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Abstract 

Detection of specific DNA sequences in clinical samples is a key goal of studies on DNA 

biosensors and gene chips. Herein we present a highly sensitive electrochemical genosensor for 

direct measurements of specific DNA sequences in undiluted and untreated human serum and 

urine samples. Such genosensing relies on a new ternary interface involving hexanedithiol (HDT) 

co-immobilized with the thiolated capture probe (SHCP) on gold surfaces, followed by the 

incorporation of 6-mercapto-1-hexanol (MCH) as diluent. The performance of ternary 

monolayers prepared with linear dithiols of different lengths was systematically examined, 

compared and characterized by cyclic voltammetry and electrochemical impedance spectroscopy, 

with HDT exhibiting the most favorable analytical performance. The new SHCP/HDT+MCH 

monolayer led to a 80-fold improvement in the signal-to-noise ratio (S/N) for 1 nM target DNA 

in undiluted human serum over the common SHCP/MCH binary alkanethiol interface, and 

allowed the direct quantification of the target DNA down to 7 pM (28 amol) and 17 pM (68 amol) 

in undiluted/untreated serum and urine, respectively. It also displayed attractive antifouling 

properties, as indicated from the favorable S/N obtained after a prolonged exposure (24 h) to 

untreated biological matrices. These attractive features of the SHCP/HDT+MCH sensor interface 

indicate considerable promise for a wide range of clinical applications. 

 

Keywords: Dithiols; self-assembled monolayer; clinical samples; electrochemical detection; 

hybridization; DNA. 
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1. Introduction 

There is a considerable interest in development of simple and highly sensitive techniques for 

detecting specific DNA sequences in complex biological matrices such as serum and urine. 

Electrochemical detection of DNA hybridization couples high sensitivity and simplicity with low 

cost, portability and low power requirements. Current efforts aimed at detecting nucleic acids in 

complex biological matrices without PCR amplification, at minimizing background contributions 

and improving the reproducibility should facilitate routine genoassays of human diseases.  

Although the detection limit of electrochemical sensors for target DNA has been greatly 

improved over the past few years (Arya et al., 2009; Batchelor-McAuley et al., 2009; 

Miranda-Castro et al., 2009; Sadik et al., 2009; Sassolas et al., 2008; Wang, 2006), the 

determination of a single copy of a specific nucleic acid sequence in biological fluids without 

PCR amplification remains a challenging task. Another major challenge is the detection of the 

probe-target duplex in presence of a large excess of non-complementary human DNA. Typically, 

hybridization of the capture probe with the complementary target sequence is performed in 

hybridization buffers, where interferences of other biomolecules are minimized (Tosar et al., 

2010). However, in biological matrices, like urine or serum, the target DNA is present along with 

a large amount and variety of biomolecules including, but not limited to non-target DNA 

molecules, proteins, carbohydrates, etc., which may cause undesired interferences in measured 

responses. For instance, electroactive interferences may lead to overlapping signals and to false 

(positive) result. Similarly, if the interfering molecule blocks the surface via a nonspecific 

adsorption, it can greatly diminish the hybridization efficiency, leading to a lower (false negative) 

response. Applications of electrochemical DNA sensors in pure untreated biological matrices 

have been very limited. In cases when a biological matrix is used, a 10-fold dilution is usually 

performed (Das et al., 2010; Patterson et al., 2010; Zhang et al., 2008). Very recently, trace 
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nanomolar detection of DNA was carried out in 1:1 diluted serum samples (Xia et al., 2010; Pei 

et al., 2010). To our knowledge, direct measurement of DNA in undiluted biological matrices has 

not been reported. 

Here we report for the first time how a judicious interfacial design allows the direct measurement 

of DNA sequences in undiluted human serum and urine samples. The new surface design 

involves the use of hexanedithiol (HDT) co-immobilized with thiolated capture probe at gold 

surfaces by chemisorption along with MCH as diluent. The sensor interface plays a crucial role in 

the overall performance of electrochemical genosensors. Nonspecific adsorption effects, a major 

challenge in clinical matrices, can be reduced by employing mixed self-assembled monolayers 

(SAMs) containing a thiol-derivatized capture probe DNA and a spacer thiol, mainly MCH (Steel 

et al., 1998). These mixed SAMs also improve the reproducibility and hybridization efficiency 

(Keighley et al., 2008; Lao et al., 2005; Levicky et al., 1998). Yet, such binary monolayers still 

suffer from background contributions and irreproducibility problems resulting from incomplete 

backfilling and surface defects (Boozer et al., 2006; Keighley et al., 2008; Lao et al., 2005). The 

challenges associated with binary layers have been recently addressed by introducing a third thiol 

component (Dharuman et al., 2010; Dharuman and Hahn, 2008; Wu et al., 2010). For example, a 

ternary layer formed by co-immobilizing the cyclic dithiol dithiothreitol (DTT) with the SHCP, 

followed by sequential addition of MCH, offered recently efficient hybridization and high 

resistance to non-specific adsorption effects to facilitate measurements in diluted human serum 

(25%), along with ultrasensitive detection in pure hybridization buffer (Wu et al., 2010). To 

achieve even better S/N characteristics and improved the performance in undiluted clinical 

samples, compared to the DTT ternary interface, we have examined and compared in the present 

study linear dithiols of different lengths as the third interfacial component (Fig. 1). The selected 

SHCP/HDT+MCH interface is shown in the following sections to offer both high hybridization 
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efficiency and remarkable antifouling capability, resulting in measurements of pM target 

concentrations in undiluted clinical samples. Relations between the structure of these linear 

dithiols and the analytical performance of the ternary monolayers have been systematically 

evaluated. In undiluted human serum the HDT-based ternary SAM layer offered 80-fold and 

8-fold improvements in the S/N over the common binary and the recently reported DTT ternary 

layers, respectively. As will be illustrated below, this bioplatform also displays favorable 

non-fouling properties after 24 h immersion in the selected clinical samples. Such capabilities 

offer great promise for practical bioanalytical applications. 

 

2. Materials and methods 

 

2.1. Materials 

6-mercapto-1-hexanol (MCH, 97%), 1,3-propanedithiol (PDT, 99%), 1,6-hexanedithiol (HDT, 

96%), 1-hexanethiol (HMT, 95%), 1,9-nonanedithiol (NDT, 95%), DL-dithiothreitol (DTT), 

Trizma hydrochloride (Tris-HCl), ethylenediaminetetraacetic acid (EDTA), human serum (from 

human male AB plasma) and bovine serum albumin (BSA) were obtained from Sigma-Aldrich 

(St. Louis, MO) and used without further purification. The blocking agent casein was obtained 

from Pierce (Rockford, IL). The enzyme substrate 3,3’,5,5’-tetramethylbenzidine (TMB, Neogen 

K-blue enhanced activity substrate, containing H2O2) was obtained from Neogen (Lexington, 

KY). The conjugated anti-fluorescein-horseradish peroxidase (anti-FITC-HRP, Fab fragments) 

was purchased from Roche Diagnostics (Mannheim, Germany).  

The composition of the buffers used in the different experimental steps was as follows: the 

immobilization buffer (IB) contained 10 mM Tris –HCl, 1 mM EDTA, and 0.3 M NaCl (pH 8.0), 

the hybridization buffer (HB) was a 1.0 M phosphate solution containing 2.5% BSA (pH 7.2), 
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and the binding buffer (BB), for the incorporation of the conjugated anti-FITC-HRP, consisted of 

PBS (1×) containing 0.5% casein (pH 7.2).  

All synthetic oligonucleotides used, designed for detecting a characteristic region of E. coli 16S 

rRNA, were purchased from Integrated DNA Technologies, Inc. (CA, USA) and are listed in 

Table S-1 of the Supporting Information. 

 

2.2. Instrumentation 

Chronoamperometric measurements were performed on disposable 16-sensor Au electrode arrays 

(GeneFluidics Inc. Monterey Park, CA, USA). Each sensor consisted of a 2.5 mm diameter 

central gold working electrode, surrounded by a gold counter electrode and a gold 

pseudo-reference electrode. The sensor chip was driven by a computer-controlled PalmSens 

hand-held potentiostat with an eight-channel PalmSens Multiplexer (Palm Instruments BV, 

Houten, The Netherlands).  

Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) were performed 

with a CHI 660D Electrochemical Analyzer (CH Instruments, Austin, TX, USA). These 

experiments were undertaken using a conventional three-electrode setup with a 2 mm diameter 

gold disk (AuE) as working electrode, a Ag/AgCl reference electrode and a Pt wire as auxiliary 

electrode. Previously described pretreatment procedure was used to clean the working electrode 

(Campuzano et al., 2002). The measurements were carried out in a 0.1 M KCl solution containing 

5 mM of K3Fe(CN)6 and 5 mM of K4Fe(CN)6. Electrochemical impedance spectra were obtained 

at +0.25 V under an AC amplitude of 0.01 V and a frequency range from 0.01 to 10,000 Hz. The 

impedance data were analyzed by non-linear least-squares using the EQUIVCTR.PAS (EQU) 

program by Boukamp.  
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2.3. Procedures 

 

2.3.1. Preparation of DNA recognition interfaces 

A mixture of SHCP and a freshly prepared dithiol, with appropriate concentrations, was prepared 

in IB buffer and allowed to stand for 10 min. Aliquots of 6 µL of this mixture were cast over each 

Au working electrode in the 16-sensor array and incubated overnight at 4 C in a humidified 

chamber. After washing with water and drying with nitrogen, the mixed monolayer-modified Au 

sensors were subsequently treated with 6 µL of 1 mM MCH aqueous solution (in IB buffer) for 

50 min to obtain the ternary SAM interfaces. Finally, the sensors were thoroughly rinsed with 

water and dried under nitrogen.  

 

2.3.2. DNA hybridization assay in HB 

The sensor response was evaluated with a sandwich-type hybridization assay, using fluorescein 

as a tracer in the detection probe and anti-fluorescein-HRP as the reporter molecule. TMB was 

the selected substrate for the electrochemical measurement of the activity of the captured HRP 

reporter. Different concentrations of the target DNA were mixed with FITC-DP (0.25 µM) in HB 

and allowed to react for 15 min for homogeneous hybridization. Aliquots of 4 µL of the 

preformed hybrid solution were cast on each of the SAM-modified gold sensors and incubated 

for 15 min. After hybridization, the array was washed and dried and each working electrode in 

the array was incubated with 4 µL of a 0.5 U mL
-1

 anti-FITC-HRP solution in BB for 15 min. 

Subsequently, the array was washed and dried, and a prefabricated plastic 16-well manifold 

(GeneFluidics, Monterey Park, CA, USA) was bonded to the sensor array. To perform the 

chronoamperometric detection, 50 L of the TMB–H2O2 K-Blue reagent solution were placed 

sequentially on each of the sensors in the array, covering the three electrodes area. After 30 s, the 
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potential was stepped to -200 mV (vs. the gold pseudo-reference electrode) and the current was 

sampled during 60 s.   

 

2.3.3. DNA hybridization assay in clinical samples and non-fouling properties 

In this case, HB was substituted for the clinical sample under study; both target DNA and 

FITC-DP (0.25 µM) were prepared directly either in undiluted commercial human serum or fresh 

untreated urine. The homogeneous hybridization between different target concentrations and the 

detection probe was carried out in the untreated samples and then 4 µL of the hybrid solution 

were cast on each modified sensor and incubated for 15 min. The following steps: capture of 

anti-FITC-HRP and electrochemical detection were carried out using the same protocol described 

above for the determination of target DNA in HB. All procedures were carried out at room 

temperature (22-25 °C). 

For the evaluation of the non-fouling properties of the new interfaces, a 6 L droplet 

of the untreated clinical samples was cast over each SAM-modified working electrode and left 

overnight at 4 ºC in a humidified surrounding. After washing with water and drying with nitrogen, 

the sensor array was used for the determination of target DNA in HB as mentioned above.  

 

3. Results and discussion 

 
 

3.1. Comparison of different interfaces and design of the dithiols-based ternary SAMs 

Different DNA sensing interfaces were prepared in a two-step procedure by co-assembling the 

SHCP and a dithiol (PDT, HDT or NDT) onto the gold electrode followed by the incorporation 

of the MCH diluent. The hybridization efficiency of these interfaces was determined by 

chronoamperometric measurements using the sandwich hybridization assay described before. Fig. 
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2 and Table S-2 compare current signals obtained in the presence and absence of 1 nM of target 

DNA, along with the resulting S/N ratios for the different layers tested. Common binary layer 

displayed large background current, suggesting high susceptibility to nonspecific adsorption. As 

a consequence, a low S/N ratio, which hinders the detection of low levels of target DNA, even in 

pure HB, is obtained at the binary interface. Considerably higher S/N ratio - for the same target 

DNA concentration – is observed using the SHCP/DTT+MCH ternary layer, due to greatly 

suppressed background current. However, co-immobilization of DTT also caused a ~2.5 fold 

decrease of the resulting signal as compared to binary layer (3344.4 vs 1364.1 nA, Table S-2), 

probably due to a high surface compactness that hinders the permeability of the enzymatic 

product. Interestingly, when PDT and HDT were used as backfillers, the current response of 1 

nM target DNA was restored back to the values of binary layer, while keeping the noise at the 

level of DTT ternary layer. Thus, S/N values reached 333.6 and 344.9 for SHCP/PDT+MCH and 

SHCP/HDT+MCH ternary layers, respectively. Use of NDT as a backfiller also improved the 

S/N value (217.1), though to a somewhat lesser degree than PDT and HDT. These results 

demonstrate that monolayers prepared from linear dithiols with lengths between 3 and 6 carbon 

atoms exhibit the most favorable analytical performance. The S/N characteristics obtained for the 

different SAM interfaces, clearly indicate that the presence of a 3
rd

 component, its structure and 

adopted configuration during the assembly are key contributors to the remarkable non-fouling 

properties of the new layers. On the other hand, the fabrication of the layers following 

co-assembling or sequential assembly processes and the length of the 3
rd

 component contribute 

primarily to the signal but have only a slight effect upon the background current.  

The improved performance of PDT- and HDT-based ternary surfaces over DTT-based ternary 

surfaces can be attributed to the preferential lying-down orientation adopted by these linear 

dithiols under the experimental conditions used that minimizes nonspecific adsorption of proteins 
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and other biomolecules (leading to low noise, similar to that obtained with DTT), while 

maintaining favorable orientation of the capture probe and good permeability of small molecules, 

such as the TMB signaling one, hence leading to higher signals. We assume that at the 

concentrations used, the linear dithiols examined here are mostly lying flat on the surface with 

the two thiol groups chemisorbed onto the gold (Fig. 1). In this way, these molecules could act as 

bridges over certain surface irregularities, leading to monolayers with high stiffness and 

directionality. Consistent with this, we found that ternary monolayers using HMT instead of HDT 

display a similar behavior to that of binary monolayers i.e. a higher noise level and lower S/N 

ratio (Supporting Information Fig. S-1 and Table S-2), which is consistent with the upright 

configuration of the monothiol. In contrast, as seen in Table S-2, a binary monolayer of 

SHCP/HDT led to low noise but also to a very low signal. In the new ternary surfaces, the main 

role of the MCH seems to provide a standing-up configuration of the SHCP, with improved 

orientation and hybridization efficiency. In the case of SHCP/DTT monolayers the signal, but 

also the noise were high. Therefore, it seems that DTT is able to orient the SHCP in a position 

favorable for the hybridization, but MCH is required to reduce the noise. These results allow us 

to conclude that the use of a linear or cyclic dithiol co-assembled previously with the SHCP 

determine a different role of the third component of the layer, the MCH. According with the 

results achieved, cyclic dithiols like DTT are able to orient the SHCP for high hybridization 

efficiency but require MCH for minimizing the background current. Although it is expected that 

longer dithiols, like HDT (in their upright configuration), should promote stand-up of the capture 

probe, the results obtained (mainly by the comparison with the performance of the 

SHCP/HMT+MCH layer) support the hypothesis that under the selected experimental conditions, 

HDT adopts a lying down configuration but requires MCH to orient the SHCP in the upright 
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position. Such lying down configuration of the HDT is in agreement with an earlier report (Leung 

et al., 2000).  

 

3.2. Optimization of the co-assembled SHCP/dithiols SAMs 

The surface coverage and the spacing of the SHCP molecules are dependent on the concentration 

of the co-immobilized dithiol component. One can assume a dynamic competition between -SH 

groups of SHCP and the dithiol backfillers, until equilibrium (governed by the actual 

concentrations of the competing molecules) is established. Under the optimum dithiol 

concentration, a tradeoff between the surface density, brought about by addition of the dithiols, 

and the hybridization efficiency (related to the SHCP surface coverage) is such that the best S/N 

characteristics is achieved. This is indeed the case also in our ternary layer design (Fig. S-2). 

Using low concentrations of any backfiller component, high nonspecific adsorption - due to 

incomplete surface coverage - led to a higher noise, and thus to lower S/N values. On the other 

hand, relatively high concentrations of the dithiols (> 300 μM) could displace some of the capture 

probe molecules, decreasing the hybridization efficiency, and hence the resulting signal and the 

S/N. For NDT, the optimum concentration is around 200 μM, whereas for PDT and HDT it is 

around 300 μM. It should be pointed out that these optimal levels hold only if 0.05 μM SHCP and 

1 mM MCH are used. Also note that the S/N values under the optimum dithiol concentrations are 

higher for HDT and PDT, and lower for NDT, in agreement with Fig. 2.   

 

3.3. Electrochemical characterization of the ternary layer  

A key factor for designing DNA recognition interfaces is to assess the quality of the created 

monolayer. The compactness and surface coverage of the designed ternary layers was estimated 
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by CV and EIS, comparing their characteristics with those of commonly used binary monolayer. 

The results are illustrated in Fig. 3.  

Firstly, the blocking effect of the SAMs was examined by CV using [Fe(CN)6]
3-/4-

 as a redox 

probe. As shown in Fig. 3A, after modifying the gold surface a decrease in the anodic and 

cathodic peak currents and an increase in the peak potential separation (Ep) are observed when 

compared with the voltammetric behavior of bare Au surfaces. The interfacial electron-transfer 

between gold and bulk solution is blocked by the ternary layer in different extents depending on 

the structure of the backfiller, following the order: DTT > PDT > HDT  NDT. It should be 

noted that ternary layers prepared with HDT and NDT show a blocking effect similar to the 

conventional binary monolayer. 

The fractional coverage of the electrodes by different SAMs was determined by EIS which also 

allows evaluation of the structural integrity of the different monolayers. Fig. 3B shows Nyquist 

plots for bare Au electrodes (a) and for Au electrodes modified with binary SHCP+MCH (b) and 

the different ternary monolayers: SHCP/DTT+MCH (c), SHCP/PDT+MCH (d), 

SHCP/HDT+MCH (e), and SHCP/NDT+MCH (f). The bare electrode displays a 

diffusion-limited electrode process. In contrast, the electrodes modified with mixed monolayers 

showed a semicircular portion in the higher frequency range of the spectra, which corresponds to 

an electron transfer limited process. In the case of SHCP/DTT+MCH monolayer the 

low-frequency linear-mass transfer region was not observed because the electrode process is 

under kinetic control over the entire frequency range. Qualitatively, these results reveal 

increasing barrier properties of the ternary monolayer in the order DTT > PDT > HDT  NDT, 

in accordance with the results obtained by CV. The modified Randles equivalent circuit (see inset 

in Fig. 3B) was used to model the EIS data and to determine the values of the circuit components 
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(Park and Yoo, 2003): the electrolyte resistance (Rs), the electron transfer resistance (Ret), the 

Warburg impedance (ZW) associated to mass-transport of the redox species to the electrode 

surface, and the double layer capacitance (Q). A constant phase element instead of a pure 

capacitor was used in this study to calculate the double layer capacitance in order to take into 

account the phenomenon of frequency dispersion of capacitance, often directly related to 

microscopic roughness of the electrode surface (Piela and Wrona, 1995). These parameters are 

summarized in Table 1. The Nyquist plots clearly illustrate the increased electron transfer 

resistance value upon changing from a naked surface (1.0 k) , to the various ternary SAMs with 

the maximum Ret being 32.6 k for the case of monolayer that include DTT. 

The apparent fractional coverage of the electrode (IS
R
) can be estimated, according with 

equation 1, from the magnitude of the charge-transfer resistance of the modified electrode (Ret
SAM

) 

and the charge transfer resistance of the uncoated electrode (Ret
AuE

), assuming that the electron 

transfer reaction occurs only at bare surface spots and that diffusion to these defect sites is planar 

(Janek et al., 1998). 
















SAM

et

AuE

etR

IS
R

R
1

                 

(1) 

The surface coverage follows the order: SHCP/DTT+MCH > SHCP/PDT+MCH > 

SHCP/HDT+MCH  SHCP/NDT+MCH  SHCP+MCH. These electrochemical 

characterization results are in agreement with the high signal obtained with PDT and HDT based 

ternary layers due to a better permeability of these monolayers in comparison with the compact 

and nearly complete surface coverage offered by the ternary DTT SAM. Since the barrier 

properties and the surface coverage (and hence the noise level) of HDT- and NDT-based ternary 
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layers are similar, the different S/N characteristics clearly reflect differences in the signal due to 

the lower amount of thiolated capture probe on the NDT interface.  

 

3.4. Electrochemical detection of DNA hybridization in complex biological samples  

Serum and urine are complex biological samples with multiple components that can be adsorbed 

nonspecifically onto the sensing interface, interfering with the binding of the target DNA and/or 

increasing the background signal. We found that the new ternary recognition interfaces allow the 

direct detection of trace target DNA in pure human serum and urine. To the best of our 

knowledge, this represents the first report describing the detection of picomolar DNA 

concentrations in these matrices without previous dilution or pretreatment. As a first step toward 

this goal, we compared the chronoamperometric responses for 1 nM target concentration at the 

commonly employed SHCP+MCH binary interface (Steel et al., 1998; Steel et al., 2000) with 

those observed at the new HDT-based ternary layer in either 100% human serum or urine (Fig. 4 

Top, A and 4B). It is important to note that the noise level observed when the ternary monolayers 

were incubated in undiluted human serum was even lower than that observed in HB. A higher 

background signal was obtained in pure urine. For example, the ternary SHCP/HDT+MCH 

surfaces gave rise to background signals of 5.6±0.9 nA and 15.7±0.7 nA in serum and urine, 

respectively. However, when the binary monolayer was employed the background signal 

dramatically increased, in such a way that it was not possible to measure even a 1 nM target 

DNA in these matrices. The SHCP/HDT+MCH ternary monolayer, in contrast, yielded high S/N 

for the 1 nM target in such media and was used for further characterization. Note the change in 

the current scale to illustrate the negligible background noise compared to the binary interface.  

The excellent resistance to fouling in complex matrices offered by the new ternary interfaces is of 

great relevance to real-world applications of genosensors. As illustrated in Fig. 4 (Bottom) and in 



Page 15 of 25

Acc
ep

te
d 

M
an

us
cr

ip
t

 15 

Table S-3, despite the ~50% signal loss, a favorable S/N ratio is observed for 1 nM target DNA 

concentration (in HB) when the assay was performed over chips that were previously dipped for 

24 h in 100% serum (Fig. 4 Bottom, A) and urine (Fig. 4 Bottom, B) samples.  

To determine the detection limit of the new biointerface in undiluted clinical samples, the 

SHCP/HDT+MCH was exposed to different (pM) levels of the target DNA in 100% human 

serum (Fig. 5A) and urine (Fig. 5B). As shown in Fig. 5, the chronoamperometric signal 

increased linearly with the concentration of target DNA up to 150 pM, with a detection limit of 7 

pM (28 amol) in human serum and 17 pM (68 amol) in urine. The detection limit obtained with 

the HDT-ternary monolayer in undiluted clinical samples is notably lower than those reported 

previously for SAM-based electrochemical DNA sensors in diluted samples. For example, the 

detection limit of the new HDT-based monolayer is more than 10-fold lower than that reported 

recently in 50% serum (Pei et al, 2010). 

This a attractive performance in undiluted clinical samples, along with the ability to reproducibly 

fabricate these interfaces (RSD of 12.4% for the S/N values obtained after hybridization with 1 

nM of target DNA in HB with 10 different electrodes), indicate promise for routine real-life DNA 

sensing.  

 

4. Conclusions 

We report for the first time the design of a ternary self-assembled monolayer, composed of a 

SHCP, HDT, and MCH. This monolayer provides several attractive features that facilitate direct 

measurement of target DNA in undiluted and untreated human serum and urine samples. The 

high hybridization efficiency even in complex samples has been attributed to the favorable 

surface architecture. HDT may adopt a horizontal configuration, acting as a bridge over certain 

surface irregularities, thus providing significantly higher resistance to nonspecific adsorption of 
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nucleic acids and proteins. The negligible noise and high signal obtained with this ternary 

monolayer allowed higher S/N and significantly improved analytical performance compared to 

the conventional binary monolayers. Despite of the use of untreated biological matrices, the new 

interface offers direct measurement of attomole (pM) levels of target DNA specific for E. coli 

pathogenic bacteria in serum or urine. In addition, this new bioplatform displayed excellent 

antifouling properties. Such attractive behavior offers great promise for further progress in the 

field of chip-based bioelectronic detection and for decentralized detection in areas such as 

clinical diagnostics, biodefense, forensic analysis, and food safety. 
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Legends to Figures 

Fig. 1. DNA recognition interfaces used in this study. Conventional binary SHCP+MCH (a) and 

ternary SHCP/dithiol+MCH (b-e) monolayers involving DTT (b) or linear dithiols of different 

lengths: PDT (c), HDT (d), and NDT (e). (Note that these are schematic simplified presentations 

that do not represent the exact structure of these monolayers). 

Fig. 2. Comparative hybridization efficiency, background noise and S/N characteristics for 1 nM 

target DNA in HB using the different DNA recognition interfaces. Error bars were estimated 

from five parallel experiments. 

Fig. 3. (A) Cyclic voltammograms and (B) Nyquist plots (Z´´ vs Z´) for the faradaic impedance 

measurements obtained with a bare Au surface (a, black) and with a AuE modified with 

SHCP+MCH (b, red), SHCP/DTT+MCH (c, pink), SHCP/PDT+MCH (d, purple), 

SHCP/HDT+MCH (e, green) and SHCP/NDT+MCH (f, blue). Inset in B shows the Randles 

equivalent used to model the electrochemical impedance spectroscopy data. Parameters: EIS, 5 

mM [Fe(CN)6]
3−/4−

 (1:1) in 0.1 M KCl, 0.01–10,000 Hz frequency range with a 0.01 V r.m.s. 

signal at +0.25 V (vs. Ag/AgCl); CV, v = 100 mV s
−1

. 

Fig. 4. (Top, A,B) Performance of the different monolayers tested in 100 % of clinical samples 

and (Bottom, A,B) non-fouling properties after 24 h immersion in 100 % of clinical samples. 
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Chronoamperometric signals obtained for 1 nM (solid lines) and 0 nM (dotted lines) target DNA. 

Inset: S/N obtained for 1 nM of target DNA. Data obtained in 100 % of human serum (A) and 

100 % of human urine (B). Error bars were estimated from five parallel experiments. Monolayers: 

SHCP+MCH (black), SHCP/DTT+MCH (red) and SHCP/HDT+MCH (green). 

Fig. 5. Chronoamperometric responses for different target DNA concentrations obtained with the 

hybridization in untreated and undiluted human serum (A, (a) 0, (b) 10, (c) 25, (d) 50, (e) 75, (f) 

100, (g) 125 and (h) 150 pM target DNA) and human urine (B, (a) 0, (b) 25, (c) 50, (d) 100 and 

(e) 150 pM target DNA). Insets represent the calibration plots obtained in the same range of 

concentrations after background substraction. Error bars were estimated from five parallel 

experiments. 

 

 

 

 

 
Table 1. Electrochemical impedance data for different SAMs. Data were calculated using 

Randles equivalent circuit.  

 

Surface Q (F) ZW (s
−1/2

) Ret () IS
R
 

Bare 4.96 4.7910
-4

 1,029.6  

SHCP+MCH 0.398 4.4310
-4

 5,562.8 0.8149 

SHCP/DTT+MCH 0.637 4.0310
-4

 32,595.9 0.9684 

SHCP/PDT+MCH 0.396 3.7710
-4

 17,268.2 0.9404 

SHCP/HDT+MCH 0.335 5.3010
-4

 5,914.6 0.8259 

SHCP/NDT+MCH 0.332 5.4010
-4

 5,764.6 0.8234 
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SHCP/HMT+MCH 0.162 5.5610
-4

 2,847.9 0.6385 

SHCP/HDT 0.234 6.1510
-4

 1,599.8 0.6436 
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Fig. 1  
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Fig. 2 
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Fig. 3 
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Fig. 4  
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Fig. 5 
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