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Glycerol: a biorenewable solvent for base-free
Cu(I)-catalyzed 1,3-dipolar cycloaddition of azides
with terminal and 1-iodoalkynes. Highly efficient
transformations and catalyst recycling

Cristian Vidal and Joaquín García-Álvarez*

The catalytic system CuI–glycerol displays a high activity
in the CuAAC reaction of azides and terminal or
1-iodoalkynes, at room temperature, under air and in the
absence of a base. It is important to note that the desired
triazoles were isolated by simple filtration in the absence of
organic solvents at any stage of the synthesis. Moreover,
the catalyst could be recycled up to six consecutive times
in glycerol with only partial deactivationQ3 .
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Glycerol: a biorenewable solvent for base-free
Cu(I)-catalyzed 1,3-dipolar cycloaddition of azides
with terminal and 1-iodoalkynes. Highly efficient
transformations and catalyst recyclingQ1

Cristian Vidal and Joaquín García-ÁlvarezQ2 *

The combination of CuI and glycerol exhibits a versatile and high catalytic activity in the Huisgen cyclo-

addition of azides and terminal or 1-iodoalkynes under standard bench experimental techniquesQ4 (room

temperature, under air and in the absence of a base) providing a pivotal contribution to Green Chemistry.

Since the catalytic reaction: (i) is amenable at low catalyst loading and accessible on a high scale; (ii) toler-

ates a variety of functionalities (including the presence of a free thio moiety in the substrate); (iii) can be

effectively recycled (up to 6 consecutive runs); and (iv) is isolated in a straightforward manner (by simple

filtration in the absence of organic solvents at any stage of the synthesis), the practical application of this

methodology provides a complementary synthetic tool to the familiar CuAAC reactions.

Introduction

Due to both environmental and economic issues, Chemistry is
driven to reduce waste and re-use materials in order to meet
the standards of the 12 Principles of Green Chemistry.1 In this
sense, one of the largest areas of consumption of petroleum-
based chemicals in a conventional chemical transformation is
the solvent used as a reaction medium (i.e., solvents account
for 80–90% of mass utilization in a typical pharmaceutical/fine
chemical operational process).2 Therefore, there has been a
global demand to replace conventional hazardous organic sol-
vents (VOCs) by safe, green and biorenewable reaction media
that are not based on crude petroleum,3 like water and super-
critical carbon dioxide.4,5 In this sense, water can be con-
sidered as an attractive solvent, because it is non-toxic, cheap
and easily available,6 although limitations arise when: (i)
extraction with organic solvents becomes necessary, (ii) the
water has to be removed (which is energy consuming), and (iii)
waste-water is produced. Supercritical fluids (like scCO2) are
beneficial solvents as they are non-toxic, relatively inert, easily
removable and recyclable. However, widespread application in
research and process chemistry is hampered because: (i) they
are poor solvents for many compounds, and (ii) require high-
energetic and high-pressure reactors.7

With the ultimate goal of solving these environmental pro-
blems, the development of a new generation of greener reac-
tion media is strongly needed. In this regard, biomass-derived
solvents are emerging as very promising alternatives (i.e.
2-methyl-THF, lactic acid, γ-valerolactone and glycerol).8

Among them, glycerol is drawing increasing interest as a proto-
typical example of a green solvent due to: (i) its unique combi-
nation of physicochemical properties (such as high polarity,
low toxicity and flammability, high boiling point) and its
ability to dissolve both organic and inorganic compounds,9 (ii)
the fast development of the biodiesel industry and new pro-
cesses for the conversion of cellulose and lignocelluloses into
value-added chemicals (in both, glycerol is generated as a by-
product),10 (iii) its capability, in some cases, of enhancing the
effectiveness and selectivity,11,12 and (iv) the previously
reported easy product separation and catalyst recycling.13,14

Together with the choice of a safe, non-toxic, biorenewable
and cheap solvent (like e.g. glycerol), some of the crucial
points in realizing a Catalytic Green Chemical process involve
(i) the design of a chemical process with energy efficiency (if
possible, synthetic methods should be conducted at ambient
temperature), and (ii) atom economy should be maximized.15

It is also desirable that the catalytic reactions proceed in high
yields, as selective and specific processes, under aerobic con-
ditions, in the absence of a co-catalyst and the isolation of the
resulting products should be straightforward.1 In this sense,
the copper-catalyzed cycloaddition of azides and terminal
alkynes (CuAAC, reported independently in 2002 by Medal16 Q5
and Sharpless,17 see Scheme 1) in green and biorenewable sol-
vents fulfils the aforementioned principles of Green Chemistry,

Laboratorio de Compuestos Organometálicos y Catálisis (Unidad Asociada al CSIC),

Departamento de Química Orgánica e Inorgánica, Instituto Universitario de Química

Organometálica “Enrique Moles”, Facultad de Química, Universidad de Oviedo,

E-33071 Oviedo, Spain. E-mail: garciajoaquin@uniovi.es; Fax: (+44) 985103446;

Tel: (+44) 985102985

This journal is © The Royal Society of Chemistry 2014 Green Chem., 2014, 00, 1–7 | 1

1

5

10

15

20

25

30

35

40

45

50

55

1

5

10

15

20

25

30

35

40

45

50

55

www.rsc.org/greenchem


providing an efficient entry to 1,4-triazoles,18 under mild and
neutral conditions, being the most genuine example of Click
Chemistry.19–21 Surprisingly, and despite the previously
reported enhanced reactivity and/or selectivity of metal-
catalyzed organic reactions performed in pure glycerol,22 the
CuAAC reaction has not been performed in this biorenewable
solvent as far as we are aware.23–25 With these precedents in
mind and following our interest in studying the CuAAC reac-
tion in green solvents,26 herein we report the catalytic activity
of the simple copper salt CuI (a cheap and standard bench
reagent usually present in almost all laboratories where syn-
thetic chemistry is carried out) in the 1,3-dipolar cycloaddition
of both terminal and 1-iodoalkynes with azides, using glycerol
as a green and biorenewable solvent. The following features of
this catalytic system are remarkable: (i) this is the first example
of a CuAAC reaction performed in pure glycerol as a solvent,
(ii) the reactions proceed at room temperature, under aerobic
conditions, in short reaction times and without the assistance
of a base as a co-catalyst, (iii) it is active in the cycloaddition
of 1-iodoalkynes with azides to give exclusively 5-iodo-1,2,3-
triazoles, (iv) the use of glycerol as a reaction medium allows
the catalyst recycling (up to 6 consecutive runs), and (v) the
straightforward isolation of triazoles (by simple filtration in
the absence of organic solvents at any stage of the synthesis).

Results and discussion

To start this work, we have investigated the catalytic activity of
different simple copper salts (CuI (1a), CuBr (1b) and CuCN
(1c)) in the 1,3-dipolar cycloaddition of terminal alkynes with
organic azides using, as a model reaction, the cycloaddition of
benzyl azide (PhCH2N3) and phenylacetylene (PhCuCH) in
neat glycerol. The course of the reaction was monitored by 1H
NMR and the results obtained are summarized in Table 1.
Firstly, we checked the CuAAC reaction at room temperature,
under aerobic conditions and with a catalyst loading of 1 mol%
(entries 1–3, Table 1). To our satisfaction, the three copper
salts tested (1a–c) were found to be active and selective cata-
lysts at room temperature, using only a 1 mol% metal loading
and affording the corresponding 1,4-triazole 2a as the unique
reaction product. It is important to note that in no case, the
addition of a base to the catalytic system was required, in con-
trast to most of the known copper catalysts active in this cyclo-
addition process.21 At this point, we should mention that a
similar rate enhancement, using pure glycerol as a solvent,

was previously observed in a base-free protocol for the micro-
wave-assisted “click” synthesis of tetrazoles.27,28

We observed that CuI (1a, entry 1, Table 1) displays a higher
catalytic activity than CuBr (1b) and CuCN (1c) (entries 2 and
3, Table 1), leading to quantitative transformation in only
90 minutes. An added advantage of this approach is that the
addition of water to the crude reaction mixture allows easy pre-
cipitation of the desired triazole without the use of convention-
al hazardous volatile organic solvents (VOCs) at any stage of
the synthesis. The presence of catalytic amounts of copper
salts was found to be essential for the reaction outcome. Note
that in the absence of the metal catalyst the reaction did not
generate any product (see entry 4, Table 1). For comparison,
we have studied the catalytic activity of CuI in different alter-
native environmentally friendly solvents (entries 5–8, Table 1)
and conventional volatile organic solvents (entry 9, Table 1),
finding that the efficiency of the reaction was remarkably
lowered when: (i) different glycerol (Gly) and choline chloride
(ChCl) eutectic mixtures (deep eutectic solvents, DESs, 1ChCl/
2Gly, entry 5, Table 1; 1ChCl/1Gly, entry 6, Table 1),29,30 (ii)
ionic liquids (i.e. [BMIM][BF4], BMIM = 1-butyl-3-methylimid-
azolium, entry 7, Table 1), or (iii) hazardous and volatile
organic solvents (CH2Cl2, entry 9, Table 1)31 were used as sol-
vents. Also, it is important to note that CuI displays a lower
catalytic activity in pure water as a solvent (entry 8, Table 1).
Finally, we found that: (i) the use of lower catalytic loadings
slowed down the reaction (as an example, by using 0.5 mol%
of CuI in glycerol at room temperature, quantitative conversion
(99%) was only achieved after 3 hours, entry 10), and (ii) the
reaction is accessible on a high scale (10 mmol PhCuCH and
PhCH2N3, 1 mol% CuI, 10 g glycerol) requiring only 1.5 hours
to achieve quantitative conversion.

Scheme 1 Copper-catalyzed 1,3-dipolar cycloaddition reaction
(CuAAC).

Table 1 Study of the 1,3-dipolar cycloaddition of benzyl azide and
phenylacetylene catalyzed by the copper(I) salts 1a–c in different non-
conventional solventsa

Entry Catalyst Mol% [Cu] Solvent Time [h] Yieldb,c

1 1a 1 Glycerol 1.5 99(94)
2 1b 1 Glycerol 3 99(97)
3 1c 1 Glycerol 20 99(92)
4 — — Glycerol 72 —
5 1a 1 1ChCl/2Gly 14 99(97)
6 1a 1 1ChCl/1Gly 20 91(86)
7 1a 1 [BMIM][BF4] 24 45(39)
8 1a 1 H2O 2 99(97)
9 1a 1 CH2Cl2 24 99(97)
10 1a 0.5 Glycerol 3 99(93)

a Reactions performed under air, at room temperature and using 1 g of
the corresponding solvent. 1 mmol of PhCuCH and PhCH2N3 was
always employed. b Yields determined by 1H NMR. c Isolated yields in
brackets (average of two runs).
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Encouraged by these initial findings, which suggest the
potential that glycerol has as a green and biorenewable solvent
for the CuAAC reaction under standard bench experimental
techniquesQ6 (room temperature, under air and in the absence
of a base), we then assessed the scope of this methodology by
extending our studies to a range of terminal alkynes using the
previously optimized reaction conditions (results are summar-
ized in Table 2). Thus, satisfactory catalytic activities of the
system CuI–glycerol have been found with a variety of func-
tional groups in the alkyne, being compatible with the pres-
ence of aromatic (entries 1 and 7), alkyl (entry 2), ester (entry
3), alkenyl/hydroxyl (entry 4), amido (entry 5), carboxylic acid
(entry 6), ether (entry 7) and halide (entries 7 and 8) substitu-
ents. In all cases, the corresponding 1,4-triazoles 2a–h were
obtained in quantitative yields in 1.5–7 hours.

The observed rate of the reaction was strongly dependent
on the nature of the azide (as we have previously observed in
related CuAAC reactions in water).26 Thus, for both arylic
(PhN3, entries 9–11) and allylic (PhCHvCH–CH2N3 and
p-MeOC6H4CHvCH–CH2N3, entries 12–13) azides, longer
reaction times (13–19 h) are required to achieve quantitative
conversions of the corresponding triazoles. Finally, it is worth
noting that the presence of a free thio moiety in the azide
(PhSCH2N3, entry 14, Table 2) does not deactivate the catalyst,
a fact generally observed in CuAAC reactions with functiona-
lized substrates containing donor atom groups.

The formation of intermediates based on copper(I) alkynyl
species is postulated as the first step in CuAAC reactions.32 In
accordance with this proposed mechanistic insight, internal
alkynes are not able to undergo the required cycloaddition, a
limitation generally observed with conventional copper cata-
lysts.33,34 In order to overcome this limitation, several CuAAC
routes for the synthesis of 5-iodo-1,2,3-triazoles (starting from
1-iodoalkynes) have been devised as alternative synthetic
approaches in both organic solvents and water.26,35,36 5-Iodo-
1,2,3-triazoles, synthesized by application of this click reac-
tion,37 are versatile synthetic intermediates amenable to
further functionalization providing an appealing synthetic
approach to different substituted 1,2,3-triazoles.38 Bearing in
mind the efficiency of the catalytic system CuI–glycerol in
CuAAC with terminal alkynes and trying to push our methodo-
logy to its limits, we decided to focus our attention on the
cycloaddition reaction of azides and 1-iodoalkynes in glycerol
at room temperature, under air and in the absence of a base.
To our delight, this new process was catalyzed by CuI
(5 mol%), affording chemoselectively (no by-products or pro-
ducts derived from reductive dehalogenation were observed,
i.e. 5-H-1,2,3-triazoles) the corresponding 5-iodo-1,2,3-triazoles
3a–b in excellent yields (entries 15 and 16, Table 2).

Nowadays it is well-known that one of the major advantages
associated with the use of glycerol as a solvent, in metal-cata-
lyzed organic reactions, is the possibility of recycling the cata-
lytic system with the separation of the organic product formed
by a simple extraction with organic solvents.9 In addition, the
lifetime of a catalytic system and its level of reusability are very
important factors for any catalytic system.39 Thus, under the
catalyst loading previously used for terminal alkynes (1 mol%
of CuI), at room temperature, in the absence of a base and
employing as a model reaction the CuAAC reaction between
benzyl azide and phenylacetylene, we have found that the cata-
lytic system CuI–glycerol could be recycled up to 6 consecutive
runs (see Table 3 and the Experimental section for details).
Thus, while only partial loss of activity occurs in the glycerol
during the first three consecutive runs (1.5–2 h, 97–99%), the

Table 2 CuI-catalyzed synthesis of 1,2,3-triazoles 2a–n and 5-iodo-
1,2,3-triazoles 3a–b in glycerola

Entry R X R′ Time [h] Yieldb,c

1 Ph H PhCH2 2a 1.5 99(94)
2 Cyclopentyl H PhCH2 2b 7 99(97)
3 CO2Et H PhCH2 2c 3 99(93)

4 H PhCH2 2d 3.5 99(93)

5 PhC(O)N(H)CH2 H PhCH2 2e 2.5 99(96)
6 HO2C(CH2)2 H PhCH2 2f 6.5 99(89)
7 o-I-C6H4-OCH2 H PhCH2 2g 5 99(93)
8 Br(CH2)2 H PhCH2 2h 7 99(93)
9 Ph H Ph 2i 16 99(91)
10 CO2Et H Ph 2j 18 99(95)
11 PhC(O)N(H)CH2 H Ph 2k 18.5 99(90)

12 Ph H 2l 19 99(95)

13 Ph H 2m 13 99(94)

14 Ph H PhSCH2 2n 6 99(95)
15d Ph I PhCH2 3a 18 99(97)
16d n-Bu I PhCH2 3b 24 99(94)

a Reactions performed under air, at room temperature, using 1 g of
glycerol and with a catalyst loading of 1 mol% in CuI. 1 mmol of the
corresponding alkyne and azide was always employed. b Yields
determined by 1H NMR. c Isolated yields in brackets (average of two
runs). dCatalyst loading of 5 mol%.

Table 3 CuI-catalyzed 1,3-dipolar cycloaddition of benzyl azide and
phenylacetylene in glycerol: catalyst recyclinga

Cycle Time [h] Yieldb TONc Cycle Time [h] Yieldb TONc

1 1.5 99 99 4 3 99 393
2 2 97 196 5 5 97 490
3 2 98 294 6 24 98 588

a Reactions performed under air, at room temperature, using 1 g of
glycerol and with a catalyst loading of 1 mol% in CuI. 1 mmol of
PhCuCH and benzyl azide was always employed. b Yields determined
by 1H NMR. c Cumulative TON values (turnover number = (mol
product/mol Cu)).
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efficiency of the catalytic system decreases considerably after
the fourth cycle, 5 hours being required in the fifth cycle to
obtain a quantitative conversion, probably due to both leach-
ing during the workup and decomposition of the catalyst. After
the fifth cycle, quantitative conversion was only achieved after
longer reaction times (24 hours).

Conclusions

In summary, the present work introduces Glycerol as a
superior green and biorenewable reaction medium for the Cu-
catalyzed 1,3-dipolar cycloaddition of azides and alkynes. As
illustrated with both terminal and 1-iodoalkynes, the catalytic
system CuI–glycerol is the combination of choice to obtain
1,2,3-triazoles and 5-iodo-1,2,3-triazoles under standard bench
experimental techniquesQ7 (room temperature, under air and in
the absence of a base), providing a pivotal contribution to
both Green Chemistry and CuAAC.

Clearly, and since the reaction: (i) is amenable at low cata-
lyst loading and accessible on a high scale; (ii) takes place
under air and in the absence of a base; (iii) tolerates a variety
of functionalities (including the presence of a free thio moiety
in the substrate); (iii) can be effectively recycled (up to 6 con-
secutive runs); and (iv) is isolated in a straightforward manner
(simple filtration in the absence of organic solvents at any
stage of the synthesis), the practical application of this
methodology provides a complementary synthetic tool to the
familiar CuAAC reactions.

Experimental
General comments

Syntheses were performed under air and at room temperature.
All reagents were obtained from commercial suppliers and
used without further purification with the exception of: (i)
deep eutectic solvents (DESs, 1ChCl/2Gly and 1ChCl/1Gly),40

and (ii) 1-iodoalkynes,41 which were prepared by following the
method reported in the literature. NMR spectra were recorded
on Bruker DPX-300 or AV-400 instruments.

General procedure for the synthesis of 1,2,3-triazoles 2a–n:
synthesis of 1-benzyl-4-phenyl-1H-1,2,3-triazole (2a). CuI (1a)
(0.0019 g, 1 mol%) was added to 1 g of glycerol under air.
Phenylacetylene (0.112 mL, 1 mmol) and benzyl azide
(0.132 mL, 1 mmol) were added to the reaction mixture at
room temperature. The course of the reaction was monitored
by regular sampling and analysis of the aliquots of the mixture
by 1H NMR. The mixture was stirred at room temperature for
1.5 hours. Addition of water (5 mL) to the crude reaction
mixture allows the easy separation (filtration) of the desired
triazole 2a as a white powder (0.220 g, 94%).

General procedure for the synthesis of 5-iodo-1,2,3-triazoles
3a–b: synthesis of 5-iodo-4-phenyl-1-(phenylmethyl)-1H-1,2,3-
triazole (3a). CuI (1a) (0.0095 g, 5 mol%) was added to 1 g of
glycerol under air. 1-Iodo-phenylacetylene (0.228 g, 1 mmol)

and benzyl azide (0.132 mL, 1 mmol) were added to the reac-
tion mixture at room temperature. The course of the reaction
was monitored by regular sampling and analysis of the ali-
quots of the mixture by 1H NMR. The mixture was stirred at
room temperature for 18 hours. Addition of water (5 mL)
to the crude reaction mixture allows the easy separation
(filtration) of the desired 5-iodo-triazole 3a as a white powder
(0.349 g, 97%).

General procedure for the catalyst recycling. The recyclabil-
ity of our catalytic system was investigated using the CuAAC
reaction of phenylacetylene and benzyl azide as a model reac-
tion. Thus, to 1 g of glycerol, CuI (0.0019 g, 1 mol%), phenyl-
acetylene (0.112 mL, 1 mmol) and benzyl azide (0.132 mL,
1 mmol) were added. The resulting mixture was stirred at
room temperature and in the presence of air for 90 min (com-
plete consumption of starting materials was observed by
1H NMR). The mixture of the reaction was extracted with
2-methyl-THF (3 × 6 mL). To the glycerol layer, the substrates
were again added, and the mixture was stirred under the same
conditions for the required time. This procedure was repeated
up to six consecutive times.
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