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Abstract. In the sequel, we consider a multiobjective open shop schedul-
ing problem with uncertain durations modelled as fuzzy numbers. Given
crisp due dates, the objective is to minimise both the makespan and
the maximum tardiness. We formulate the multiobjective problem as a
fuzzy goal programming model based on lexicographical minimisation of
expected values. The resulting problem is solved using a particle swarm
optimization approach searching in the space of possibly active sched-
ules. Experimental results are presented on several problem instances to
evaluate the proposed method, illustrating its potential.

1 Introduction

The open shop scheduling problem (OSP) is a problem with an increasing pres-
ence in the literature and clear applications in industry—consider for instance
testing facilities, where units go through a series of diagnostic tests that need not
be performed in a specified order and where different testing equipment is usually
required for each test [22]. Traditionally, the open shop as well as other schedul-
ing problems have been treated as deterministic, assuming precise knowledge of
all data involved, in contrast with the uncertainty and vagueness pervading real-
world problems. To enhance the range of applications of scheduling, an increasing
part of the research is devoted to modelling this lack of certainty with great di-
versity of approaches [14]. In particular, fuzzy sets have been used in different
manners, ranging from representing incomplete or vague states of information
to using fuzzy priority rules with linguistic qualifiers or preference modelling [5].
They are also emerging as an interesting tool for improving solution robustness,
a much-desired property in real-life applications [24],[15].
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The open shop is NP-complete for a number of machines m ≥ 3, so ap-
proaches to solving it usually make use of metaheuristic techniques. In particular,
in [1] a heuristic approach is proposed to minimise the expected makespan for an
open shop problem with stochastic processing times and random breakdowns;
in [21] a genetic algorithm is proposed to minimise the expected makespan of
an open shop with fuzzy durations; in [11] this genetic algorithm is combined
with a local search method; a particle swarm optimisation algorithm is used to
minimise the expected fuzzy makespan in [20] and a possibilistic mixed-integer
linear programming method is proposed in [19] for an OSP with setup times,
fuzzy processing times and fuzzy due dates to minimize total weighted tardiness
and total weighted completion times. Far from being trivial, extending heuristic
strategies to uncertain settings usually requires a significant reformulation of
both the problem and solving methods.

In the sequel, we describe an open shop problem with fuzzy durations and
crisp due dates and where the objective is to minimise both the project’s makespan
and the maximum tardiness w.r.t. the given job due dates. We adopt a generic
multiobjective model so the objective function is defined in order to lexicograph-
ically minimise the expected values of several fuzzy goals (here, makespan and
tardiness). In addition to the priority structure for the lexicographical minimisa-
tion, target levels for each objective are introduced, in order to balance possibly
incompatible goals. The resulting problem is solved by means of a multiobjective
particle swarm optimisation (MOPSO) algorithm searching in the space of pos-
sibly active schedules. We evaluate the performance of the MOPSO algorithm
on a set of problem instances based on the expected values of each objective.

2 Uncertain Processing Times as Triangular Fuzzy
Numbers

In real-life applications, it is often the case that the exact duration of a task is
not known in advance. However, based on previous experience, an expert may
be able to estimate, for instance, an interval for the possible processing time or
its most typical value. In the literature, it is common to use fuzzy intervals to
represent such processing times, as an alternative to probability distributions,
which require a deeper knowledge of the problem and usually yield a complex
calculus.

Fuzzy intervals are a natural extension of human-originated confidence in-
tervals when some values appear to be more plausible than others. The simplest
model is a triangular fuzzy number or TFN, using only an interval [a1, a3] of
possible values and a single plausible value a2 in it. For a TFN A, denoted
A = (a1, a2, a3), the membership function takes the following triangular shape:

µA(x) =


x−a1
a2−a1 : a1 ≤ x ≤ a2
x−a3
a2−a3 : a2 < x ≤ a3

0 : x < a1 or a3 < x

(1)
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Triangular fuzzy numbers and more generally fuzzy intervals have been ex-
tensively studied in the literature (cf. [6]). A fuzzy interval Q is a fuzzy quantity
(a fuzzy set on the reals) whose α-cuts Qα = {u ∈ R : µQ(u) ≥ α}, α ∈ (0, 1],
are convex, i.e., they are intervals (bounded or not). The core of Q consists of
those elements with full membership µQ(u) = 1, also called modal values. The
support of Q is Q0 = {u ∈ R : µQ(u) > 0}. A fuzzy number is a fuzzy quantity
whose α-cuts are closed intervals, with compact (i.e. closed and bounded) sup-
port and unique modal value. Thus, real numbers can be seen as a particular
case of fuzzy ones.

In order to work with fuzzy numbers, it is necessary to extend the usual
arithmetic operations on real numbers. In general, if f is a function f : R2 → R
and Q1, Q2 are two fuzzy quantities, the fuzzy quantity f(Q1, Q2) is calculated
according to the Extension Principle as follows:

∀u ∈ R, µf(Q1,Q2)(u) = sup{min(µQ1
(w1), µQ2

(w2)) : f(w1, w2) = u} (2)

if f−1(u) 6= ∅, being equal to 0 otherwise. Computing the above equation is
cumbersome, if not intractable. It can be somewhat simplified if M and N are
two fuzzy numbers, so the α-cuts Mα and Nα are closed bounded intervals of
the form [mα,mα] and [nα, nα], and if f is a continuous isotonic mapping from
R2 into R, that is, if for any u ≥ u′ and v ≥ v′ it holds f(u, v) ≥ f(u′, v′). In this
case, the First Decomposition Theorem provides us with an alternative formula
for f(M,N):

f(M,N) = ∪α∈(0,1][f(mα, nα), f(mα, nα)] (3)

In the open shop, we essentially need the following operations on fuzzy du-
rations: addition, substraction and maximum. In the case of TFNs, both the
addition and substraction are fairly easy to compute, since they reduce to oper-
ating on the three defining points, that is, for any pair of TFNs M and N :

M +N = (m1 + n1,m2 + n2,m3 + n3) (4)

M −N = (m1 − n3,m2 − n2,m3 − n1). (5)

Unfortunately, for the maximum of TFNs there is no such simplified expres-
sion. Being an isotonic function, we can use equation (3) above to compute the
maximum of two fuzzy numbers. However, in general this still requires an in-
finite number of computations, because we have to evaluate maxima for each
value α ∈ (0, 1]. For the sake of simplicity and tractability of numerical calcu-
lations, we follow Fortemps [7] and approximate all results of isotonic algebraic
operations on TFNs by a TFN. Instead of evaluating the intervals corresponding
to all α-cuts, we evaluate only those intervals corresponding to the support and
α = 1, which is equivalent to working only with the three defining points of each
TFN. This is an approach also taken, for instance, in [18] and [4]. Therefore, for
any two TFNs M and N , their maximum will be approximated as follows:

max(M,N) ∼M tN = (max(m1, n1),max(m2, n2),max(m3, n3)). (6)

3



Despite not being equal, for any two TFNs M,N , if F = max(N,M) denotes
their maximum and G = N tM its approximated value, it holds that ∀α ∈
[0, 1], f

α
≤ g

α
, fα ≤ gα. In particular, F and G have identical support and

modal value: F0 = G0 and F1 = G1. The approximated maximum can be trivially
extended to n > 2 TFNs.

The membership function µQ of a fuzzy quantity Q can be interpreted as a
possibility distribution on the real numbers; this allows to define the expected
value of a fuzzy quantity [17], given for a TFN A by E[A] = 1

4 (a1 + 2a2 + a3).
The expected value coincides with the neutral scalar substitute of a fuzzy interval
and can also be obtained as the centre of gravity of its mean value or using the
area compensation method [5]. It induces a total ordering ≤E in the set of fuzzy
intervals [7], where for any two fuzzy intervals M,N M ≤E N if and only if
E[M ] ≤ E[N ].

3 The Fuzzy Open Shop Scheduling Problem

The open shop scheduling problem, or OSP in short, consists in scheduling a set
of n jobs J1, . . . , Jn to be processed on a set of m physical resources or machines
M1, . . . ,Mm. Each job Ji consists of m tasks or operations oij (j = 1, . . . ,m),
where oij requires the exclusive use of a machine Mj for its whole processing time
pij without preemption, i.e. all tasks must be processed without interruption.
In total, there are mn tasks, {oij , 1 ≤ i ≤ n, 1 ≤ j ≤ m}. Additionally, for each
job Ji there may be a due date Di, i = 1, . . . , n before which it is desirable that
the job be terminated. A solution to this problem is a schedule–an allocation of
starting times for all tasks– which is feasible, in the sense that all constraints
hold, and is also optimal according to some criteria. Here, we shall consider
the objective of minimising the makespan Cmax, that is, the time lag from the
start of the first task until the end of the last one, as well as minimising the
maximum tardiness Tmax, that is, the maximum delay of any job with respect
to its due date. This problem may be denoted O||multicrit(Cmax, Tmax) using
the three-field notation extended to multiple objectives [13].

3.1 Fuzzy Schedules from Crisp Task Orderings

A schedule s for a open shop problem of size n ×m (n jobs and m machines)
may be determined by a decision variable z = (z1, . . . , znm) representing a task
processing order, where 1 ≤ zl ≤ nm for l = 1, . . . , nm. This is a permutation of
the set of tasks where each task oij is represented by the number (i−1)m+j. The
task processing order represented by the decision variable uniquely determines
a feasible schedule; it should be understood as expressing partial orderings for
every set of tasks requiring the same machine and for every set of tasks requiring
the same job.

Let us assume that the processing time pij of each task oij , i = 1, . . . , n,
j = 1, . . . ,m is a fuzzy variable (a particular case of which are TFNs), so the
problem may be represented by a matrix of fuzzy processing times p of size

4



n ×m. For a given task processing order z, let Ci(z,p) denote the completion
time of job Ji and let Cij(z,p) denote the completion time of task oij . Clearly,
the completion time of a job is the maximum completion time of its tasks, that is,
Ci(z,p) = max1≤j≤m{Cij(z,p)}. The completion time for task oij is obtained
by adding its duration pij to its starting time Sij(z,p). The latter will be the
maximum between the completion times of the task preceding oij in its job and
its machine, denoted oik and olj respectively, according to the processing order
given by z:

Sij(z,p) = Cik(z,p) t Clj(z,p) (7)

Cij(z,p) = Sij(z,p) + pij (8)

Cik(z,p) and Clj(z,p) are taken to be zero if oij is the first task to be processed
in the corresponding job or machine respectively.

For this schedule, the fuzzy makespan Cmax(z,p) and the fuzzy maximum
tardiness (fuzzy tardiness for short) Tmax(z,p) are defined as follows:

Cmax(z,p) = t1≤i≤n (Ci(z,p)) (9)

Tmax(z,p) = max(t1≤i≤n (Ci(z,p)−Di) , 0) (10)

Let us illustrate the previous definitions with an example. Consider a problem
of 3 jobs and 2 machines with the following matrix for fuzzy processing times:

p =

(3, 4, 7) (1, 2, 3)
(2, 3, 4) (4, 5, 6)
(1, 2, 4) (1, 2, 6)


Here p22 = (2, 3, 4) is the processing time of task o22, which is the task of
job 2 to be processed in machine 2. Figure 1 shows the Gantt chart (adapted
to TFNs) of the schedule given by the decision variable z=(1 4 6 3 5 2); it
represents the partial schedules on each machine obtained from the decision
variable. Tasks must be processed in the following order: o11, o22, o32, o21, o31, o12.
Given this ordering, the starting time for task o21 will be the maximum of
the completion times of o22 and o11, the preceding tasks in the job and in the
machine: S21 = C22 t C11 = (4, 5, 6) t (3, 4, 7) = (4, 5, 7). Consequently, its
completion time will be C21 = S21 + p21 = (4, 5, 7) + (2, 3, 4) = (6, 8, 11).

Notice that when uncertain durations are given as fuzzy intervals the schedule
s will be a fuzzy schedule, in the sense that the starting and completion times
of all tasks, the makespan and the tardiness are fuzzy intervals. These fuzzy
intervals may be seen as possibility distributions on the values that these times
may take. However, the task processing order represented by z that determines
such schedule is crisp; there is no uncertainty regarding the order in which tasks
are to be processed. In other words, we obtain a fuzzy schedule from a crisp task
ordering.

Given a fuzzy schedule, our objective is to optimise its makespan and maxi-
mum tardiness. However, it is not trivial when dealing with fuzzy values to decide

5
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Fig. 1. Gantt chart of the schedule represented by the decision variable (1 4 6 3 5 2)

on the precise meaning of “optimality”, since neither the maximum nor its ap-
proximation define a total ordering in the set of TFNs. Using ideas similar to
stochastic scheduling, we use the total ordering provided by the expected value
and consider that the objective is to minimise the expected makespan E[Cmax]
and the expected tardiness E[Tmax], so the resulting problem may be denoted
FuzO||multicrit(E[Cmax], E[Tmax]).

3.2 Multiobjective Models

With multiple goals it is often the case that some are achievable only at the
expense of others. A possible approach to this issue is to establish a hierarchy of
importance for these goals so as to satisfy as many as possible in the specified
order. In general, for k objectives f1, . . . , fk such priority structure should be
established by the decision maker (DM) and may be represented by a one-to-
one mapping ρ from {f1, . . . , fk} onto {1, . . . , k}, such that ρ(fi) is the priority
level of fi, i = 1, . . . , k, where 1 represents the highest priority. For instance,
if f1 = Cmax and f2 = Tmax and the DM considers that the most prioritary
objective is minimising the expected tardiness, then ρ(f2) = 1. Without loss
of generality, we can assume that the objective functions fi i = 1, . . . , k are
ordered according to their priority, that is, ρ(fi) = i. Then, based on similar
ideas presented for the job shop in [12] we may formulate the following expected
multiobjective model for the fuzzy open shop problem (FOSP):

lexmin (E[f1(z,p)], . . . , E[fk(z,p)])

subject to: 1 ≤ zl ≤ nm, l = 1, . . . , nm,

zl ∈ Z+, l = 1, . . . , nm.

(11)

where lexmin denotes lexicographically minimising the objective vector.

Pure lexicographical models may get stuck in the first goals and never con-
sider the remaining ones. To balance the multiple conflicting objectives, we may
use a goal programming model and consider target levels established by the
DM, so E[fi(z,p)] should not exceed a given target value bi, i = 1, . . . , k. This
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translates into the following goal constraints:

E[fi(z,p)] + d−i − d
+
i = bi, i = 1, . . . , k (12)

where d+i , the positive deviation from the target, should be minimised. We thus
obtain the following expected fuzzy goal multiobjective model for the FJSP:

lexmin (d+1 , . . . , d
+
k )

subject to: E[fi(z,p)] + d−i − d
+
i = bi, i = 1, . . . , k,

bi, d
−
i , d

+
i ≥ 0, i = 1, . . . , k,

1 ≤ xl ≤ nm, l = 1, . . . , nm,

zl ∈ Z+, l = 1, . . . , nm.

(13)

Notice that (11) is a particular case of (13). Indeed, the latter is general enough to
comprise all possible fuzzy goals, priority structures and target levels established
by the DM.

4 Particle Swarm Optimization for the FOSP

Particle Swarm Optimisation (PSO) is a population-based stochastic optimisa-
tion technique inspired by bird flocking or fish schooling [16]. In PSO, each posi-
tion in the search space corresponds to a solution of the problem and particles in
the swarm cooperate to explore the space and find the best position (hence best
solution). Particle movement is mainly affected by the three following factors:

– Inertia: Velocity of the particle in the latest iteration.
– pbest: The best position found by the particle.
– gbest: The best position found by the swarm so far (“the best pbest”).

Potential solutions or particles fly through the problem space, changing their
position and velocity by following the current optimum particles pbest and gbest.
A generic PSO algorithm can be found in Algorithm 1: first, the initial swarm is
generated and evaluated and then the swarm evolves until a termination criterion
is satisfied. In each iteration, a new swarm is built from the previous one by
changing the position and velocity of each particle to move towards its pbest
and gbest locations.

In [20] a PSO algorithm was proposed to minimise the expected makespan of
fuzzy open shop. This algorithm was in turn inspired by the method proposed
in [23] for the deterministic OSP, which improved the best results published so
far. Here we extend this algorithm to the multiobjective setting described in the
previous section.

4.1 Position Representation and Evaluation

To represent particle positions, we use a priority-based representation. A decision
variable z is encoded as a priority array xk = (xkl )l=1...nm, where xkl denotes the
priority of task l, so a task with smaller xkl has a higher priority to be scheduled.

7



Input A FOSP instance
Output A schedule for the input instance

Generate and evaluate the initial swarm;
Compute gbest and pbest for each particle;
while no Termination Criterion is satisfied do

for each particle k do
for each dimension d do

Update velocity vkd ;
Update position xkd;

Evaluate particle k;
Update pbest and gbest values;

return The schedule from the best particle evaluated so far;

Algorithm 1: A generic PSO algorithm

Given an OSP solution represented by a decision variable z, which is a per-
mutation of tasks, we can transfer this permutation to a priority array as follows.
First, from z we obtain a position array, denoted posz, such that poszl is the
position of task l in z (poszl = i if and only if zi = l). For instance, given the
following decision variable for a problem with n = 2 jobs and m = 3 machines:

z =
(

4 1 5 2 3 6
)

the position array for the above decision variable is:

posz =
(

2 4 5 1 3 6
)
.

Then, the priority array x is obtained by randomly setting xl in the inter-
val (poszl − 0.5, poszl + 0.5), so a task with smaller xl has higher priority to be
scheduled. For the above permutation, a possible particle position would be:

x =
(

2.3 3.7 5.4 0.8 2.8 5.9
)

Conversely, from every particle position x we can obtain a position array posx

where posxi is the position of xi if the elements of x were reordered in non-
decreasing order.

A particle may be decoded in several ways. For the crisp job shop and by
extension for the open shop, it is common to use the G&T algorithm [8], which
is an active schedule builder. A schedule is active if one task must be delayed for
any other one to start earlier. Active schedules are good in average and, most
importantly, the space of active schedules contains at least an optimal one, that
is, the set of active schedules is dominant. For these reasons it is worth to restrict
the search to this space. In [9] a narrowing mechanism was incorporated to the
G&T algorithm in order to limit machine idle times using a delay parameter
δ ∈ [0, 1], thus searching in the space of so-called parameterised active schedules.
In the deterministic case, for δ < 1 the search space is reduced so it may no longer
contain optimal schedules and, at the extreme δ = 0 the search is constrained
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Input A FOSP instance and a particle position xk

Output A schedule for the input instance considering the priorities given by xk

Ω ← {1, . . . , nm};
while Ω 6= ∅ do

Compute {E[Sl] : l ∈ Ω} and {E[Cl] : l ∈ Ω} considering only tasks previously
scheduled;
C∗ ← minl∈Ω{E[Cl]};
S∗ ← minl∈Ω{E[Sl]};
Identify the conflict set O ← {l : E[Sl] < S∗ + δ × (C∗ − S∗), l ∈ Ω};
Choose the task l∗ from O with smallest xkl ;
Schedule the operation l∗; /*fix the value of E[Sl∗ ]*/
Ω ← Ω − {l∗};

return The schedule s given by {E[Sl] : l ∈ {1, . . . , nm}}

Algorithm 2: The pFG&T

to non-delay schedules, where a resource is never idle if a requiring operation
is available. This variant of G&T has been applied in [23] to the deterministic
OSP, under the name “parameterized active schedule generation algorithm”.

Algorithm 2, denoted pFG&T , is an extension of parameterised G&T to the
case of fuzzy processing times proposed in [20]. It should be noted that, due
to the uncertainty in task durations, even for δ = 1, we cannot guarantee that
the produced schedule will indeed be active when it is actually performed (and
tasks have exact durations). We may only say that the obtained fuzzy schedule
is possibly active. Throughout the algorithm, Ω denotes the set of tasks that
have not been scheduled, xk the priority array and Sl and Cl the starting and
completion time of task oij such that l = (i− 1)m+ j. Notice that the pFG&T
algorithm may change the task processing order given by the particle position.
Therefore the PSO does not record in gbest and pbest the best positions found
so far, but rather the corresponding priority arrays.

4.2 Particle movement and velocity

Particle velocity is traditionally updated depending on the distance to gbest and
pbest. Instead, this PSO only considers whether the position value xkl is larger
or smaller than pbestkl (gbestl). For any particle, its velocity is represented by an
array of the same length as the position array where all the values are in the set
{−1, 0, 1}. The initial values for the velocity array are set randomly. Updating is
controlled by the inertia weight w at the beginning of each iteration as follows.
For each particle k and dimension d, if vkd 6= 0, vkd will be set to 0 with probability
1 − w, meaning that if xkd was either increasing or decreasing, xkd stops at this
iteration with probability 1 − w. Otherwise, if vkd = 0, with probability p1, vkd
and xkd will be updated depending on pbestkd and with probability p2 they will be
updated depending on gbestd, always introducing an element of randomness and
where p1 and p2 are constants between 0 and 1 such that p1 + p2 ≤ 1. Further
detail on particle updating is given in Algorithm 3.

9



Input A particle position xk and velocity vk, best particle and swarm positions pbestk

and gbest, and inertia w
Output The particle position xk and velocity vk updated

for each dimension d do
generate random value rand ∼ U(0, 1);
if vkd 6= 0 and rand ≥ w then
vkd ← 0;

if vkd = 0 then
generate random value rand ∼ U(0, 1);
if rand ≤ p1 then

if pbestkd ≥ xkd then vkd ← 1;
else vkd ← −1;
generate random value rand2 ∼ U(0, 1);
xkd ← pbestkd + rand2 − 0.5;

if p1 < rand ≤ p1 + p2 then
if gbestd ≥ xkd then vkd ← 1;
else vkd ← −1;
generate random value rand2 ∼ U(0, 1);
xkd ← gbestd + rand2 − 0.5;

else
xkd ← xkd + vkd .

return The particle position xk and velocity vk updated

Algorithm 3: Particle movement

Position mutation. After a particle moves to a new position, we randomly
choose a task and then mutate its priority value xkd independently of vkd . For a
problem of size n ×m, if xkd < (nm/2), xkd will take a random value in [mn −
n,mn], and vkd = 1; otherwise (if xkd > (nm/2)), xkd will take a random value in
[0, n] and vkd = −1.

Diversification strategy. If all particles have the same pbest solutions, they will
be trapped into local optima. To prevent such situation, a diversification strategy
is proposed in [23] that keeps the pbest solutions different. In this strategy, the
pbest solution of each particle is not the best solution found by the particle itself,
but one of the best N solutions found by the swarm so far, where N is the size
of the swarm. Once any particle generates a new solution, the pbest solutions
will be updated as follows: if the new solution equals the makespan of any pbest
solution, the latter will be replaced with the new solution; else if the new solution
has better makespan than the worst pbest solution and it is different from all
pbest solutions, then the worst pbest solution is replaced by the new one.

5 Experimental Results

For the experimental results, we use the instances proposed in [11]. These were
obtained based on the well-known benchmark from [3], which consists of 6 fam-
ilies, denoted J3, J4,. . . , J8, of sizes 3 × 3, 4 × 4,. . . ,8 × 8, containing 8 or 9
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instances each. Each family is divided into three sets of problems per0, per10
and per20 according to the difference between minimum and maximum work-
loads of jobs and machines (the number in the name refers to this difference
in percentage). We shall only consider the largest instances, pertaining to the
blocks of size 7 × 7 and 8 × 8, comparing our results to those of the memetic
algorithm (MA) proposed in [11]. There are 10 fuzzy versions of each original
problem instance, generated by transforming the original crisp processing times
into symmetric TFNs such that their modal value corresponds to the original
duration. To add a crisp due date Di for each job Ji we follow [2] and compute
Di = TF

∑m
j=1 p

2
ij , where TF is the tightness factor for the due date, in our

case, TF = 1.1.

Given the method for generating due dates, in per0 instances, where all jobs
have the same workload (and consequently the same due-date), the difference
between tardiness and makespan is only in a constant (the due date value). Both
objectives are thus strongly correlated, making these instances unsuitable for our
multi-objective study. Hence for the experimental analysis we shall restrict to
the instances per10 and per20 of size 7× 7 and 8× 8 (in total, 120), these being
the hardest problems to solve considering both objectives.

Given the two fuzzy goals f1 = Cmax and f2 = Tmax, we consider four
objective functions: two single-objective functions given by the expected values
E[f1] and E[f2] and two multiobjective functions that result from incorporat-
ing two different priority structures in expression (13). The first multiobjective
function l12 corresponds to the priority structure defined by ρ(fi) = i, that is,
the most prioritary goal is the makespan f1. The second objective function l21
corresponds to ρ(f1) = 2, ρ(f2) = 1, i.e. the most prioritary goal is to minimise
tardiness. These hierarchies correspond to probably the most common objectives
in the open shop literature, namely minimise makespan or maximise due-date
satisfaction.

For the PSO we take the best parameter values obtained in [23] after a
parameter analysis: swarm size N = 60, p1 = 0.7, p2 = 0.1, and inertia weight
w linearly decreasing from 0.9 to 0.3. Regarding the filtering mechanism of the
search space given in the schedule generator, the efficiency of this reduction
depends of the problem size [10], and our experimentation suggests taking δ =
0.25 for the instances considered herein. The termination criterion is the number
of iterations, which depends on the problem size: 2800 for 7 × 7 instances and
3000 for 8×8 instances. Finally, to fix the target values we emulate the DM and
use the experience gained using E[f1] and E[f2] as single objectives, setting b1
(resp. b2) equal to the worst value of E[f1] (E[f2]) across 30 runs of the PSO.

Figure 2 shows the average evolution of l12 along 3000 iterations for a fuzzy
instance generated from j8− per20− 2. We can see how, initially, the algorithm
minimises the expected makespan while the behaviour of the expected tardiness
is erratic. However, once the algorithm has reached the expected makespan target
(around iteration 600), it starts to mimimise tardiness as well.

Table 1 contains a summary of the results: for each fitness function we mea-
sure E[f1] and E[f2] in the obtained schedule and compute the average values
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Fig. 2. Evolution of E[f1] and E[f2] on the l12 version for the j8-per20-2 instance

and standard deviations across the 30 executions of the PSO and the 10 problem
instances generated from the same original problem. According to this table, the
multiobjective versions with l12 and l21 behave similarly to the corresponding
single-objective ones, E[f1] and E[f2], regarding their most prioritary goal. Be-
sides, they improve considerably on the other goal. Indeed, in all instances, l12
reaches the expected makespan target while the expected tardiness values ob-
tained with l12 are 27% better in average than the E[f1] ones, being better in
all problem instances. If we measure the reduction of the gap between the ex-
pected tardiness and its corresponding target, the multi-objective approach l12 is
more than 50% better than E[f1] in average. Clearly, minimising the makespan
does not always imply minimising tardiness. If we now compare l21 with E[f2],
the results are similar. In all instances l21 reaches the expected tardiness target
whereas the gap between the expected makespan and its target value is reduced
46% in average when the multi-objective approach is used.

According to Table 1, the improvement in expected tardiness with l12 is
greater for per20 problems than for per10 ones. This is not surprising: with higher
workload variability, due dates are less uniform in per20 instances. Indeed when
only expected makespan is optimised, tardiness values are considerably larger
for per20 than for per10 instances, the latter being closer to their target values.
In consequence, for per20 instances there is greater room for improvement.

Notice that comparisons between different multiobjective functions do not
make sense, as they model different priority requirements. In a hierarchical ap-
proach such as this, the decision maker is responsible for establishing an adequate
hierarchy among goals according to his/her knowledge of the problem. Also, it
should be taken into account the relevance of the target values in the model and,
in consequence, in a good performance of the algorithm. In the case of a very
hard target for the objective with highest priority, the algorithm behaves like
the corresponding single-objective one. In experiments not reported here due to
lack of space, we have tried different values for tardiness target and for due dates
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Table 1. Results obtained by the MOPSO

Size 7x7 Size 8x8

Prob. Fit.
E[Makespan] E[Tardiness] E[Makespan] E[Tardiness]

Avg. Std.Dev Avg. Std.Dev Avg. Std.Dev Avg. Std.Dev

E[f1] 1030 1.89 18.9 5.25 1050 2.42 22.4 5.76
per10-0 E[f2] 1057 9.50 11.1 1.21 1074 9.37 13.6 1.17

l12 1031 1.83 14.4 3.07 1052 2.26 18.4 4.10
l21 1039 5.48 11.8 0.93 1059 7.12 14.6 1.28

E[f1] 1017 0.59 20.2 0.91 1030 3.60 29.3 7.51
per10-1 E[f2] 1049 8.72 12.1 1.23 1064 11.49 14.2 1.52

l12 1018 1.22 19.3 1.40 1033 3.32 23.2 5.37
l21 1035 5.01 13.8 0.72 1050 10.34 15.5 1.30

E[f1] 1031 2.68 23.8 6.74 1033 5.50 26.9 7.32
per10-2 E[f2] 1067 11.46 11.5 1.25 1063 12.78 14.3 1.45

l12 1032 3.23 19.9 4.64 1036 5.61 19.6 4.82
l21 1057 9.35 12.7 1.47 1051 10.17 15.6 1.48

E[f1] 1001 0.14 70.7 11.59 1016 2.64 104.2 16.59
per20-0 E[f2] 1031 8.09 15.7 0.71 1071 11.60 13.3 1.39

l12 1001 0.32 46.6 9.33 1019 2.05 73.1 21.27
l21 1021 7.21 17.1 0.79 1060 11.02 14.6 1.16

E[f1] 1028 2.45 91.9 21.32 1001 0.78 93.7 20.11
per20-1 E[f2] 1082 7.42 16.4 0.77 1023 10.02 16.9 1.66

l12 1031 1.40 55.5 17.90 1003 0.88 58.3 20.22
l21 1072 8.79 17.7 1.20 1013 7.20 18.7 1.64

E[f1] 1021 2.70 71.2 26.91 1014 2.58 77.6 21.95
per20-2 E[f2] 1072 15.15 14.8 1.13 1062 14.16 15.1 1.54

l12 1023 2.48 49.7 21.63 1018 2.34 45.0 16.37
l21 1057 13.75 16.4 1.28 1049 13.13 16.4 1.52

(changing the tightness factor TF ), and the results showed that for a difficult
target, l21 behaves similarly to E[f2] in terms of makespan and tardiness. On the
other hand, when the tardiness target is relaxed, l21 reached the target in early
iterations of the algorithm and then optimised the makespan, thus behaving like
E[f1].

Finally, we compare the PSO using l12 with the single-objective MA algo-
rithm from [12]. Table 2 contains expected makespan results for both methods,
with average solutions obtained across the 10 instances of each size by both
methods, MA optimising only E[Cmax] and PSO with l12. In [20] the PSO op-
timising E[Cmax] compared favourably with the MA algorithm and we see that
this is also the case when using the multiobjective function l12.

6 Conclusions and Future Work

We have considered an open shop problem with uncertain durations modelled us-
ing TFNs and where the goal is to find a schedule optimising the fuzzy makespan
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Table 2. Comparison of results for E[Cmax]

Problem
Size 7× 7 Size 8× 8

E[f1] and MA l12 and PSO E[f1] and MA l12 and PSO

per10-0 1066.04 1031.34 1083.08 1051.73
per10-1 1052.36 1017.85 1065.86 1032.78
per10-2 1067.27 1032.31 1070.77 1035.61
per20-0 1004.22 1001.03 1036.72 1019.15
per20-1 1043.73 1030.70 1013.79 1002.55
per20-2 1042.05 1022.81 1034.66 1017.63

and fuzzy maximum tardiness. We have proposed to formulate the multiobjec-
tive problem as a lexicographical fuzzy goal programming model according to
a generic priority structure and target levels established by the decision maker,
using the expected value of the fuzzy quantities. As solving method, a PSO with
codification based on priority arrays has been described. Experimental results
on fuzzy versions of well-known crisp problem instances illustrate the potential
of both the proposed multiobjective formulation and the PSO.

In the future, the multiobjective approach will be further analysed on a more
varied set of problem instances. This should also enable a thorough parametric
analysis of the influence of the target values. Also, we would like to consider the
case when the DM cannot establish a priority structure among objectives and
there is a need for Pareto-optimal solutions.
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gorithm for the open shop problem with uncertain durations. In Proceedings of
IWINAC 2009, Part I. LNCS 5601, pages 255–264. Springer, 2009.

22. M. L. Pinedo. Scheduling. Theory, Algorithms, and Systems. Springer, third edi-
tion, 2008.

23. D. Y. Sha and H. Cheng-Yu. A new particle swarm optimization for the open shop
scheduling problem. Computers & Operations Research, 35:3243–3261, 2008.

24. J. Wang. A fuzzy robust scheduling approach for product development projects.
European Journal of Operational Research, 152:180–194, 2004.

15


