
Development of an Energy Management System for 

Loop Power Flow Controllers using heuristic methods 

by 

Elie Abi Habib 

 

Submitted to the Department of Electrical Engineering, Electronics, 

Computers and Systems 

in partial fulfillment of the requirements for the degree of  

the Master Course in Electrical Energy Conversion and Power Systems 

at the 

UNIVERSIDAD DE OVIEDO 

July 2015 

©Universidad de Oviedo 2013. All rights reserved. 
 
 
 
 

 

Author . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
 

 
 
 
 
 

Certified by . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Jose Manuel Cano Rodriguez 

Associate Professor 

Thesis Supervisor 

 

 
 



2 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



3 
 

Development of an Energy Management System for Loop Power 

Flow Controllers using heuristic methods 
 

by 
 

Elie Abi Habib 
 

 

Submitted to the Department of Electrical Engineering, Electronics, Computers and  

Systems  

on July 22, 2015, in partial fulfillment of the  

requirements for the  degree of  

the Master Course in Electrical Energy Conversion and Power Systems 
 

 

 

Abstract 

The loops power flow control is an application that is used to a distribution radial feeders in order 

to improve the efficiency of the grid and to provide an adequate voltage support. This thesis will 

basically provide an energy management system in order to deliver an optimum reference values 

for active and reactive power of the LPC in order to reduce the losses to an optimum value. The 

developed algorithm can be implemented to any radial feeder, but in this case a basic six node 

feeder will be used just to have a lower simulation time.  

 

The first part consist of the implementation of the energy management system, loop power flow 

control, in Matlab code with a generalized algorithm so it can work with any radial network. The 

code should display the reference values of the active and the two reactive power values and the 

optimum feeder losses. 

 

The second part will consist of optimizing the constants involved in the particle swarm 

optimization so the solution of the first part will be as fast as possible without losing the efficiency. 

The third part will be the evaluation of the economical savings expected when applying a LPC to 

the specified grid using a daily or a weekly load profile for example. This will help to find out if 

the installation of a loop power control at the site has an advantage or not. 

 

Keywords—Energy management system, Energy efficiency, Voltage Control, Loop power flow 

controllers, Particle swarm optimization, Active and Reactive power control, Random radial 

feeder. 

 

Thesis Supervisor: Jose Manuel Cano Rodriguez 

Title: Associate Professor 

 



4 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



5 
 

Acknowledgments 

 

With the greatest honor, I reserve this paragraph of gratitude and appreciation to all those who 

contributed in any way to the success and implementation of the master thesis. 

I would like to take this opportunity to express my deep gratitude to all my teachers of the 

electrical energy conversion Master. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



6 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



7 
 

 

Contents 

Abstract ......................................................................................................................................................... 3 

Acknowledgments ......................................................................................................................................... 5 

Chapter 1 ..................................................................................................................................................... 14 

Introduction ............................................................................................................................................. 14 

Objectives of the MTh ............................................................................................................................ 15 

State of the Art ........................................................................................................................................ 15 

Chapter 2 ..................................................................................................................................................... 17 

Loop power flow control ........................................................................................................................ 17 

Particle swarm optimization ................................................................................................................... 19 

Ladder Iterative Technique ..................................................................................................................... 21 

Example of ladder technique .................................................................................................................. 24 

Algorithm development .......................................................................................................................... 26 

Simulation ............................................................................................................................................... 31 

Chapter 3 ..................................................................................................................................................... 33 

Optimization of Number of particles and number of iteration ................................................................ 33 

Chapter 4 ..................................................................................................................................................... 37 

Coefficient optimization of inertia, social and cognitive weight ............................................................ 37 

Algorithm development .......................................................................................................................... 37 

Simulation ............................................................................................................................................... 38 

Chapter 5 ..................................................................................................................................................... 40 

Evaluation of the economical savings ..................................................................................................... 40 

Maximum Size of the inverters ............................................................................................................... 42 

Algorithm development .......................................................................................................................... 42 

Simulation ............................................................................................................................................... 42 



8 
 

Conclusion .................................................................................................................................................. 45 

Future developments ................................................................................................................................... 45 

Reference .................................................................................................................................................... 46 

Annex .......................................................................................................................................................... 47 

6-node data m.file (chapter 2-5) .............................................................................................................. 47 

Chapter 2 m.file ...................................................................................................................................... 49 

6-node data m.file (chapter 4) ................................................................................................................. 55 

Chapter 4 m.file ...................................................................................................................................... 58 

Chapter 5 m.file ...................................................................................................................................... 69 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



9 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



10 
 

 

List of Figures 

Figure 1: Structure of LPF control ............................................................................................................... 14 

Figure 2: Looped network using a BTB converter as a LPF control ............................................................. 17 

Figure 3: Flowchart of the EMS algorithm .................................................................................................. 18 

Figure 4: 13-node general network ............................................................................................................ 23 

Figure 5: 4-node linear ladder network ...................................................................................................... 24 

Figure 6: 4-node non-linear ladder network ............................................................................................... 25 

Figure 7: shows how the code work for a forward sweep on a generalized feeder .................................. 29 

Figure 8: shows how the code work for a backward sweep on a generalized feeder ................................ 30 

Figure 9: Simplified electrical system diagram of the 6-node grid ............................................................. 31 

Figure 10: Binomial distribution.................................................................................................................. 34 

Figure 11: Set of curves for different values of N and it ............................................................................. 35 

Figure 12: Daily load profile curve used...................................................................................................... 40 

Figure 13: Flowchart of the EMS algorithm for energy saving ................................................................... 41 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



11 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



12 
 

 

List of Tables 

Table 1: Results obtained using binomial distribution ............................................................................... 35 

Table 2: daily load profile for the 6-node network ..................................................................................... 43 

Table 3: Results obtained using LPF control ............................................................................................... 43 

Table 4: Result obtained without LPF control ............................................................................................. 44 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



13 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



14 
 

Chapter 1 

Introduction 
The use of flexible AC transmission systems at the distribution grid is today a major interest. The 

decrease of power electronics cost and the increase of communications within the grid make 

anything possible to find a solution in order to adopt and optimize the feeders. One of the solution 

is the loop power flow control which allows the retrofit of radial grid into looped networks at an 

acceptable cost [1]. 

The renewable energy and the utilization of co-generation systems, both are expected to improve 

the efficiency of energy applications but a lot of distributed generation will be installed for feeder 

imbalance which can lead to some difficulties in order to maintain the proper voltage. A loop 

power flow controller (LPC) shall be implemented using a back to back converter (BTB) will 

control the loop of the radial feeder [2]. 

These devices provide a dynamic control of the voltages along the feeders and an optimization of 

the distribution losses through a balanced use of conductors without any increase in short circuit 

current [1]. 

An energy management system (EMS) is used to command the device in order to achieve the 

optimization of the network [1]. 

 

The basic concept of the loop power flow control is as follows [2]:  

 Aims for free access to a distributed power supply.  

 System responds flexibly to unbalanced load between feeders, and makes effective use of 

equipment. 

 To enable this, the system is constructed in the shape of a loop from a radial. 

 A loop distribution system is provided without altering existing systems such as the 

protection system, except for loop points. 

 

The figure below shows the converter used to make the connection of the 2 radial feeder into a 

loop. 

 
Figure 1: Structure of LPF control 

 

 



15 
 

Objectives of the MTh 
This project is devoted to the development of an Energy Management System (EMS) for a Loop 

Power Flow Controller (LPC). The use of LPCs in the distribution grid turns traditional radial 

operated feeders in meshed networks allowing a noticeable reduction of distribution losses as well 

as providing dynamic voltage support (especially important in the increasing connection of 

Distributed Generation (DG) resources). However, the fast dynamics of the converters used in 

these configurations do not significantly affect the protection system, as their contribution to short-

circuit currents can be practically neglected.      

The EMS will use heuristic techniques to solve the optimization problem. The algorithm will be 

suitable for the application in real-time controllers, as well as to assess the benefits of the use of 

these devices at a particular location.  

State of the Art 
In japan, a 6.6 kV overhead distribution system were constructed as radial feeder. In these system 

each feeder voltage is controlled between a value of 6V for each 100V and 20V for the standard 

voltage of 200, where the voltage should remain for each customer. A line voltage compensator 

(LDC) maintained proper voltage for a bank of about six feeders. In Japan, generally one LDC 

control performs voltage regulation for about six feeders. An LDC is installed on the substation 

transformer in the distribution substation regulates line voltage. The LDC estimates the voltage 

drop of the lines from the line current and controls the voltage rate of the transformer, the line 

voltages remain within a proper range. The load imbalance of each feeder therefore had a negative 

impact on voltage stability [3].  

In the near future, many distributed generators will be connected to the grid to provide power. The 

reverse power flow of the distributed generators will rise to the upper limit of the voltage range 

and on the other hand, a disconnection of the distributed generators with faults cause the line to be 

overload or under-voltage [3]. In this case, it has been proposed that loop or mesh distribution 

systems be designed to balance the power flow and regulate voltage. However, this will increase 

short-circuit current in the distribution system, and fault location detection methods for loop 

distribution systems have not yet been established. A loop power flow controller (LPC) using a 

pulse wide modulation (PWM) AC-DC-AC converter is able to control loop distribution systems 

without increasing short-circuit current. LPC loop distribution systems can be used in present 

protection method. The question here is whether the LPC is aware of the current status of the 

distribution system. A loop power flow control method using feeder power flow information has 

been proposed [3]. 

The equipment to achieve the basic concept to achieve loop distribution is called as a loop power 

flow controller (LPC), which replaces the sectionalizer at the loop points [3]. 

 



16 
 

The electric energy industry has been regulated through national or municipal governors. 

Presently, open transmission access is a new legal requirement within the electric power industry 

since the deregulation is an inevitable outcome of a free market society that thrives on competition. 

In such a circumstance power system dynamic performances more and more occupy the interest 

of power system engineers. As a result, FACTS technology is being prompted as a means to extend 

the capacity of existing power transmission networks without adding new transmission lines. 

FACTS introduces new degree of freedom into the operation of power systems. This extra 

flexibility permits the independent adjustment of certain system variables such as power flows. 

This paper describes a loss minimizing control by a FACTS device which is capable of controlling 

the line power flow arbitrarily. In addition it is expected that the control simultaneously results in 

augmentation of voltage stability [9].  

 

Concerning this topic, four papers has been published: 

 Application of loop power flow controllers for power demand optimization at industrial 

customer sites, [1]. 

 Loop power flow control and voltage characteristics of distribution system for distributed 

generation including PV system, 2003, [2]. 

 Autonomous loop power flow control for distribution system, 2001, [3]. 

 Loop power flow control to minimize power losses and augment voltage stability, 1998, 

[9]. 

 

 

 

 

 

 

 

 

 

 

 

 

 



17 
 

Chapter 2 

Loop power flow control 
Radial feeders can be looped using different converter technologies, in this case a back to back 

converter in used. As well, two or more feeders can be linked though the converter, the device is 

called a solid-state transformer. The following figure show the LPF control system [1]: 

 
Figure 2: Looped network using a BTB converter as a LPF control 

The back to back converter will regulate the active power flow between the two terminal node and 

the reactive power at each terminal. The three values will be the reference for the energy 

management system that should be considered in real time. 

The EMS has to determine the reference values in order to be able to optimize the operation of the 

system. One these reference values are calculated, the power flow of the whole system can be 



18 
 

determined including voltage and current. The assessment of different candidate solution for the 

active and reactive power reference value is at the core of the heuristic used to achieve the 

optimization of the system. The grid internal variables can be used to define the appropriate 

optimization function (OF) [1]. 

 

The following chart represent the EMS algorithm which is the ladder technique that is used the 

build the Matlab code: 

 
Figure 3: Flowchart of the EMS algorithm 



19 
 

The optimization of the system focus the minimization of the distribution losses among the grid 

using the OF with the function 𝑓 which lead to a minimization of the electricity cost with a 

guarantee of an acceptable voltage level at any operating point of the feeder. 

 

To assure what is needed or requested by any operator the following norms can be followed and 

added to the algorithm: 

𝑓(𝑃∗, 𝑄1
∗, 𝑄2

∗) = 𝑐𝑝 (∑ 𝑅𝑖𝑗𝐼𝑖𝑗
2

𝑖𝑗
) + 𝑐𝑞 (∑ 𝑋𝑖𝑗𝐼𝑖𝑗

2

𝑖𝑗
) 

𝑉𝑖,𝑚𝑖𝑛 ≤ 𝑉𝑖 ≤ 𝑉𝑖,𝑚𝑎𝑥 

𝑆1 ≤ 𝑆1𝑛 ;  𝑆2 ≤ 𝑆2𝑛 

Where 𝑅𝑖𝑗 and 𝑋𝑖𝑗 refer to the resistance and the reactance of the feeders connected between the 

two node 𝑖 and 𝑗, also the transformer impedances is included in the impedance calculation. These 

two coefficient 𝑐𝑝 and 𝑐𝑞 represent the unitary cost for both active and reactive power. The voltage 

limits  𝑉𝑖,𝑚𝑖𝑛 and 𝑉𝑖,𝑚𝑎𝑥 represent the minimum and maximum value of the voltage at each node. 

The rated power of the inverter are 𝑆1𝑛 and 𝑆2𝑛 which are the maximum power allowed. 

The algorithm and the flowchart developed contain two important and interesting feature. The first 

one is the ladder technique, forward and backward sweep, which is used for the power flow 

analysis of the radial feeder so it’s an easy way to calculate the voltage and current for example at 

each node of the radial feeder. The second one is the application of the heuristic technique such as 

the particle swarm optimization (PSO) to solve the optimization problem and it’s well suited for 

practical real-time implementation due to the fact that it’s has a fast and good convergence 

characteristic [1]. 

 

Particle swarm optimization 
Particle swarm optimization (PSO) is a population based stochastic optimization technique 

developed by Dr. Eberhart and Dr. Kennedy in 1995, inspired by social behavior of bird flocking 

or fish schooling. PSO shares many similarities with evolutionary computation techniques such as 

Genetic Algorithms (GA). The system is initialized with a population of random solutions and 

searches for optima by updating generations. However, unlike GA, PSO has no evolution operators 

such as crossover and mutation. In PSO, the potential solutions, called particles, fly through the 

problem space by following the current optimum particles [4].  

 

The first practical application of PSO was in the field of neural network training and was reported 

together with the algorithm itself (Kennedy and Eberhart). Many more areas of application have 

been explored ever since, including telecommunications, control, data mining, design, 

combinatorial optimization, power systems, signal processing, and many others. To date, there are 

hundreds of publications reporting applications of particle swarm optimization algorithms. For a 

review. Although PSO has been used mainly to solve unconstrained, single-objective optimization 

problems, PSO algorithms have been developed to solve constrained problems, multi-objective 



20 
 

optimization problems, problems with dynamically changing landscapes, and to find multiple 

solutions [10]. 

A number of research directions are currently pursued, including [10]: 

 Theoretical aspects 

 Matching algorithms (or algorithmic components) to problems 

 Application to more and/or different class of problems 

 Parameter selection 

 Comparisons between PSO variants and other algorithms 

 New variants 

 

The advantages of particle swarm optimization [11] [12]: 

 PSO is easier to implement and there are fewer parameters to adjust. 

 PSO based on the intelligence and it is applied on both scientific research and engineering. 

 Every particle remembers its own previous best value as well as the neighborhood best; 

therefore, it has a more effective memory capability. 

 PSO have no mutation and overlapping calculation. The search can be take place by the 

speed of the particle. Most optimist particle can able to transmit the information onto the 

other particles during the development of several generations, and the speed of researching 

is faster. 

 PSO accepts the real number code, and that is decided directly by the solution. Calculation 

in PSO is simpler and efficient in global search 

 More efficient in maintaining the diversity of the swarm (more similar to the ideal social 

interaction in a community), since all the particles use the information related to the most 

successful particle in order to improve themselves. 

The disadvantages of particle swarm optimization [12]: 

 It is slow convergence in refined search stage and weak local search ability. 

 The method cannot work on the problems of non-coordinate systems like the solution of 

energy field and the moving rules for the particles in the energy field. 

 

Each particle keeps track of its coordinates in the problem space which are associated with the best 

solution (fitness) it has achieved so far. (The fitness value is also stored.) This value is called pbest. 

Another "best" value that is tracked by the particle swarm optimizer is the best value, obtained so 

far by any particle in the neighbors of the particle. This location is called lbest. When a particle 

takes all the population as its topological neighbors, the best value is a global best and is called 

gbest [4]. 

The particle swarm optimization concept consists of, at each time step, changing the velocity of 

(accelerating) each particle toward its pbest and lbest locations (local version of PSO). 

Acceleration is weighted by a random term, with separate random numbers being generated for 

acceleration toward pbest and lbest locations. 



21 
 

In past several years, PSO has been successfully applied in many research and application areas. 

It is demonstrated that PSO gets better results in a faster, cheaper way compared with other 

methods [4].  

Another reason that PSO is attractive is that there are few parameters to adjust. One version, with 

slight variations, works well in a wide variety of applications. Particle swarm optimization has 

been used for approaches that can be used across a wide range of applications, as well as for 

specific applications focused on a specific requirement [4]. 

The PSO is a meta-heuristic based on the behavior of natural systems that has been recently applied 

with a large success in different fields of technology, some of its features make the PSO interesting 

for the EMS. First thing is that no assumption have to be made on the characteristics of the 

problem, this will allow the engineers to adapt the controller to the special needs of each 

application without any concern of the solver. Second thing is the use of a fixed number of particles 

that opens the possibility of using FPGA to parallelize computation, which is an important feature 

to comply with the low latency requirements demanded by this application [1]. 

The equation of the PSO for each particle is the following: 

𝑣ℎ
𝑘+1 = 𝑤𝑣ℎ

𝑘 + 𝑐1𝑟1(𝑥𝑏_ℎ
𝑘 − 𝑥ℎ

𝑘) + 𝑐2𝑟2(𝑥𝑏_𝑔
𝑘 − 𝑥ℎ

𝑘) 

Where h represent a possible solution called a particle which is characterized by its position 𝑥ℎ, 

and its speed 𝑣ℎ within the space of solutions. For this case of the loops power flow control, the 

position will have three dimension which are the active and the two reactive power. The initial 

position and speed of each particle are randomly selected in order to be able to start the algorithm. 

At each iteration 𝑘, the performance of each particle is assessed according to the value of the OF 

for its position. During the iteration process, the best position of each particle 𝑥𝑏ℎ
𝑘 and the best 

global position of the swarm 𝑥𝑏𝑔
𝑘 are also stored so the speed of each particle will be updated 

according to the above equation. The two coefficient 𝑟1 and 𝑟2 are a random number selected 

between the range of 0 and 1 for each particle and iteration done. The constant 𝑤 is the inertia 

weight and it determines the influence of the past speed in the calculation. The final two coefficient 

𝑐1 and 𝑐2 are also constant called cognitive and social weights, they determine the contribution of 

the best past result of each particle and the best result of the whole swarm to the new speed. Finally, 

the position of each particle can be updated respectively to reach a new set of improved solution 

according the new above equation [1]: 

𝑥ℎ
𝑘+1 = 𝑥ℎ

𝑘 + 𝑣ℎ
𝑘+1 

 

Ladder Iterative Technique 
The power-flow analysis of a distribution feeder is similar to that of an interconnected transmission 

system. Typically, what will be known prior to the analysis will be the three-phase voltages at the 

substation and the complex power of all of the loads and the load model (constant complex power, 

constant impedance, constant current, or a combination). Sometimes the input complex power 

supplied to the feeder from the substation is also known [5]. 



22 
 

Because a distribution feeder is radial, iterative techniques commonly used in transmission 

network power-flow studies are not used because of poor convergence characteristics. Instead, an 

iterative technique specifically designed for a radial system is used [5]. 

 

A power-flow analysis of a feeder can determine the following by phase and total three-phase [5]: 

• Voltage magnitudes and angles at all nodes of the feeder 

• Line flow in each line section specified in kW and kVAr, amps and degrees, or amps and power 

factor 

• Power loss in each line section 

• Total feeder input kW and kvar 

• Total feeder power losses 

• Load kW and kvar based upon the specified model for the load 

 

The poor convergence characteristics of traditional power flow method in radial networks like the 

Newton-Raphson method make the application of iterative technique advisable. The power 

demand can be defined for the active and reactive power at each node in the complex form as 

following [1]: 

𝑆𝑖 = 𝑃𝑖 + 𝑗𝑄𝑖 

For the case of the nodes which are connected with the LPF control, a initial virtual load should 

be added. The power of this load depend on the position of the considered particle, so 𝑃 + 𝑗𝑄1 for 

the first terminal and −𝑃 + 𝑗𝑄2 for the second terminal respectively. The resulting problem is non-

linear and should be resolved using iterative techniques. From the most downstream nodes and 

taking the rated voltage at these points as a first approximation to their values, the forward sweep 

analysis is started. During this process, the current at each node is estimated as the following [1]: 

𝐼𝑖 = (
𝑆𝑖

𝑣𝑖
) 

After that, using Kirchhoff current law (KCL), the current in the feeder connecting the node to the 

one upstream 𝐼𝑖𝑗 is calculated, and the subsequent application of the Kirchhoff voltage law (KVL) 

leads to the voltage at this upstream node 𝑉𝑗. The forward sweep analysis is finished when the 

initial node is reached with an approximation to its voltage that in a general case differs for the 

given data. At this point a backward sweep should be done. Taking the real value at the initial 

node, the voltage only at the downstream node is recalculated. This process in repeated iteratively 

until, at the end of a forward sweep, the error of the estimation voltage at the initial node is below 

a certain threshold value [1]. 

 

 

 

 

 



23 
 

A typical distribution feeder will consist of the primary main, with laterals tapped off the primary 

main and sub-laterals tapped off the laterals, etc. 

 
Figure 4: 13-node general network 

The ladder iterative technique procedure for a general feeder [5]: 

1. The forward sweep starts by assuming three-phase voltages at the end nodes. The usual 

assumption is to use the nominal or base voltages.  

2. Starting from one of the terminal node, compute the node current (load current plus 

capacitor current if present). 

3. With this current, apply Kirchhoff’s voltage law (KVL) to calculate the node voltages at 

the node that are before the terminal node till a junction node connection is reached. 

4. Since its impossible to calculate a junction node without all the data from the nodes that is 

connected too. Choosing another terminal node and starting the procedure again till a 

junction is reached. If all the nodes that are connected to the junction nodes are calculated 

than it will be possible to calculate the junction node. 



24 
 

5. Using the most recent value of the voltage at the junction node, the node current at the 

junction ode (if any) is computed. 

6. Apply Kirchhoff’s current law (KCL) to determine the current flowing from Node before 

the junction node toward the junction node. As well compute the voltage at current node. 

7. All the above procedure are followed every time a junction node is reached. 

8. The calculation will continue till the initial node is reached. 

9. Calculate the voltage at the initial node. 

10. Compare the calculated voltage at the initial to the specified source voltage. 

11. If not within tolerance, use the specified source voltage and the forward sweep current 

flowing from the initial node to the next node, and compute the new voltage at the next 

node. 

12. The backward sweep continues, using the new upstream voltage and line segment current 

from the forward sweep to compute the new downstream voltage. 

13. The backward sweep is completed when new voltages at all end nodes have been 

completed. 

14. This completes the first iteration. 

15. Repeat the forward sweep, only now using the new end voltages rather than the assumed 

voltages as was done in the first iteration. 

16. Continue the forward and backward sweeps until the calculated voltage at the source is 

within a specified tolerance of the source voltage. 

17. At this point the voltages are known at all nodes, and the currents flowing in all line 

segments are known. An output report can be produced giving all desired results. 

 

Example of ladder technique 
Linear network 

A modification of the ladder network theory of linear systems provides a robust iterative technique 

for power-flow analysis. A distribution feeder is nonlinear because most loads are assumed to be 

constant kW and kVAr. However, the approach taken for the linear system can be modified to take 

into account the nonlinear characteristics of the distribution feeder. Figure 10.1 shows a linear 

ladder network [5]. 

 

Figure 5: 4-node linear ladder network 



25 
 

For the ladder network it is assumed that all of the line impedances and load impedances are known 

along with the voltage at the source. The solution for this network is to assume a voltage at the 

most remote load. The load current I5 is then determined as [5]: 

𝐼4 =
𝑉4

𝑍𝐿4
 

For this end node case, the line current 𝐼34 is equal to the load current 𝐼4, Applying Kirchhoff’s 

voltage law (KVL), the voltage at Node 3 can be equal [5].: 

𝑉3 = 𝑉4 + 𝑍34. 𝐼34 

The load current 𝐼3 can be determined, and then Kirchhoff’s current law (KCL) applied to 

determine the line current 𝐼23: 

𝐼23 = 𝐼34 + 𝐼3 

Kirchhoff’s voltage law is applied to determine the node voltage 𝑉2, this procedure is continued 

until a voltage 𝑉1 has been computed at the source [5]. 

The computed voltage 𝑉1 is compared to the specified voltage 𝑉𝑠, there will be a difference between 

these two voltages. The ratio of the specified voltage to the compute voltage can be determined as: 

𝑟𝑎𝑡𝑖𝑜 =
𝑉𝑠

𝑉1

 

Since the network is linear, all of the line and load currents and node voltages in the network can 

be multiplied by the Ratio for the final solution to the network [5]. 

 

Non-Linear network 

The linear network is modified to a nonlinear network by replacing all of the constant load 

impedances by constant complex power loads as shown in the below figure. The procedure 

outlined for the linear network is applied initially to the nonlinear network [5]. 

 

 
Figure 6: 4-node non-linear ladder network 

The procedure outlined for the linear network is applied initially to the nonlinear network. The 

only difference is that the load current at each node is computed by [5]: 

𝐼𝑛 =
𝑆𝑛

𝑉𝑛
 



26 
 

The forward sweep will determine a computed source voltage 𝑉1 as in the linear case, this first 

iteration will produce a voltage that is not equal to the specified source voltage 𝑉𝑠 because the 

network is nonlinear, multiplying currents and voltages by the ratio of the specified voltage to the 

computed voltage will not give the solution. The most direct modification to the ladder network 

theory is to perform a backward sweep. The backward sweep commences by using the specified 

source voltage and the line currents from the forward sweep. Kirchhoff’s voltage law is used to 

compute the voltage at Node 2 by [5]: 

𝑉2 = 𝑉𝑠 − 𝑍12. 𝐼12 

This procedure is repeated for each line segment until a new voltage is determined at Node 4. 

Using the new voltage at Node 5, a second forward sweep is started that will lead to a new 

computed voltage at the source. The forward and backward sweep process is continued until the 

difference between the computed and specified voltage at the source is within a given tolerance 

[5]. 

 

Algorithm development 
The Matlab program algorithm consists of two files, the first file “dist_grid_data.m” used is about 

filling all the data of the specified network in order to construct the feeder using only the m.file. 

This File should include the following characteristics of the feeder: 

 Number of nodes of the network. 

 Nodes number used in the LFP control. 

 Sons of the different nodes. 

 Parents of the different nodes (build automatically form the previous one). 

 Load apparent power. 

 Voltage base value for each node. 

 Transformers characteristics if exist: 

o Rated power of the transformer between two specified nodes. 

o Taps value of the transformers. 

o Transformers impedances. 

o Transformer location between which 2 nodes. 

o Node reference base voltage used to change all the voltages to the same base 

voltage. 

o Transformation needed on each node to node to change the base voltage. 

 Line characteristics: 

o Line length. 

o Line impedance in pu. 

o Automatic calculation of line impedance. 

 

 



27 
 

As well defining all the characteristics related to PSO and LPF control: 

 Number of particles. 

 Number of iteration. 

 Dimension of the particle swarm optimization (number of references). 

 The maximum and minimum value of the position and speed. 

 The value of the inertia, cognitive and social coefficient (optimum value used). 

 Tolerance value, epsilon. 

 

The data of this file can be changed accordingly to suite any network that is required to study the 

LPF control for it. No changes will be needed on the second file which is the main program that 

contain all the algorithm as the program is universal for all type of constructed network. 

The second file contain all the algorithm used during the process, it start by calculating the 

transformers impedances and transformation ratio. After that it will calculate to total impedance 

on each line including line and transformers impedance and choosing a specified base ratio. After 

finishing all these line and transformers calculation.  

The LPF control algorithm will start by an initial allocation of the value used in the particle swarm 

optimization. The ladder method is followed, by a forward sweep and backward sweep in order to 

calculate network voltage and current and other required characteristics like line losses at each 

node. After the performance of the forward and backward sweep the particle swarm optimization 

algorithm is used to rectify the obtained values in order to reach the optimum values at the end. 

All this process is repeated for each particle and as well for the maximum number of iteration 

using the function ‘for’.  

 

In this part, the building of the code of the algorithm will be explained. Before beginning the 

forward sweep analysis, it has to start by considering the terminal node has a predefined value 

which is the theoretical base voltage value so it’s possible to calculate the voltage on all terminal 

nodes. Followed by defining the initial node of the network. 

 

Based on this consideration and knowing the apparent power on each node including the terminal, 

it will be possible to calculate the current that flows from the node before to the terminal, as was 

explained in the above part.  The forward sweep analysis start by choosing one of the terminal 

node to start the calculation. Each node calculated is added to a table, in this case it’s called 

‘treated’ that allow to check later if the node has been calculated or not. The matlab function 

‘ismember’ is used to check if an element exist between the sons of a node and the ‘treated’ table, 

this function give true (1) or false (0) if the element exist in these two tables. If all the elements 

are treated, it will be possible to treat the node, if not the program will look to another terminal 

node to repeat the procedure. The procedure is repeated through the ‘while’ function until all the 

nodes are added to the ‘treated’ table. 

 



28 
 

After finishing the forward sweep analysis, the base voltage of the initial node must be changed to 

node reference base voltage, using the transformation ratio of the transformers. After that, the 

voltage obtained at the initial node from the forward sweep calculation is compared to the base 

voltage of the initial node too with a difference no more than the tolerance value. Using the 

function ‘if’, if the two compared value are high than the tolerance the backward sweep analysis 

is executed. 

 

In the backward sweep, the initial node will be defined with a voltage value equal to the base 

voltage. After that, also using a new table ‘v_treated’ which every calculated voltage of the node 

will be added to it and also using the function ‘ismember’. In this part, the starting point will be 

the initial node and the calculation will be performed till a terminal node is reached using a ‘while’ 

function. For every nodes, when all the sons of it are treated, this node is added the new table 

named ‘treated_bs, this table will directly include the initial node. Another ‘while’ function is also 

used with two condition, the first check if every element of the table ‘v_treated’ is included in the 

table ‘treated_bs’ and the other condition to check the length of the table treated_bs which should 

not pass the limits. Once an element of the table ‘v_treated’ is not an element of the table 

‘treated_bs’ the procedure will be repeated from the beginning till all the element are included in 

the ‘treated_bs’ table. 

 

After finishing the forward and backward sweep analysis, line losses calculation is performed 

including all the lines that exist on the network. 

After that, this part is optional and is used to calculate the voltage at each node and at each particles 

for every iteration, and it’s used to display the voltage changed to the reference base voltage and 

the real voltage. 

 

This part compare the results obtained, if the result of the line losses is lower than the one from 

the previous iteration, the value is stored in a different variable alongside the ones of active and 

reactive power, this is performed for each particles. Also another variable is used to store the best 

result from all the particles for the line losses and the active and reactive power which will be the 

optimum values obtained at the end of the algorithm after all the iteration are done. 

Finally, PSO equation is used to correct the values of active and reactive power before the 

performance of the next iteration followed by checking if the values obtained doesn’t exceed the 

maximum and the minimum values. 

 

Using the function ‘display’ the optimum values for losses and active and reactive power are 

displayed on the command screen at the end of the program. 



29 
 

 
Figure 7: shows how the code work for a forward sweep on a generalized feeder 

The figure above shows an example of how the algorithm works for a forward sweep analysis step 

by step on a generalized feeder to calculate the voltage, current, etc. on each node starting from a 

terminal node till it reach the initial node. 



30 
 

 
Figure 8: shows how the code work for a backward sweep on a generalized feeder 

The figure above shows an example of how the algorithm works for a backward sweep analysis 

step by step on a generalized feeder in order to correct the voltage for an accurate value on each 

node starting from the initial node. 

 

 

 

 

 

 

 

 

 



31 
 

Simulation 
The figure below shows the electrical diagram of a 6 node feeder system with its parameters that is used 

to test the proper performance of the EMS constructed algorithm using Matlab. 

 
Figure 9: Simplified electrical system diagram of the 6-node grid 

 

 



32 
 

Network and LPF control parameters: 

 Lines (z) and transformers (𝑆𝑛, 𝑅𝑠𝑐, 𝑋𝑠𝑐, 𝑡𝑎𝑝0, 𝑡𝑎𝑝𝐿𝑃𝐶) 

o Line 12: 0.025 + 0.024𝑖 Ω/𝑘𝑚 

o Line 23: 0.161 + 0.151𝑖 Ω/𝑘𝑚 

o Line 23: 0.568 + 0.133𝑖 Ω/𝑘𝑚 

o Line 25: 0.062 + 0.165𝑖 Ω/𝑘𝑚 

o Line 56: 0.161 + 0.112𝑖 Ω/𝑘𝑚 

o T12: 2𝑥70 MVA, 0.90%, 12.9%, 2%, 2% 

o T23: 3𝑥37.5𝑀𝑉𝐴, 0.90%, 9%, 1%, 1% 

o T34: 10𝑀𝑉𝐴, 0.95%, 4.8%, 0%, −1.5% 

o T25: 3𝑥50𝑀𝑉𝐴, 0.92%, 48.5%, 2%, −1.5% 

 Non-voltage dependent loads (𝑃, 𝑄) 

o Bus 1: 20 𝑀𝑊, 25 𝑀𝑉𝐴𝑟 

o Bus 2: 84 𝑀𝑊, 26 𝑀𝑉𝐴𝑟 

o Bus 3: 34 𝑀𝑊, 12 𝑀𝑉𝐴𝑟 

o Bus 4: 7.5 𝑀𝑊, 5 𝑀𝑉𝐴𝑟 

o Bus 5: 52 𝑀𝑊, 39 𝑀𝑉𝐴𝑟 

o Bus 6: 1.3 𝑀𝑊, 2 𝑀𝑉𝐴𝑟 

 PSO algorithm and ladder iterative technique 

o Number if iterations: 𝑘𝑚𝑎𝑥 = 70 

o Number of particles: ℎ𝑚𝑎𝑥 = 20 

o Inertia weight: 𝑤 = 0.729 

o Cognitive weight: 𝑐1 = 1.49445 

o Social weight: 𝑐2 = 1.49445 

o Threshold error: 𝜖 = 4.108 𝑝. 𝑢 

After performing the simulation, with a maximum number of iteration of 70 and a number of 

particles of 20, the following reference results are obtained: 

 Optimum losses: 1293.2 kW 

 Reference active power: -2322.9 kW  

 Reference reactive power 1: -7646.3 kW 

 Reference reactive power 2:  -4564.9 kVAr 

Another simulation should be done without the use of LPC control to be able to compare the 

different values. In order to do so, the maximum number of iteration should have a value of 1, the 

same applies for the number of particles and the initial values of the active and the two reactive 

power is equal to 0, the following results are obtained: 

 Optimum losses:1441 kW 

 

From these two results, the power saving on the 6-node grid is the following, 

𝑃𝑜𝑤𝑒𝑟 𝑆𝑎𝑣𝑖𝑛𝑔 = 1441 − 1293.2 = 147.8 𝑘𝑊 

 



33 
 

Chapter 3 

Optimization of Number of particles and 

number of iteration 
The optimization of the number of particles (N) and the number of iterations (itmax) lead to a 

reduction of the time needed to perform the activity in the algorithm. The best set of values is the 

one that will assure a specific guaranty of convergence characteristic with the shortest time of 

execution. In order to evaluate the execution time it is possible to change this parameter with the 

total number of execution of the function to be optimized (EX=N.itmax) because it’s not reliable 

to measure the execution time on a computer. In order to find the optimum set, each pair to be 

tested cannot be evaluated just once, as with statistical basis. The random selection of the initial 

position, the initial speed of particles and the random values or 𝑟1and 𝑟2 at each step can bring the 

same pair to meet specific convergence criteria or not. 

The probability of finding convergence for a pair (N, itmax) in a set of n trials follows a binomial 

distribution. 

In probability theory and statistics, the binomial distribution with parameters n and p is the discrete 

probability distribution of the number of successes in a sequence of n independent yes/no 

experiments, each of which yields success with probability p. A success/failure experiment is also 

called a Bernoulli experiment or Bernoulli trial; when n = 1, the binomial distribution is a Bernoulli 

distribution. The binomial distribution is the basis for the popular binomial test of statistical 

significance. 

The binomial distribution is frequently used to model the number of successes in a sample of size 

n drawn with replacement from a population of size N. If the sampling is carried out without 

replacement, the draws are not independent and so the resulting distribution is a hypergeometric 

distribution, not a binomial one. However, for N much larger than n, the binomial distribution is a 

good approximation, and widely used. 

The binomial distribution gives the discrete probability distribution 𝑃𝑝(𝑛|𝑁) of obtaining exactly 

n successes out of N Bernoulli trials (where the result of each Bernoulli trial is true with probability 

p and false with probability q=1-p). The binomial distribution is therefore given by 

𝑃𝑝(𝑛|𝑁) = (
𝑁
𝑛

) 𝑝𝑛𝑞𝑁−𝑛 =
𝑁!

𝑛! (𝑁 − 𝑛)!
𝑝𝑛(1 − 𝑝)𝑁−𝑛 

Where (
𝑁
𝑛

) is a binomial coefficient. 

The figure below shows the binomial distribution of a set of N=100 trials with a probability of 

convergence or success of p=0.7. 



34 
 

 
Figure 10: Binomial distribution 

However, the probability of convergence of the binomial distribution is not known and it could 

only be determined for sure by performing an infinite number of trials. As this is not feasible, we 

have to specify a confidence interval (1-) in which the media of the binomial distribution lies 

between two values (p1 and p2). In our case we can specify the value of p1, according to the rate 

of success expected. 

Given a fix number of trials, the values for p1 and p2 can be calculated by 

𝑝1 =
𝑋

(𝑛 − 𝑋 + 1)𝐹𝛼|2,2(𝑛−𝑋+1),2𝑋 + 𝑋
 

𝑝2 =
(𝑋 + 1)𝐹𝛼|2,2(𝑋+1),2(𝑛−𝑋)

(𝑛 − 𝑋) + (𝑋 + 1)𝐹𝛼|2,2(𝑋+1),2(𝑛−𝑋)
 

Where 𝑋 is the number of successes and 𝐹𝛼|2,𝑎,𝑏 is the Fisher-Snedecor distribution with two 

degrees of freedom, a, b, that leaves at the right hand a probability of /2 in a confidence interval 

of (1-)*100%.  

In probability theory and statistics, the Fisher-Snedecor (F-distribuition) distribution is a 

continuous probability distribution. The F-distribution provides a basis for comparing the ratios of 

subsets of these variances associated with different factors. Many experimental scientists make 

use of the technique called analysis of variance. This method identifies the relative effects of the 

“main” variables and interactions between these variables. The F distribution represents the ratios 

of the variances due to these various sources [7]. The main use of F-distribution is to test whether 

two independent samples have been drawn for the normal populations with the same variance, or 

if two independent estimates of the population variance are homogeneous or not, since it is often 

desirable to compare two variances rather than two averages. For instance, college administrators 

would prefer two college professors grading exams to have the same variation in their grading [8]. 

Given a minimum value of the mean of the binomial distribution of p1>0.9 and =0.01, we will 

assure a minimum mean convergence ratio of 90% with a confidence interval of 99%. By 



35 
 

inspection of the above equation, these figures can be assured with different sets of n, X, as seen 

in the table below: 

 
Table 1: Results obtained using binomial distribution 

In consequence, to test the validity of a give pair (N,IT), 51 trials will be run. If 51 successes are 

obtained the pair is considered VALID. If more than two failures are obtained the pair is 

disregarded, as it does not meet the convergence criteria or proving it will need too much time. If 

just one failure is obtained, more trials are added until 71. If 70 successes are obtained, then the 

pair is also considered VALID. If new failures appear in these additional trials, the pair is 

discarded.  

Once we have a solid criterion to decide if a specific pair is considered VALID, now map of the 

N, IT plain has to be explored in order to find the better solution. For each value of N, a minimum 

value of IT can be found meeting the converge criterion (i.e. N,It being VALID). Any value of IT 

higher than this will be also valid but more time-consuming. The application of this rule leads to 

the blue line in Fig. 6.  

 
Figure 11: Set of curves for different values of N and it 

The above figure includes a set of curves that states combinations of particles and iterations with 

the same computational effort (i.e. EX= N  IT is constant).  

The pair contained in the blue line, with the lower value of EX is the optimum solution to the 

problem. For this example, it corresponds to the pair N=10, IT=58, that requires a computation 

effort of EF=580 evaluations of the function to be optimize.  

 



36 
 

From figure 6, we can see that using more than 20 particles does not add any benefit to the 

convergence of the algorithm. On the other side very low values of the number of particles (under 

7) makes convergence very difficult demanding a huge amount of iterations.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



37 
 

Chapter 4 

Coefficient optimization of inertia, social and 

cognitive weight 
To optimize the three coefficient inertia weight, social weight and cognitive weight, the particle 

swarm optimization is used to obtain the best values of these parameters with the lowest time of 

execution. In order to do so, a large fix number of particles is used for example N=15, which 

should be enough to obtain convergence. For the number of iteration, no fix number shall be used, 

instead of that it will varies till the convergence is reached to its required values with a high 

precision of 99% for example. 

Optimizing the number of iteration lead to an optimization of the time needed to perform the 

required task which is the calculation of the active and reactive power as the number of particles 

is a fixed number. 

The algorithm will contain two iteration loop, or two particle swarm optimization. Both PSO have 

the same principle with little bit of change to be able to be used for the optimization of the three 

coefficient. 

The first will be used to optimize the losses on the network and the second is used to optimize the 

three coefficient. By adding another PSO to the algorithm, the execution time of the algorithm will 

increase due to the fact that for every iteration and particle obtained for the coefficient, the PSO 

control of the network will be executed, so the time needed for the algorithm will be more than ten 

time higher than before. 

 

Algorithm development 
The algorithm used here is similar to the one developed in chapter 2, the main difference is the use 

of two particle swarm optimization as mentioned above. For the iteration related to calculating the 

active and reactive power reference, the function ‘while’ is used instead of ‘for’ in order to find 

the minimum iteration needed to get to convergence. The objective of this chapter is to optimize 

to coefficient used for the optimization of the active and reactive power reference, the values for 

the coefficient used for the first PSO that is used to optimize the coefficient are the following 

The parameters for the first PSO related to optimize the coefficient of the PSO related to the 

optimization of the active and reactive power reference are as following: 

 Number of particles. 

 Number of iteration. 

 Dimension of the particle swarm optimization (number of references). 

 The maximum and minimum value of the position and speed for the inertia weight. 



38 
 

 The maximum and minimum value of the position and speed for the social and cognitive 

weight. 

 The value of the inertia, cognitive and social coefficient (optimum value used). 

 

The parameters for the second PSO related to the optimization of the active and reactive power 

reference are the same of chapter 2, but excluding the number of iteration because in this case it 

varies and the inertia, cognitive and social coefficient because they will be defined from the 

previous PSO. The simulation is performed five times for a better precision and the results for the 

number of iteration and precision is the average of the five results obtained for each iteration and 

number of particles. 

Also, another part is added related for checking the accuracy of the results obtained in this chapter 

with the optimum one from chapter 2, so if the values are accurate and with a lower execution time 

or lower number of iteration, the coefficient values are accepted. 

Finally the obtained results will be the number of iteration and the three optimum values of the 

coefficient inertia weight, social weight and cognitive weight. 

 

Simulation 

The simulation of the program responsible for the optimization of the inertia weight, social weight 

and cognitive weight coefficients also with the objective of reducing the number of iteration which 

lead to a reduction of time needed to perform the operation. One problem occur during the 

simulation which is the validation of the results, the new values can lead to a loss in accuracy of 

the results so the active and reactive power reference value diverge from the optimal one which 

were calculated in chapter 2. In order to get correct results, for every iteration and every particles 

an accuracy test with 1% of error should be done to verify if the obtained results match the correct 

one, if not the obtained value should be dropped. The final answer will be the one who have the 

lowest number of iteration and thus the lowest time and of course with an error of less than 1%. 

The following equation calculate the error or the accuracy between the optimum value calculated 

in chapter 2 and the values obtained for each set of coefficient: 

𝐴𝑐𝑐𝑃 =
|𝑃𝑜𝑝𝑡 − 𝑃_𝑐𝑎𝑙𝑐|

𝑃𝑜𝑝𝑡
 

𝐴𝑐𝑐𝑄1 =
|𝑄1,𝑜𝑝𝑡 − 𝑄1,𝑐𝑎𝑙𝑐|

𝑄1,𝑜𝑝𝑡
 

𝐴𝑐𝑐𝑄2 =
|𝑄2,𝑜𝑝𝑡 − 𝑄2,𝑐𝑎𝑙𝑐|

𝑄2,𝑜𝑝𝑡
 

𝐴𝑐𝑐𝑙𝑜𝑠𝑠𝑒𝑠 =
|𝑙𝑜𝑠𝑠𝑒𝑠𝑜𝑝𝑡 − 𝑙𝑜𝑠𝑠𝑒𝑠𝑐𝑎𝑙𝑐|

𝑙𝑜𝑠𝑠𝑒𝑠𝑜𝑝𝑡
 

Than the above results should have an error less than 1% to accept the values of the coefficient 

and the less execution time or less iteration needed the better. So the final result will have the 



39 
 

fastest execution time or the minimum iteration needed between all results obtained with an error 

or accuracy less than 1%. 

𝑜𝑏𝑗𝑐𝑡𝑖𝑣𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 = 𝑖𝑡𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒 + 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 

Where is the number of iteration needed to reach the convergence and the precision has the 

following equation: 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 100 ∗ 𝑚𝑎𝑥(𝐴𝑐𝑐𝑃, 𝐴𝑐𝑐𝑄1, 𝐴𝑐𝑐𝑄2) 

 

For this case, after performing the simulation, these results are obtained for inertia weight, social 

weight and cognitive weight and can be adopted: 

 Optimum number of iteration: : 𝑖𝑡𝑚𝑎𝑥 = 18 

 inertia weight: 𝑤 = 0.62629 

 social weight: 𝑐1 = 1.4437 

 cognitive weight: 𝑐2 = 1.4112 

 

The results obtained are close to the one used in chapter 2 due to the fact that the one used are the 

optimum values so in this chapter the results that should be obtained should be close to them which 

was the case. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



40 
 

Chapter 5 

Evaluation of the economical savings 
In electrical engineering, a load profile is a graph of the variation in the electrical load versus time. 

A load profile will vary according to customer type (residential, commercial and industrial), 

temperature and holiday seasons. Power producers use this information to plan how much 

electricity they will need to make available at any given time. In a power system, a load curve or 

load profile is a chart illustrating the variation in demand/electrical load over a specific time. 

 

For this case, considering a daily load profile with an interval of two hours between each load 

value taken, it will have the following standard shape 

 
Figure 12: Daily load profile curve used 

In order to evaluate the expected savings on a grid when applying the loop power flow control. 

For example, A daily load profile can be built using the excel file, it’s what is used in the report. 

The input table should include at first column the time followed by the active and reactive power 

at each node. The LPC will calculate to optimum losses at each time interval than will generate 

the final optimum energy and power losses. 

 

The following chart represent the EMS algorithm which is the ladder technique that is used the 

build the Matlab code, it’s more or less the same as the previous one but with some adjustment to 

meet the requirements needed for this chapter: 



41 
 

 
Figure 13: Flowchart of the EMS algorithm for energy saving 



42 
 

Maximum Size of the inverters 
After calculating the optimum active and reactive power needed to optimize the feeder from the 

daily load profile. The maximum active and reactive optimum value can be also taken in order to 

be able to calculate the apparent power through the following equation 

𝑆1,𝑚𝑎𝑥 = √𝑃𝑚𝑎𝑥
2 + 𝑄1,𝑚𝑎𝑥

2 

𝑆2,𝑚𝑎𝑥 = √𝑃𝑚𝑎𝑥
2 + 𝑄2,𝑚𝑎𝑥

2 

Considering the financial aspect related to the cost of the inverter where the cost to be paid must 

not exceed a certain amount. So a limitation can be added to the maximum rated power 𝑆𝑘 allowed 

as in general, increasing the rated power of the inverter lead to an increase of its cost: 

𝑆1,𝑚𝑎𝑥 ≤ 𝑆𝑘 

𝑆2,𝑚𝑎𝑥 ≤ 𝑆𝑘 

 

Algorithm development 
The algorithm used in this chapter in more or less the same as the one in chapter two, the only 

differences is that the algorithm has to import the data from the excel file and has to be repeated 

for inch interval of time the values were taken and then calculate what is required, for example 

energy losses and average power losses each day. The algorithm will display as well the power 

losses and the active and reactive power reference for each interval of time. 

 

Simulation 

Using the following daily load profile for the 6-node grid where the load varies from a maximum 

values to a minimum value equal half of the maximum as was seen in the above graph.  The only 

difference in the algorithm between this simulation and the one done in chapter is that in this case 

the PSO algorithm is executed more than one time, it depend on the number of intervals that exist 

in the daily load, in this case the PSO is executed 12 times. Including to that, the calculation of 

energy losses is also added for every execution time so the total energy losses will be the sum of 

each part. The average power losses in a day with be the total energy losses over the total number 

of intervals. 

𝑡𝑜𝑡𝑎𝑙 𝑒𝑛𝑒𝑟𝑔𝑦 𝑙𝑜𝑠𝑠𝑒𝑠 = ∑ 𝑃 ∗ ∆𝑡

𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙

 

𝑃𝑎𝑣𝑔 =
𝑡𝑜𝑡𝑎𝑙 𝑒𝑛𝑒𝑟𝑔𝑦 𝑙𝑜𝑠𝑠𝑒𝑠

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙𝑠
 

 



43 
 

The table below shows the daily load for 24h with an interval time between each value recorded 

of 2 hours.  All the nodes in this case have the load curve variation only for simplification purpose.  

 

The daily load data are recorded in an excel file where Matlab import the data values in order to 

be able to calculate the optimum reference value for active and reactive power. 

 

Table 2: daily load profile for the 6-node network 

Two types of simulation are performed, the first one include the LPF control and the following 

results are obtained in the table below: 

 

Table 3: Results obtained using LPF control 

 

 

 

 

 

 

time P_1 Q_1 P_2 Q_2 P_3 Q_3 P_4 Q_4 P_5 Q_5 P_6 Q_6

2 10000000 12500000 42000000 13000000 17000000 6000000 3750000 2500000 26000000 19500000 650000 1000000

4 11000000 13750000 46200000 14300000 18700000 6600000 4125000 2750000 28600000 21450000 715000 1100000

6 12000000 15000000 50400000 15600000 20400000 7200000 4500000 3000000 31200000 23400000 780000 1200000

8 13000000 16250000 54600000 16900000 22100000 7800000 4875000 3250000 33800000 25350000 845000 1300000

10 14000000 17500000 58800000 18200000 23800000 8400000 5250000 3500000 36400000 27300000 910000 1400000

12 16000000 20000000 67200000 20800000 27200000 9600000 6000000 4000000 41600000 31200000 1040000 1600000

14 17000000 21250000 71400000 22100000 28900000 10200000 6375000 4250000 44200000 33150000 1105000 1700000

16 18000000 22500000 75600000 23400000 30600000 10800000 6750000 4500000 46800000 35100000 1170000 1800000

18 20000000 25000000 84000000 26000000 34000000 12000000 7500000 5000000 52000000 39000000 1300000 2000000

20 19000000 23750000 79800000 24700000 32300000 11400000 7125000 4750000 49400000 37050000 1235000 1900000

22 16000000 20000000 67200000 20800000 27200000 9600000 6000000 4000000 41600000 31200000 1040000 1600000

24 13300000 16625000 55860000 17290000 22610000 7980000 4987500 3325000 34580000 25935000 864500 1330000

Time (h) Optimum losses (kW) P_ref (kW) Q1_ref (kVAr) Q2_ref (kVAr) Optimum energy losses (kWh) Max S1 (kVA) Max S2 (kVA)

2 383.6 -2373.9 -6299.0 -3222.8 - - -

4 447.1 -2370.7 -6423.4 -3352.4 - - -

6 516.5 -2366.6 -6550.0 -3478.2 - - -

8 591.9 -2361.4 -6678.5 -3608.9 - - -

10 673.3 -2356.8 -6809.9 -3739.5 - - -

12 854.6 -2346.2 -7079.5 -4008.8 - - -

14 954.6 -2342.3 -7220.1 -4145.6 - - -

16 1061.0 -2339.8 -7363.6 -4286.7 - - -

18 1293.2 -2323.0 -7646.0 4565.8 - - -

20 1173.8 -2329.3 -7501.1 -4423.1 - - -

22 854.6 2346.4 7079.1 -4008.0 - - -

24 615.7 -2360.0 -6719.0 -3647.3 - - -

Average 785.0 18839.8 7991.2 5122.8



44 
 

The second simulation is done without the use of the LPF control, so same procedure is followed 

as in task one, maximum number of iteration set to 1, number of particles also, and the initial 

values of active and reactive power are set to 0. The following results are obtained: 

 

 

Table 4: Result obtained without LPF control 

The average power saving with and without LPF control is: 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑝𝑜𝑤𝑒𝑟 𝑠𝑎𝑣𝑖𝑛𝑔 = 904.4 − 785.0 = 119.4 𝑘𝑊 

 

The energy saving per day is: 

𝐸𝑛𝑒𝑟𝑔𝑦 𝑠𝑎𝑣𝑖𝑛𝑔 𝑝𝑒𝑟 𝑑𝑎𝑦 = 21705.3 − 18839.8 = 2865.5 𝑘𝑊ℎ 

 

For the above two table results, it can be concluded that the LPF control helps by reducing losses 

and thus saving energy. In this case, around 2865 kWh are saved each day. It can be concluded 

that the LPF control method is efficient and help reduce the losses that occur on the network. 

The results obtained with LPF control give also the maximum two values of apparent power that 

needed for the active and reactive reference power, these 2 values will be used to determine the 

rated power needed for the inverter that is used so it will not be undersized or even oversized. 

 

 

 

 

 

 

 

 

 

 

 

Time (h) Optimum losses (kW) Optimum energy losses (kWh)

2 478.9 -

4 546.7 -

6 620.5 -

8 700.5 -

10 786.8 -

12 978.4 -

14 1084.0 -

16 1196.2 -

18 1441.0 -

20 1315.2 -

22 978.4 -

24 725.7 -

Average 904.4 21705.3



45 
 

Conclusion 
It’s concluded that the energy management system using loop power flow control achieved a 

reduction in the losses on the network grid. As well, the algorithm is suitable for any random feeder 

to be tested, it’s only need to adjust the input data in order to execute the program without 

forgetting the optimization tests that can be performed. It can be added that the algorithm used can 

also be optimized to have a fast response which mean lower time to process and to give the 

optimum active and reactive power reference values. This will make the algorithm suitable for a 

real-time applications. Furthermore, the use of particle swarm optimization shows a good potential 

and it’s possible to be implemented in parallel computing devices if an even faster execution time 

is required.  

Future developments 
The use of this method requires a lot of materials which have a high cost and the cost for example 

will also depend on the maximum reference apparent power of the inverter. So another financial 

study should be made to find out if the method has a financial advantage between installation cost 

and reduction of the losses on the network, as well for example calculating the payback year of 

this system. In general, a financial study should be also done to check if applying this method is 

worth it or not for a specified network. 

In the technical part, the algorithm could be developed to locate the best location to install the 

inverter in order to increase the efficiency at its maximum value. In order to do so, this algorithm 

should be able to test all node connections possibilities and at the end to find the optimum location 

in technical and financial part. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



46 
 

Reference 
1. Application of loop power flow controllers for power demand optimization at industrial 

customer sites, José m. Cano, Joaquin g. Norniella, Carlos h. Rojas and Gonzalo a. Orcajo, 

electrical engineering department university of Oviedo Gijón, spain 

2. Loop power flow control and voltage characteristics of distribution system for distributed 

generation including PV system, Naotaka Okada, Hiromu Kobayashi, Kiyoshi Takigawa, 

Masahide Ichikawa and Kosuke Kurokawa, central research institute of electric power 

industry, Tokyo university of agriculture and technology, Tokyo, japan, 2003. 

3. Autonomous loop power flow control for distribution system, N. Okada, central research 

institute of electric power industry, japan, 2001. 

4. http://www.swarmintelligence.org/ 

5. Distribution system modeling and analysis, William h. Kersting, CRC press. 

6. http://mathworld.wolfram.com/binomialdistribution.html 

7. http://onlinelibrary.wiley.com/doi/10.1002/9780470627242.ch20/summary 

8. https://explorable.com/f-distribution 

9. Loop power flow control to minimize power losses and augment voltage stability, y. 

Mitani, g. Matushiro, k. Tsuji, department of electrical engineering, faculty of engineering, 

graduate school of Osaka university, 1998. 

10. http://www.scholarpedia.org/article/Particle_swarm_optimization#Applications_of_PSO

_and_Current_Trends 

11. Particle swarm optimization: basic concepts, variants and applications in power systems, 

Yamille del Valle, Salman Mohagheghi, Ronald g. Harley, IEEE transactions on 

evolutionary computation, vol. 12, no. 2, april 2008. 
12. Survey on K-mean Clustering and Particle Swarm Optimization, Pritesh Vora, Bhavesh 

Oza, International Journal of Science and Modern Engineering (IJISME) ISSN: 2319-

6386, Volume-1, Issue-3, February 2013 
 

 

 

 

 

 

 

 

 

 



47 
 

Annex 

6-node data m.file (chapter 2-5) 
clear all 
% Node list 
N=6; 
Node=6; 

  
%% Choose the 2 nodes for the LFP control 
node1=4; 
node2=6; 

  
%% PSO and Ladder caracteristics 
N_data=20; % particle number 
%N=1; 
itmax_data=70; 
%itmax=1; % no. de iteraciones 
Dim_data=3; 
minX_data=-10e6; 
maxX_data=10e6; 
minV_data=-maxX_data; 
maxV_data=maxX_data; 

  
w_data = 0.729; % inertia weight 
c1_data = 1.49445; % cognitive weight 
c2_data = 1.49445; % social weight 

  
epsilon_data=0.0001; % Tolerance for convergence (in per unit) 
%epsilon_data=0.000000000001; % Tolerance for convergence (in per unit) 

  
%% Sons of the different nodes. [0] means it is a terminal node. 
s{1}=[2]; 
s{2}=[3,5]; 
s{3}=[4]; 
s{4}=[0]; 
s{5}=[6]; 
s{6}=[0]; 

  
%% Parents (this should be built automatically) 
for n=1:Node 
p{n}=[0]; 
end 
for n=1:Node 
    len=length(s{n}); 
    for no=1:len 
        if s{n}(no)~=0 
        p{s{n}(no)}=[n]; 
        end 
    end 
end 

  
%% Loads 



48 
 

S(1)=(20+25i)*1e6; 
S(2)=(84+26i)*1e6; 
S(3)=(34+12i)*1e6; 
S(4)=(7.5+5i)*1e6; 
S(5)=(52+39i)*1e6; 
S(6)=(1.3+2i)*1e6; 

  
%% Base Values 
Ubase=13.8e3; % Tomado como general del sistema 
Ub(1)=220e3;    % Nodo 1 
Ub(2)=132e3;    % Nodo 2 
Ub(3)=30e3;     % Nodo 3 
Ub(4)=Ubase;    % Nodo 4 
Ub(5)=Ubase;    % Nodo 5 
Ub(6)=Ubase;    % Nodo 6 

  
%% Transformers 
% Datos de los transformadores (potencia nominal, número y ecc) 
Sn(1:N,1:N)=zeros; 
Sn(1,2)=270e6; 
Nt(1,2)=2; 
Sn(2,3)=37.5e6; 
Nt(2,3)=3; 
Sn(2,5)=50e6; 
Nt(2,5)=3; 
Sn(3,4)=10e6; 
Nt(3,4)=1; 
% Taps de los trafos 
tap(1,2)=0.01; 
tap(2,3)=0; 
tap(3,4)=-0.01; 
tap(2,5)=-0.035; 
% Impedancias de los trafos lado aguas arriba 
eRcc(1,2)=0.0090; 
eXcc(1,2)=0.1297; 
eRcc(2,3)=0.0090; 
eXcc(2,3)=0.0895; 
eRcc(2,5)=0.0092; 
eXcc(2,5)=0.0795; 
eRcc(3,4)=0.0095; 
eXcc(3,4)=0.0476; 

  
% Reference base node 
tr{1}=[1,2]; 
tr{2}=[2,3]; 
tr{3}=[2,5]; 
tr{4}=[3,4]; 

  
nref=4; % node 4 
% transformers from the node to the node reference 
% trasnformer number and +(to primary of transformer 1/rt) - (to secondary 
% rt) and 0 if no ratio transformation needed 
d{1,2}=[1,2,4]; 
d{2,3}=[2,4]; 
d{2,5}=[2 4]; 
d{3,4}=[4]; 



49 
 

d{5,6}=[2,-3,4]; 

  
nod{1}=[1,2,4]; 
nod{2}=[2,4]; 
nod{3}=[4]; 
nod{4}=[0]; 
nod{5}=[2,-3,4]; 
nod{6}=[2,-3,4]; 

  
%% Lines  
% (lengths) 
l_(1,2)=4700e-3; 
l_(2,3)=1500e-3; 
l_(2,5)=0e-3; 
l_(3,4)=300e-3; 
l_(5,6)=1800e-3; 

  
% (pu impedance) 
zc_(1,2)=0.025+0.240i; 
zc_(2,3)=0.161+0.151i; 
zc_(2,5)=0.062+0.165i; 
zc_(3,4)=0.568+0.133i; 
zc_(5,6)=0.161+0.112i; 
% Lines (impedances) 
zl(1,2)=(l_(1,2)*zc_(1,2)); 
zl(2,3)=(l_(2,3)*zc_(2,3)); 
zl(2,5)=(l_(2,5)*zc_(2,5)); 
zl(3,4)=(l_(3,4)*zc_(3,4)); 
zl(5,6)=(l_(5,6)*zc_(5,6)); 

 

Chapter 2 m.file 
clear all 
dist_grid_data_6node; 

  
%% RECEPCIÓN DE DATOS 
Sp(node1)=S(node1); 
Sp(node2)=S(node2); 

  
%% Transformer caracteristic 
% Transformer relation and impedences 
rt(1:Node,1:Node)=zeros; 
zt(1:Node,1:Node)=zeros; 
for n=1:1:Node 
 len=length(s{n}); 
 for no=1:1:len 
    ns=s{n}(no); 
  if  s{n}~=(0) 
    if Sn(n,ns)~=0 
    rt(n,ns)=Ub(n)/(Ub(ns)*(1+tap(n,ns))); 
    zt(n,ns)=Ub(n)^2/Sn(n,ns)*(eRcc(n,ns)+eXcc(n,ns)*1i)*1/Nt(n,ns); 
    end 
  end 
 end 



50 
 

end 

  
% Total impedances 
% Reference base voltage Ubase 13.8 KV 
z(1:Node,1:Node)=zeros; 
for n=1:Node 
  len=length(s{n});   
  for no=1:len 
      ns=s{n}(no); 
      if  s{n}~=(0) 
        z(n,ns)=zl(n,ns)+zt(n,ns); 
      end 
  end     
end 

  
for n=1:Node 
  len=length(s{n});   
  for no=1:len 
      ns=s{n}(no); 
       if  s{n}~=(0) 
           dlen=length(d{n,ns}); 
           for u=1:dlen 
           if d{n,ns}(u)<0 
               tran=abs(d{n,ns}(u)); 
               ratio=rt(tr{tran}(1),tr{tran}(2)); 
               z(n,ns)=z(n,ns)*ratio^2; 
           elseif d{n,ns}(u)>0 
               tran=abs(d{n,ns}(u)); 
               ratio=rt(tr{tran}(1),tr{tran}(2)); 
               z(n,ns)=z(n,ns)*(1/ratio)^2; 
           else 
               z(n,ns)=z(n,ns); 
           end 

            
           end 

            
       end 
  end 
end 

  
%% SE CALCULA LA TENSIÓN MEDIANTE LADDER 

  
% Ladder iterative method 
epsilon=epsilon_data; % Tolerance for convergence (in per unit) 

  
%--------------------------------------------------------------------------- 
%% PARTICLE SWARM OPTIMIZATION 
N=N_data; % particle number 
itmax=itmax_data; % no. de iteraciones 
Dim=Dim_data; 
minX=minX_data; 
maxX=maxX_data; 
minV=minV_data; 
maxV=maxV_data; 

  



51 
 

w = w_data; % inertia weight 
c1 = c1_data; % cognitive weight 
c2 = c2_data; % social weight 

  
% Allocation 
Xdat(1:N)={zeros(1,3)}; 
Vdat(1:N)={zeros(1,3)}; 
Swarm=struct('X',Xdat,'V',Vdat,'Best_Fitness',inf); 
% End allocation 

  
%Swarm(1).X=[0,0,0]; 
for h=2:N 
    

Swarm(h).X=[random('Uniform',minX,maxX),random('Uniform',minX,maxX),random('U

niform',minX,maxX)]; 
end 
for h=1:N 
    

Swarm(h).V=[random('Uniform',minV,maxV),random('Uniform',minV,maxV),random('U

niform',minV,maxV)]; 
end 
for h=1:N 
    Swarm(h).Best_Fitness=inf; % Inicialización del best_fitness a un valor 

infinito 
end 
Swarm_Global.Best_Fitness=inf; % Inicialización del Global_best_fitness a un 

valor infinito 
for it=1:itmax 
    %it 
    % Allocation 
    Current(1:N)=zeros(1,N); 
    Sconv(1:N)=zeros(1,N); 
    voltage_nodes(1:N,1:Node)=zeros(N,Node)+1i*zeros(N,Node); 
    voltage_nodes_real(1:N,1:Node)=zeros(N,Node)+1i*zeros(N,Node); 
    % End allocation 
for h=1:N 
    %h 
    P=Swarm(h).X(1); 
    Q1=Swarm(h).X(2); 
    Q2=Swarm(h).X(3); 
    SL(node1)=P+Q1*1i; 
    SL(node2)=-P+Q2*1i; 

        
%% Ladder iterative method 
% Variables preallocation 
v(1:Node)=zeros; 
I(1:Node,1:Node)=zeros; 
v_treated(1:Node+1)=zeros; 
% Initial start for voltage at terminal nodes 
for nu=1:Node 
    if s{nu}==[0] 
        v(nu)=Ubase/sqrt(3); 
    end 
end 
% Looking for initial node 
nu=1; 



52 
 

while p{nu}~=[0]  
    nu=nu+1; 
end 
init_node=nu; 

  
iter=0; 
stop=0; 
while stop==0 
iter=iter+1; 

  
S(node1)=Sp(node1)+SL(node1); 
S(node2)=Sp(node2)+SL(node2); 

  
% Forward Sweep 
    clear treated 
    treated=0; 
% Looking for a terminal node to start 
nu=1; 
while s{nu}~=[0] 
    nu=nu+1; 
end 
ns=nu; 
I(ns,ns)=(S(ns)/(3*v(ns)))'; 
np=p{ns}; 
I(np,ns)=I(ns,ns); 
v(np)=v(ns)+z(np,ns)*I(np,ns); 
treated(length(treated)+1)=ns; 
ns=np; 
while length(treated)<Node+1 
    if sum(ismember(s{ns},treated))==length(s{ns}) % if the sons of this node 

are treated we treat the node 
        I(ns,ns)=(S(ns)/(3*v(ns)))'; 
        np=p{ns}; 
        if np==[0] % For the case we reach the initial node 
            I(ns)=sum(I(ns,:)); 
        else % We does not still reach the initial node 
            I(np,ns)=sum(I(ns,:)); 
            v(np)=v(ns)+z(np,ns)*I(np,ns); 
        end 
        treated(length(treated)+1)=ns; 
        ns=np; 
    else % if any of the sons of the node are not treated we look for a 

terminal node 
        while s{ns}~=[0] 
            b=1; 
            while ismember(s{ns}(b),treated)==1 
                b=b+1; 
            end 
            ns=s{ns}(b); 
        end 
    end 
end 

  
% 
 dlen=length(nod{init_node}); 
 vo=abs(Ub(init_node)/sqrt(3)); 



53 
 

 for u=1:dlen 
            if nod{init_node}(u)<0 
               tran=abs(nod{init_node}(u)); 
               ratio=rt(tr{tran}(1),tr{tran}(2)); 
               vo=vo*ratio; 
           elseif nod{init_node}(u)>0 
               tran=abs(nod{init_node}(u)); 
               ratio=rt(tr{tran}(1),tr{tran}(2)); 
               vo=vo*(1/ratio); 
           else 
               vo=vo; 
           end 

            
end       

  
if abs(abs(v(init_node))*sqrt(3)-vo*sqrt(3))>Ubase*epsilon   
    % Start backward sweep 
     clear treated_bs 
        clear v_treated 
        v(init_node)=vo; 
        v_treated(1)=0; % The nodes downstream from terminal are considered 

already treated 
        treated_bs(1)=0; % The nodes downstream from terminal are considered 

already treated 
        np=init_node; 
        treated_bs(2)=np; 
        n=2; 
        v_treated(n)=np; 
        m=2; 

  
        while length(treated_bs)~=Node+1 
            % Trip towards terminal node 
            while s{np}~=0 
                b=1; 
                while ismember(s{np}(b),v_treated)==1 
                    b=b+1; 
                end 
                ns=s{np}(b); 
                v(ns)=v(np)-z(np,ns)*I(np,ns); 
                n=n+1; 
                v_treated(n)=ns; 
                if sum(ismember(s{np},v_treated))==length(s{np}) 
                    treated_bs(m)=np; 
                    m=m+1; 
                end 
                np=ns; 
            end 
            treated_bs(m)=np; 
            m=m+1; 
            % Looking for the first node in v_treated still not in treated_bs 
            q=1; 
            while (ismember(v_treated(q),treated_bs)==1) && 

(length(treated_bs)~=Node+1) 
                q=q+1; 
            end 
            np=v_treated(q); 



54 
 

        end 

         
else 
    stop=1; 
end 
end 

  
% Pérdidas por efecto Joule en los conductores 
Losses=0; 
for n=1:1:Node 
 len=length(s{n}); 
 for no=1:1:len 
    ns=s{n}(no); 
  if  s{n}~=(0) 
    Losses=Losses+3*real(z(n,ns))*abs(I(n,ns))^2; 
  end 
 end 
end 

  
% Constraint node voltage 
% Vlim6=0.95; %i added  
% Obj_c1=Vlim6; % Tensión en el nudo 6 no puede ser menor de Vlim6 (expresada 

en pu) 
% if abs(v(6)*sqrt(3))*1/rt25*rt23*rt34/Ub6<Obj_c1 
%     Constrain1=1e6+(abs(v(6)*sqrt(3))*1/rt25*rt23*rt34/Ub6-Obj_c1); % 

Corriente por el conductor que une nudos 5 y 6 no puede ser mayor de 250A 
%     Losses=Losses+Constrain1; 
% end 

  
Swarm(h).Fitness=Losses; 
LossessJh(h)=Losses; 
Lossessh(h)=Losses; 

  
for n=1:Node  
dlen=length(nod{n}); 
voltage_nodes(h,n)=abs(v(n)*sqrt(3))/Ub(n); 
voltage_nodes_real(h,n)=abs(v(n)*sqrt(3)); 
           for u=1:dlen 
           if nod{n}(u)<0 
               tran=abs(nod{n}(u)); 
               ratio=rt(tr{tran}(1),tr{tran}(2)); 
               voltage_nodes(h,n)=voltage_nodes(h,n)*(1/ratio); 
               voltage_nodes_real(h,n)=voltage_nodes_real(h,n)*(1/ratio); 
           elseif nod{n}(u)>0 
               tran=abs(nod{n}(u)); 
               ratio=rt(tr{tran}(1),tr{tran}(2)); 
               voltage_nodes(h,n)=voltage_nodes(h,n)*ratio; 
               voltage_nodes_real(h,n)=voltage_nodes_real(h,n)*ratio; 
           else 
               voltage_nodes(h,n)=voltage_nodes(h,n); 
               voltage_nodes_real(h,n)=voltage_nodes_real(h,n); 
           end 

            
           end            
end 



55 
 

  
end 

  
for h=1:N 
    if Swarm(h).Fitness < Swarm(h).Best_Fitness 
        Swarm(h).Best_Fitness=Swarm(h).Fitness; 
        Swarm(h).Best_Fitness_X=Swarm(h).X; 
        if Swarm(h).Best_Fitness < Swarm_Global.Best_Fitness 
            Swarm_Global.Best_Fitness=Swarm(h).Best_Fitness; 
            Swarm_Global.Best_Fitness_X=Swarm(h).Best_Fitness_X; 
            LossesJbest=LossessJh(h); 
            Lossesbest=Lossessh(h); % Es lo mismo que 

Swarm_Global.Best_Fitness 
            Voltagebest=voltage_nodes(h,node1); 
            Voltagebest6=voltage_nodes(h,node2); 
        end  
    end 
end 

  
for h=1:N 
    r1=random('Uniform',0,1); % randomization 
    r2=random('Uniform',0,1); % randomization 
    Swarm(h).V=w*Swarm(h).V+c1*r1*(Swarm(h).Best_Fitness_X-

Swarm(h).X)+c2*r2*(Swarm_Global.Best_Fitness_X-Swarm(h).X); 
    Swarm(h).X=Swarm(h).X+Swarm(h).V; 
    for t=1:Dim 
        if Swarm(h).X(t)>maxX 
            Swarm(h).X(t)=maxX; 
        else 
            if Swarm(h).X(t)<minX 
                Swarm(h).X(t)=minX; 
            end 
        end 
    end 
end 
end 

  
display(['Optimum Losses ',num2str(round(Swarm_Global.Best_Fitness/100)/10),' 

kW']) 
display(['References: P=', 

num2str(round(Swarm_Global.Best_Fitness_X(1)/100)/10), ' kW; Q1=', 

num2str(round(Swarm_Global.Best_Fitness_X(2)/100)/10), 'kvar; Q2=', 

num2str(round(Swarm_Global.Best_Fitness_X(3)/100)/10), 'kvar']) 

 

6-node data m.file (chapter 4) 
clear all 
% Node list 
N=6; 
Node=6; 

  
%% Choose the 2 nodes for the LFP control 
node1=4; 
node2=6; 



56 
 

  
%% PSO caracteristics for coefficient 
N1_data=15; % particle number 
%N1_data=1; 
itmax1_data=90 ; 
%itmax1_data=1; % no. de iteraciones 
Dim1_data=3; 
minX1_data=1.3; 
maxX1_data=1.6; 
minV1_data=-minX1_data/10; 
maxV1_data=minX1_data/10; 

  
minX2_data=0.6; 
maxX2_data=1.8; 
minV2_data=-minX2_data/10; 
maxV2_data=minX2_data/10; 

  
w_1_data = 0.729/10; % inertia weight 
c_1_data = 1.49445/10; % cognitive weight 
c_2_data = 1.49445/10; % social weight 
%% PSO and Ladder caracteristics 
N_data=20; % particle number 
%N=1; 
%itmax_data=70; 
%itmax=1; % no. de iteraciones 
Dim_data=3; 
minX_data=-10e6; 
maxX_data=10e6; 
minV_data=-maxX_data; 
maxV_data=maxX_data; 

  
w_data = 0.729; % inertia weight 
c1_data = 1.49445; % cognitive weight 
c2_data = 1.49445; % social weight 

  
epsilon_data=0.0001; % Tolerance for convergence (in per unit) 
%epsilon_data=0.000000000001; % Tolerance for convergence (in per unit) 

  
%% accuracy 
Pacc_data=-2.322373547904614e+06; 
Q1acc_data=-7.646484135096628e+06; 
Q2acc_data=-4.565359650387196e+06; 
lossesacc_data=1.292945219010391e+06; 

  
acc_data=0.01; % 1% 
acc1_data=0.01; 

  
%% Sons of the different nodes. [0] means it is a terminal node. 
s{1}=[2]; 
s{2}=[3,5]; 
s{3}=[4]; 
s{4}=[0]; 
s{5}=[6]; 
s{6}=[0]; 

  



57 
 

%% Parents (this should be built automatically) 
for n=1:Node 
p{n}=[0]; 
end 
for n=1:Node 
    len=length(s{n}); 
    for no=1:len 
        if s{n}(no)~=0 
        p{s{n}(no)}=[n]; 
        end 
    end 
end 

  
%% Loads 
S(1)=(20+25i)*1e6; 
S(2)=(84+26i)*1e6; 
S(3)=(34+12i)*1e6; 
S(4)=(7.5+5i)*1e6; 
S(5)=(52+39i)*1e6; 
S(6)=(1.3+2i)*1e6; 

  
%% Base Values 
Ubase=13.8e3; % Tomado como general del sistema 
Ub(1)=220e3;    % Nodo 1 
Ub(2)=132e3;    % Nodo 2 
Ub(3)=30e3;     % Nodo 3 
Ub(4)=Ubase;    % Nodo 4 
Ub(5)=Ubase;    % Nodo 5 
Ub(6)=Ubase;    % Nodo 6 

  
%% Transformers 
% Datos de los transformadores (potencia nominal, número y ecc) 
Sn(1:N,1:N)=zeros; 
Sn(1,2)=270e6; 
Nt(1,2)=2; 
Sn(2,3)=37.5e6; 
Nt(2,3)=3; 
Sn(2,5)=50e6; 
Nt(2,5)=3; 
Sn(3,4)=10e6; 
Nt(3,4)=1; 
% Taps de los trafos 
tap(1,2)=0.01; 
tap(2,3)=0; 
tap(3,4)=-0.01; 
tap(2,5)=-0.035; 
% Impedancias de los trafos lado aguas arriba 
eRcc(1,2)=0.0090; 
eXcc(1,2)=0.1297; 
eRcc(2,3)=0.0090; 
eXcc(2,3)=0.0895; 
eRcc(2,5)=0.0092; 
eXcc(2,5)=0.0795; 
eRcc(3,4)=0.0095; 
eXcc(3,4)=0.0476; 

  



58 
 

% Reference base node 
tr{1}=[1,2]; 
tr{2}=[2,3]; 
tr{3}=[2,5]; 
tr{4}=[3,4]; 

  
nref=4; % node 4 
% transformers from the node to the node reference 
% trasnformer number and +(to primary of transformer 1/rt) - (to secondary 
% rt) and 0 if no ratio transformation needed 
d{1,2}=[1,2,4]; 
d{2,3}=[2,4]; 
d{2,5}=[2 4]; 
d{3,4}=[4]; 
d{5,6}=[2,-3,4]; 

  
nod{1}=[1,2,4]; 
nod{2}=[2,4]; 
nod{3}=[4]; 
nod{4}=[0]; 
nod{5}=[2,-3,4]; 
nod{6}=[2,-3,4]; 

  
%% Lines  
% (lengths) 
l_(1,2)=4700e-3; 
l_(2,3)=1500e-3; 
l_(2,5)=0e-3; 
l_(3,4)=300e-3; 
l_(5,6)=1800e-3; 

  
% (pu impedance) 
zc_(1,2)=0.025+0.240i; 
zc_(2,3)=0.161+0.151i; 
zc_(2,5)=0.062+0.165i; 
zc_(3,4)=0.568+0.133i; 
zc_(5,6)=0.161+0.112i; 
% Lines (impedances) 
zl(1,2)=(l_(1,2)*zc_(1,2)); 
zl(2,3)=(l_(2,3)*zc_(2,3)); 
zl(2,5)=(l_(2,5)*zc_(2,5)); 
zl(3,4)=(l_(3,4)*zc_(3,4)); 
zl(5,6)=(l_(5,6)*zc_(5,6)); 

 

Chapter 4 m.file 
clear all 
dist_grid_data_6node_task2; 

  
%% accuracy 
Pacc=Pacc_data; 
Q1acc=Q1acc_data; 
Q2acc=Q2acc_data; 
lossesacc=lossesacc_data; 



59 
 

  
acc=acc_data; % 1% 
acc1=acc1_data; 

  
%% RECEPCIÓN DE DATOS 
Sp(node1)=S(node1); 
Sp(node2)=S(node2); 

  
%% Transformer caracteristic 
% Transformer relation and impedences 
rt(1:Node,1:Node)=zeros; 
zt(1:Node,1:Node)=zeros; 
for n=1:1:Node 
 len=length(s{n}); 
 for no=1:1:len 
    ns=s{n}(no); 
  if  s{n}~=(0) 
    if Sn(n,ns)~=0 
    rt(n,ns)=Ub(n)/(Ub(ns)*(1+tap(n,ns))); 
    zt(n,ns)=Ub(n)^2/Sn(n,ns)*(eRcc(n,ns)+eXcc(n,ns)*1i)*1/Nt(n,ns); 
    end 
  end 
 end 
end 

  
% Total impedances 
% Reference base voltage Ubase 13.8 KV 
z(1:Node,1:Node)=zeros; 
for n=1:Node 
  len=length(s{n});   
  for no=1:len 
      ns=s{n}(no); 
      if  s{n}~=(0) 
        z(n,ns)=zl(n,ns)+zt(n,ns); 
      end 
  end     
end 

  
for n=1:Node 
  len=length(s{n});   
  for no=1:len 
      ns=s{n}(no); 
       if  s{n}~=(0) 
           dlen=length(d{n,ns}); 
           for u=1:dlen 
           if d{n,ns}(u)<0 
               tran=abs(d{n,ns}(u)); 
               ratio=rt(tr{tran}(1),tr{tran}(2)); 
               z(n,ns)=z(n,ns)*ratio^2; 
           elseif d{n,ns}(u)>0 
               tran=abs(d{n,ns}(u)); 
               ratio=rt(tr{tran}(1),tr{tran}(2)); 
               z(n,ns)=z(n,ns)*(1/ratio)^2; 
           else 
               z(n,ns)=z(n,ns); 
           end 



60 
 

            
           end 

            
       end 
  end 
end 

  
%% SE CALCULA LA TENSIÓN MEDIANTE LADDER 

  
% Ladder iterative method 
epsilon=epsilon_data; % Tolerance for convergence (in per unit) 

  
%% PARTICLE SWARM OPTIMIZATION for coeff opt 
N1=N1_data; % particle number 
itmax1=itmax1_data ; % no. de iteraciones 
Dim1=Dim1_data; 
minX1=minX1_data; 
maxX1=maxX1_data; 
minV1=minV1_data; 
maxV1=maxV1_data; 

  
minX2=minX2_data; 
maxX2=maxX2_data; 
minV2=minV2_data; 
maxV2=maxV2_data; 

  
w_1 = w_1_data; % inertia weight 
c_1 = c_1_data; % cognitive weight 
c_2 = c_2_data; % social weight 

  
% Allocation 
X1dat(1:N1)={zeros(1,3)}; 
V1dat(1:N1)={zeros(1,3)}; 
%X1dat(1:N1)={[1 1]}; 
%V1dat(1:N1)={[1 1]}; 

  
Swarm1=struct('X1',X1dat,'V1',V1dat,'Best_Fitness1',inf); 
% End allocation 
%Swarm(1).X=[0,0,0]; 
for h1=2:N1 
    

Swarm1(h1).X1=[random('Uniform',minX2,maxX2),random('Uniform',minX1,maxX1),ra

ndom('Uniform',minX1,maxX1)]; 
end 
for h1=1:N1 
    

Swarm1(h1).V1=[random('Uniform',minV2,maxV2),random('Uniform',minV1,maxV1),ra

ndom('Uniform',minV1,maxV1)]; 
end 
for h1=1:N1 
    Swarm1(h1).Best_Fitness1=inf; % Inicialización del best_fitness a un 

valor infinito 
end 
Swarm_Global1.Best_Fitness1=inf; % Inicialización del Global_best_fitness a 

un valor infinito 



61 
 

  
for it1=1:itmax1 
    %it1 
for h1=1:N1 
    %h 
    if Swarm1(h1).X1(1)==0 && Swarm1(h1).X1(2)==0 && Swarm1(h1).X1(3)==0 
    w = 0.729; % inertia weight 
    c1 = 1.49445; % cognitive weight 
    c2 = 1.49445; % social weight 
    Swarm1(h1).X1(1)=w; 
    Swarm1(h1).X1(2)=c1; 
    Swarm1(h1).X1(3)=c2; 
    else 
    w=Swarm1(h1).X1(1); 
    c1=Swarm1(h1).X1(2); 
    c2=Swarm1(h1).X1(3); 
    end 

     
%avg=0; 
%avg1=0; 
%for c=1:5 

   
%-------------------------------------------------------------------------- 
%% PARTICLE SWARM OPTIMIZATION for the feeder 
N=N_data; % particle number 
%itmax=itmax_data;% no. de iteraciones 
Dim=Dim_data; 
minX=minX_data; 
maxX=maxX_data; 
minV=minV_data; 
maxV=maxV_data; 

  
% Allocation 
Xdat(1:N)={zeros(1,3)}; 
Vdat(1:N)={zeros(1,3)}; 
Swarm=struct('X',Xdat,'V',Vdat,'Best_Fitness',inf); 
% End allocation 

  
%Swarm(1).X=[0,0,0]; 
for h=2:N 
    

Swarm(h).X=[random('Uniform',minX,maxX),random('Uniform',minX,maxX),random('U

niform',minX,maxX)]; 
end 
for h=1:N 
    

Swarm(h).V=[random('Uniform',minV,maxV),random('Uniform',minV,maxV),random('U

niform',minV,maxV)]; 
end 
for h=1:N 
    Swarm(h).Best_Fitness=inf; % Inicialización del best_fitness a un valor 

infinito 
end 
Swarm_Global.Best_Fitness=inf; % Inicialización del Global_best_fitness a un 

valor infinito 

  



62 
 

%for it=1:itmax 
it=0; 
convergence=0; 
while convergence==0 
    it=it+1; 
%    it 
    % Allocation 
    Current(1:N)=zeros(1,N); 
    Sconv(1:N)=zeros(1,N); 
    voltage_nodes(1:N,1:Node)=zeros(N,Node)+1i*zeros(N,Node); 
    voltage_nodes_real(1:N,1:Node)=zeros(N,Node)+1i*zeros(N,Node); 
    % End allocation 
for h=1:N 
    %h 
    P=Swarm(h).X(1); 
    Q1=Swarm(h).X(2); 
    Q2=Swarm(h).X(3); 
    SL(node1)=P+Q1*1i; 
    SL(node2)=-P+Q2*1i; 

         
%% Ladder iterative method 
% Variables preallocation 
v(1:Node)=zeros; 
I(1:Node,1:Node)=zeros; 
v_treated(1:Node+1)=zeros; 
% Initial start for voltage at terminal nodes 
for nu=1:Node 
    if s{nu}==[0] 
        v(nu)=Ubase/sqrt(3); 
    end 
end 
% Looking for initial node 
nu=1; 
while p{nu}~=[0]  
    nu=nu+1; 
end 
init_node=nu; 

  
iter=0; 
stop=0; 
while stop==0 
iter=iter+1; 

  
S(node1)=Sp(node1)+SL(node1); 
S(node2)=Sp(node2)+SL(node2); 

  
% Forward Sweep 
    clear treated 
    treated=0; 
% Looking for a terminal node to start 
nu=1; 
while s{nu}~=[0] 
    nu=nu+1; 
end 
ns=nu; 
I(ns,ns)=(S(ns)/(3*v(ns)))'; 



63 
 

np=p{ns}; 
I(np,ns)=I(ns,ns); 
v(np)=v(ns)+z(np,ns)*I(np,ns); 
treated(length(treated)+1)=ns; 
ns=np; 
while length(treated)<Node+1 
    if sum(ismember(s{ns},treated))==length(s{ns}) % if the sons of this node 

are treated we treat the node 
        I(ns,ns)=(S(ns)/(3*v(ns)))'; 
        np=p{ns}; 
        if np==[0] % For the case we reach the initial node 
            I(ns)=sum(I(ns,:)); 
        else % We does not still reach the initial node 
            I(np,ns)=sum(I(ns,:)); 
            v(np)=v(ns)+z(np,ns)*I(np,ns); 
        end 
        treated(length(treated)+1)=ns; 
        ns=np; 
    else % if any of the sons of the node are not treated we look for a 

terminal node 
        while s{ns}~=[0] 
            b=1; 
            while ismember(s{ns}(b),treated)==1 
                b=b+1; 
            end 
            ns=s{ns}(b); 
        end 
    end 
end 

  
% 
 dlen=length(nod{init_node}); 
 vo=abs(Ub(init_node)/sqrt(3)); 
 for u=1:dlen 
            if nod{init_node}(u)<0 
               tran=abs(nod{init_node}(u)); 
               ratio=rt(tr{tran}(1),tr{tran}(2)); 
               vo=vo*ratio; 
           elseif nod{init_node}(u)>0 
               tran=abs(nod{init_node}(u)); 
               ratio=rt(tr{tran}(1),tr{tran}(2)); 
               vo=vo*(1/ratio); 
           else 
               vo=vo; 
           end 

            
end       

  
if abs(abs(v(init_node))*sqrt(3)-vo*sqrt(3))>Ubase*epsilon   
    % Start backward sweep 
     clear treated_bs 
        clear v_treated 
        v(init_node)=vo; 
        v_treated(1)=0; % The nodes downstream from terminal are considered 

already treated 



64 
 

        treated_bs(1)=0; % The nodes downstream from terminal are considered 

already treated 
        np=init_node; 
        treated_bs(2)=np; 
        n=2; 
        v_treated(n)=np; 
        m=2; 

  
        while length(treated_bs)~=Node+1 
            % Trip towards terminal node 
            while s{np}~=0 
                b=1; 
                while ismember(s{np}(b),v_treated)==1 
                    b=b+1; 
                end 
                ns=s{np}(b); 
                v(ns)=v(np)-z(np,ns)*I(np,ns); 
                n=n+1; 
                v_treated(n)=ns; 
                if sum(ismember(s{np},v_treated))==length(s{np}) 
                    treated_bs(m)=np; 
                    m=m+1; 
                end 
                np=ns; 
            end 
            treated_bs(m)=np; 
            m=m+1; 
            % Looking for the first node in v_treated still not in treated_bs 
            q=1; 
            while (ismember(v_treated(q),treated_bs)==1) && 

(length(treated_bs)~=Node+1) 
                q=q+1; 
            end 
            np=v_treated(q); 
        end 

  
else 
    stop=1; 
end 
end 

  
% Pérdidas por efecto Joule en los conductores 
Losses=0; 
for n=1:1:Node 
 len=length(s{n}); 
 for no=1:1:len 
    ns=s{n}(no); 
  if  s{n}~=(0) 
    Losses=Losses+3*real(z(n,ns))*abs(I(n,ns))^2; 
  end 
 end 
end 

  
% Constraint node voltage 
% Vlim6=0.95; %i added  



65 
 

% Obj_c1=Vlim6; % Tensión en el nudo 6 no puede ser menor de Vlim6 (expresada 

en pu) 
% if abs(v(6)*sqrt(3))*1/rt25*rt23*rt34/Ub6<Obj_c1 
%     Constrain1=1e6+(abs(v(6)*sqrt(3))*1/rt25*rt23*rt34/Ub6-Obj_c1); % 

Corriente por el conductor que une nudos 5 y 6 no puede ser mayor de 250A 
%     Losses=Losses+Constrain1; 
% end 

  
Swarm(h).Fitness=Losses; 
LossessJh(h)=Losses; 
Lossessh(h)=Losses; 

  
% for n=1:Node  
% dlen=length(nod{n}); 
% voltage_nodes(h,n)=abs(v(n)*sqrt(3))/Ub(n); 
% voltage_nodes_real(h,n)=abs(v(n)*sqrt(3)); 
%            for u=1:dlen 
%            if nod{n}(u)<0 
%                tran=abs(nod{n}(u)); 
%                ratio=rt(tr{tran}(1),tr{tran}(2)); 
%                voltage_nodes(h,n)=voltage_nodes(h,n)*(1/ratio); 
%                voltage_nodes_real(h,n)=voltage_nodes_real(h,n)*(1/ratio); 
%            elseif nod{n}(u)>0 
%                tran=abs(nod{n}(u)); 
%                ratio=rt(tr{tran}(1),tr{tran}(2)); 
%                voltage_nodes(h,n)=voltage_nodes(h,n)*ratio; 
%                voltage_nodes_real(h,n)=voltage_nodes_real(h,n)*ratio; 
%            else 
%                voltage_nodes(h,n)=voltage_nodes(h,n); 
%                voltage_nodes_real(h,n)=voltage_nodes_real(h,n); 
%            end 
%             
%            end            
% end 

  
end 

  
for h=1:N 
    if Swarm(h).Fitness < Swarm(h).Best_Fitness 
        Swarm(h).Best_Fitness=Swarm(h).Fitness; 
        Swarm(h).Best_Fitness_X=Swarm(h).X; 
        if Swarm(h).Best_Fitness < Swarm_Global.Best_Fitness 
            Swarm_Global.Best_Fitness=Swarm(h).Best_Fitness; 
            Swarm_Global.Best_Fitness_X=Swarm(h).Best_Fitness_X;            
            LossesJbest=LossessJh(h); 
            Lossesbest=Lossessh(h); % Es lo mismo que 

Swarm_Global.Best_Fitness 
            Voltagebest=voltage_nodes(h,node1); 
            Voltagebest6=voltage_nodes(h,node2); 
        end  
    end 
end 

  
for h=1:N 
    r1=random('Uniform',0,1); % randomization 
    r2=random('Uniform',0,1); % randomization 



66 
 

    Swarm(h).V=w*Swarm(h).V+c1*r1*(Swarm(h).Best_Fitness_X-

Swarm(h).X)+c2*r2*(Swarm_Global.Best_Fitness_X-Swarm(h).X); 
    Swarm(h).X=Swarm(h).X+Swarm(h).V; 
    for t=1:Dim 
        if Swarm(h).X(t)>2*maxX 
            Swarm(h).X(t)=2*maxX; 
        else 
            if Swarm(h).X(t)<2*minX 
                Swarm(h).X(t)=2*minX; 
            end 
        end 
    end 
end 

  

  
% end while 
%accuracy 
P_best=Swarm_Global.Best_Fitness_X(1); 
Q1_best=Swarm_Global.Best_Fitness_X(2); 
Q2_best=Swarm_Global.Best_Fitness_X(3); 
Accu_P=abs((Pacc-P_best)/Pacc); 
Accu_Q1=abs((Q1acc-Q1_best)/Q1acc); 
Accu_Q2=abs((Q2acc-Q2_best)/Q2acc); 

  
Acc_matrix=[Accu_P,Accu_Q1,Accu_Q2]; 
precision=100*max(Acc_matrix); 
%     Accu_P 
%     Accu_Q1 
%     Accu_Q2 

  
if Accu_P<acc && Accu_Q1<acc && Accu_Q2<acc 
    convergence=1; 
elseif it==201 
    convergence=1; 

     
else 
    convergence=0; 
end 
end 

  
display(['Optimum Losses ',num2str(round(Swarm_Global.Best_Fitness/100)/10),' 

kW']) 
display(['References: P=', 

num2str(round(Swarm_Global.Best_Fitness_X(1)/100)/10), ' kW; Q1=', 

num2str(round(Swarm_Global.Best_Fitness_X(2)/100)/10), 'kvar; Q2=', 

num2str(round(Swarm_Global.Best_Fitness_X(3)/100)/10), 'kvar']) 
it 
%-------------------------------------------------------------------------- 
%% rest of PARTICLE SWARM OPTIMIZATION for coeff opt 
telapsed=it+precision; 
num_iteration=it; 

  
%accuracy 
Swarm1(h1).Fitness2=Swarm_Global.Best_Fitness_X(1); %P 
Swarm1(h1).Fitness3=Swarm_Global.Best_Fitness_X(2); %Q1 



67 
 

Swarm1(h1).Fitness4=Swarm_Global.Best_Fitness_X(3); %Q2 
Swarm1(h1).Fitness5=Swarm_Global.Best_Fitness; %losses 

  
%accuracy calculation 
Acc_P(h1)=abs((Pacc-Swarm1(h1).Fitness2)/Pacc); 
Acc_Q1(h1)=abs((Q1acc-Swarm1(h1).Fitness3)/Q1acc); 
Acc_Q2(h1)=abs((Q2acc-Swarm1(h1).Fitness4)/Q2acc); 
Acc_losses(h1)=abs((lossesacc-Swarm1(h1).Fitness5)/lossesacc); 

  
%time 
Swarm1(h1).Fitness1=telapsed; 
Swarm1(h1).Fitness6=num_iteration; 

  
if Acc_P(h1)<acc1 && Acc_Q1(h1)<acc1 && Acc_Q2(h1)<acc1 && 

Acc_losses(h1)<acc1 
%display('nothing'); % do nothing 
else 
   Swarm1(h1).Fitness1=1e8;  
end 

  
%avg=avg+Swarm1(h1).Fitness1; 
%avg1=avg1+Swarm1(h1).Fitness6; 
%end 
%Swarm1(h1).Fitness1=avg/5; 
%Swarm1(h1).Fitness6=avg1/5; 
end 

  
for h1=1:N1 
    h1 
    Part_iter=Swarm1(h1).X1 

    
    if Acc_P(h1)<acc1 && Acc_Q1(h1)<acc1 && Acc_Q2(h1)<acc1 && 

Acc_losses(h1)<acc1 
        display('Valid')      
    else 
%        Swarm1(h1).Fitness1=1e8; 
        display('not valid') 
    end 

     
    Swarm1(h1).Fitness1=mean(Swarm1(h1).Fitness1); 

     
    if Swarm1(h1).Fitness1 < Swarm1(h1).Best_Fitness1 
        Swarm1(h1).Best_Fitness1=Swarm1(h1).Fitness1; 
        Swarm1(h1).Best_Fitness2=Swarm1(h1).Fitness6; 
        Swarm1(h1).Best_Fitness1_X=Swarm1(h1).X1; 
        if Swarm1(h1).Best_Fitness1 < Swarm_Global1.Best_Fitness1 
            Swarm_Global1.Best_Fitness1=Swarm1(h1).Best_Fitness1; 
            Swarm_Global1.Best_Fitness2=Swarm1(h1).Best_Fitness2; 
            Swarm_Global1.Best_Fitness1_X=Swarm1(h1).Best_Fitness1_X; 
        end  
    end 

     
end 

  
for h1=1:N1 



68 
 

    r1=random('Uniform',0,1); % randomization 
    r2=random('Uniform',0,1); % randomization 
    Swarm1(h1).V1=w_1*Swarm1(h1).V1+c_1*r1*(Swarm1(h1).Best_Fitness1_X-

Swarm1(h1).X1)+c_2*r2*(Swarm_Global1.Best_Fitness1_X-Swarm1(h1).X1); 

  
%         t=1; 
%         if Swarm(h).V(t)>2*maxV2 
%             Swarm(h).V(t)=2*maxV2; 
%         else 
%             if Swarm(h).V(t)<2*minV2 
%                 Swarm(h).V(t)=2*minV2; 
%             end 
%         end 
%     for t=2:Dim1 
%         if Swarm(h).V(t)>2*maxV1 
%             Swarm(h).V(t)=2*maxV1; 
%         else 
%             if Swarm(h).V(t)<2*minV1 
%                 Swarm(h).V(t)=2*minV1; 
%             end 
%         end 
%     end 

    
    Swarm1(h1).X1=Swarm1(h1).X1+Swarm1(h1).V1; 

     
%         t=1; 
%         if Swarm1(h1).X1(t)>2*maxX2 
%             Swarm1(h1).X1(t)=2*maxX2; 
%         else 
%             if Swarm1(h1).X1(t)<2*minX2 
%                 Swarm1(h1).X1(t)=2*minX2; 
%             end 
%         end 
%     for t=2:Dim1 
%         if Swarm1(h1).X1(t)>2*maxX1 
%             Swarm1(h1).X1(t)=2*maxX1; 
%         else 
%             if Swarm1(h1).X1(t)<2*minX1 
%                 Swarm1(h1).X1(t)=2*minX1; 
%             end 
%         end 
%     end 
end 

  
end 

  
display(['Optimum Time ',num2str(round(Swarm_Global1.Best_Fitness1)),' 

secondes']) 
display(['Optimum number of iteration 

',num2str(round(Swarm_Global1.Best_Fitness2)),' number']) 
display(['References: w_1=', num2str(Swarm_Global1.Best_Fitness1_X(1)), ' 

number; c_1=', num2str(Swarm_Global1.Best_Fitness1_X(2)), 'number; c_2=', 

num2str(Swarm_Global1.Best_Fitness1_X(3)), 'number']) 

 

 



69 
 

Chapter 5 m.file 
clear all 
dist_grid_data_6node; 
%task3_loadalloc; 

  
%% RECEPCIÓN DE DATOS 
Sp(node1)=S(node1); 
Sp(node2)=S(node2); 

  
%% importing from excel 
filename='dailyLoad'; 
sheet=1; 

  
num=xlsread(filename,sheet);  

  
%% Transformer caracteristic 
% Transformer relation and impedences 
rt(1:Node,1:Node)=zeros; 
zt(1:Node,1:Node)=zeros; 
for n=1:1:Node 
 len=length(s{n}); 
 for no=1:1:len 
    ns=s{n}(no); 
  if  s{n}~=(0) 
    if Sn(n,ns)~=0 
    rt(n,ns)=Ub(n)/(Ub(ns)*(1+tap(n,ns))); 
    zt(n,ns)=Ub(n)^2/Sn(n,ns)*(eRcc(n,ns)+eXcc(n,ns)*1i)*1/Nt(n,ns); 
    end 
  end 
 end 
end 

  
% Total impedances 
% Reference base voltage Ubase 13.8 KV 
z(1:Node,1:Node)=zeros; 
for n=1:Node 
  len=length(s{n});   
  for no=1:len 
      ns=s{n}(no); 
      if  s{n}~=(0) 
        z(n,ns)=zl(n,ns)+zt(n,ns); 
      end 
  end     
end 

  
for n=1:Node 
  len=length(s{n});   
  for no=1:len 
      ns=s{n}(no); 
       if  s{n}~=(0) 
           dlen=length(d{n,ns}); 
           for u=1:dlen 
           if d{n,ns}(u)<0 
               tran=abs(d{n,ns}(u)); 



70 
 

               ratio=rt(tr{tran}(1),tr{tran}(2)); 
               z(n,ns)=z(n,ns)*ratio^2; 
           elseif d{n,ns}(u)>0 
               tran=abs(d{n,ns}(u)); 
               ratio=rt(tr{tran}(1),tr{tran}(2)); 
               z(n,ns)=z(n,ns)*(1/ratio)^2; 
           else 
               z(n,ns)=z(n,ns); 
           end 

            
           end 

            
       end 
  end 
end 

  
%% SE CALCULA LA TENSIÓN MEDIANTE LADDER 

  
% Ladder iterative method 
epsilon=epsilon_data; % Tolerance for convergence (in per unit) 

  
%initial 
eloss=0; 
Total_elosses=0; 
t_delta_previous=0; 
total_delta=0; 
S1max=0; 
S2max=0; 

  
% number of timetable 
timetable=0; 
sample_tt=1; 
while num(sample_tt,1)~=0 
 timetable=timetable+1; 
 sample_tt=sample_tt+1; 
end 

  
for sample_t=1:timetable 
% time difference     
t_1=num(sample_t,1); 
t_2=num(sample_t+1,1); 
if t_2==0 
    t_delta=t_delta_previous; 
else 
t_delta=t_2-t_1; 
end 

  
%% load allocation 
for n=1:Node 
pn(n)=num(sample_t,2*n); 
qn(n)=num(sample_t,(2*n)+1); 
S(n)=pn(n)+1i*qn(n); 
end 

  
%--------------------------------------------------------------------------- 



71 
 

%% PARTICLE SWARM OPTIMIZATION 
N=N_data; % particle number 
itmax=itmax_data; % no. de iteraciones 
Dim=Dim_data; 
minX=minX_data; 
maxX=maxX_data; 
minV=minV_data; 
maxV=maxV_data; 

  
w = w_data; % inertia weight 
c1 = c1_data; % cognitive weight 
c2 = c2_data; % social weight 

  
% Allocation 
Xdat(1:N)={zeros(1,3)}; 
Vdat(1:N)={zeros(1,3)}; 
Swarm=struct('X',Xdat,'V',Vdat,'Best_Fitness',inf); 
% End allocation 

  
%Swarm(1).X=[0,0,0]; 
for h=2:N 
    

Swarm(h).X=[random('Uniform',minX,maxX),random('Uniform',minX,maxX),random('U

niform',minX,maxX)]; 
end 
for h=1:N 
    

Swarm(h).V=[random('Uniform',minV,maxV),random('Uniform',minV,maxV),random('U

niform',minV,maxV)]; 
end 
for h=1:N 
    Swarm(h).Best_Fitness=inf; % Inicialización del best_fitness a un valor 

infinito 
end 
Swarm_Global.Best_Fitness=inf; % Inicialización del Global_best_fitness a un 

valor infinito 
for it=1:itmax 
    %it 
    % Allocation 
    Current(1:N)=zeros(1,N); 
    Sconv(1:N)=zeros(1,N); 
    voltage_nodes(1:N,1:Node)=zeros(N,Node)+1i*zeros(N,Node); 
    voltage_nodes_real(1:N,1:Node)=zeros(N,Node)+1i*zeros(N,Node); 
    % End allocation 
for h=1:N 
    %h 
    P=Swarm(h).X(1); 
    Q1=Swarm(h).X(2); 
    Q2=Swarm(h).X(3); 
    SL(node1)=P+Q1*1i; 
    SL(node2)=-P+Q2*1i; 

         
%% Ladder iterative method 
% Variables preallocation 
v(1:Node)=zeros; 
I(1:Node,1:Node)=zeros; 



72 
 

v_treated(1:Node+1)=zeros; 
% Initial start for voltage at terminal nodes 
for nu=1:Node 
    if s{nu}==[0] 
        v(nu)=Ubase/sqrt(3); 
    end 
end 
% Looking for initial node 
nu=1; 
while p{nu}~=[0]  
    nu=nu+1; 
end 
init_node=nu; 

  
iter=0; 
stop=0; 
while stop==0 
iter=iter+1; 

  
S(node1)=Sp(node1)+SL(node1); 
S(node2)=Sp(node2)+SL(node2); 

  
% Forward Sweep 
    clear treated 
    treated=0; 
% Looking for a terminal node to start 
nu=1; 
while s{nu}~=[0] 
    nu=nu+1; 
end 
ns=nu; 
I(ns,ns)=(S(ns)/(3*v(ns)))'; 
np=p{ns}; 
I(np,ns)=I(ns,ns); 
v(np)=v(ns)+z(np,ns)*I(np,ns); 
treated(length(treated)+1)=ns; 
ns=np; 
while length(treated)<Node+1 
    if sum(ismember(s{ns},treated))==length(s{ns}) % if the sons of this node 

are treated we treat the node 
        I(ns,ns)=(S(ns)/(3*v(ns)))'; 
        np=p{ns}; 
        if np==[0] % For the case we reach the initial node 
            I(ns)=sum(I(ns,:)); 
        else % We does not still reach the initial node 
            I(np,ns)=sum(I(ns,:)); 
            v(np)=v(ns)+z(np,ns)*I(np,ns); 
        end 
        treated(length(treated)+1)=ns; 
        ns=np; 
    else % if any of the sons of the node are not treated we look for a 

terminal node 
        while s{ns}~=[0] 
            b=1; 
            while ismember(s{ns}(b),treated)==1 
                b=b+1; 



73 
 

            end 
            ns=s{ns}(b); 
        end 
    end 
end 

  
% 
 dlen=length(nod{init_node}); 
 vo=abs(Ub(init_node)/sqrt(3)); 
 for u=1:dlen 
            if nod{init_node}(u)<0 
               tran=abs(nod{init_node}(u)); 
               ratio=rt(tr{tran}(1),tr{tran}(2)); 
               vo=vo*ratio; 
           elseif nod{init_node}(u)>0 
               tran=abs(nod{init_node}(u)); 
               ratio=rt(tr{tran}(1),tr{tran}(2)); 
               vo=vo*(1/ratio); 
           else 
               vo=vo; 
           end 

            
end       

  
if abs(abs(v(init_node))*sqrt(3)-vo*sqrt(3))>Ubase*epsilon   
    % Start backward sweep 
     clear treated_bs 
        clear v_treated 
        v(init_node)=vo; 
        v_treated(1)=0; % The nodes downstream from terminal are considered 

already treated 
        treated_bs(1)=0; % The nodes downstream from terminal are considered 

already treated 
        np=init_node; 
        treated_bs(2)=np; 
        n=2; 
        v_treated(n)=np; 
        m=2; 

  
        while length(treated_bs)~=Node+1 
            % Trip towards terminal node 
            while s{np}~=0 
                b=1; 
                while ismember(s{np}(b),v_treated)==1 
                    b=b+1; 
                end 
                ns=s{np}(b); 
                v(ns)=v(np)-z(np,ns)*I(np,ns); 
                n=n+1; 
                v_treated(n)=ns; 
                if sum(ismember(s{np},v_treated))==length(s{np}) 
                    treated_bs(m)=np; 
                    m=m+1; 
                end 
                np=ns; 
            end 



74 
 

            treated_bs(m)=np; 
            m=m+1; 
            % Looking for the first node in v_treated still not in treated_bs 
            q=1; 
            while (ismember(v_treated(q),treated_bs)==1) && 

(length(treated_bs)~=Node+1) 
                q=q+1; 
            end 
            np=v_treated(q); 
        end 

    
else 
    stop=1; 
end 
end 

  
% Pérdidas por efecto Joule en los conductores 
Losses=0; 
for n=1:1:Node 
 len=length(s{n}); 
 for no=1:1:len 
    ns=s{n}(no); 
  if  s{n}~=(0) 
    Losses=Losses+3*real(z(n,ns))*abs(I(n,ns))^2; 
  end 
 end 
end 

  
% Constraint node voltage 
% Vlim6=0.95; %i added  
% Obj_c1=Vlim6; % Tensión en el nudo 6 no puede ser menor de Vlim6 (expresada 

en pu) 
% if abs(v(6)*sqrt(3))*1/rt25*rt23*rt34/Ub6<Obj_c1 
%     Constrain1=1e6+(abs(v(6)*sqrt(3))*1/rt25*rt23*rt34/Ub6-Obj_c1); % 

Corriente por el conductor que une nudos 5 y 6 no puede ser mayor de 250A 
%     Losses=Losses+Constrain1; 
% end 

  
Swarm(h).Fitness=Losses; 
LossessJh(h)=Losses; 
Lossessh(h)=Losses; 

  
for n=1:Node  
dlen=length(nod{n}); 
voltage_nodes(h,n)=abs(v(n)*sqrt(3))/Ub(n); 
voltage_nodes_real(h,n)=abs(v(n)*sqrt(3)); 
           for u=1:dlen 
           if nod{n}(u)<0 
               tran=abs(nod{n}(u)); 
               ratio=rt(tr{tran}(1),tr{tran}(2)); 
               voltage_nodes(h,n)=voltage_nodes(h,n)*(1/ratio); 
               voltage_nodes_real(h,n)=voltage_nodes_real(h,n)*(1/ratio); 
           elseif nod{n}(u)>0 
               tran=abs(nod{n}(u)); 
               ratio=rt(tr{tran}(1),tr{tran}(2)); 
               voltage_nodes(h,n)=voltage_nodes(h,n)*ratio; 



75 
 

               voltage_nodes_real(h,n)=voltage_nodes_real(h,n)*ratio; 
           else 
               voltage_nodes(h,n)=voltage_nodes(h,n); 
               voltage_nodes_real(h,n)=voltage_nodes_real(h,n); 
           end 

            
           end            
end 

  
end 

  
for h=1:N 
    if Swarm(h).Fitness < Swarm(h).Best_Fitness 
        Swarm(h).Best_Fitness=Swarm(h).Fitness; 
        Swarm(h).Best_Fitness_X=Swarm(h).X; 
        if Swarm(h).Best_Fitness < Swarm_Global.Best_Fitness 
            Swarm_Global.Best_Fitness=Swarm(h).Best_Fitness; 
            Swarm_Global.Best_Fitness_X=Swarm(h).Best_Fitness_X; 
            LossesJbest=LossessJh(h); 
            Lossesbest=Lossessh(h); % Es lo mismo que 

Swarm_Global.Best_Fitness 
            Voltagebest=voltage_nodes(h,node1); 
            Voltagebest6=voltage_nodes(h,node2); 
        end  
    end 
end 

  
for h=1:N 
    r1=random('Uniform',0,1); % randomization 
    r2=random('Uniform',0,1); % randomization 
    Swarm(h).V=w*Swarm(h).V+c1*r1*(Swarm(h).Best_Fitness_X-

Swarm(h).X)+c2*r2*(Swarm_Global.Best_Fitness_X-Swarm(h).X); 
    Swarm(h).X=Swarm(h).X+Swarm(h).V; 
    for t=1:Dim 
        if Swarm(h).X(t)>maxX 
            Swarm(h).X(t)=maxX; 
        else 
            if Swarm(h).X(t)<minX 
                Swarm(h).X(t)=minX; 
            end 
        end 
    end 
end 
end 

  
display(['Optimum Losses ',num2str(round(Swarm_Global.Best_Fitness/100)/10),' 

kW']) 
display(['References: P=', 

num2str(round(Swarm_Global.Best_Fitness_X(1)/100)/10), ' kW; Q1=', 

num2str(round(Swarm_Global.Best_Fitness_X(2)/100)/10), 'kvar; Q2=', 

num2str(round(Swarm_Global.Best_Fitness_X(3)/100)/10), 'kvar']) 

  
loss=Swarm_Global.Best_Fitness; 

  
%energy 



76 
 

eloss=loss*t_delta; 
Total_elosses=Total_elosses+eloss; 
t_delta_previous=t_delta; 
total_delta=total_delta+t_delta; 

  
%S1 S2 max 
Pref=Swarm_Global.Best_Fitness_X(1); 
Q1ref=Swarm_Global.Best_Fitness_X(2); 
Q2ref=Swarm_Global.Best_Fitness_X(3); 
S1=sqrt(Pref^2+Q1ref^2); 
S2=sqrt(Pref^2+Q2ref^2); 
if S1>S1max 
    S1max=S1; 
end 
if S2>S2max 
    S2max=S2; 
end 
end 

  
Total_losses=Total_elosses/total_delta; 
display(['Optimum energy Losses 24h ',num2str(round(Total_elosses/100)/10),' 

kWh']) 
display(['Optimum Losses 24h ',num2str(round(Total_losses/100)/10),' kW']) 
display(['Max converter power: S1 ',num2str(round(S1max/100)/10),' kW; 

S2=',num2str(round(S2max/100)/10)]) 

 

 


