the expected makespan, a problem

denoted O|fuzz pij|E[Cmax]. We have proposed a PSO

method to solve this problem. An extensive experimental

analysis has shown that the PSO obtains good results both

in terms of relative makespan error and also in comparison

to a memetic algorithm from the literature. Additionally,

we have argued that it is more robust to find solutions to the

fuzzy problem, taking into account the uncertainty in the

durations along the scheduling process, instead of the

straightforward approach of defuzzifying the durations and

scheduling the resulting deterministic problem.

These promising results suggest directions for future

work. First, the PSO should be tested on more difficult

problems, fuzzy versions of other benchmark problems

from the literature. Also, the PSO provides a solid basis for

the development of more powerful hybrid methods, in

combination with local search techniques, an already suc-

cessful approach in fuzzy job shop problems [29]. It would

also be interesting to adapt this successful PSO method to

the fuzzy job shop problem.
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7.5 Swarm lexicographic goal programming for fuzzy open
shop scheduling

In this section, we include the following publication.

• Title: Swarm lexicographic goal programming for fuzzy open shop scheduling.

• Journal: Journal of Intelligent Manufacturing.

• Year: In press. Published online in 2013.

• Impact Factor (JCR 2013): 1.142

• Impact Factor (5-year): 1.658

• Journal Ranking:

– Computer Science, Artificial Intelligence: 64/121 Q3 (T2)

– Engineering, Manufacturing: 22/39 Q3 (T2)

This publications contains pieces of work described in Section 4.2.1.

Palacios, J.J., González-Rodŕıguez, I., Vela, C.R., Puente, J.: Swarm lexicographic
goal programming for fuzzy open shop scheduling. Journal of Intelligent Manufacturing.
In press (2013). Doi: 10.1007/s10845-013-0850-y

129



J Intell Manuf
DOI 10.1007/s10845-013-0850-y

Swarm lexicographic goal programming for fuzzy
open shop scheduling

Juan José Palacios · Inés González-Rodríguez ·
Camino R. Vela · Jorge Puente

Received: 11 April 2013 / Accepted: 15 November 2013
© Springer Science+Business Media New York 2013

Abstract In this work we consider a multiobjective open
shop scheduling problem with uncertain processing times
and flexible due dates, both modelled using fuzzy sets. We
adopt a goal programming model based on lexicographic
multiobjective optimisation of both makespan and due-date
satisfaction and propose a particle swarm algorithm to solve
the resulting problem. We present experimental results which
show that this multiobjective approach achieves as good
results as single-objective algorithms for the objective with
the highest priority, while greatly improving on the second
objective.
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Introduction

The open shop scheduling problem (OSP) is a problem with
an increasing presence in the literature and clear applications
in industry—consider for instance testing facilities where
units go through a series of diagnostic tests that need not
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be performed in a specified order and where different test-
ing equipment is usually required for each test (see Pinedo
2008). For a number of machines m ≥ 3 this problem is
NP-complete; in consequence, it is usually tackled via meta-
heuristics techniques. For instance, for makespan minimisa-
tion, Guéret and Prins (1998) describe two heuristic methods
to obtain a list of operation priorities later used in a list-
scheduling algorithm; Liaw (1999) proposes a tabu search
algorithm; Blum (2005) hybridises ant colony optimisation
with beam search and Sha and Cheng-Yu (2008) propose a
solution based on particle swarm optimisation. To minimise
total tardiness, Naderi et al. (2011) propose two metaheuris-
tics based on genetic algorithms and variable neighbourhood
search and for multiobjective open shop we find an ant colony
algorithm combined with simulated annealing in Panahi et al.
(2008) and particle swarm optimisation in Sha et al. (2010).

Traditionally, scheduling has been treated as a determin-
istic problem that assumes precise knowledge of all data
involved, in contrast with the uncertainty and vagueness per-
vading real-world problems. To enhance the range of appli-
cations of scheduling, an increasing part of the research is
devoted to modelling this lack of certainty with great diver-
sity of approaches (Herroelen and Leus 2005). In particular,
fuzzy sets have been used in different manners, ranging from
representing incomplete or vague states of information to
using fuzzy priority rules with linguistic qualifiers or pref-
erence modelling and as an interesting tool for improving
solution robustness and stability (Guiffrida and Nagi 1998;
Dubois et al. 2003; Petrovic et al. 2008).

Far from being trivial, extending heuristic strategies to
uncertain settings usually requires a significant reformulation
of both the problem and solving methods. This is patent in
the available literature on job shop problems with uncertain
processing times and/or flexible constraints. For instance,
Dubois et al. (1995) extend a constrained-based approach,
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Fortemps (1997) uses simulated annealing and Sakawa and
Kubota (2000) propose a genetic algorithm in what can
be seen as pioneering works in the application of meta-
heuristic strategies, followed by many authors, e.g. González
Rodríguez et al. (2008), Puente et al. (2010), Niu et al. (2008)
or Zheng et al. (2011). However, while there are many con-
tributions to solve fuzzy job shop problems, the literature
on fuzzy open shop is still scarce. Indeed, the open shop
with uncertainty constitutes a relatively new and complex
research line. Among the few existing proposals, in (Alcaide
et al. 2006) a heuristic approach is proposed to minimise
the expected makespan for an open shop problem with sto-
chastic processing times and random breakdowns; González-
Rodríguez et al. (2010) minimise the expected makespan of
an open shop with fuzzy durations using a genetic algorithm
hybridised with local search, while Palacios et al. (2011) use
a particle swarm optimisation algorithm for the same prob-
lem. Finally, a possibilistic mixed-integer linear program-
ming method is proposed in Noori-Darvish et al. (2012) for an
OSP with setup times, fuzzy processing times and fuzzy due
dates to minimise total weighted tardiness and total weighted
completion times.

Another issue that must be taken into account to reduce
the gap between academic and real-world problems is the fact
that many real-life applications require taking into account
several conflicting points of view corresponding to multiple
objectives. This is one of the reasons why the applications
of multiobjective decision making techniques in engineer-
ing have grown in the recent decades (Pasandideh and Niaki
2013). Although Pareto optimality is undoubtedly the most
extended approach to multicriteria optimisation, as Ehrgott
(2005) puts it, “it is not the end of the story”, with other
approaches to multiobjective optimisation in the literature
(Ehrgott and Gandibleux 2000). Among these techniques,
lexicographic and goal programming methods are some of
the most popular ones (Farahani et al. 2010). The philoso-
phy behind goal programming (Romero 2001) can be traced
back to the theories of rational decision developed in the
1950s, especially the concept of satisficing solutions: in a
complex environment, the decision maker’s aim may be to
reach a certain satisfactory level for every relevant objective,
rather than optimising its value. Also, lexicographic prob-
lems arise naturally when conflicting objectives exist in a
decision problem but for reasons outside the control of the
decision maker the objectives have to be considered in hier-
archical manner. Recent examples of real-world problems
where these techniques are applied can be found, for instance,
in Ehrgott (2005), Diaz-Balteiro and Romero (2008), Puente
et al. (2013), Coshall and Charlesworth (2011), and Libera-
tore et al. (2013). Additionally, there exist interesting rela-
tionships between lexicographic and Pareto-optimal solu-
tions. Indeed, “lexicographic minimisation is well-suited to
seek a compromise between conflicting interests, as well as

reconciling this requirement with the crucial notion of Pareto-
optimality” (Bouveret and Lemaître 2009).

To our knowledge, a lexicographical goal programming
approach to solve multiobjective instances of fuzzy open
shop has never been taken in the still scarce literature on this
problem. This paper attempts to contribute to filling this gap.
To this end, in the sequel we propose a multiobjective particle
swarm optimisation (MOPSO) algorithm to solve instances
of open shop where uncertain processing times are modelled
with triangular fuzzy numbers and flexible due dates are mod-
elled with fuzzy sets. In “Uncertain processing times and
flexible constraints” section we provide some background
on fuzzy sets, which will be used in “The fuzzy open shop
scheduling problem” section to formulate the Fuzzy Open
Shop Problem (FOSP). We adopt a lexicographic goal pro-
gramming approach to define an objective function which
combines minimisation of the expected fuzzy makespan and
maximisation of overall due-date satisfaction. The resulting
problem is solved by means of a particle swarm optimization
method searching in the space of possibly active schedules,
as proposed in “Particle swarm optimization for the FOSP”
section. “Experimental results” section reports results from
the experimental study which illustrate the potential of the
proposed method. Finally, in “ Conclusions and future work”
section we summarise the main conclusions and propose
some ideas for future work.

Uncertain processing times and flexible constraints

In real-life applications, it is often the case that the exact
duration of a task is not known in advance. However, based
on previous experience, an expert may be able to estimate,
for instance, an interval for the possible processing time or
its most typical value. In literature, it is common to use fuzzy
intervals to represent such processing times, as an alternative
to probability distributions, which require a deeper knowl-
edge of the problem and usually yield a complex calculus.

Fuzzy interval arithmetic to model processing times

Fuzzy intervals are a natural extension of human originated
confidence intervals when some values appear to be more
plausible than others. The simplest model is a triangular
fuzzy number or TFN, using an interval [a1, a3] of possible
values and a single plausible value a2 in it. For a TFN A,
denoted A = (a1, a2, a3), the membership function takes
the following triangular shape:

μA(x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

x−a1

a2−a1 : a1 ≤ x ≤ a2

x−a3

a2−a3 : a2 < x ≤ a3

0 : x < a1 or a3 < x

(1)

123



J Intell Manuf

Triangular fuzzy numbers and more generally fuzzy inter-
vals have been extensively studied in the literature (cf. Dubois
and Prade 1986). A fuzzy interval Q is a fuzzy quantity
(a fuzzy set on the reals) whose α-cuts Qα = {u ∈ R :
μQ(u) ≥ α}, α ∈ (0.1], are convex, i.e. they are intervals
(bounded or not). The core of Q consists of those elements
with full membership μQ(u) = 1, also called modal values
and its support is Q0 = {u ∈ R : μQ(u) > 0}. A fuzzy num-
ber is a fuzzy quantity whose α-cuts are closed intervals,
with compact (i.e. closed and bounded) support and unique
modal value. Thus, real numbers can be seen as a particular
case of fuzzy ones.

In order to work with fuzzy numbers, it is necessary to
extend the usual arithmetic operations on real numbers. In
general, if f is a function f : R2 → R and Q1, Q2 are
two fuzzy quantities, the fuzzy quantity f (Q1, Q2) is calcu-
lated according to the Extension Principle. However, com-
puting the resulting equation is in general cumbersome, if
not intractable. It can be somewhat simplified for two fuzzy
numbers M and N , so the α-cuts Mα and Nα are closed
bounded intervals of the form [mα, mα] and [nα, nα], if f is
a continuous isotonic mapping from R2 into R, that is, if for
any u ≥ u′ and v ≥ v′ it holds f (u, v) ≥ f (u′, v′). In this
case, the First Decomposition Theorem provides us with an
alternative formula for f (M, N ):

f (M, N ) = ∪α∈(0,1][ f (mα, nα), f (mα, nα)] (2)

In the open shop, we essentially need the following opera-
tions on fuzzy durations: addition and maximum. In the case
of TFNs, the addition is fairly easy to compute, since it is
reduced to operating on the three defining points, that is, for
any pair of TFNs M and N :

M + N = (m1 + n1, m2 + n2, m3 + n3). (3)

Unfortunately, for the maximum of TFNs there is no such
simplified expression. Being an isotonic function, we can
use Eq. (2) above, but in general this still requires an infinite
number of computations, since we have to evaluate maxima
for each value α ∈ (0, 1]. For the sake of simplicity and
tractability of numerical calculations, we follow (Fortemps
1997) and approximate all results of isotonic algebraic oper-
ations on TFNs by a TFN. Instead of evaluating the intervals
corresponding to all α-cuts, we evaluate only those intervals
corresponding to the support and α = 1, which is equiva-
lent to working only with the three defining points of each
TFN. This is an approach also taken, for instance, in Niu et
al. (2008) and Chen and Chang (2001). Therefore, for any
two TFNs M and N , their maximum will be approximated
as follows:

max(M, N ) ∼ M 	 N = (max(m1, n1),

max(m2, n2), max(m3, n3)). (4)

Despite not being equal, for any two TFNs M, N , if F =
max(N , M) denotes their maximum and G = N 	 M
its approximated value, it holds that ∀α ∈ [0, 1], f

α
≤

g
α
, f α ≤ gα . In particular, F and G have identical support

and modal value: F0 = G0 and F1 = G1. The approximated
maximum can be trivially extended to n > 2 TFNs.

For a fuzzy number N , its membership function μN can be
interpreted as a possibility distribution on the real numbers.
This allows to define the expected value of a fuzzy number
(Liu and Liu 2002), given for a TFN A by

E[A] = 1

4
(a1 + 2a2 + a3). (5)

The expected value coincides with the neutral scalar substi-
tute of a fuzzy interval and can also be obtained as the centre
of gravity of its mean value or using the area compensation
method (Dubois et al. 2003). It induces a total ordering ≤E in
the set of fuzzy intervals (Fortemps 1997), where for any two
fuzzy intervals M, N M ≤E N if and only if E[M] ≤ E[N ].

Modelling flexible due dates

In practice, if due-date constraints exist, they are often flex-
ible. For instance, customers may have a preferred delivery
date d1, but some delay will be allowed until a later date d2,
after which the order will be cancelled. The satisfaction of a
due-date constraint becomes a matter of degree, our degree
of satisfaction that a job is finished on a certain date. A com-
mon approach to modelling such satisfaction levels is to use
a fuzzy set D with linear decreasing membership function:

μD(x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1 : x ≤ d1

x−d2

d1−d2 : d1 < x ≤ d2

0 : d2 < x

(6)

This expresses a flexible threshold “less than”, representing
the satisfaction level sat (t) = μD(t) for the ending date t of
the job (Dubois et al. 2003). When the job’s completion time
is no longer a real number t but a TFN C , the degree to which
C satisfies the due-date constraint D may be measured using
the following agreement index (Sakawa and Kubota 2000;
Celano et al. 2003):

AI (C, D) = area(D ∩ C)

area(C)
(7)

where area(D ∩ C) and area(C) denote the areas under the
membership functions of (D ∩ C) and C respectively. The
intuition behind this definition is to measure the degree to
which C is contained in D (the degree of subsethood).
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The fuzzy open shop scheduling problem

The open shop scheduling problem, or OSP in short, consists
in scheduling a set of n jobs J1, . . . , Jn to be processed on a
set of m physical resources or machines M1, . . . , Mm . Each
job Ji consists of m tasks or operations oi j ( j = 1, . . . , m),
where oi j requires the exclusive use of a machine M j for its
whole processing time pi j without preemption, i.e. all tasks
must be processed without interruption. In total, there are
mn tasks. Additionally, for each job Ji there may be a due
date di , i = 1, . . . , n before which it is desirable that the
job be finished. A solution to this problem is a schedule (a
starting time for all tasks) which, besides being feasible, in
the sense that precedence and capacity constraints hold, is
optimal according to some criteria, for instance, that due-
date satisfaction is maximal or that the project’s makespan is
minimal.

Fuzzy schedules from crisp task orderings

A schedule s for an open shop problem of size n × m (n
jobs and m machines) may be determined by a decision vari-
able z = (z1, . . . , znm) representing a task processing order,
where 1 ≤ zl ≤ nm for l = 1, . . . , nm. This is a permuta-
tion of the set of tasks where each task oi j is represented by
the number (i − 1)m + j . The task processing order repre-
sented by the decision variable uniquely determines a feasi-
ble schedule; it should be understood as expressing partial
orderings for every set of tasks requiring the same machine
and for every set of tasks belonging to the same job.

Let us assume that the processing time pi j of each task oi j ,
i = 1, . . . , n, j = 1, . . . , m is a fuzzy variable (a particular
case of which are TFNs), so the problem may be represented
by a matrix of fuzzy processing times p of size n × m. For a
given task processing order z and a task oi j , its starting time
Si j (z, p) is the maximum (Eq. 4) between the completion
times of the task preceding oi j in its job, let it be denoted oik ,
and the task preceding oi j in its machine, let it be denoted
ol j :

Si j (z, p) = Cik(z, p) 	 Cl j (z, p) (8)

where Cik(z, p) or Cl j (z, p) are taken to be zero if oi j is
the first task to be processed either in its job or its machine.
Then, its completion time Ci j (z, p) is obtained by adding its
duration pi j to Si j (z, p):

Ci j (z, p) = Si j (z, p) + pi j (9)

The completion time of a job Ji will then be the maxi-
mum completion time of all its tasks, that is, Ci (z, p) =
	1≤ j≤m{Ci j (z, p)}.

For this schedule, the fuzzy makespan Cmax (z, p) is
defined as the maximum of job completion times:

Cmax (z, p) = 	1≤i≤n (Ci (z, p)) (10)

Notice that when uncertain durations are given as fuzzy
intervals the schedule s will be fuzzy in the sense that the
starting and completion times of all tasks as well as the
makespan are fuzzy intervals. These may be interpreted as
possibility distributions on the values that each time may
take. Fuzzy intervals are thus used to represent our incom-
plete knowledge of problem parameters related to durations
and, in consequence, our incomplete knowledge of starting
and completion times for all tasks. However, the task process-
ing order represented by z that determines such schedule is
crisp: there is no uncertainty regarding the order in which
tasks are to be processed.

Given a fuzzy schedule, it is necessary to give a precise
definition of what “optimal makespan” means, since neither
the maximum nor its approximation define a total ordering in
the set of TFNs. Using ideas similar to stochastic scheduling,
we use the total ordering provided by the expected value and
consider that the objective of minimising the makespan trans-
lates, in practice, into minimising its expected value E[Cmax ]
(Eq. 5).

While also being fuzzy sets, due dates di for jobs Ji ,
i = 1, . . . , n, do not model uncertainty. Instead, they model
flexible constraints, introducing grades in the traditionally
Boolean notion of feasibility (cf. Dubois 2011) and the ref-
erences therein for the semantics of fuzzy sets and their role
in decision making). In this setting, the agreement index,
AI (Ci (z, p), di ) (Eq. 7), denoted AIi (z, p) for short, mea-
sures to what degree the flexible due date di is satisfied by the
fuzzy time Ci (z, p). The degree of overall due-date satisfac-
tion for schedule s may then be obtained by aggregating the
satisfaction degrees AIi (z, p), i = 1, . . . , n. In particular, we
shall consider two aggregation functions, the minimum and
the average, previously used in the literature concerning shop
scheduling with soft constraints, for instance, in Sakawa and
Kubota (2000), González Rodríguez et al. (2008), Lei (2008).
The minimum is inspired by the seminal paper on fuzzy deci-
sion making (Bellman and Zadeh 1970), while the average
provides an alternative for which the compensation property
holds. Hence, the degree AIag(z, p) to which a schedule s
determined by an ordering z satisfies due dates will be deter-
mined by one of the two following formula:

AIav(z, p) = 1

n

n∑

i=1

AIi (z, p), (11)

AImin(z, p) = min
i=1,...,n

AIi (z, p) (12)

Clearly both AIav(z, p) and AImin(z, p) should be max-
imised. Notice however that they model different require-
ments and encourage different behaviours. In the cases when
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Fig. 1 Gantt charts of the schedule represented by the decision variable (1, 4, 6, 3, 5, 2). a Machine oriented, b Job oriented

there is no possible confusion regarding the order z or the
processing times p, we may simplify the notation and write
AIag or Cmax .

Let us illustrate the previous definitions with an exam-
ple. Consider a problem of 3 jobs and 2 machines with the
following matrices for fuzzy processing times and due dates:

p =
⎛

⎝
(3, 4, 7) (3, 4, 7)

(2, 3, 4) (4, 5, 6)

(3, 4, 5) (1, 2, 6)

⎞

⎠ d =
⎛

⎝
(11, 21)

(6, 10)

(12, 15)

⎞

⎠

Here p21 = (2, 3, 4) is the processing time of task o21, the
task of job J2 to be processed in machine M1 and d2 = (6, 10)

is the flexible due date for job J2. Figure 1a, b show the Gantt
charts (both machine and job oriented) adapted to TFNs of the
schedule given by the decision variable z = (1, 4, 6, 3, 5, 2).
They represent the partial schedules on each machine and
each job obtained from this decision variable. Tasks must be
processed in the following order: o11, o22, o32, o21, o31, o12.
Given this ordering, the starting time for task o21 will be the
maximum of the completion times of o22 and o11, which are
respectively the preceding tasks in the job and in the machine:
S21 = C22 	 C11 = (4, 5, 6) 	 (3, 4, 7) = (4, 5, 7). Conse-
quently, its completion time will be C21 = S21 + p21 =
(4, 5, 7) + (2, 3, 4) = (6, 8, 11). Also, it is easy to see that
Cmax = (9, 12, 19) (see Fig. 1a), so E[Cmax ] = 13. Regard-
ing due dates, in Fig. 1b we can see that the completion time
of job J1 always satisfies its due date, so AI1 = 1, whereas
for job J2 area(C2) = 5/2 and area(d2 ∩ C2) = 4/3, so
AI2 = 0.53, and analogously AI3 = 0.75. Hence, the aggre-
gated degrees of due date satisfaction will be AImin = 0.53
and AIav = 0.76.

Multiobjective model

For the fuzzy open shop problem we are interested both
in maximising the aggregated due-date satisfaction AIag

and minimising the expected makespan E[Cmax ]. A well-
established approach dealing with multiple and possibly
conflicting objectives is lexicographic goal programming
(Ehrgott 2005; Tamiz et al. 1998), assuming that the deci-

sion makers establish a priority structure as well as target
levels for the different objectives.

Before we formulate the resulting problem, notice that
AIag(z, p) ∈ [0, 1] for both aggregation operators. Hence,
maximising AIag(z, p) is equivalent to minimising 1 −
AIag(z, p), which could be interpreted as the degree to which
due dates are violated. In consequence, we can restate the
objective of our problem as minimising both E[Cmax (z, p)]
and 1 − AIag(z, p).

Let Cmax and 1 − AIag be ordered according to their pri-
ority, and let f1 denote the objective with highest priority and
f2 denote the secondary objective. Also, let us assume that
the decision makers establish target values b1, b2 ≥ 0 for f1

and f2. Clearly, these values should not be exceeded, which
translates into the following goal constraints:

fi (z, p) + Δ−
i − Δ+

i = bi , i = 1, 2 (13)

where Δ+
1 ,Δ+

2 ≥ 0, the positive deviations from the targets,
should be minimised. This results in the following lexico-
graphic goal programming model for the fuzzy open shop
problem (FOSP):

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

lexmin (Δ+
1 ,Δ+

2 )

subject to:

fi (z, p) + Δ−
i − Δ+

i = bi , i = 1, 2,

bi ≥ 0, i = 1, 2,

Δ−
i ,Δ+

i ≥ 0,

1 ≤ zl ≤ nm, l = 1, . . . , nm,

zl �= zk, k �= l

zl ∈ Z+, l = 1, . . . , nm,

(14)

where lexmin denotes lexicographically minimising the
objective vector (Δ+

1 ,Δ+
2 ).

The resulting problem can be denoted O| f uzz pi ,

f uzz di |LexG P(E[Cmax ], 1−AIav) according to the three-
field notation from (Graham et al. 1979), extended to multi-
criteria scheduling in the spirit of T’kindt and Billaut (2006).
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Particle swarm optimization for the FOSP

Particle swarm optimisation (PSO) is a population-based sto-
chastic method inspired by bird flocking or fish schooling,
first proposed in Kennedy and Eberhart (1995) which has
been successfully applied to solve complex combinatorial
optimization problems; recent examples of this success can
be found in Belmecheri et al. (2013), Jia and Seo (2013),
and Kim and Son (2012). In particular, it has been applied
to scheduling problems, among others, in Tassopoulos and
Beligiannis (2012), Vijay Chakaravarthy et al. (2013), and
Marinakis and Marinaki (2013) as well as the already men-
tioned references devoted to the open shop problem (Sha and
Cheng-Yu 2008; Sha et al. 2010).

In PSO, each position in a multidimensional search space
corresponds to a solution of the problem and particles in
the swarm cooperate to explore the space and find the best
position (hence best solution). Particle movement is mainly
affected by the three following factors:

– Inertia: Velocity of the particle in the latest iteration,
– pbest: The best position found by the particle,
– gbest: The best position found by the swarm so far (“the

best pbest”),

Potential solutions are represented by multidimensional
particles flying through the problem space, changing their
position and velocity by following the current optimum par-
ticles pbest and gbest . A generic PSO algorithm is given in
Algorithm 1: first, the initial swarm is generated and evalu-
ated and then the swarm evolves until a termination criterion
is satisfied. In each iteration, a new swarm is built from the
previous one by changing the position and velocity of each
particle to move towards its pbest and gbest locations.

Input A FOSP instance
Output A schedule for the input instance

Generate and evaluate the initial swarm;
Compute gbest and pbest for each particle;
while no Termination Criterion is satisfied do

for each particle k do
Update velocity vk ;
Update position xk ;
Evaluate particle k;
Update pbest and gbest values;

return The schedule from the best particle evaluated so far;

Algorithm 1: A generic PSO algorithm

In the following, we present a multiobjective PSO algo-
rithm for the FOSP with lexicographic goal programming
defined in the previous section. A preliminary version of this
algorithm was presented in Palacios et al. (2011) to minimise
the expected makespan of fuzzy open shop.

Position representation and evaluation

For each particle k in the swarm, its position xk is represented
with a priority-based representation. Thus, the decision vari-
able zk is encoded as a priority array xk = (xk

l )l=1...nm where
xk

l denotes the priority of task l, so a task with smaller xk
l has

a higher priority to be scheduled.
Given a FOSP solution represented by a decision variable

z, which is a permutation of tasks, we can transfer this per-
mutation to a priority array as follows. First, from z we obtain
a position array, denoted posz, such that posz

l is the position
of task l in z (posz

l = i if and only if zi = l). For instance, for
a problem with n = 2 jobs and m = 3 machines we can have
a decision variable z and the corresponding position array
posz as follows:

z = (4, 1, 5, 2, 3, 6) posz = (2, 4, 5, 1, 3, 6)

Then, the priority array x is obtained by randomly setting
xl in the interval

(
posz

l − 0.5, posz
l + 0.5

)
, so a task with

smaller xl has higher priority to be scheduled. For the above
decision variable, a possible particle position would be:

x = (2.3, 3.7, 5.4, 0.8, 2.8, 5.9)

Conversely, from every particle position x we can obtain a
position array posx (and the corresponding decision variable)
where posx

i is the position of xi if the elements of x were
reordered in non-decreasing order.

A particle may be decoded in several ways. For determin-
istic job shop and, by extension, for open shop scheduling,
it is common to use the G&T algorithm (Giffler and Thomp-
son 1960), which is an active schedule builder. A schedule
is active if one task must be delayed for any other one to
start earlier. Active schedules are good in average and, most
importantly, the space of active schedules contains at least an
optimal one, that is, the set of active schedules is dominant.
For these reasons it is worth to restrict the search to this space.
In Gonçalves et al. (2005) a narrowing mechanism was incor-
porated to the G&T algorithm in order to limit machine idle
times using a delay parameter δ ∈ [0, 1], thus searching in
the space of so-called parametrised active schedules. In the
deterministic case, for δ < 1 the search space is reduced so it
may no longer contain optimal schedules and at the extreme
δ = 0 the search is constrained to non-delay schedules where
a resource is never idle if a requiring operation is available.
This variant of G&T has been applied in Sha and Cheng-Yu
(2008) to the deterministic OSP, under the name “parame-
terized active schedule generation algorithm”. Algorithm 2,
denoted pFG&T , is an extension of parametrised G&T to
the case of fuzzy processing times proposed in Palacios et
al. (2011). Throughout the algorithm, Ω denotes the set of
tasks that have not been scheduled yet, xk denotes the priority
array and Sl and Cl denote the starting and completion time
of task oi j such that l = (i − 1)m + j . It should be noted
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Input A FOSP instance and a particle position xk

Output A schedule for the input instance considering the priorities
given by xk

Ω ← {1, . . . , nm};
while Ω �= ∅ do

Compute {E[Sl ] : l ∈ Ω} and {E[Cl ] : l ∈ Ω} considering only
tasks previously scheduled;
C∗ ← minl∈Ω {E[Cl ]};
S∗ ← minl∈Ω {E[Sl ]};
Identify the conflict set O ← {l : E[Sl ] < S∗ + δ × (C∗ − S∗), l ∈
Ω};
Choose the task l∗ from O with smallest xk

l ;
Schedule the operation l∗; {fix the value of Sl∗ }
Ω ← Ω − {l∗};

return The schedule s given by {Sl : l ∈ {1, . . . , nm}}

Algorithm 2: The pFG&T

that, due to the uncertainty in task durations, even for δ = 1
we cannot guarantee that the produced schedule will indeed
be active when it is actually performed (and tasks have exact
durations). We may only say that the obtained fuzzy schedule
is possibly active.

Particle movement

Velocity update

Particle velocity is traditionally updated depending on the
distance to gbest and pbest . Instead, this PSO only con-
siders whether the position value xk

l is greater or smaller
than pbestk

l (gbestl ). For any particle, its velocity is repre-
sented by an array of the same length as the position array
where all the values are in the set {−1, 0, 1}. The initial values
for the velocity array are set randomly. Velocity and particle
updating is controlled by the inertia weight w according to
Algorithm 3. In the updating process of each particle k and
dimension d an element of randomness is introduced, mak-
ing it dependent on pbestk

d with probability p1 and on gbestd
with probability p2, where p1, p2 ∈ [0, 1] are constants such
that p1 + p2 ≤ 1.

Mutation

When adapting PSO to discrete optimisation, there is a risk
of getting stuck in local minima when velocity is limited
to absolute values (Hu et al. 2003). In order to introduce
diversity, after a particle k moves to a new position, we ran-
domly choose a dimension d and then mutate its priority
value xk

d independently of vk
d . For a problem of size n ×m, if

xk
d < (nm/2), xk

d will take a random value in [mn − n, mn],
and vk

d = 1; otherwise (if xk
d ≥ (nm/2)), xk

d will take a
random value in [0, n] and vk

d = −1.

Input A particle position xk and velocity vk , best particle and swarm
positions pbestk and gbest , inertia w and updating probabilities
p1, p2

Output The updated particle position xk and velocity vk

for each dimension d do
generate random value rand ∼ U (0, 1);
if vk

d �= 0 and rand ≥ w then
vk

d ← 0;
if vk

d = 0 then
generate random value rand ∼ U (0, 1);
if rand ≤ p1 then

if pbestk
d ≥ xk

d then vk
d ← 1;

else vk
d ← −1;

generate random value rand2 ∼ U (0, 1);
xk

d ← pbestk
d + rand2 − 0.5;

if p1 < rand ≤ p1 + p2 then
if gbestd ≥ xk

d then vk
d ← 1;

else vk
d ← −1;

generate random value rand2 ∼ U (0, 1);
xk

d ← gbestd + rand2 − 0.5;
else

xk
d ← xk

d + vk
d ;

return The updated particle position xk and velocity vk ;

Algorithm 3: Particle movement

Diversification strategy

In the case that all particles had the same pbest solution, they
could be trapped into local optima. To prevent such situation,
a diversification strategy is proposed in Sha and Cheng-Yu
(2008) in order to keep the different pbest solutions. Accord-
ing to this strategy, the pbest solution of each particle is not
the best solution found by the particle itself, but one of the
best N solutions found by the swarm so far, where N is the
size of the swarm. Once any particle generates a new solu-
tion, the pbest solutions will be updated as follows: if the
new solution equals the makespan of any pbest solution, the
latter will be replaced with the new solution; else if the new
solution has better makespan than the worst pbest solution
and has a different makespan from all pbest solutions, then
the worst pbest solution is replaced by the new one; else, the
set of N pbest solutions remains unchanged.

Experimental results

For the experimental study, we use the fuzzy open shop
instances proposed in González-Rodríguez et al. (2010).
These were obtained by fuzzyfying the well-known bench-
mark from (Brucker et al. 1997), consisting of 6 fami-
lies, denoted J3, J4, …, J8, of sizes 3 × 3 to 8 × 8, with
8 or 9 instances each. Each family is divided into three
sets of problems per0, per10 and per20 according to the
difference between minimum and maximum workloads of
jobs and machines (the number in the name refers to this
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difference in percentage). We shall only consider the largest
instances, pertaining to the blocks of size 7 × 7 and 8 × 8
and compare our results on expected makespan to those
of the memetic algorithm (MA) proposed in González-
Rodríguez et al. (2010), which combines a genetic algo-
rithm with a local search schema. According to the results
reported in González-Rodríguez et al. (2010), this MA out-
performs the genetic algorithm alone when run under equiv-
alent running conditions; additionally, on crisp instances
of OSP it improves two GAs from Liaw (2000) and Prins
(2000) and is competitive with two PSO algorithms from
Sha and Cheng-Yu (2008), one of them hybridised with beam
search.

For each original deterministic problem instance there
are 10 fuzzy versions, generated by transforming the orig-
inal crisp processing times into symmetric TFNs such that
their modal value corresponds to the original duration. To
add a due date di for each job Ji we follow Andresen
et al. (2008): first, we define a generic due date di =
TF × ∑m

j=1 p2
i j , where TF is a tightness factor; then, we

use two different tightness factors to have the earliest and
latest due dates: d1

i , with TF = 1.10, and d2
i , with TF =

1.15.
Given the method for generating due dates, in per0

instances, where all jobs have the same workload (and
consequently the same due date), the makespan and due
date satisfaction are strongly correlated objectives, mak-
ing these instances unsuitable for our multiobjective study.
Therefore, the experimental analysis will be conducted on
the instances per10 and per20 of size 7 × 7 and 8 ×
8, making it a total of 120 instances, these being the
hardest ones to solve when both objectives are consid-
ered.

For each problem instance, we have run the PSO algo-
rithm using different objectives: we have considered the three
single-objective functions E[Cmax ], AIav and AImin and the
four multiobjective functions that result from combining the
two choices of aggregation function for due date satisfaction
(AIag = AImin or AIag = AIav) and the two possible pri-
ority structures for objectives ( f1 = Cmax , f2 = AIag or
f1 = AIag, f2 = Cmax ).

For the multiobjective cases, it is necessary that the target
values for both objectives be fixed. As already mentioned,
in practice these target values should be given by the DM
based on his/her expertise in the problem. Unfortunately,
such expert knowledge is not available for the set of synthetic
instances used herein. Instead, we emulate the DM and try
to gain insight into the problem instances with some pre-
liminary runs of the PSO using E[Cmax ], AIav and AImin as
single objectives, using the parameter values proposed in Sha
and Cheng-Yu (2008). Then, we set b1 (resp. b2 for 1− AIag)
equal to the worst value of E[Cmax ] (1 − AIag) across 30
runs of the PSO.

Table 1 Parameter settings

Parameters Factor level

1 2 3 4

Swarm size (N ) 60 80 100 120

Inertia weight (w) linearly
decreasing [from,to]

[0.9, 0.3] [0.7, 0.1] [0.9, 0.7] [0.7, 0.5]

Guiding probabilities
(gp = (p1, p2))

(0.7, 0.1)(0.5, 0.3)(0.3, 0.5)(0.1, 0.7)

Delay parameter (δ) 0 0.25 0.75 1

Parameter setting

To ensure that the algorithm yields reliable solutions within
a reasonable amount of time, the Taguchi method is used for
parameter tuning. Table 1 shows the parameters of our algo-
rithm together with the four possible values (factor levels
in the Taguchi terminology) considered for each of them. A
caveat in changing the swarm size N is its considerable effect
on the algorithm’s runtime if a constant number of iterations
is considered. Now, it is common in literature to measure
the computational effort of a metaheuristic in terms of the
number of objective-function evaluations, which is indepen-
dent of the computer system. This suggests adjusting the
number of iterations in such a way that the PSO evaluates
roughly the same number of particles for all possible swarm
sizes: for N = 60, 80, 100 and 120, the number of iterations
Niter is set respectively to 3,000, 2,250, 1,800 and 1,500.
As for the second parameter, the inertia weight w, it should
be linearly decreasing from a starting value, thus stimulating
the exploration of the PSO. We consider two possible start-
ing values, 0.9 and 0.7, and two possible slopes, 0.6/Niter
and 0.2/Niter , which should allow to analyse the behaviour
of the PSO with either more exploration or more exploita-
tion in the last iterations. In consequence, w will be linearly
decreasing in four possible intervals, as shown in Table 1.
Regarding the guiding probabilities, p1 and p2, since their
sum must be less or equal to 1, we consider them as a single
factor: given the values 0.7, 0.5, 0.3 and 0.1, p1 and p2 simul-
taneously traverse these values in increasing and decreasing
order respectively, that is, first p1 = 0.7 and p2 = 0.1,
then p1 = 0.5 and p2 = 0.3 and so forth. Thus, we always
ensure that the constraint p1 + p2 ≤ 1 holds, while covering
a varied sample of values for both probabilities. Finally, for
the delay parameter we consider the two extremes values,
δ = 0—which in the deterministic case restricts the search
to the space of non-delay schedules—and δ = 1, together
with two intermediate values δ = 0.25 and δ = 0.75.

With a total of four parameters and four factor levels
each, the orthogonal array L ′

16 is pertinent for the Taguchi
analysis. For every combination of parameter values given
by the orthogonal array we run the PSO with the four
multiobjective functions: L(Cmax , AIav), L(Cmax , AImin),
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Table 2 Orthogonal tabulation
and average performance values Exp. Parameter levels Average performance

N w gp δ L(Cmax , AImin) L(AImin, Cmax ) L(Cmax , AIav) L(AIav, Cmax )

1 1 1 1 1 0.919 0.727 0.524 0.727

2 1 2 2 2 0.051 0.043 0.208 0.178

3 1 3 3 3 1.266 1.344 1.302 1.409

4 1 4 4 4 1.701 1.759 1.661 1.871

5 2 1 2 3 1.084 1.104 1.100 1.015

6 2 2 1 4 1.282 1.423 1.361 1.546

7 2 3 4 1 0.970 0.792 1.035 0.764

8 2 4 3 2 0.324 0.258 0.556 0.186

9 3 1 3 4 1.650 1.693 1.702 1.776

10 3 2 4 3 1.222 1.217 1.193 1.294

11 3 3 1 2 0.293 0.226 0.175 0.004

12 3 4 2 1 1.023 0.775 0.881 0.740

13 4 1 4 2 0.822 0.429 0.441 0.197

14 4 2 3 1 1.055 0.802 1.063 0.953

15 4 3 2 4 2.000 2.000 2.000 1.983

16 4 4 1 3 0.912 0.930 0.920 0.605

L(AIav, Cmax ), and L(AImin, Cmax ) on a fuzzy instance of
each 8 × 8 problem.

To measure the quality of each configuration we need a
value that can consistently combine such heterogeneous val-
ues as Cmax , AIav and AImin while taking into account the
lexicographical goal programming nature of the model. First,
we consider the distance of each value to its corresponding
target, averaged across ten runs of the algorithm and nor-
malised so as to unify scales (notice that such distance is
taken to be zero if the target is reached). Let d1 and d2 denote,
respectively, the normalised distance values for the primary
and secondary objective. These values will allow us to char-
acterise the algorithm’s performance for the Taguchi analysis
as follows: if the first target is reached, i.e. d1 = 0, then the
performance is given by d2 (the distance to the second objec-
tive); in the worse case that the primary objective does not
reach its target (d1 > 0), then the performance is given by
1 + d1. Since 0 ≤ d2 ≤ 1, this guarantees that the algo-
rithm is always considered to perform worse when the target
for the primary objective is not reached, as well as discrim-
inating among solutions taking into account how far they
are from reaching each target. We have opted for using this
performance measure directly, instead of the classical signal-
to-noise ratio, in the line of the use of the Taguchi method
in Jia and Seo (2013) and Wang et al. (2013) for scheduling
problems.

Table 2 shows, for every combination of factor levels in
the orthogonal array, the average performance value for each
of the four multiobjective functions considered. It is based
on these values that we can compute the response value of
each parameter and analyse their significance rank. As a sum-

mary, Fig. 2 depicts the response values of each parameter for
each of the four objective functions, illustrating the effect of
the parameter levels on the algorithm’s performance. Clearly,
the most significant parameter for all objective functions is δ,
with a difference between the highest and lowest level over
1.25 of a maximum possible difference of 2.00 (see Fig. 2d).
The second most significant parameter is the pair of guiding
probabilities (Fig. 2c), although their effect is significantly
smaller. Finally, the smallest effect on the performance for
all functions is obtained with the swarm size and the inertia
weight (see Fig. 2a, b). Additionally, for the two most sig-
nificant parameters it can be clearly seen that the best level
remains the same for all four objective functions. This is not
the case for swarm size and inertia weight, where the best
levels differ for L(Cmax , AIav) and L(AIav, Cmax ); how-
ever, the difference is relatively small, 0.079 for swarm size
and 0.142 for inertia weight. In consequence, we will take
the factor level that performs best for all but one objective
functions, this being a good value in all cases.

As a result of this analysis, the parameter setting in what
follows will be δ = 0.25, gp = (p1, p2) = (0.7, 0.1), w

linearly decreasing from 0.7 to 0.1, and swarm size N = 80
for all objective functions.

Highest priority for makespan minimisation

Let us first consider the case where Cmax is the objective with
highest priority and let L(Cmax , AIav) and L(Cmax , AImin)

denote the resulting multiobjective functions for AIag =
AIav and AIag = AImin respectively.
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Level 1 Level 2 Level 3 Level 4

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

L(Cmax,AImin) L(AImin,Cmax) L(Cmax,AIav) L(AIav,Cmax)

P
er

fo
rm

an
ce

 

Multi-objective approach 

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

P
er

fo
rm

an
ce

 

Multi-objective approach 

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

P
er

fo
rm

an
ce

 

Multi-objective approach 

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

L(Cmax,AImin) L(AImin,Cmax) L(Cmax,AIav) L(AIav,Cmax)

L(Cmax,AImin) L(AImin,Cmax) L(Cmax,AIav) L(AIav,Cmax) L(Cmax,AImin) L(AImin,Cmax) L(Cmax,AIav) L(AIav,Cmax)

P
er

fo
rm

an
ce

 

Multi-objective approach 

(a) (b)

(c) (d)

Fig. 2 Average performance of the four multiobjecive-PSO for each parameter level. a Swarm size (N ). b Inertia weight (w). c Guiding probabilities
(gp). d Delay parameter (δ)

Fig. 3 Evolution of E[Cmax ]
and E[AImin] on the
L(Cmax , AImin) version for the
J8-per20-1 instance
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In order to illustrate the algorithm’s convergence, we first
focus on a single problem instance. Figure 3 shows the con-
vergence pattern of L(Cmax , AImin) for a fuzzy instance
generated from J8-per20-1, one of the largest and hardest
instances. We can see how the algorithm shows a proper
convergence: initially the algorithm minimises the expected
makespan E[Cmax ] while the behaviour of AImin is erratic.
However, once the algorithm has reached the expected

makespan target (around the 250th iteration), it starts max-
imising AImin instead. We can also observe the evolution
of the AIav value and its correlated behaviour w.r.t. AImin .
Analogous convergence curves show that the number of iter-
ations can be reduced for 7 × 7 to 2,100 iterations.

Tables 3 and 4 contain a summary of the results obtained
when makespan minimisation has the highest priority. For
each objective function used by the PSO they report the
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Table 3 Comparison of results for E[Cmax ] highest priority on instances of size 7 × 7

Objective E[Cmax ] AImin AIav

Targ. Avg SD Target Avg SD Target Avg SD

J7-per10-0 L[Cmax , AImin] 1035 1032 1.655 0.9569 0.9155 0.0992 0.9923 0.9818 0.0225

L[Cmax , AIav] 1035 1032 1.878 0.9569 0.9114 0.0925 0.9923 0.9815 0.0205

E[Cmax ] – 1030 1.946 – 0.8182 0.1157 – 0.9669 0.0226

AImin – 1058 9.363 – 0.9873 0.0108 – 0.9968 0.0035

AIav – 1057 10.473 – 0.9841 0.0162 – 0.9971 0.0029

J7-per10-1 L[Cmax , AImin] 1019 1017 1.478 0.9303 0.7562 0.0321 0.9857 0.9352 0.0117

L[Cmax , AIav] 1019 1017 1.664 0.9303 0.7529 0.0340 0.9857 0.9351 0.0137

E[Cmax ] – 1017 1.157 – 0.7502 0.0253 – 0.9346 0.0102

AImin – 1049 8.212 – 0.9723 0.0212 – 0.9916 0.0083

AIav – 1047 9.655 – 0.9653 0.0298 – 0.9934 0.0049

J7-per10-2 L[Cmax , AImin] 1038 1033 3.410 0.9358 0.7685 0.1091 0.9817 0.9252 0.0301

L[Cmax , AIav] 1038 1034 2.935 0.9358 0.7495 0.1322 0.9817 0.9347 0.0275

E[Cmax ] – 1031 2.915 – 0.6873 0.1511 – 0.9091 0.0353

AImin – 1072 13.352 – 0.9713 0.0183 – 0.9898 0.0073

AIav – 1071 14.196 – 0.9670 0.0257 – 0.9938 0.0045

J7-per20-0 L[Cmax , AImin] 1001 1001 0.294 0.8278 0.3915 0.1116 0.9459 0.7322 0.0683

L[Cmax , AIav] 1001 1001 0.343 0.8278 0.3140 0.1501 0.9459 0.7838 0.0433

E[Cmax ] – 1001 0.145 – 0.1412 0.0888 – 0.6426 0.0695

AImin – 1030 7.829 – 0.8700 0.0167 – 0.9419 0.0170

AIav – 1027 7.934 – 0.8367 0.0412 – 0.9635 0.0086

J7-per20-1 L[Cmax , AImin] 1032 1031 1.561 0.8337 0.3143 0.1404 0.9531 0.7730 0.0560

L[Cmax , AIav] 1032 1031 1.603 0.8337 0.2204 0.1767 0.9531 0.7960 0.0468

E[Cmax ] – 1028 2.329 – 0.0884 0.1144 – 0.7312 0.0435

AImin – 1082 9.013 – 0.8781 0.0210 – 0.9550 0.0147

AIav – 1082 10.664 – 0.8534 0.0400 – 0.9698 0.0069

J7-per20-2 L[Cmax , AImin] 1027 1024 2.246 0.8658 0.4303 0.2055 0.9617 0.8225 0.0562

L[Cmax , AIav] 1027 1024 2.974 0.8658 0.3934 0.2045 0.9617 0.8333 0.0517

E[Cmax ] – 1021 2.742 – 0.2688 0.2400 – 0.7972 0.0606

AImin – 1074 15.165 – 0.9158 0.0211 – 0.9665 0.0121

AIav – 1076 13.906 – 0.8979 0.0412 – 0.9771 0.0082

values of E[Cmax ], AIav and AImin in the solution, aver-
aged across the 30 executions of the PSO and the 10 fuzzy
instances generated from the same original problem, together
with the standard deviations. The average values are shown in
bold when they reach the target for the corresponding objec-
tive.

A first look at Tables 3 and 4 confirms the strong cor-
relation between the values of AImin and Aav , both mea-
suring the overall due-date satisfaction. In most cases, the
single-objective version using any of these aggregated values
reaches the target value established for the other aggregated
measure. That is, when any one of these aggregated measures
is optimised, the alternative one is also optimised.

Let us now compare results obtained by the proposed
multiobjective approach using L(Cmax , AImin) and L(Cmax ,

AIav) with the results obtained when optimising a sin-
gle criterion. For the objective with the highest priority—
minimisation of expected makespan—we see that both
multiobjective approaches behave similarly to the single-
objective function. In particular, they always reach the
expected makespan target. Additionally, the multiobjective
approach obtains a clear improvement in due-date satis-
faction. Indeed, for all instances, AImin values obtained
with L(Cmax , AImin) are in average 159 % better than those
obtained using E[Cmax ] as single-objective function. There
are however remarkable differences in the improvement rate
depending on the instance type. For example, due-date satis-
faction improves only 8 % for J7-per10 instances and 16 %
for J8-per10, but this improvement scales up to 164 and
450 % in per20 instances of sizes 7×7 and 8×8 respectively.
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Table 4 Comparison of results for E[Cmax ] highest priority on instances of size 8 × 8

Objective E[Cmax ] AImin AIav

Targ. Avg SD Target Avg SD Target Avg SD

J8-per10-0 L[Cmax , AImin] 1055 1052 2.587 0.9026 0.8292 0.0889 0.9756 0.9515 0.0261

L[Cmax , AIav] 1055 1052 2.676 0.9026 0.8017 0.0999 0.9756 0.9545 0.0225

E[Cmax ] – 1050 3.105 – 0.7504 0.1156 – 0.9399 0.0271

AImin – 1073 10.333 – 0.9598 0.0273 – 0.9874 0.0100

AIav – 1072 9.972 – 0.9453 0.0384 – 0.9898 0.0063

J8-per10-1 L[Cmax , AImin] 1036 1032 3.391 0.8653 0.7242 0.0987 0.9664 0.9062 0.0360

L[Cmax , AIav] 1036 1033 2.904 0.8653 0.6721 0.1333 0.9664 0.9141 0.0355

E[Cmax ] – 1030 3.744 – 0.6087 0.1316 – 0.8858 0.0375

AImin – 1064 11.386 – 0.9386 0.0342 – 0.9801 0.0151

AIav – 1063 12.490 – 0.9342 0.0485 – 0.9881 0.0088

J8-per10-2 L[Cmax , AImin] 1041 1036 5.139 0.8656 0.7958 0.1082 0.9658 0.9357 0.0364

L[Cmax , AIav] 1041 1037 4.521 0.8656 0.7533 0.1275 0.9658 0.9436 0.0330

E[Cmax ] – 1033 5.225 – 0.6735 0.1283 – 0.9108 0.0371

AImin – 1065 13.246 – 0.9330 0.0339 – 0.9778 0.0149

AIav – 1062 13.724 – 0.9279 0.0472 – 0.9862 0.0088

J8-per20-0 L[Cmax , AImin] 1022 1020 2.339 0.8644 0.1645 0.1259 0.9668 0.7168 0.0712

L[Cmax , AIav] 1022 1020 2.001 0.8644 0.0771 0.1324 0.9668 0.7728 0.0550

E[Cmax ] – 1015 2.255 – 0.0219 0.0515 – 0.6685 0.0604

AImin – 1074 11.741 – 0.9394 0.0322 – 0.9814 0.0123

AIav – 1072 11.650 – 0.9250 0.0481 – 0.9870 0.0083

J8-per20-1 L[Cmax , AImin] 1003 1002 0.800 0.7574 0.2573 0.1703 0.9225 0.7709 0.0716

L[Cmax , AIav] 1003 1002 0.793 0.7574 0.1541 0.1846 0.9225 0.7914 0.0630

E[Cmax ] – 1001 0.862 – 0.0411 0.0790 – 0.6946 0.0589

AImin – 1023 9.613 – 0.8358 0.0417 – 0.9288 0.0255

AIav – 1025 11.223 – 0.7799 0.0920 – 0.9513 0.0147

J8-per20-2 L[Cmax , AImin] 1018 1017 2.292 0.8246 0.3463 0.2001 0.9502 0.7961 0.0700

L[Cmax , AIav] 1018 1017 2.191 0.8246 0.2714 0.2040 0.9502 0.8239 0.0567

E[Cmax ] – 1014 2.538 – 0.1269 0.1498 – 0.7593 0.0561

AImin – 1065 15.408 – 0.9026 0.0347 – 0.9628 0.0185

AIav – 1062 15.974 – 0.8879 0.0611 – 0.9758 0.0127

This variability is due to the fact that, as mentioned above,
the dependency between E[Cmax ] and AImin is greater for
per10 instances, given the way in which the original bench-
mark was created. In consequence, for per10 problems, when
the makespan is optimised, due-date satisfaction is also being
optimised to a certain extent; however this is not always the
case for an arbitrary open shop problem.

Regarding AIav values, they improve 7.2 % when using
L(Cmax , AIav). Again there is a remarkable variability in
the improvement depending on the family of problems:
2.1 % for per10 instances and 12.2 % for per20 instances.
It is also tempting to conclude that the gain obtained with
L(Cmax , AImin) is much higher than that obtained with
L(Cmax , AIav). However, this is only a scale effect. If
instead of considering absolute gains, we measure the reduc-

tion of the gap between the AImin and the AIav values
and their corresponding targets, the multiobjective approach
L(Cmax , AImin) is in average over 36 % better than E[Cmax ]
and L(Cmax , AIav) is also over 36 % better than E[Cmax ]
w.r.t. the corresponding secondary target. In any case, it
is worth noticing that for per10 instances L(Cmax , AImin)

performs better than L(Cmax , AIav) whereas for per20
instances the best performance corresponds to L(Cmax , AIav)

in terms of gap reduction w.r.t. its secondary target. A possi-
ble explanation is that AImin is a more demanding aggrega-
tion operator. If it is relatively “easy” to satisfy the due dates
for all jobs (at least to a certain extent), then 0 < AImin ≤
AIav and AImin will probably provide a better guide for max-
imising due date satisfaction. However, as long as it is likely
that one of the due dates is not satisfied at all in schedules
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Table 5 Comparison between PSO and MA in terms of E[Cmax ]
Problem Target MA PSO

E[Cmax ] L(Cmax , AImin) L(Cmax , AIav)

J7-per10-0 1,035 1,066 1,032 1,032

J7-per10-1 1,019 1,052 1,017 1,017

J7-per10-2 1,038 1,067 1,033 1,034

J7-per20-0 1,001 1,004 1,001 1,001

J7-per20-1 1,032 1,044 1,031 1,031

J7-per20-2 1,027 1,042 1,024 1,024

J8-per10-0 1,055 1,083 1,052 1,052

J8-per10-1 1,036 1,066 1,032 1,033

J8-per10-2 1,041 1,071 1,036 1,037

J8-per20-0 1,022 1,037 1,020 1,020

J8-per20-1 1,003 1,014 1,002 1,002

J8-per20-2 1,018 1,035 1,017 1,017

with good makespan values (as is the case for per20 prob-
lems), then AImin = 0 with high probability, thus providing
a poor guide for the optimisation process.

Finally, the correlation between both aggregation oper-
ators is further confirmed if we look at the behaviour
of AIav in case of L(Cmax , AImin) and AImin in case
of L(Cmax , AIav): both multiobjective approaches signifi-
cantly reduce the alternative due-date objective, with a gap-
improvement of approximately 26 % in both cases.

Let us now compare the multiobjective PSO using
L(Cmax , AIav) or L(Cmax , AImin) with the single-objective
memetic algorithm (MA) from González Rodríguez et al.
(2010) in terms of expected makespan minimisation. Table 5
contains the expected makespan results for each method—
MA optimising only E[Cmax ], PSO with L(Cmax , AIav)

and PSO with L(Cmax , AImin)—with values averaged across
the 10 instances of each size and 30 runs of the algo-
rithm. Clearly, the PSO with both multiobjective functions
L(Cmax , AIav) and L(Cmax , AImin) compares favourably
with the single-objective MA in terms of makespan val-
ues. Indeed, the multiobjective PSO reduces E[Cmax ] val-
ues about 2.25 % (slightly over 3 % for per10 instances and
slightly below 1.5 % for per20 instances), with no signifi-
cant differences between different problem sizes or different
aggregated measures for due-date satisfaction. This reduc-
tion may not seem very important in absolute values. How-
ever, on a closer look we can see that the MA never reaches
the expected makespan target value, whereas the multiobjec-
tive PSO reaches this target in all instances. We can conclude
that our multiobjective PSO outperforms the previous single-
objective algorithm when it comes to optimising the objective
with the highest priority (makespan), while also optimising
the secondary objective.

Highest priority for due-date satisfaction

We now consider the alternative priority structure where
due-date satisfaction becomes the primary objective; let
L(AIag, Cmax ) denote the resulting lexicographic goal pro-
gramming multiobjective function. If we now compare each
L(AIag, Cmax ) with the corresponding aggregated due-date
satisfaction value AIag (AImin or AIav), the results are anal-
ogous to the case where makespan was the first objective. In
all instances L(AIag, Cmax ) reaches the corresponding tar-
get for due-date satisfaction value whereas the gap between
the expected makespan and its target value is reduced 36 %
in average when AIag = AImin and 40 % in the case that
AIag = AIav . Figure 4 shows the E[Cmax ] values (aver-
aged across the 10 fuzzy instances of every original problem
and the 30 executions of the PSO algorithm) obtained with
AImin , AIav and the corresponding multiobjective functions
on each family of problems. It also depicts the E[Cmax ] tar-
get values for each family. We can clearly appreciate how
the expected makespan behaves better in the multiobjective
approach. We can also observe that AIav used as single objec-
tive function obtains in general slightly better E[Cmax ] val-
ues than the alternative AImin . Also, its multiobjective coun-
terpart L(AIav, Cmax ) performs slightly better (in terms of
makespan minimisation) than L(AImin, Cmax ). The expla-
nation, again, lies in the fact that AImin is a more pessimistic
aggregator of individual job due-date satisfaction. The fig-
ure also illustrates that, as above, the solutions are in general
closer to the target values for per10 instances than for per20
ones.

Conclusions and future work

We have proposed a multiobjective approach for solving
the open shop scheduling problem with uncertain durations
and flexible due dates modelled using fuzzy sets. We have
adopted a lexicographic goal programming framework to
deal with the multiple objectives of minimising the project’s
makespan and maximising due-date satisfaction. The result-
ing problem has been solved by adapting a particle swarm
optimisation algorithm to the hierarchical multiobjective
framework. The experimental results, on fuzzy instances of
well-known benchmark problems, illustrate the potential of
our proposal. In general, the multiobjective approaches per-
form as well as their single-objective counterparts when it
comes to optimising the objective with the highest prior-
ity, reaching the target levels in all cases. Additionally, the
multiobjective approaches greatly improve on the secondary
objective. Also, the multiobjective PSO algorithm compares
favourably to a memetic algorithm from the literature in terms
of makespan minimisation, when this is the objective with the
highest priority.
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Fig. 4 Average E[Cmax ]
values obtained with AImin ,
AIav and the corresponding
multiobjective L(AImin, Cmax )

and L(AIav, Cmax )
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In the future, we would like to contemplate an alternative
approach to multiobjective optimisation, appropriate for the
case when no priority structure among multiple objectives
can or needs to be established. We would like to explore
the known relationships between lexicographic and Pareto
optimality, as well as extending the PSO algorithm to directly
work with sets of non-dominated solutions. We would also
like to adapt the PSO algorithm to other scheduling problems
with uncertainty, such as job shop or resource-constrained
project scheduling.
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Chapter 8

Most relevant conference papers

In this chapter we include the conference papers that have been presented in conferences
that are ranked in the ERA or CORE conference rankings. For the sake of clarity, before
each paper we shall include again its data.

8.1 Schedule generation schemes for job shop problems with
fuzziness

In this section, we include the following publication.

• Title: Schedule generation schemes for job shop problems with fuzziness.

• Conference: ECAI 2014. 21st European Conference on Artificial Intelligence.

• Date: August 2014.

• Place: Prague (Czech Republic).

• Conference Ranking:

– ERA 2010: Rank A

– CORE 2014: Rank A

This publications contains pieces of work described in Section 4.1.1.

Palacios, J.J., Vela, C.R., González-Rodŕıguez, I., Puente, J.: Schedule generation
schemes for job shop problems with fuzziness. In: Proceedings of ECAI 2014. Frontiers
in Artificial Intelligence and Applications, vol. 263, pp. 687-692. IOS Press (2014). Doi:
10.3233/978-1-61499-419-0-687.
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Schedule Generation Schemes for Job Shop Problems
with Fuzziness

Juan José Palacios1 and Camino R. Vela2 and Inés González-Rodrı́guez3 and Jorge Puente4

Abstract. We consider the job shop scheduling problem with fuzzy
durations and expected makespan minimisation. We formally define
the space of semi-active and active fuzzy schedules and propose and
analyse different schedule-generation schemes (SGSs) in this fuzzy
framework. In particular, we study dominance properties of the set
of schedules obtained with each SGS. Finally, a computational study
illustrates the great difference between the spaces of active and the
semi-active fuzzy schedules, an analogous behaviour to that of the
deterministic job shop.

1 Introduction

Scheduling is a research field of great importance, involving com-
plex combinatorial constraint-satisfaction optimisation problems and
with relevant applications in industry, finance, welfare, education,
etc [13]. To enhance the applicability of scheduling, part of the re-
search in this field has been devoted to modelling the uncertainty
and vagueness pervading real-world situations, with great diversity
of approaches [9]. In particular, fuzzy sets have been used in differ-
ent manners, ranging from representing incomplete or vague states
of information to using fuzzy priority rules with linguistic qualifiers
or preference modelling [4]. They are also emerging as an interest-
ing tool for improving solution robustness, a much-desired property
in real-life applications [10, 15].

A key issue in scheduling is the definition of subsets of feasible
solutions and the study of their properties, in particular, whether they
are guaranteed to contain at least one optimal solution. For classical
deterministic scheduling, the best known are the sets of semi-active,
active and non-delay (or dense) schedules, and it is common practice
to restrict the search to some of these subspaces. This is achieved us-
ing schedule generation schemes (SGSs) which, given an operation
processing order, produce a schedule (an assignment of start times
to all operations) based on this ordering. SGSs are extensively used
in (meta)heuristic procedures and can also be viewed as branching
schemes of exact search methods. It is essential to have proper SGSs,
to know which is the set of schedules obtainable with a given SGS
and how it relates with the schedule categories and to study the theo-
retical ability of any SGS to reach the optimum. Surprisingly enough,
although we can find some ad-hoc extensions of deterministic SGSs
to the fuzzy framework, no effort has been made to give precise def-
initions for types of schedules when fuzzy times are involved, nor
have SGSs been defined and studied systematically in this frame-
work.
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In this paper, we intend to fill the existing gap in the litera-
ture. Inspired by the work of [1],[18],[19] for different determinis-
tic scheduling problems, we provide a formal definition of the con-
cepts of semi-active and active schedules as well as several SGSs for
the fuzzy job shop problem with expected makespan minimisation
(FJSP). We shall study the relationship between different types of
schedules and the sets generated by SGSs, and investigate whether
such sets necessarily contain one optimal schedule. Finally, we shall
provide computational results to compare the different SGSs.

2 The Fuzzy Job Shop Problem

The job shop scheduling problem, or JSP in short, consists in
scheduling a set of n jobs J1, . . . , Jn to be processed on a set
of m physical resources or machines M1, . . . , Mm. Each job
Jj , j = 1, . . . , n, consists of mj ≤ m tasks or operations
(o(j, 1), . . . , o(j, mj)) to be sequentially scheduled (precedence
constraints). Each task o(j, l) needs the exclusive use of a ma-
chine μo(j,l) for its whole processing time do(j,l) > 0 (capacity
constraints). There is no preemption, i.e. all operations must be
processed without interruption and no reentrance, i.e., operations
within a job are processed by different machines: ∀j, μo(j,l) �=
μo(j,l′), ∀l �= l′. A solution to this problem is a schedule–an al-
location of starting times for all operations – which is feasible, in
the sense that all constraints hold, and is also optimal according to
some criterion. Here, we consider the objective of minimising the
makespan Cmax, which is the time lag from the start of the first
operation until the end of the last one. This is the most commonly
considered regular (non-decreasing with task processing times) per-
formance measure.

In order to simplify notation, we assume w.l.o.g. that tasks are
indexed from 1 to N =

∑n
j=1 mj , so we can refer to a task o(j, l) by

its index o =
∑j−1

i=1 mi + l. The machine, duration, starting time and
completion time of a task o are denoted respectively μo, do, So and
Co (notice the last two depend on the schedule). The set of tasks is
denoted O = {0, 1, . . . , N}, where 0 is an initial dummy operation,
taken to be the first operation of each job (i.e. o(j, 0) = 0, ∀j =
1, . . . , n) and such that d0 = S0 = 0 . Finally, a feasible schedule
will be represented by the vector of operation starting times t, where
to = So is the starting time of operation o ∈ {1, . . . , N} (in our
case, a triangular fuzzy number, as described below).

2.1 Uncertain Durations as Fuzzy Numbers

In real-life applications, it is often the case that the exact time it takes
to process a task is not known in advance and only some uncertain
knowledge about the duration is available. The crudest representation
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for uncertain processing times would be a human-originated confi-
dence interval. If some values appear to be more plausible than oth-
ers, a natural extension is a fuzzy interval or fuzzy number (cf. [5]). A
fuzzy interval A is a fuzzy set on the reals with membership function
μA : R → [0, 1] such that its α-cuts Aα = {r ∈ R : μA(r) ≥ α},
α ∈ (0, 1], are intervals (bounded or not). The support of A is
A0 = {r ∈ R : μA(r) > 0} and the modal values are those in
A1. A fuzzy number B is a fuzzy interval whose α-cuts are closed
intervals, denoted Bα = [bα, bα], with compact support and unique
modal value.

The simplest model of fuzzy interval is a triangular fuzzy num-
ber or TFN, using an interval [a1, a3] of possible values and a modal
value a2 in it. A TFN A is denoted A = (a1, a2, a3) and its mem-
bership function takes the following triangular shape:

μA(r) =

⎧
⎪⎨
⎪⎩

r−a1

a2−a1 : a1 ≤ r ≤ a2

r−a3

a2−a3 : a2 < r ≤ a3

0 : r < a1 or a3 < r

(1)

In the job shop, we essentially need two operations on fuzzy num-
bers, the sum and the maximum. In principle, these are obtained by
extending the corresponding operations on real numbers using the
Extension Principle. However, computing the sum or maximum of
two fuzzy numbers is cumbersome if not intractable in general, be-
cause it requires evaluating two sums or two maxima for every value
α ∈ [0, 1]. For the sake of simplicity and tractability of numerical
calculations, we follow [6] and approximate the results of these op-
erations by linear interpolation on the three defining points of each
TFN (an approach also taken, for instance, in [3] or [11]). The ap-
proximated sum coincides with the actual sum, so for any pair of
TFNs A and B:

A + B = (a1 + b1, a2 + b2, a3 + b3) (2)

As for the maximum, for any two TFNs A, B, if F = max(A, B)
denotes their maximum and G = (max{a1, b1}, max{a2, b2},
max{a3, b3}) the approximated value, it holds that ∀α ∈
[0, 1], f

α
≤ g

α
, fα ≤ gα. The approximated maximum G is thus

a TFN which artificially increases the value of the actual maximum
F , maintaining the support and modal value, that is, F0 = G0 and
F1 = G1. This approximation can be trivially extended to the case
of more than two TFNs.

The membership function μA of a fuzzy number A can be inter-
preted as a possibility distribution on the reals; this allows to define
the expected value of a fuzzy number [8], given for a TFN A by

E[A] =
1

4
(a1 + 2a2 + a3). (3)

The expected value coincides with the neutral scalar substitute of a
fuzzy interval and can also be obtained as the centre of gravity of its
mean value or using the area compensation method [4]. It induces
a total ordering ≤E in the set of fuzzy intervals [6], where for any
two fuzzy intervals A, B A ≤E B if and only if E[A] ≤ E[B].
Clearly, for any two TFNs A and B, if ∀i ∈ {1, 2, 3}, ai ≤ bi, then
A ≤E B.

2.2 Problem Statement
In analogy to the original problem, our objective is to find a fuzzy
schedule with optimal makespan. However, neither the maximum
nor its approximation define a total ordering in the set of TFNs. Us-
ing ideas similar to stochastic scheduling, we use the total ordering

Algorithm 1 SGS Generic Algorithm
Require: an instance of J |fuzzpo|E[Cmax], P, and a task order, π
Ensure: a schedule t for P according to π

1. A = {o(j, 1) : 1 ≤ j ≤ n}
while A �= ∅ do

2. compute the eligible set E ⊆ A
3. select o(j∗, l∗) = arg min{πo(j,l) : o(j, l) ∈ E}
4. So(j∗,l∗) = ESo(j∗,l∗)

5. A = A − {o(j∗, l∗)}(∪{o(j∗, l∗ + 1)} if l∗ < mj∗)
end while
return t, where ti = Si, i = 1, . . . , N

provided by the expected value, considering that the objective is to
minimise the expected makespan E[Cmax]. The resulting problem
will be denoted J |fuzzdo|E[Cmax] and can be formulated as fol-
lows:

min E[Cmax(S)] = E[ max
1≤j≤n

Co(j,m)] (4)

subject to:

∀i Ci
o = Si

o + di
o, ∀o ∈ O (5)

∀i Si
o(j,l) ≥ Ci

o(j,l−1), 1 ≤ l ≤ mj , 1 ≤ j ≤ n (6)

∀i Si
o ≥ Ci

o′ ∨ ∀i Si
o′ ≥ Ci

o, ∀o �= o′ ∈ O : μo = μo′ (7)

Where ∀i represents ∀i ∈ {1, 2, 3}.
Clearly, the FJSP is NP-hard, since setting all processing times to

crisp figures yields the classical JSP.
Notice that the schedule is fuzzy in the sense that the starting, pro-

cessing and completion times of each task are fuzzy numbers, seen
as possibility distributions on the actual values they may take. How-
ever, there is no uncertainty regarding the order in which operations
must be processed: once the starting times have been allocated, they
establish clear orderings among operations in the same machine.

3 Schedule Generation Schemes
A general framework for a SGS is provided in Algorithm 1: given
a task order π (which can be interpreted as a priority vector), it al-
lows to build different types of schedules, depending on the actual
instantiation of some of its actions.

The generic algorithm builds the schedule in N iterations. At each
iteration, the SGS computes a set of eligible tasks, E, which is a sub-
set of the set of available tasks, A, containing the tasks that are can-
didates to be scheduled at the current iteration. In steps 3 and 4 the
SGS selects the operation o(j∗, l∗) ∈ E with the highest priority
according to π and computes its Earliest feasible Starting time (ES)
based on an Appending (ESA) or Insertion (ESI) strategy.

This framework covers a wide range of interesting SGSs, as we
shall see in the sequel. However, it does not comprise all possible
SGSs, in particular those where a non-available operation may be
selected for scheduling or where starting times may be later modified
in the schedule-building process.

3.1 Computing Earliest Feasible Starting Times
In the SGS generic algorithm, once a task has been selected, it is
scheduled at its earliest feasible starting time ES. Depending on how
this value is computed, we distinguish between appending SGS and
insertion SGS.

In an appending scheme, an unscheduled task can be scheduled
only after all tasks that have been previously scheduled in its machine
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and its job. Formally, let o(j, l) be the task for which the starting time
must be computed, let k = μo(j,l) be the machine required by o(j, l)
and let λ(k) ∈ O denote the latest task scheduled (at the current
iteration) on machine k. Then, ESAo(j,l) can be computed in O(1)
as follows:

ESAo(j,l) = max{Cλ(k), Co(j,l−1)} (8)

In an insertion scheme, an unscheduled task o(j, l) may be sched-
uled before tasks already scheduled on its machine, provided that
the starting time of each of these tasks does not change. Hence, the
scheme searches for the first insertion position where the selected
task can fit without delaying the subsequent tasks already sched-
uled. Taking into account the definition of starting and completion
times in the FJSP, the insertion position must fit “in each compo-
nent” of the TFN. More precisely, let ηk be the number of tasks
scheduled on machine k and let σk = (0, σ(1, k), . . . , σ(ηk, k)),
with σ(ηk, k) = λ(k) denote the partial processing order of tasks
already scheduled in machine k. If a position q, 0 ≤ q < ηk, is such
that for all i ∈ {1, 2, 3}:

max{Ci
σ(q,k), C

i
o(j,l−1)} + di

o(j,l) ≤ Si
σ(q+1,k) (9)

then q is a feasible insertion position for operation o(j, l) between
operations σ(q, k) (possibly the dummy first task 0) and σ(q +1, k).
If there exists at least one position q verifying (9), we take q =
minq verifying (9) q and

ESIo(j,l) = max{Ci
σ(q,k), C

i
o(j,l−1)} (10)

Otherwise ESIo(j,l) = ESAo(j,l)

The earliest starting time of an eligible task in an insertion scheme
can be computed in O(m), since there are at most m−1 tasks sched-
uled on machine k = μo(j,l)

4 Schedule Categories and SGSs
The set Σ of feasible solutions usually constitutes a huge search
space. Hence, it is common in deterministic scheduling to restrict the
search to smaller subsets of Σ which define categories of schedules.
Among these, the best known are the sets of semiactive, active and
non-delay schedules [13]. A set of schedules of a given category is
said to be dominant w.r.t. an objective function if it contains at least
one optimal solution. In the following, we will always consider dom-
inance w.r.t. expected makespan. A SGS is complete for a category if
it can be used to generate all the schedules of this category.

4.1 Semi-active Schedules
For deterministic shop scheduling, the definition of semi-active
schedules is based on the concept of local left shift, a change that
consists in “moving an operation block to the left on the Gantt chart
while preserving the operation sequences” [18]. This can be inter-
preted in the fuzzy case as follows.

Definition 1 Let t be a feasible schedule, then a local left shift of a
task o in t is a move giving another feasible schedule s where

∃i ∈ {1, 2, 3} : si
o = ti

o − 1 ∧ ∀j �= i sj
o = tj

o

so′ = to′∀o′ ∈ O − {o}
(11)

Definition 2 A semi-active schedule is a feasible schedule in which
none of the tasks can be locally left-shifted.

Notice that for any feasible schedule that is not semi-active,
there exists a sequence of local left shifts that produces a semi-
active schedule without increasing any of the makespan components,
Ci

max, and, therefore, without increasing the expected makespan.
Hence, the set of semi-active schedules is strictly contained in the
set of feasible schedules and is dominant for the FJSP with expected
makespan minimization.

We are now in position of defining a SGS that produces semi-
active schedules.

Definition 3 SemiActiveSGS is an appending SGS where the eli-
gible set E equals the set of available operations A, i.e., E = A.

Theorem 1 SemiActiveSGS generates only semi-active schedules
and it is complete in this set.

Sketch of Proof Schedules generated by SemiActiveSGS are al-
ways semi-active because every operation o ∈ O ESAo is assigned
the least possible value, so it is unfeasible to reduce any of its com-
ponents, and no local left-shift is available. On the other hand, given
a semiactive schedule t, we take π to be the topological order from
the constraint graph that represents the precedence and capacity con-
straints between operations in t (this order always exists because,
being t feasible, the graph is acyclic). For any operation ordering π,
SemiActiveSGS(π) schedules all operations following exactly the
same order π, so in particular SemiActiveSGS(π) = t. �

Corollary 2 The set of schedules generated by SemiActiveSGS is
dominant.

4.2 Active schedules

Given a feasible schedule t where no local left shifts are possible, a
global left shift of an operation o is a move that allows “to start an
operation earlier without delaying any other operation” [18]. More
formally:

Definition 4 Let t be a feasible schedule, then a left shift of an op-
eration o in t is a move giving another feasible schedule s where:

∃i ∈ {1, 2, 3} : si
o < ti

o ∧ ∀j �= i sj
o ≤ tj

o

so′ = to′∀o′ ∈ O − {o}
(12)

Definition 5 Let t be a feasible schedule, then a global left shift of
a task o in t is a left shift of o that is not obtainable by a sequence of
local left shifts.

Definition 6 An active schedule is a feasible schedule where no
global or local left shift lead to a feasible schedule.

Notice that an active schedule contains no feasible insertion posi-
tions, because if an insertion position existed, this would allow for at
least one global left shift. Also, given any semi-active but non-active
schedule, it is always possible to perform a sequence of global left
shift moves in order to build an active schedule without increasing
any component of the starting times of tasks. Hence, the set of ac-
tive schedules is a strict subset of the semi-active ones and remains
dominant.

In the following we study different ways of generating active
schedules, starting with a straightforward insertion version of the
general SGS algorithm.
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Definition 7 ActiveSGS is an insertion SGS where the eligible set
E is the whole set of available operations A, i.e., E = A.

Theorem 3 ActiveSGS generates only active schedules and it is
complete in this set.

Proof Let π be a task processing order, let t = ActiveSGS(π) and
let σk = (0, σ(1, k), . . . , σ(ηk, k)) denote the partial sequencing
order in which operations are scheduled on a machine k according
to t. If t is not active, there must exist a task o(j, l) scheduled in its
machine k at a position pk ∈ {2, . . . , ηk} such that for o(j, l) there
exists a feasible insertion position q < pk in σk. Thus, there exists a
feasible schedule s such that so′ = to′ , ∀o′ �= o(j, l) and

∀i si
o(j,l) + di

o(j,l) ≤ min{ti
o(j,l+1), t

i
σ(q+1,k)},

∀i si
o(j,l) = max{Ci

o(j,l−1), C
i
σ(q,k)} < ti

o(j,l).

But this is absurd because if such feasible insertion position exists at
the end of the algorithm, it must also exist when operation o(j, l) is
to be scheduled by ActiveSGS and, in this case, ti

o(j,l) = ESIi
o(j,l)

can never be greater than si
o(j,l) for any component i.

Conversely, let t be an active schedule and let π be the task pro-
cessing order obtained as the topological order of the constraint
graph representing t. Since it is active, no feasible insertion posi-
tions can exist in t. Therefore, ActiveSGS(π) will schedule ev-
ery task o(j, l) with starting time ESIo(j,l) = ESAo(j,l) =
max{Cλ(k), Co(j,l−1)} where λ(k) is the operation preceding
o(j, l) in its machine k according to π, i.e. ESIo(j,l) = to(j,l). It
thus follows that t = ActiveSGS(π) = SemiActiveSGS(π) �

Corollary 4 The set of schedules generated by ActiveSGS is dom-
inant.

4.2.1 The fG&T-SGS algorithms

The Giffler-Thompson Algorithm or G&T in short ([7]) is probably
the most famous active schedule generation scheme for determinis-
tic job shop problem, having been used in a variety of settings. It is
an appending algorithm where, given the task o∗ with earliest pos-
sible completion time C∗ at the current step, the set E of eligible
operations (also referred to as conflict set) is the set of operations
processed in the same machine as o∗ which may start before C∗.

G&T provides a complete and constructive heuristic method to
search for solutions in search spaces of reasonable size and has been
used as a branching schema for the deterministic JSP in exact meth-
ods, such as branch and bound [2] or best-first search [17]. Also,
G&T allows further reductions of the search space by including a pa-
rameter that bounds the length of time that a machine is allowed to
remain idle on the chance that a “more critical” job will soon become
available [19].

We can find some ad-hoc extensions of G&T in the fuzzy schedul-
ing literature, from the earliest one in [16] to the most recent one
in [12]. The variety of existing proposals illustrates that extending
G&T is far from trivial. The first difficulty appears when computing
the earliest completion time C∗ at each current step. If it is com-
puted as the minimum completion time of all the unscheduled tasks
currently available, it may not correspond to the completion time of
any specific task because a set of TFNs is not closed under the min-
imum. In consequence, it may not make sense to consider only one
machine when computing the eligible set.

A possible solution is to build the eligible set E with all tasks
o that “can start before C∗”, which in fuzzy framework means

that ∃iESAi
o < (C∗)i, since C∗ is previous to ESAo only if

∀i, (C∗)i ≤ ESAi
o. This is the basis for the first SGS extending

G&T:

Definition 8 The fG&T-SGS1 algorithm is an appending SGS
where the eligible set E is computed as follows:

C∗ = min{ESAo + do : o ∈ A}
E = {o ∈ A : ∃i ESAi

o < (C∗)i} (13)

Theorem 5 fG&T-SGS1 generates only active schedules, but it is
not complete in this set and it is not dominant.

Sketch of Proof We first prove by contradiction that fG&T-SGS1
generates active schedules. Let π be a task processing order and let
us suppose that t = fG&T-SGS1(π) is not active. Let σk = (0,
σ(1, k), . . . , σ(ηk, k)) denote the partial sequencing order in which
operations are scheduled on a machine k according to t. Reasoning as
in Theorem 3, there must exist a task o(j, l) scheduled in its machine
k at a position pk ∈ {2, . . . , ηk}, a feasible schedule s with so′ =
to′ , ∀o′ �= o(j, l) and a position q < pk such that

∀i si
o(j,l) + di

o(j,l) ≤ min{ti
o(j,l+1), t

i
σ(q+1,k)},

∀i si
o(j,l) = max{Ci

o(j,l−1), C
i
σ(q,k)} < ti

o(j,l).

For the feasible position q to exist in t, it must be the case that
fG&T-SGS1 has scheduled operation σ(q + 1, k) before o(j, l).

Also, o(j, l) cannot have been in the set A when σ(q + 1, k) was
to be scheduled. This is proved by contradiction using the fact that q
is a feasible insertion position.

A direct consequence is that o(j, l−1) cannot have been scheduled
either. In fact, o(j, l−1) cannot even have been in A when σ(q+1, k)
was to be scheduled. This is again proved by contradiction, using the
fact that s and t are identical for every operation other than o(j, l)
and that a feasible insertion position exists.

By repeating this argument “backwards” for all operations preced-
ing o(j, l) in its job, we conclude that o(j, 1) cannot have been in A
when σ(q + 1, k) was scheduled, which is clearly absurd because A
is initialised with the first task of every job.

To show that fG&T-SGS1 does not generate all active sched-
ules nor is it complete, consider a problem with 3 jobs and 3 ma-
chines where durations are do(1,1) = (3, 4, 5), do(2,1) = (2, 4, 6),
do(2,2) = (2, 3, 4), do(2,3) = (13, 15, 17), do(3,1) = (1, 4, 8) and
with the following machine requirements μo(1,1) = 1, μo(2,1) = 2,
μo(2,2) = 1, μo(2,3) = 3, μo(3,1) = 1. Figure 1 shows the job-
oriented Gantt charts adapted to TFNs (following [6]) of all six
feasible active schedules, including the two optimal solutions with
Cmax = (17, 22, 27) (solutions (1) and (3)). In this case, it is easy
to see that fG&T-SGS1 cannot generate any of the optimal (active)
solutions. �

The incompleteness of fG&T-SGS1 stems from the fact that a set
of TFNs is not closed under the minimum, i.e., C∗ may not corre-
spond to the earliest completion time of an operation in A; we can
only guarantee that (C∗)i does correspond to the i-th component of
the earliest completion time of an operation in A. Taking this into
account, we propose an alternative extension of G&T.

Definition 9 The fG&T-SGS2 algorithm is an appending SGS
where the eligible set E is computed as follows.

C∗ = min{ESAo + do : o ∈ A}
A∗ = {o ∈ A : ∃i ESAi

o + di
o = (C∗)i} (14)

E = {o ∈ A : ∀o′ ∈ A∗∃i ESAi
o < ESAi

o′ + di
o′}
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Figure 1: Gantt chart of the schedules of all active solutions for the example in Theorem 5.

Theorem 6 fG&T-SGS2 generates only active schedules and it is
complete in this set.

Sketch of Proof The argument that fG&T-SGS2 generates active
schedules is analogous to that given for fG&T-SGS1 in Theorem 5.

To see that fG&T-SGS2 is complete, let t be an active sched-
ule, let σ be the task processing order obtained from the topological
ordering of the constraint graph represented by t and let σk be the
partial order determined by σ for a particular machine k. We prove
that for an operation processing order π containing all partial orders
represented by σk and s = fG&T-SGS2(π), we have s = t. It suf-
fices to show that, if σ′ is the task processing order obtained from
the topological ordering of the constraint graph represented by s, ∀k
σk = σ′k.

Let us suppose that there exists at least one k such that σk �= σ′k
and let a = o(j, l) = σ(q, k) be the first operation in σ that is
scheduled in its machine k in a different order from σ. This means
that there exists an operation requiring the same machine as a,
b = σ(q′, k), q′ > q, that will be scheduled by fG&T-SGS2 be-
fore a. Notice that, b ∈ E and a �∈ E. Also, without loss of gen-
erality, we may assume that a ∈ A. Finally, notice that, being an
active schedule, in t there are no feasible insertion positions, that is,
∃i ESAi

a < ESAi
b + di

b.
If b ∈ A∗, since a ∈ A−E, there must exist at least one operation

o ∈ A∗ ⊆ E such that ∀i ESAi
o + di

o ≤ ESAi
a. o cannot share

job with a or b. If it requires a machine k′ �= k, it can be scheduled
before b without any change in any of the partial orders in σ. Using
this argument a finite number of times, eventually ∀x ∈ A∗, μx = k.
This, together with the fact that t is active, leads to having a ∈ E,
which is a contradiction. If b �∈ A∗, b ∈ E means that ∀o ∈ A∗

∃i : ESAi
b < ESAi

o + di
o. Reasoning analogously to the case when

b ∈ A∗, we conclude that it is impossible to schedule b before a,
which is a contradiction. �

Corollary 7 The set of schedules generated by fG&T-SGS2 is

dominant.

5 Empirical Behaviour
Having studied the different features of each proposed SGS, in this
section we intend to illustrate their behaviour in practice. To this end,
we will analyse the quality of the solutions generated by each SGS
from a broad sample of operation processing orders, which will also
offer a picture of the different schedule spaces. This study is carried
out on the fuzzy instances from [14], a set of 12 fuzzified versions
of what are considered to be some of the hardest instances for the
JSP. For each instance, we generate T = 1000 random feasible task
orderings and evaluate each ordering using the four SGSs proposed
in this paper.
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Figure 2: E[Cmax] for 1000 task orderings for instance ABZ9.

The box-plot in Figure 2 corresponds to the expected makespan
obtained with the T task orderings using the different SGSs. It corre-
sponds to instance ABZ9; for the remaining instances, the behaviour
is very similar. As expected, the semi-active solutions generated by

J.J. Palacios et al. / Schedule Generation Schemes for Job Shop Problems with Fuzziness 691



SemiActiveSGS are much worse than the active ones obtained with
the other SGSs; this is due to the size and features of the related
space of solutions. These results confirm the clear difference, also
in the fuzzy framework, between the spaces of active schedules and
semi-active ones. Differences between active SGSs are on the other
hand not so clear, even if ActiveSGS seems to yield slightly worse
solutions than the two extensions of G&T.

A better assessment of the SGSs is achieved through a se-
ries of non-parametric statistical inference tests, having rejected
the hypotheses of normality for all instances with preliminary
Kolmogorov-Smirnov tests. For each instance we run a Friedman
two-way analysis of variance by ranks. As for the box-plots, results
are very similar for all instances, and show that there is a signif-
icant difference between the samples corresponding to each SGS.
According to the mean ranks provided by the test on ABZ9, the
SGS can be ranked according to the average quality of the solu-
tions as follows: the best one would be fG&T-SGS1 (1.4215), fol-
lowed by fG&T-SGS2 (1.7565), then ActiveSGS (2.822) and fi-
nally SemiActiveSGS (4); the results for the remaining instances
are very similar. Additionally, a Mann-Whitney U test is run on each
pair of samples. According to this test, for instances FT10, FT20 and
LA25, there are not significant differences between fG&T-SGS1
and fG&T-SGS2 (with p-values 0.288, 0.206 and 0.129 respec-
tively). For the remainng instances, a p-value< 0.01 indicates that
there are significant differences between both extensions of G&T.

An explanation for these results is that fG&T-SGS1 maps the
processing orders to a subspace of the active schedules with good
solutions in average, even if it is not guaranteed to contain any op-
timal solution. For large instances with a huge solution space, this
reduction may prove worthwhile. However, for small instances (or
if the SGS is to be used in a exact algorithm) it may be better to
use fG&T-SGS2 or ActiveSGS, which allow to search across the
whole space of active schedules. In fact, although both are complete,
the mapping defined by fG&T-SGS2 seems significantly better in
average quality.

The behaviour shown for the fuzzy setting is consistent with the
deterministic JSP, where active schedules are good in average (and
much better than semi-active ones) and form a dominant set. Also,
in the crisp case the G&T algorithm can be modified in order to
further reduce the search space; at the extreme, the search space is
constrained to that of non-delay schedules, where a machine cannot
be idle if there is an operation that can be executed in it. Experience
demonstrates that the mean value of solutions tends to improve with
the reduction of the search space, despite the risk of losing the opti-
mal solution.

6 Conclusions

This papers provides the first formal definition and study of types of
feasible fuzzy schedules and related schedule generation schemes for
the job shop problem with fuzzy processing times. We have shown
that dominance and completeness are lost when considering a sim-
ple extension of the G&T algorithm, while an insertion SGS algo-
rithm and a more sophisticated extension of the G&T are both com-
plete and dominant. Additional experimental results have confirmed
the differences between semi-active and active subspaces and shown
that narrowing the search space can improve the average quality of
schedules even if dominance is lost. We believe both the theoretical
and experimental results can provide a guide for designing SGS and
incorporate them both into metaheuristic and exact search methods.

As future work, we plan to extend this study to smaller sets of

schedules, such as non-delay. Also, the fuzzy setting allows for alter-
native definitions of left shifts and, consequently, (semi)active sched-
ules, thus admiting more constraints in the solution space than those
existing in the deterministic job shop which may be worth exploring.
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8.2 β-robust solutions for the fuzzy open shop scheduling

In this section, we include the following publication.

• Title: β-robust solutions for the fuzzy open shop scheduling. In: Information Pro-
cessing and Management of Uncertainty in Knowledge-Based Systems.

• Conference: IPMU 2014. 15th International Conference on Information Processing
and Management of Uncertainty in Knowledge-Based Systems.

• Date: July 2014.

• Place: Montpellier (France).

• Conference Ranking:

– ERA 2010: Rank C

– CORE 2014: Rank C

This publications contains pieces of work described in Sections 4.3.2 and 4.3.3.

Palacios, J.J., González-Rodŕıguez, I., Vela, C.R., Puente Peinador, J.: β-robust so-
lutions for the fuzzy open shop scheduling. In: Information Processing and Management of
Uncertainty in Knowledge-Based Systems. Communications in Computer and Information
Science, vol. 442, pp. 447-456. Springer (2014). Doi: 10.1007/978-3-319-08795-5 46.
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Abstract. We consider the open shop scheduling problem with uncer-
tain durations modelled as fuzzy numbers. We define the concepts of
necessary and possible β-robustness of schedules and set as our goal to
maximise them. Additionally, we propose to assess solution robustness by
means of Monte Carlo simulations. Experimental results using a genetic
algorithm illustrate the proposals.

1 Introduction

Scheduling problems form an important body of research since the late fifties,
with multiple applications in industry, finance and science [1]. In particular,
the open shop scheduling problem models situations frequently appearing in
testing components of electronic systems, in general repair facilities when repairs
can be performed in an arbitrary order, as well as in certain medical diagnosis
procedures. However, the open shop is NP-complete for a number of resources
m ≥ 3 and has a significantly large search space. Specific and efficient methods
to solve it are necessary but still scarce, despite their increasing presence in the
recent literature [2].

Traditionally, it has been assumed that problems are static and certain: all
activities and their durations are precisely known in advance and do not change
as the solution is being executed. However, for many real-world scheduling prob-
lems design variables are subject to perturbations or changes, causing optimal
solutions to the original problem to be of little or no use in practice. There-
fore, a common practical requirement is to obtain so-called robust solutions,
which should still work satisfactorily when design variables change slightly, for
instance, due to manufacturing tolerances.

A source of changes in scheduling problems is uncertainty in activity dura-
tions. There exists great diversity of approaches to dealing with this kind of
uncertainty [3]. Perhaps the best-known is stochastic scheduling, although fuzzy
sets and possibility theory provide an interesting alternative, with a tradeoff
between the expressive power of probability and their associated computational
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complexity and knowledge demands. Indeed, fuzzy sets have been used in differ-
ent manners in scheduling, ranging from representing incomplete or vague states
of information to using fuzzy priority rules with linguistic qualifiers or preference
modelling (cf. [4]).

The approaches to proactive robustness are several and varied. For instance,
in stochastic settings, heuristic rules are used to include time buffers or slacks
between activities in a baseline schedule [5]. In combinatorial optimisation, min-
max or min-max regret criteria are applied to construct solutions having the best
possible performance in the worst case [6], an approach already translated to the
fuzzy framework [7],[8]. However, this may be deemed as too conservative when
the worst case is not crucial and an overall acceptable performance is preferred.
This is the basis for the β-robustness approach in stochastic scheduling [9], taking
into account the subjective aspect of robustness through a target level specified
by the decision maker so the goal is to maximise the likelihood that a solutions’s
actual performance is not worse than the target. This technique can be related
to chance-constrained programming in linear optimisation, which has also been
extended to fuzzy and fuzzy stochastic coefficients (cf. [10]).

The open shop problem with uncertainty constitutes a relatively new and
complex research line. While there are many contributions to solve fuzzy job
shop problems (we can cite, among others, [11],[12], [13] or [14]), the literature
on fuzzy open shop is still scarce. Among the few existing proposals, a heuristic
approach is proposed in [15] to minimise the expected makespan for an open shop
problem with stochastic processing times and random breakdowns; in [16] the
expected makespan of an open shop with fuzzy durations is minimised using a
genetic algorithm hybridised with local search. Finally, in the framework of mul-
tiobjective approach, a possibilistic mixed-integer linear programming method is
proposed in [17] for an OSP with setup times, fuzzy processing times and fuzzy
due dates to minimise total weighted tardiness and total weighted completion
times and in [18] a goal programming model based on lexicographic multiob-
jective optimisation of both makespan and due-date satisfaction is adopted and
solved using a particle swarm algorithm.

In this paper, we intend to advance in the study of the fuzzy open shop prob-
lem, and in particular, in the search of robust solutions. In analogy to stochastic
scheduling, we shall define the concepts of β∗-robust and β∗-robust schedules in
terms of necessity and possibility, so the objective will then be to maximise such
robustness. Then, we shall propose to perform an additional analysis of the ob-
tained solutions using a Monte-Carlo simulation method based on the semantics
of fuzzy schedules from [13]. Finally, we adapt the genetic algorithm from [19]
and provide experimental results to illustrate our proposals.

2 The Fuzzy Open Shop Problem

The open shop scheduling problem, or OSP in short, consists in scheduling a
set of n jobs J1, . . . , Jn to be processed on a set of m physical resources or
machines M1, . . . , Mm. Each job consists of m tasks or operations, each requiring
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the exclusive use of a different machine for its whole processing time without
preemption, i.e. all operations must be processed without interruption. In total,
there are mn operations, {oij , 1 ≤ i ≤ n, 1 ≤ j ≤ m}. A solution to this
problem is a schedule–an allocation of starting times for all operations– which
is feasible, in the sense that all constraints hold, and is also optimal according
to some criterion, most commonly minimising the makespan Cmax, that is, the
completion time of the last operation (and therefore, of the whole project).

In real-life applications, it is often the case that the exact time it takes to
process a task is not known in advance. However, based on previous experience,
an expert may have some knowledge (albeit uncertain) about the duration. The
crudest representation of such knowledge would be a human-originated confi-
dence interval; if some values appear to be more plausible than others, then a
natural extension is a fuzzy interval or fuzzy number. The simplest model is a
triangular fuzzy number or TFN, denoted A = (a1, a2, a3), given by an interval
[a1, a3] of possible values and a modal value a2 ∈ [a1, a3], so its membership
function takes a triangular shape:

μA(x) =

⎧
⎪⎨
⎪⎩

x−a1

a2−a1 : a1 ≤ x ≤ a2

x−a3

a2−a3 : a2 < x ≤ a3

0 : x < a1 or a3 < x

(1)

Triangular fuzzy numbers and more generally fuzzy intervals have been ex-
tensively studied in the literature (cf. [20]) and widely used in scheduling.

In the open shop, we essentially need two operations on fuzzy numbers, the
sum and the maximum. For any bivariate continuous isotonic function f and
any two fuzzy numbers A and B, if Aα = [aα, aα] denotes the α-cut, the result
f(A, B) is a fuzzy number F such that Fα = [f(aα, bα), f(aα, bα)], that is, com-
puting the function is equivalent to computing it on every α-cut. In particular,
this is true for both the addition and the maximum. However, evaluating two
sums or two maxima for every value α ∈ [0, 1] is cumbersome if not intractable
in general. For the sake of simplicity and tractability of numerical calculations,
we follow [11] and approximate the results of these operations by a linear inter-
polation evaluating only the operation on the three defining points of each TFN
(an approach also taken, among others, in [12], [18] or [21]). The approximated
sum coincides with the actual sum, so for any pair of TFNs A and Bs:

A + B = (a1 + b1, a2 + b2, a3 + b3) (2)

Regarding the maximum, for any two TFNs A, B, if F = max(A, B) denotes their
maximum and G = (max{a1, b1}, max{a2, b2}, max{a3, b3}) the approximated
value, it holds that ∀α ∈ [0, 1], f

α
≤ g

α
, fα ≤ gα. The approximated maximum

G is thus a TFN which artificially increases the value of the actual maximum
F , although it maintains the support and modal value. This approximation can
be trivially extended to the case of more than two TFNs.

Given a task processing order π, the schedule (starting and completion times
of all tasks) may be computed as follows. For every task x with processing time
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px, let Sx(π) and Cx(π) denote respectively the starting and completion times
of x, let PMx(π) and SMx(π) denote the predecessor and successor tasks of
x in the machine sequence provided by π, and let PJx(π) and SJx(π) denote
respectively the predecessor and successor tasks of x in the job sequence provided
by π. Then the starting time Sx(π) of x is a TFN given by:

Sx(π) = max(SPJx(π) + pPJx(π), SPMx(π) + pPMx(π)), (3)

Clearly, Cx(π) = Sx(π) + px(π). If there is no possible confusion regarding the
processing order, we may simplify notation by writing Sx and Cx. The completion
time of the last task to be processed according to π thus calculated will be the
makespan, denoted Cmax(π) or simply Cmax. We obtain a fuzzy schedule in
the sense that the starting and completion times of all tasks and the makespan
are fuzzy intervals, interpreted as possibility distributions on the values that
the times may take. However, notice that the task processing ordering π that
determines the schedule is deterministic; there is no uncertainty regarding the
order in which tasks are to be processed.

3 Robust Schedules

The usual objective of deterministic scheduling of minimising the makespan
could, in principle, be translated to the fuzzy framework as minimising the ex-
pected makespan E[Cmax]. However, minimising the expected makespan may
be criticised, since it reduces the information provided by a fuzzy makespan to
a single value, thus loosing part of the information. Neither does it address the
practical requirement of solution robustness. Therefore we propose instead to
find the equivalent to what has been called in the stochastic framework β-robust
schedules [9,22], schedules with a certain confidence level that the performance
will be within a given threshold.

The membership function μD of a fuzzy duration D may be interpreted as
a possibility distribution on the real numbers [23,24], representing the set of
more or less plausible, mutually exclusive values of a variable y (in our case, the
underlying uncertain duration). Since a degree of possibility can be viewed as
an upper bound of a degree of probability, μD also encodes a whole family of
probability distributions.

It is well known that for a given interval I ⊆ R, the possibility and necessity
measure that D ∈ I are respectively given by Π(D ∈ I) = supy∈I μD(y) and
N(D ∈ I) = infy∈I 1 − μD(y) = 1 − supy �∈I μD(x) = 1 − Π(D �∈ I), so necessity
and possibility are dual measures which provide lower and upper bounds for the
probability that y is in I given the information ‘y is D’: N(D ∈ I) ≤ Pr(D ∈
I) ≤ Π(D ∈ I). In particular, for A = (a1, a2, a3) a TFN, the necessity and the
possibility that A is less than a given real number r are given by:

N(A ≤ r) =

⎧
⎪⎨
⎪⎩

0, r ≤ a2,
r−a2

a3−a2 , a2 ≤ r ≤ a3,

1, a3 < r

Π(A ≤ r) =

⎧
⎪⎨
⎪⎩

0, r ≤ a1,
x−a1

a2−a1 , a1 ≤ r ≤ a2,

1, a2 < r

(4)
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a1 a3

A

a2
r

N(A ≤ r)
Π(A ≤ r)

Fig. 1. Necessity N(A ≤ r) and possibility Π(A ≤ r) for varying values of r ∈ R

Clearly, for any value r, N(A ≤ r) ≤ Π(A ≤ r). Figure 1 illustrates both
measures.

Assuming we have a target or threshold for the makespan C�, we may want
to maximise the confidence that Cmax will “for sure” be less than this threshold.
In our setting, this means to maximise the necessity degree that Cmax is less
than C�.

Definition 1. A schedule with makespan Cmax is said to be necessarily β∗-
robust w.r.t. a threshold C� if and only if β∗ = N(Cmax ≤ C�). Analogously,
the schedule is said to be possibly β∗-robust w.r.t. C� iff β∗ = Π(Cmax ≤ C�).
β∗ and β∗ are respectively the degrees of necessary and possible robustness w.r.t.
the threshold C�.

Clearly, if a schedule is β∗-robust and β∗-robust w.r.t. the same threshold,
and β = Pr(Cmax ≤ C�), we have that β∗ ≤ β ≤ β∗.

The degree of necessary robustness represents the degree of confidence that
the makespan will certainly be less than the threshold. In the following, we will
consider that the objective will be to find a schedule maximising this confidence
level, so the resulting problem may be denoted O|fuzz pi|β∗(C�) following the
three-field notation [25]. Obviously, by maximising the degree of necessary ro-
bustness we are also maximising the possible robustness of the schedule.

4 Monte-Carlo Simulation Assessment

Assuming we have solved the above optimisation problem and have obtained a
β∗-robust schedule w.r.t. C�, is there a means of assessing the actual robustness
of such schedule? In other words, does the concept of β∗-robustness really capture
the desired high-level characteristic of robustness? Here, we propose a method for
an empirical assessment of solutions to the O|fuzz pi|β∗(C�) problem, based on
using Monte-Carlo simulations and inspired by the semantics for fuzzy schedules
from [13].

In [13] fuzzy schedules are interpreted as a-priori solutions, found when the
duration of tasks is not exactly known. In this setting, it is impossible to predict
what the exact time-schedule will be, because it depends on the realisation of
the tasks’ durations, which is not known yet. Each fuzzy schedule corresponds to
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a precise ordering of tasks and it is not until tasks are executed according to this
ordering that we know their real duration and, hence, know the exact schedule,
the a-posteriori solution with exact job completion times and makespan. The
practical interest of a solution to the fuzzy open shop would then lie in the
ordering of tasks that it provides a priori using the available incomplete infor-
mation, which should ideally yield good schedules in the moment of its practical
use. Its behaviour could therefore be evaluated on a family of K deterministic
open shop problems, representing K possible a posteriori realisations of the fuzzy
problem. These may be simulated by generating an exact duration p̂x for each
task at random according to a probability distribution which is coherent with
the fuzzy duration px.

Given a solution to the fuzzy open shop, consider the task processing order
π it provides. For a deterministic version of the problem, let p̂ be the matrix
of precise durations, such that p̂ij , the a-posteriori duration of operation oij , is
coherent with the constraint imposed by the fuzzy duration pij . The ordering π
can be used to process the operations, where the duration of each operation oij is
taken to be p̂ij . This yields a time-schedule with precise starting and completion
times for all tasks and, in particular, a real makespan Cmax(π, p̂), which may
be under or above the threshold C�. If instead of a single deterministic instance
we consider the whole family of K deterministic problems, each with a duration
matrix, we obtain K makespan values; the proportion κ of those values among
the K which are actually below the threshold C� gives us an empirical measure
of the robustness of π. If the β∗-robustness is a good measure of the schedules
robustness, then a schedule with high β∗ should correspond to a high κ.

5 Genetic Algorithm

To solve the optimisation problem O|fuzz pi|β∗(C�), we propose to use the
genetic algorithm (GA) from [19]. In principle, to do so it would only be nec-
essary to substitute the fitness function therein by the β∗-robustness degree of
the schedule represented by each chromosome. However, such a straightforward
approach has a serious drawback: the initial population, generated at random,
consists of poor schedules, with high makespan values which, most likely, will
yield a value β∗ = 0 for any reasonable threshold C�, thus making it impossible
for the GA to evolve.

In order to overcome this drawback, we propose to adapt the GA to use an
“adaptive” threshold, with successive approximations C�

0 > C�
1 > . . . until C� is

reached. Given the first population, a first threshold C�
0 is obtained as the most

pessimistic value of the best makespan in this population, making sure that
there will be chromosomes with non-zero fitness values (in fact, the individual
with the best makespan will have fitness 1), thus allowing the GA to evolve.
The threshold can then be updated along successive generations with new more
demanding values C�

g linearly decreasing from C�
0 to C�. This smooth updating

allows the GA to evolve to robust solutions w.r.t. iteratively smaller thresholds.
Finally, in order to give the GA the chance of obtaining β∗-robust solutions w.r.t.
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Fig. 2. Evolution of the best and mean solution of GA and the C�
g values for the

instance j8-per10-1 averaged across 10 runs

C�, in the last generations of the algorithm the C� value is used to compute the
β∗-robustness degree as fitness function.

6 Experimental Results

For the experimental study we shall use the test bed given in [16], where the
authors follow [11] to generate a set of fuzzy instances from well-known open
shop benchmark problems. Given a deterministic instance, each deterministic
processing time t is transformed into a symmetric fuzzy processing time p(t)
with modal value p2 = t and where values p1, p3 are taken as random integer
values such that the resulting TFN is symmetric w.r.t. p2 and its maximum
range of fuzziness is 30% of p2. The original benchmark consists of 6 families,
denoted J3, J4,. . . , J8, of sizes from 3 × 3 to 8 × 8, containing 8 or 9 instances
each. In this work we only consider the largest instances: i.e. the 9 instances of
size 7 × 7 and the 8 instances of size 8 × 8.

In a real problem, the target value C� would be provided by an expert
with a reasonable knowledge of the problem. However, as we are using syn-
thetic problems, such expert is not available and in consequence the target
values must be set following some criterium. In our case, we have taken the
best known solution A = (a1, a2, a3) for each instance [18] and we have defined
C� = a2+TF ×(a3−a2), where TF is a given tightness factor. To obtain the best
possible performance, a parametric analysis (not reported here due to the lack
of space) was conducted using TF = 0.75. The resulting parameter values were:
population size=100, crossover probability=0.7, mutation probability=0.05, and
number of generations=2000 from which the last 200 use the C� value. The
GA has been run with these parameters 10 times on each problem instance.
Figure 2 shows the convergence pattern for j8-per10-1, one of the largest in-
stances, with the remaining instances presenting a similar behaviour. The figure
shows the evolution along 2000 generations of the fitness value of the best in-
dividual together with the mean fitness of the population and the C�

g threshold
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used at each generation g to compute the β∗-robustness. As expected, we can
appreciate that the algorithm’s behaviour is sensitive to the C�

g values. Initially,
a less-demanding C�

0 allows the GA to evolve properly so the average quality
of the population improves. After the first generations, C�

g decreases becoming
more demanding and in consequence, despite the fact that the population con-
tinues evolving, the robustness deteriorates for some generations (notice that
for the same solution, its robustness value is dependent on the threshold C�).
Finally, in the last iterations the goal C� remains fixed and robustness values
improve again thanks to the algorithm’s evolution.

To empirically measure the robustness of the schedules obtained by the GA,
we follow the Monte-Carlo simulation assessment introduced in Section 4 and
generate samples of K = 1000 deterministic problems for each fuzzy instance,
with random a-posteriori durations following a probability distribution which is
coherent with the TFNs that model the fuzzy durations. We have then obtained
the makespan values for each deterministic problem using the ordering provided
by the GA on the fuzzy instanc, and we have finally computed the proportion
κ out of the K deterministic makespan values which are below the threshold
C�. Table 1 shows, for each fuzzy instance, the threshold C�, the β∗ value of
the best, average and worst solution across 10 runs, the CPU time (Runtime) in
seconds, and the proportion κ obtained in the simulation for the best solution
(κ-robustness). We can appreciate that even for the worst solutions β∗ > 0, so
in all solutions the possible β∗-robustness is 1. Moreover, the obtained “real”
robustness values (κ) are always 1 or very close to 1, even in those instances

Table 1. Results of the GA and the a-posteriori analysis across the largest instances
of the Brucker data set

β∗-robustness
Instance C� Best Average Worst Runtime κ-robustness

j7-per0-0 1105.25 0.3682 0.2258 0.1082 9.2s. 0.9830
j7-per0-1 1140.00 0.7439 0.6231 0.4789 9.0s. 1.0000
j7-per0-2 1136.75 0.5493 0.4364 0.3147 9.0s. 0.9980
j7-per10-0 1099.50 0.7500 0.5294 0.2895 8.6s. 1.0000
j7-per10-1 1075.75 0.7319 0.5383 0.1972 8.9s. 1.0000
j7-per10-2 1079.75 0.6408 0.4701 0.2351 9.2s. 1.0000
j7-per20-0 1028.50 0.6477 0.5667 0.4524 9.0s. 1.0000
j7-per20-1 1075.00 0.7541 0.5041 0.1509 9.0s. 1.0000
j7-per20-2 1059.50 0.6288 0.3657 0.1508 9.1s. 1.0000

j8-per0-1 1106.50 0.3750 0.2164 0.0473 13.6s. 0.9190
j8-per0-2 1115.75 0.4696 0.2561 0.1735 13.8s. 0.9630
j8-per10-0 1110.00 0.9054 0.5723 0.3273 13.5s. 1.0000
j8-per10-1 1074.00 0.5714 0.4162 0.2692 13.7s. 0.9830
j8-per10-2 1059.25 0.4179 0.2601 0.0753 13.9s. 0.9850
j8-per20-0 1062.75 0.6433 0.4975 0.3994 13.6s. 1.0000
j8-per20-1 1048.00 0.7164 0.5445 0.4133 13.6s. 1.0000
j8-per20-2 1059.00 0.5444 0.4451 0.3299 13.6s. 0.9960
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where β∗ is smaller (e.g. j7-per0-0). This could be explained by the conserva-
tive character of the necessary robustness. In fact, in all cases where the fuzzy
schedule has β∗ ≥ 0.6, the makespan values for all deterministic simulations are
below the threshold C�.

7 Conclusions

We have tackled a variant of the open shop scheduling problem where uncer-
tainty in durations is modelled using triangular fuzzy numbers. We have defined
necessary and possible β-robustness in terms of scheduling and we have pro-
posed as objective function to maximize the most pessimistic measure which is
the necessary β-robustness. Moreover, we have proposed a method to empirically
assess the actual robustness of the solutions. We have tested our approach using
a genetic algorithm from the literature using an adaptive threshold of makespan
values that overcomes the drawback of a likely random search by the GA. Based
in the promising results, in the future we intend to improve on the β-robustness
by adapting to the fuzzy framework the definition of α-β-robustness, that is, for
a given confidence level β (ideally close to 1), try to minimise the threshold α
for which this confidence is obtained (as in [22] for stochastic scheduling). We
also intend to consider some kind of multiobjective approach that maximises
robustness and minimises makespan.
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14. Puente, J., Vela, C.R., González-Rodŕıguez, I.: Fast local search for fuzzy job shop
scheduling. In: Proc. of ECAI 2010, pp. 739–744. IOS Press (2010)

15. Alcaide, D., Rodriguez-Gonzalez, A., Sicilia, J.: A heuristic approach to minimize
expected makespan in open shops subject to stochastic processing times and fail-
ures. International Journal of Flexible Manufacturing Systems 17, 201–226 (2006)
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