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Abstract. We consider the open shop scheduling problem with uncer-
tain durations modelled as fuzzy numbers. We define the concepts of
necessary and possible β-robustness of schedules and set as our goal to
maximise them. Additionally, we propose to assess solution robustness by
means of Monte Carlo simulations. Experimental results using a genetic
algorithm illustrate the proposals.

1 Introduction

Scheduling problems form an important body of research since the late fifties,
with multiple applications in industry, finance and science [1]. In particular,
the open shop scheduling problem models situations frequently appearing in
testing components of electronic systems, in general repair facilities when repairs
can be performed in an arbitrary order, as well as in certain medical diagnosis
procedures. However, the open shop is NP-complete for a number of resources
m ≥ 3 and has a significantly large search space. Specific and efficient methods
to solve it are necessary but still scarce, despite their increasing presence in the
recent literature [2].

Traditionally, it has been assumed that problems are static and certain: all
activities and their durations are precisely known in advance and do not change
as the solution is being executed. However, for many real-world scheduling prob-
lems design variables are subject to perturbations or changes, causing optimal
solutions to the original problem to be of little or no use in practice. There-
fore, a common practical requirement is to obtain so-called robust solutions,
which should still work satisfactorily when design variables change slightly, for
instance, due to manufacturing tolerances.

A source of changes in scheduling problems is uncertainty in activity dura-
tions. There exists great diversity of approaches to dealing with this kind of
uncertainty [3]. Perhaps the best-known is stochastic scheduling, although fuzzy
sets and possibility theory provide an interesting alternative, with a tradeoff
between the expressive power of probability and their associated computational
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complexity and knowledge demands. Indeed, fuzzy sets have been used in differ-
ent manners in scheduling, ranging from representing incomplete or vague states
of information to using fuzzy priority rules with linguistic qualifiers or preference
modelling (cf. [4]).

The approaches to proactive robustness are several and varied. For instance,
in stochastic settings, heuristic rules are used to include time buffers or slacks
between activities in a baseline schedule [5]. In combinatorial optimisation, min-
max or min-max regret criteria are applied to construct solutions having the best
possible performance in the worst case [6], an approach already translated to the
fuzzy framework [7],[8]. However, this may be deemed as too conservative when
the worst case is not crucial and an overall acceptable performance is preferred.
This is the basis for the β-robustness approach in stochastic scheduling [9], taking
into account the subjective aspect of robustness through a target level specified
by the decision maker so the goal is to maximise the likelihood that a solutions’s
actual performance is not worse than the target. This technique can be related
to chance-constrained programming in linear optimisation, which has also been
extended to fuzzy and fuzzy stochastic coefficients (cf. [10]).

The open shop problem with uncertainty constitutes a relatively new and
complex research line. While there are many contributions to solve fuzzy job
shop problems (we can cite, among others, [11],[12], [13] or [14]), the literature
on fuzzy open shop is still scarce. Among the few existing proposals, a heuristic
approach is proposed in [15] to minimise the expected makespan for an open shop
problem with stochastic processing times and random breakdowns; in [16] the
expected makespan of an open shop with fuzzy durations is minimised using a
genetic algorithm hybridised with local search. Finally, in the framework of mul-
tiobjective approach, a possibilistic mixed-integer linear programming method is
proposed in [17] for an OSP with setup times, fuzzy processing times and fuzzy
due dates to minimise total weighted tardiness and total weighted completion
times and in [18] a goal programming model based on lexicographic multiob-
jective optimisation of both makespan and due-date satisfaction is adopted and
solved using a particle swarm algorithm.

In this paper, we intend to advance in the study of the fuzzy open shop prob-
lem, and in particular, in the search of robust solutions. In analogy to stochastic
scheduling, we shall define the concepts of β∗-robust and β∗-robust schedules in
terms of necessity and possibility, so the objective will then be to maximise such
robustness. Then, we shall propose to perform an additional analysis of the ob-
tained solutions using a Monte-Carlo simulation method based on the semantics
of fuzzy schedules from [13]. Finally, we adapt the genetic algorithm from [19]
and provide experimental results to illustrate our proposals.

2 The Fuzzy Open Shop Problem

The open shop scheduling problem, or OSP in short, consists in scheduling a
set of n jobs J1, . . . , Jn to be processed on a set of m physical resources or
machinesM1, . . . ,Mm. Each job consists ofm tasks or operations, each requiring
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the exclusive use of a different machine for its whole processing time without
preemption, i.e. all operations must be processed without interruption. In total,
there are mn operations, {oij , 1 ≤ i ≤ n, 1 ≤ j ≤ m}. A solution to this
problem is a schedule–an allocation of starting times for all operations– which
is feasible, in the sense that all constraints hold, and is also optimal according
to some criterion, most commonly minimising the makespan Cmax, that is, the
completion time of the last operation (and therefore, of the whole project).

In real-life applications, it is often the case that the exact time it takes to
process a task is not known in advance. However, based on previous experience,
an expert may have some knowledge (albeit uncertain) about the duration. The
crudest representation of such knowledge would be a human-originated confi-
dence interval; if some values appear to be more plausible than others, then a
natural extension is a fuzzy interval or fuzzy number. The simplest model is a
triangular fuzzy number or TFN, denoted A = (a1, a2, a3), given by an interval
[a1, a3] of possible values and a modal value a2 ∈ [a1, a3], so its membership
function takes a triangular shape:

μA(x) =

⎧
⎪⎨

⎪⎩

x−a1

a2−a1 : a1 ≤ x ≤ a2

x−a3

a2−a3 : a2 < x ≤ a3

0 : x < a1 or a3 < x

(1)

Triangular fuzzy numbers and more generally fuzzy intervals have been ex-
tensively studied in the literature (cf. [20]) and widely used in scheduling.

In the open shop, we essentially need two operations on fuzzy numbers, the
sum and the maximum. For any bivariate continuous isotonic function f and
any two fuzzy numbers A and B, if Aα = [aα, aα] denotes the α-cut, the result
f(A,B) is a fuzzy number F such that Fα = [f(aα, bα), f(aα, bα)], that is, com-
puting the function is equivalent to computing it on every α-cut. In particular,
this is true for both the addition and the maximum. However, evaluating two
sums or two maxima for every value α ∈ [0, 1] is cumbersome if not intractable
in general. For the sake of simplicity and tractability of numerical calculations,
we follow [11] and approximate the results of these operations by a linear inter-
polation evaluating only the operation on the three defining points of each TFN
(an approach also taken, among others, in [12], [18] or [21]). The approximated
sum coincides with the actual sum, so for any pair of TFNs A and Bs:

A+B = (a1 + b1, a2 + b2, a3 + b3) (2)

Regarding the maximum, for any two TFNs A,B, if F = max(A,B) denotes their
maximum and G = (max{a1, b1},max{a2, b2},max{a3, b3}) the approximated
value, it holds that ∀α ∈ [0, 1], f

α
≤ g

α
, fα ≤ gα. The approximated maximum

G is thus a TFN which artificially increases the value of the actual maximum
F , although it maintains the support and modal value. This approximation can
be trivially extended to the case of more than two TFNs.

Given a task processing order π, the schedule (starting and completion times
of all tasks) may be computed as follows. For every task x with processing time
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px, let Sx(π) and Cx(π) denote respectively the starting and completion times
of x, let PMx(π) and SMx(π) denote the predecessor and successor tasks of
x in the machine sequence provided by π, and let PJx(π) and SJx(π) denote
respectively the predecessor and successor tasks of x in the job sequence provided
by π. Then the starting time Sx(π) of x is a TFN given by:

Sx(π) = max(SPJx(π) + pPJx(π), SPMx(π) + pPMx(π)), (3)

Clearly, Cx(π) = Sx(π) + px(π). If there is no possible confusion regarding the
processing order, we may simplify notation by writing Sx and Cx. The completion
time of the last task to be processed according to π thus calculated will be the
makespan, denoted Cmax(π) or simply Cmax. We obtain a fuzzy schedule in
the sense that the starting and completion times of all tasks and the makespan
are fuzzy intervals, interpreted as possibility distributions on the values that
the times may take. However, notice that the task processing ordering π that
determines the schedule is deterministic; there is no uncertainty regarding the
order in which tasks are to be processed.

3 Robust Schedules

The usual objective of deterministic scheduling of minimising the makespan
could, in principle, be translated to the fuzzy framework as minimising the ex-
pected makespan E[Cmax]. However, minimising the expected makespan may
be criticised, since it reduces the information provided by a fuzzy makespan to
a single value, thus loosing part of the information. Neither does it address the
practical requirement of solution robustness. Therefore we propose instead to
find the equivalent to what has been called in the stochastic framework β-robust
schedules [9,22], schedules with a certain confidence level that the performance
will be within a given threshold.

The membership function μD of a fuzzy duration D may be interpreted as
a possibility distribution on the real numbers [23,24], representing the set of
more or less plausible, mutually exclusive values of a variable y (in our case, the
underlying uncertain duration). Since a degree of possibility can be viewed as
an upper bound of a degree of probability, μD also encodes a whole family of
probability distributions.

It is well known that for a given interval I ⊆ R, the possibility and necessity
measure that D ∈ I are respectively given by Π(D ∈ I) = supy∈I μD(y) and
N(D ∈ I) = infy∈I 1− μD(y) = 1− supy �∈I μD(x) = 1 −Π(D �∈ I), so necessity
and possibility are dual measures which provide lower and upper bounds for the
probability that y is in I given the information ‘y is D’: N(D ∈ I) ≤ Pr(D ∈
I) ≤ Π(D ∈ I). In particular, for A = (a1, a2, a3) a TFN, the necessity and the
possibility that A is less than a given real number r are given by:

N(A ≤ r) =

⎧
⎪⎨

⎪⎩

0, r ≤ a2,
r−a2

a3−a2 , a2 ≤ r ≤ a3,

1, a3 < r

Π(A ≤ r) =

⎧
⎪⎨

⎪⎩

0, r ≤ a1,
x−a1

a2−a1 , a1 ≤ r ≤ a2,

1, a2 < r

(4)
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Fig. 1. Necessity N(A ≤ r) and possibility Π(A ≤ r) for varying values of r ∈ R

Clearly, for any value r, N(A ≤ r) ≤ Π(A ≤ r). Figure 1 illustrates both
measures.

Assuming we have a target or threshold for the makespan C�, we may want
to maximise the confidence that Cmax will “for sure” be less than this threshold.
In our setting, this means to maximise the necessity degree that Cmax is less
than C�.

Definition 1. A schedule with makespan Cmax is said to be necessarily β∗-
robust w.r.t. a threshold C� if and only if β∗ = N(Cmax ≤ C�). Analogously,
the schedule is said to be possibly β∗-robust w.r.t. C� iff β∗ = Π(Cmax ≤ C�).
β∗ and β∗ are respectively the degrees of necessary and possible robustness w.r.t.
the threshold C�.

Clearly, if a schedule is β∗-robust and β∗-robust w.r.t. the same threshold,
and β = Pr(Cmax ≤ C�), we have that β∗ ≤ β ≤ β∗.

The degree of necessary robustness represents the degree of confidence that
the makespan will certainly be less than the threshold. In the following, we will
consider that the objective will be to find a schedule maximising this confidence
level, so the resulting problem may be denoted O|fuzz pi|β∗(C�) following the
three-field notation [25]. Obviously, by maximising the degree of necessary ro-
bustness we are also maximising the possible robustness of the schedule.

4 Monte-Carlo Simulation Assessment

Assuming we have solved the above optimisation problem and have obtained a
β∗-robust schedule w.r.t. C�, is there a means of assessing the actual robustness
of such schedule? In other words, does the concept of β∗-robustness really capture
the desired high-level characteristic of robustness? Here, we propose a method for
an empirical assessment of solutions to the O|fuzz pi|β∗(C�) problem, based on
using Monte-Carlo simulations and inspired by the semantics for fuzzy schedules
from [13].

In [13] fuzzy schedules are interpreted as a-priori solutions, found when the
duration of tasks is not exactly known. In this setting, it is impossible to predict
what the exact time-schedule will be, because it depends on the realisation of
the tasks’ durations, which is not known yet. Each fuzzy schedule corresponds to
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a precise ordering of tasks and it is not until tasks are executed according to this
ordering that we know their real duration and, hence, know the exact schedule,
the a-posteriori solution with exact job completion times and makespan. The
practical interest of a solution to the fuzzy open shop would then lie in the
ordering of tasks that it provides a priori using the available incomplete infor-
mation, which should ideally yield good schedules in the moment of its practical
use. Its behaviour could therefore be evaluated on a family of K deterministic
open shop problems, representingK possible a posteriori realisations of the fuzzy
problem. These may be simulated by generating an exact duration p̂x for each
task at random according to a probability distribution which is coherent with
the fuzzy duration px.

Given a solution to the fuzzy open shop, consider the task processing order
π it provides. For a deterministic version of the problem, let p̂ be the matrix
of precise durations, such that p̂ij , the a-posteriori duration of operation oij , is
coherent with the constraint imposed by the fuzzy duration pij . The ordering π
can be used to process the operations, where the duration of each operation oij is
taken to be p̂ij . This yields a time-schedule with precise starting and completion
times for all tasks and, in particular, a real makespan Cmax(π, p̂), which may
be under or above the threshold C�. If instead of a single deterministic instance
we consider the whole family of K deterministic problems, each with a duration
matrix, we obtain K makespan values; the proportion κ of those values among
the K which are actually below the threshold C� gives us an empirical measure
of the robustness of π. If the β∗-robustness is a good measure of the schedules
robustness, then a schedule with high β∗ should correspond to a high κ.

5 Genetic Algorithm

To solve the optimisation problem O|fuzz pi|β∗(C�), we propose to use the
genetic algorithm (GA) from [19]. In principle, to do so it would only be nec-
essary to substitute the fitness function therein by the β∗-robustness degree of
the schedule represented by each chromosome. However, such a straightforward
approach has a serious drawback: the initial population, generated at random,
consists of poor schedules, with high makespan values which, most likely, will
yield a value β∗ = 0 for any reasonable threshold C�, thus making it impossible
for the GA to evolve.

In order to overcome this drawback, we propose to adapt the GA to use an
“adaptive” threshold, with successive approximations C�

0 > C�
1 > . . . until C� is

reached. Given the first population, a first threshold C�
0 is obtained as the most

pessimistic value of the best makespan in this population, making sure that
there will be chromosomes with non-zero fitness values (in fact, the individual
with the best makespan will have fitness 1), thus allowing the GA to evolve.
The threshold can then be updated along successive generations with new more
demanding values C�

g linearly decreasing from C�
0 to C�. This smooth updating

allows the GA to evolve to robust solutions w.r.t. iteratively smaller thresholds.
Finally, in order to give the GA the chance of obtaining β∗-robust solutions w.r.t.
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Fig. 2. Evolution of the best and mean solution of GA and the C�
g values for the

instance j8-per10-1 averaged across 10 runs

C�, in the last generations of the algorithm the C� value is used to compute the
β∗-robustness degree as fitness function.

6 Experimental Results

For the experimental study we shall use the test bed given in [16], where the
authors follow [11] to generate a set of fuzzy instances from well-known open
shop benchmark problems. Given a deterministic instance, each deterministic
processing time t is transformed into a symmetric fuzzy processing time p(t)
with modal value p2 = t and where values p1, p3 are taken as random integer
values such that the resulting TFN is symmetric w.r.t. p2 and its maximum
range of fuzziness is 30% of p2. The original benchmark consists of 6 families,
denoted J3, J4,. . . , J8, of sizes from 3× 3 to 8× 8, containing 8 or 9 instances
each. In this work we only consider the largest instances: i.e. the 9 instances of
size 7× 7 and the 8 instances of size 8× 8.

In a real problem, the target value C� would be provided by an expert
with a reasonable knowledge of the problem. However, as we are using syn-
thetic problems, such expert is not available and in consequence the target
values must be set following some criterium. In our case, we have taken the
best known solution A = (a1, a2, a3) for each instance [18] and we have defined
C� = a2+TF×(a3−a2), where TF is a given tightness factor. To obtain the best
possible performance, a parametric analysis (not reported here due to the lack
of space) was conducted using TF = 0.75. The resulting parameter values were:
population size=100, crossover probability=0.7, mutation probability=0.05, and
number of generations=2000 from which the last 200 use the C� value. The
GA has been run with these parameters 10 times on each problem instance.
Figure 2 shows the convergence pattern for j8-per10-1, one of the largest in-
stances, with the remaining instances presenting a similar behaviour. The figure
shows the evolution along 2000 generations of the fitness value of the best in-
dividual together with the mean fitness of the population and the C�

g threshold
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used at each generation g to compute the β∗-robustness. As expected, we can
appreciate that the algorithm’s behaviour is sensitive to the C�

g values. Initially,
a less-demanding C�

0 allows the GA to evolve properly so the average quality
of the population improves. After the first generations, C�

g decreases becoming
more demanding and in consequence, despite the fact that the population con-
tinues evolving, the robustness deteriorates for some generations (notice that
for the same solution, its robustness value is dependent on the threshold C�).
Finally, in the last iterations the goal C� remains fixed and robustness values
improve again thanks to the algorithm’s evolution.

To empirically measure the robustness of the schedules obtained by the GA,
we follow the Monte-Carlo simulation assessment introduced in Section 4 and
generate samples of K = 1000 deterministic problems for each fuzzy instance,
with random a-posteriori durations following a probability distribution which is
coherent with the TFNs that model the fuzzy durations. We have then obtained
the makespan values for each deterministic problem using the ordering provided
by the GA on the fuzzy instanc, and we have finally computed the proportion
κ out of the K deterministic makespan values which are below the threshold
C�. Table 1 shows, for each fuzzy instance, the threshold C�, the β∗ value of
the best, average and worst solution across 10 runs, the CPU time (Runtime) in
seconds, and the proportion κ obtained in the simulation for the best solution
(κ-robustness). We can appreciate that even for the worst solutions β∗ > 0, so
in all solutions the possible β∗-robustness is 1. Moreover, the obtained “real”
robustness values (κ) are always 1 or very close to 1, even in those instances

Table 1. Results of the GA and the a-posteriori analysis across the largest instances
of the Brucker data set

β∗-robustness
Instance C� Best Average Worst Runtime κ-robustness

j7-per0-0 1105.25 0.3682 0.2258 0.1082 9.2s. 0.9830
j7-per0-1 1140.00 0.7439 0.6231 0.4789 9.0s. 1.0000
j7-per0-2 1136.75 0.5493 0.4364 0.3147 9.0s. 0.9980
j7-per10-0 1099.50 0.7500 0.5294 0.2895 8.6s. 1.0000
j7-per10-1 1075.75 0.7319 0.5383 0.1972 8.9s. 1.0000
j7-per10-2 1079.75 0.6408 0.4701 0.2351 9.2s. 1.0000
j7-per20-0 1028.50 0.6477 0.5667 0.4524 9.0s. 1.0000
j7-per20-1 1075.00 0.7541 0.5041 0.1509 9.0s. 1.0000
j7-per20-2 1059.50 0.6288 0.3657 0.1508 9.1s. 1.0000

j8-per0-1 1106.50 0.3750 0.2164 0.0473 13.6s. 0.9190
j8-per0-2 1115.75 0.4696 0.2561 0.1735 13.8s. 0.9630
j8-per10-0 1110.00 0.9054 0.5723 0.3273 13.5s. 1.0000
j8-per10-1 1074.00 0.5714 0.4162 0.2692 13.7s. 0.9830
j8-per10-2 1059.25 0.4179 0.2601 0.0753 13.9s. 0.9850
j8-per20-0 1062.75 0.6433 0.4975 0.3994 13.6s. 1.0000
j8-per20-1 1048.00 0.7164 0.5445 0.4133 13.6s. 1.0000
j8-per20-2 1059.00 0.5444 0.4451 0.3299 13.6s. 0.9960
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where β∗ is smaller (e.g. j7-per0-0). This could be explained by the conserva-
tive character of the necessary robustness. In fact, in all cases where the fuzzy
schedule has β∗ ≥ 0.6, the makespan values for all deterministic simulations are
below the threshold C�.

7 Conclusions

We have tackled a variant of the open shop scheduling problem where uncer-
tainty in durations is modelled using triangular fuzzy numbers. We have defined
necessary and possible β-robustness in terms of scheduling and we have pro-
posed as objective function to maximize the most pessimistic measure which is
the necessary β-robustness. Moreover, we have proposed a method to empirically
assess the actual robustness of the solutions. We have tested our approach using
a genetic algorithm from the literature using an adaptive threshold of makespan
values that overcomes the drawback of a likely random search by the GA. Based
in the promising results, in the future we intend to improve on the β-robustness
by adapting to the fuzzy framework the definition of α-β-robustness, that is, for
a given confidence level β (ideally close to 1), try to minimise the threshold α
for which this confidence is obtained (as in [22] for stochastic scheduling). We
also intend to consider some kind of multiobjective approach that maximises
robustness and minimises makespan.
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