
Tabu Search and Genetic Algorithm for Scheduling with Total Flow Time
Minimization

Miguel A. González and Camino R. Vela and Marı́a Sierra and Ramiro Varela
Dept. of Computer Science and A.I. Centre,
University of Oviedo, 33271 Gijón (Spain)

e-mail: raist@telecable.es, {crvela,sierramaria,ramiro}@uniovi.es

Abstract

In this paper we confront the job shop scheduling prob-
lem with total flow time minimization. We start extend-
ing the disjunctive graph model used for makespan mini-
mization to represent the version of the problem with total
flow time minimization. Using this representation, we adapt
local search neighborhood structures originally defined for
makespan minimization. The proposed neighborhood struc-
tures are used in a genetic algorithm hybridized with a simple
tabu search method, outperforming state-of-the-art methods
in solving problem instances from several datasets.

Introduction
In this paper we confront the Job Shop Scheduling Problem
(JSP) with total flow time minimization. JSP has interested
to researches over the last decades, but in most of the cases
the objective function is makespan. In (Brucker 2004), two
classes of objective functions are considered, termed sum
and bottleneck respectively. Objectives of type sum are
computed by adding non-decreasing functions of the com-
pletion time of the operations, while bottleneck objectives
are obtained from the maximum of any of these functions.
Total flow time and weigthed tardiness are examples of the
first class, and makespan or maximum lateness are examples
of the second. In general, problems with sum objectives are
harder to solve than their bottleneck counterparts. We ob-
served this fact clearly in (Sierra & Varela 2007), (Sierra &
Varela 2008b) and (Sierra & Varela 2008a) through experi-
mental studies across a number of JSP instances, consider-
ing both makespan minimization and total flow time mini-
mization. At the same time, objective functions such as to-
tal flow time are in many real-life problems more important
than it is the makespan. However, researches has paid much
more attention to makespan.

We propose a hybrid algorithm that combines a genetic
algorithm (GA) with tabu search (TS). The core of this algo-
rithm is a new neighborhood structure that extends some of
the neighborhood structures introduced in (Vela, Varela, &
González 2009; González, Vela, & Varela 2008) to SDST-
JSP (JSP with Sequence Dependent Setup Times), which in
its turn extends the structures proposed in (Van Laarhoven,

Copyright c© 2010, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Aarts, & Lenstra 1992) for the classical JSP with makespan
minimization. In order to do that, a new disjunctive graph
representation for the JSP with total flow time minimization
is defined. This representation allows us to establish new
results and methods to cope with total flow time minimiza-
tion. In particular, we have defined a new structure denoted
NS
F . The proposed algorithm is termed GA + TS −NS

F in
the following. We also define a method for estimating the
total flow time of the neighbors, and we will see that this
estimation is less accurate and more time consuming than
similar estimations for the makespan due to the difference
in the problem difficulty.

We have conducted an experimental study across conven-
tional benchmarks to compare GA + TS − NS

F with other
state-of-the-art algorithms. In particular, we have consid-
ered the heuristic search algorithms proposed in (Sierra &
Varela 2008b; Sierra 2009; Sierra & Varela 2010) and the
iterative improvement algorithm proposed in (Kreipl 2000).
The results shown that the proposed algorithm is quite com-
petitive with both of these methods.

The rest of the paper is organized as follows. In Section
(2) we formulate the JSP and introduce the notation used
across the paper. In section (3) we summarize the main char-
acteristics of the approaches chosen to compare with. In
section (4) we describe the main components of the genetic
algorithm. In Section (5), we describe the proposed neigh-
borhood structure, the total flow time estimation algorithm
and the main components of the TS algorithm. Section (6)
reports results from the experimental study. Finally, in Sec-
tion (7) we summarize the main conclusions and propose
some ideas for future work.

Description of the problem
The JSP requires scheduling a set of N jobs {J1, . . . , JN}
on a set R of M physical resources or machines
{R1, . . . , RM}. Each job Ji consists of a set of tasks or op-
erations {θi1, . . . , θiM} to be sequentially scheduled. Each
task θij has a single resource requirement, a fixed duration
pθij and the value of its starting time stθij needs to be deter-
mined.

The JSP has two binary constraints: precedence con-
straints and capacity constraints. Precedence constraints,
defined by the sequential routings of the tasks within a job,
translate into linear inequalities of the type: stθij

+ pθij
≤

COPLAS 2010: ICAPS Workshop on Constraint Satisfaction Techniques for Planning and Scheduling Problems

33

Figure 1: A feasible schedule to a problem with 3 jobs and
3 machines. The total flow time of the schedule is 31.

stθi(j+1) (i.e. θij before θi(j+1)). Capacity constraints
that restrict the use of each resource to only one task at
a time translate into disjunctive constraints of the form:
stθij +pθij ≤ stθkl

∨ stθkl
+pθkl

≤ stθij , where θij and θkl
are operations requiring the same machine. The objective is
to obtain a feasible schedule such that the total flow time,
defined as follows ∑

i=1,...,N

Ci

is minimized, where Ci is the completion time of job i. This
problem is denoted by J ||∑Ci according to the α|β|γ no-
tation used in the literature.

The disjunctive graph model representation
The disjunctive graph is a common representation model for
scheduling problems (Roy & Sussmann 1964). The defini-
tion of such graph depends on the particular problem. For
the J ||∑Ci problem, we propose that it can be represented
by a directed graph G = (V,A ∪ E ∪ I). Each node in
the set V represents a task of the problem, with the excep-
tion of the dummy nodes start and endi 1 ≤ i ≤ N , which
represent fictitious operations that do not require any ma-
chine. The arcs of A are called conjunctive arcs and rep-
resent precedence constraints and the arcs of E are called
disjunctive arcs and represent capacity constraints. The set
E is partitioned into subsets Ei, with E = ∪j=1,...,MEj ,
where Ej corresponds to resource Rj and includes an arc
(v, w) for each pair of operations requiring that resource.
Each arc (v, w) ofA is weighted with the processing time of
the operation at the source node, pv , and each arc (v, w) of
E is weighted with pv . The set I includes arcs (θiM , endi),
1 ≤ i ≤ N , weighted with pθiM .

A feasible schedule is represented by an acyclic subgraph
Gs of G, Gs = (V,A ∪ H ∪ I), where H = ∪j=1...MHj ,
Hj being a hamiltonian selection ofEj . Therefore, finding a
solution can be reduced to discovering compatible Hamilto-
nian selections, i.e. processing orderings for the operations
requiring the same resource, or partial schedules, that trans-
late into a solution graph Gs without cycles.

Figure 1 shows a solution to a problem with 3 jobs and 3
machines. Dotted arcs represent the elements of H , while
arcs of A are represented by continuous arrows.

The completion time of the job Ji, denoted by Ci, is the
cost of the directed path in Gs from node start to node endi

having the largest cost. The total flow time of the sched-
ule is then

∑
i=1,...,N Ci. A critical path is a directed path

in Gs from node start to a node endi having the largest
cost. Nodes and arcs in a critical path are termed critical.
Each critical path may be represented as a sequence of the
form start, B1, . . . , Br, endi where 1 ≤ i ≤ N . Each Bk,
1 ≤ k ≤ r, is a maximal subsequence of consecutive opera-
tions in the critical path requiring the same machine, called
critical block. The concepts of critical path and critical block
are of major importance for scheduling problems due to the
fact that most of the formal properties and solution methods
rely on them. For example, most neighborhood structures
used in local search algorithms, such as those described in
section , consist in reversing arcs in a critical path.

The head of an operation v, denoted rv , is the cost of the
longest path from node start to node v and it is the starting
time of v in the schedule represented by Gs. The tail qiv ,
1 ≤ i ≤ N , is the cost of the longest path from node v to
node endi, minus the duration of the task in node v. It is easy
to see that a node v is critical if and only if rv+pv+qjv = Cj
for some job j. For practical reasons we will take qiv = −∞
when no path exist from v to endi. Here, it is important to
remark that we have had to defineN tails for each operation,
while for makespan minimization it is required just one.

Let PJv and SJv denote the predecessor and successor
of v respectively in the job sequence, and PMv and SMv

the predecessor and successor of v in its machine sequence.
Then, heads and tails are computed as follows. For practical
reasons, we consider the node start to be PJv when v is the
first task of its job and PMv if v is the first task to be exe-
cuted in a machine. The head of every operation v and every
dummy node in the graph may be computed as follows:

rstart = 0
rv = max(rPJv + pPJv , rPMv + pPMv)
rendi = rv + pv, (v, endi) ∈ I, 1 ≤ i ≤ N

Also, we consider the node endi, 1 ≤ i ≤ N , as SJv if v
is the last task of the job i. Then, the tails are computed as
follows:

qiendi
= 0

qjendi
= −∞, j �= i

qjv = max(qjSJv
+ pSJv , q

j
SMv

+ pSMv)

qjstart = max
v∈SJstart

{qjv + pv}

Naturally, the heads have to be computed forward from
the start node, while the tails have to be computed back-
wards from the endi nodes.

Some algorithms for the JSP with total flow
time

In this section, we review two previous approaches to the
problem: the large step random walk iterative heuristic pro-

COPLAS 2010: ICAPS Workshop on Constraint Satisfaction Techniques for Planning and Scheduling Problems

34

posed in (Kreipl 2000) and the best-first heuristic methods
proposed in (Sierra 2009).

Large step random walk
In (Kreipl 2000) a local search method based in the large
step random walk algorithm is proposed. This method is
applied to JSP with weighted tardiness minimization, but
this objective function is reduced to total flow time just
considering all weights 1 and all due dates 0. The pro-
cedure swaps between diversification phases (large steps)
and intensification phases (small steps). In large steps
the search is guided towards new promising regions of the
search space, and these new regions are explored in detail
in the small steps. Large steps use a Metropolis algorithm
so they can accept worse solutions and escape from a lo-
cal optimum, while small steps use a hill climbing algo-
rithm so they always reach a local optimum. They use a
neighborhood structure previously developed in (Suh 1988),
and it’s similar to the structures defined in (Taillard 1993)
and (Dell’ Amico & Trubian 1993) for makespan minimiza-
tion, as they are based in the concept of critical path. In
(Kreipl 2000), the results are compared with the shifting
bottleneck heuristic proposed in (Singer & Pinedo 1999),
and they obtain better results overall. In our experimen-
tal study we have used the implementation of this proce-
dure included in the LEKIN R©tool, which is available in
http://www.stern.nyu.edu/om/software/lekin/index.htm

Heuristic search
We consider the A∗ implementation proposed in (Sierra
2009; Sierra, Mencı́a, & Varela 2009). This is an exact
best-first search algorithm that uses an admisible heuristic
estimation obtained from relaxations to preemptive one ma-
chine sequencing (OMS) problems. One relaxation is made
for each machine m and then the heuristic is calculated as:

h(n) = max
m∈R

�m; (1)

where �m denotes the optimal cost of the preemptive
OMS instance associated to machine m. This value is ob-
tained in polinomial time by means of the algorithm pro-
posed in (Carlier & Pinson 1989; 1994). TheA∗ algorithm is
combined with a powerful method for pruning nodes based
on dominance relations among states of the search tree. The
resulting algorithm, termed here A∗ − PD, is able to solve
optimally instances up to 10 × 5 and 9 × 9. For larger in-
stances, the memory gets usually exhausted before reach-
ing a solution. So, to cope with these situations, in (Sierra
2009), a suboptimal strategy based in heuristic weighting is
proposed. This strategy is problem dependent and consist
in weighting all the terms �m of the expression (1) above
instead of taking just the largest one. Let us consider that
these values are sorted as �1 ≥ · · · ≥ �M , the weighted
heuristic function is then computed as:

hwi(n) = �1 +
∑

2≤i≤M

�i

2wi+δ
, wi > 0. (2)

where wi and δ are parameters. We call this method dis-
junctive weighting and the resulting algorithm is termed in

the sequel as A∗ − DW . Clearly, hwi(n) ≥ h(n). It
seems reasonable choosing the values of parameters wi so
as �2 . . .�M to contribute less than �1 to the weighted
estimation. In the experiments we have established the fol-
lowing setting: the algorithm starts with parameters wi =
(i − 1), 2 ≤ i ≤ M and δ = 0. Then, it iterates over δ at
intervals of 0, 2 until either δ = 2 or the memory gets ex-
hausted. In each iteration, the algorithm finishes when the
first solution is reached (which in general is not optimal).
Finally, it calculates as many solutions as possible with the
largest value of δ that solved the problem without the mem-
ory getting exhausted.

Genetic Algorithm for the JSP
The GA used here is taken from (González, Vela, & Varela
2008) and is quite similar to the canonical GA described in
the literature; see for example (Holland 1975), (Goldberg
1985) or (Michalewicz 1996). In the first step, the initial
population is generated and evaluated. Then the genetic al-
gorithm iterates over a number of steps or generations. In
each iteration, a new generation is built from the previous
one by applying the genetic operators of selection, recombi-
nation and acceptation. These operators can be implemented
in a variety of ways and, in principle, are independent from
each other. However, in practice all of them should be cho-
sen considering their effect on the remaining ones in order
to get a successful overall algorithm. The approach taken in
this work is the following. In the selection phase all chro-
mosomes are grouped into pairs, and then each one of these
pairs is mated to obtain two offspring. Finally, the accepta-
tion is carried out as a tournament selection among each pair
of parents and their two offspring.

The codification schema is based on permutations with
repetition as it was proposed by (Bierwirth 1995). In this
schema a chromosome is a permutation of the set of opera-
tions, each one being represented by its job number. In this
way a job number appears within a chromosome as many
times as the number of its operations. For example, the chro-
mosome (2 1 1 3 2 3 1 2 3) actually represents the permuta-
tion of operations (θ21 θ11 θ12 θ31 θ22 θ32 θ13 θ23 θ33) and is
a valid chromosome for any problem with 3 jobs and 3 ma-
chines. This permutation should be understood as express-
ing partial schedules for each set of operations requiring the
same machine. This codification presents a number of in-
teresting characteristics; for example, it is easy to evaluate
with different algorithms and allows efficient genetic oper-
ators. In (Varela, Serrano, & Sierra 2005) this codification
is compared with other permutation based codifications and
demonstrated to be the best one for the JSP over a set of 12
selected problem instances of common use.

For chromosome mating we have considered the Job Or-
der Crossover (JOX) described in (Bierwirth 1995). Given
two parents, JOX selects a random subset of jobs and copies
their genes to the offspring in the same positions as they are
in the first parent, then the remaining genes are taken from
the second parent so as to maintain their relative ordering.
We clarify how JOX works by means of an example. Let us
consider the following two parents

COPLAS 2010: ICAPS Workshop on Constraint Satisfaction Techniques for Planning and Scheduling Problems

35

Parent1 (2 1 1 3 2 3 1 2 3) Parent2 (3 3 1 2 1 3 2 2 1)

If the selected subset of jobs is the one marked in bold
(job 2) in the first parent, the generated offspring is

Offspring (2 3 3 1 2 1 3 2 1).

Hence, operator JOX maintains for each machine a subse-
quence of operations in the same order as they are in parent
1 while the remaining operations keep the same order as in
parent 2, but their positions in general change. The opera-
tor JOX might swap any two operations requiring the same
machine; this is an implicit mutation effect. For this reason,
we have not used any explicit mutation operator. So, param-
eter setting in experimental study is considerably simplified,
as crossover probability is set to 1 and mutation probabil-
ity need not be specified. Of course, for identical parent
sequences, the offspring will be identical and consequently
the evolution would come to a complete halt if all chromo-
somes were identical. However, in practice this is not an
issue as the algorithm always stops before convergence to
such situation. With this setting, we have obtained results
quite similar to those obtained with a lower crossover prob-
ability and a low probability of applying conventional order
based mutation operators.

To build schedules we have used a decoding algorithm
that generates active schedules. A schedule is active if
no operation can be started earlier without delaying any
other operation. In the implementation we used the Se-
rial Schedule Generation Schema (SSGS) proposed in (Ar-
tigues, Lopez, & Ayache 2005) for the JSP with setup times.
SSGS iterates over the operations in the chromosome se-
quence and assigns each the earliest starting time that sat-
isfies all constraints with respect to the previous scheduled
operations.

When combined with GA, TS is applied to every schedule
produced by SSGS. Then, the chromosome is rebuilt from
the improved schedule obtained by TS, so as its characteris-
tics can be transferred to subsequent offsprings. This effect
of the evaluation function is known as Lamarckian evolu-
tion.

Tabu Search for the Total Flow Time
minimization in the JSP

Algorithm 1 shows the tabu search algorithm considered
herein. This algorithm is borrowed from (González, Vela, &
Varela 2009), and it similar to other tabu search algorithms
described in the literature (Glover & Laguna 1997). In the
first step the initial solution (i.e. a chromosome generated by
the GA, after applying an active schedule builder) is evalu-
ated. Then, it iterates over a number of steps. In each iter-
ation, the neighborhood of the current solution is built and
one of the neighbors is selected for the next iteration. The
tabu search stops after performing a given number of itera-
tions maxGlobalIter, returning the best solution reached so
far. In order to avoid reevaluating the same solutions, the
algorithm uses tabu tenure and cycle checking mechanisms.

input An initial solution s0 for a problem instance P
output A (hopefully improved) solution sB for instance P

Set the current solution s = s0 and the best solution sB =
s;
Set globalIter = 0, Empty the tabu list;
while globalIter < maxGlobalIter do

Set globalIter = globalIter+1;
Generate neighbors of the current solution s by means
of the neighborhood structure;
Let s* be the best neighbor either not tabu and not lead-
ing to a cycle or satisfying the aspiration criterion. Up-
date the tabu list and the cycle detection structure ac-
cordingly and let s = s∗;
if s* is better than sB then

Set sB = s*;
return The solution sB ;

Alg. 1: The Tabu Search Algorithm

The neighborhood structure
The neighborhood structure NS

F proposed below is adapted

from that termed NS in (González, Vela, & Varela 2008;
2009). NS was defined for JSP with setup times and
makespan minimization and it is in turn based on previ-
ous structures given in (Matsuo, Suh, & Sullivan 1988)
and (Van Laarhoven, Aarts, & Lenstra 1992) for the stan-
dard JSP. These structures have given rise to some of the
most outstanding algorithms for the JSP such as, for ex-
ample, those proposed in (Dell’ Amico & Trubian 1993;
Nowicki & Smutnicki 2005; Balas & Vazacopoulos 1998;
Zhang et al. 2008).

As it is usual, NS
F is based on reversing arcs in a critical

path, so a condition for feasibility is required after a move.
In our implementation we have used the following theorem.
Its proof is quite similar to that of an analogous theorem
given in (Vela, Varela, & González 2009) for the JSP with
makespan minimization.

Theorem 1. Given a critical block of the form (b′ v b w b′′),
where b, b′ and b′′ are sequences of operations, a sufficient
condition for an alternative path from v to w not to exist is
that

∀u ∈ {v} ∪ b, rPJw < rSJu + pSJu (3)

Then, the neighborhood structure NS
F is defined as fol-

lows.

Definition 1 (NS
F). Let operation v be a member of a criti-

cal blockB. In a neighboring solution v is moved to another
position in B, provided that the sufficient condition of feasi-
bility (3) is preserved.

In principle, N critical paths should be considered in or-
der to generate neighbors, i.e. one critical path for each node
endi. However, it is possible to consider less critical paths
(for example the largest ones), so reducing the number of
neighbors. In any case, some mechanism to avoid the repeti-
tion of neighbors is necessary as critical paths from different
nodes endi have usually some parts in common.

COPLAS 2010: ICAPS Workshop on Constraint Satisfaction Techniques for Planning and Scheduling Problems

36

Table 1: Results of GA+TS across instance LA02 exploiting
different numbers of critical paths

Critical Paths Best Average Time(s.)
1 4545(1) 4574.7 32

5 (half) 4480(3) 4490.9 37
10 (all) 4459(2) 4471.2 41

Table 1 shows results from some experiments across
LA02 instance (10 jobs and 5 machines), launching 15 runs
of the GA+TS algorithm with a configuration of 10 × 15 ×
1500 (GA population size × GA number of generations ×
TS maxGlobalIter), exploiting a different number of criti-
cal paths in each experiment: the largest one, the 5 largest
ones or all of them. The first column shows the number of
jobs considered to build the critical paths, the second col-
umn shows the best result in all 15 runs (in parentheses it
is the number of times that the best solution is reached), the
third column shows the average solution obtained and the
fourth column shows the average time taken. As we can ob-
serve the best choice is to exploit all the N critical paths,
so as the largest number of neighbors is evaluated. Only
in this case the GA+TS algorithm reaches the optimal solu-
tion (4459), while the time taken augments in about 25%.
We have conducted experiments across other instances with
similar results.

Total flow time estimation
Even though computing the total flow time of a neighbor
only requires to recompute heads (tails) of operations that
are after (before) the first (last) operation moved, for the
sake of efficiency the selection rule is based on total flow
time estimations instead of computing the actual total flow
time of all neighbors. For this purpose, we have extended
the procedure lpath given for the JSP in (Taillard 1993).
This procedure is termed lpathTFT and it is shown in Algo-
rithm 2. It takes an input sequence of operations of the form
(Q1 . . . Qq) after a move, all of them requiring the same
machine, being (Q1 . . . Qq) a permutation of the sequence
(O1 . . . Oq) before the move. The algorithm works as fol-
lows: For each i = 1 . . . N , lpathTFT estimates the cost
of the longest path from node start to node endi through
a node included in (Q1 . . . Qq), this estimation is given by

maxj=1...q {r′Qj
+ pQj

+ q′iQj
, where q′iQj

is the tail of node

Qj corresponding to node endi after the move (remember
that each operation has a tail for each one of the endi nodes)
and then adds up the estimations from all the paths to obtain
the final estimated total flow time of the neighboring sched-
ule. When w is moved before v in a block of the form (b′ v b
w b′′), the input sequence is (w v b), and if v is moved after
w the input sequence is (b w v).

The makespan estimation algorithm lpath is very accurate
and very efficient. However, estimation for the total flow
time is much more time consuming as it calculates N tails
for each operation. Moreover, experiments conclude that to-
tal flow time estimation is much less accurate than makespan
estimation, as Table 2 shows. This table reports the percent-

input A sequence of operations (Q1 . . . Qq) as they appear
after a move

output A estimation of the total flow time of the resulting
schedule
Est = 0;
a = Q1;
r′a = max {rPJa + pPJa , rPMa + pPMa};
for i = 2 to q do
b = Qi;
r′b = max {rPJb

+ pPJb
, r′a + pa};

a = b;
for i = 1 to N do
b = Qq;
q′ib = max {qiSJb

+ pSJb
, qiSMb

+ pSMb
};

for j = q − 1 to 1 do
a = Qj ;
q′ia = max {qiSJa

+ pSJa
, q′ib + pb};

b = a;
Est = Est+ maxj=1...q {r′Qj

+ pQj
+ q′iQj

};

return Est;

Alg. 2: Procedure lpathTFT (Q1 . . . Qq)

Table 2: Accuracy of the estimation algorithms for
makespan and total flow time in LA02 instance

Function Estimations > = <
Makespan 77 millions 0.36% 95.77% 3.87%

T. F. T. 192 millions 0.73% 64.52% 34.75%

age of times that the estimations are greater, equal or lower
than the actual values from similar GA+TS algorithms for
makespan and total flow time respectively (running with the
same parameters as the experiments reported in Table 1).
As it can be expected, the number of neighbors evaluated is
much larger for total flow time than it is for makespan and
the estimations are much more accurate for the makespan.
In any case, a remarkable result is that only in a small frac-
tion of the cases the estimation is larger than the actual total
flow time.

As the ratio of underestimations is really high (34.75%),
and estimation error is also larger than it is in the makespan
case, we have opted to evaluate the actual total flow time
when the neighbor’s estimation is lower than the actual total
flow time of the original schedule. Some preliminary re-
sults have shown that the improvement achieved in this way
makes up the time consumed.

Experimental Study
The purpose of the experimental study is to compare GA+
TS −NS

F with other state-of-the-art algorithms. Firstly, we
consider the exact A* algorithm enhanced with a pruning
by dominance method (A∗-PD) and a sub-optimal variant
of this algorithm that uses a method of heuristic weighting
(A∗-DW), both of them proposed in (Sierra 2009). Also, we
consider the large step random walk local search algorithm
(LSRW) proposed in (Kreipl 2000).

COPLAS 2010: ICAPS Workshop on Constraint Satisfaction Techniques for Planning and Scheduling Problems

37

We have conducted two series of experiments on standard
benchmarks taken from the OR-library. In the first one, we
experimented across a set of instances (sizes 10×5, 8×8 and
9×9) proposed in (Sierra 2009), that are optimally solved by
A∗-PD. The reduced 8×8 and 9×9 instances are built from
original 10 × 10 instances removing the last jobs and the
last machines. In the second series of experiments we used
larger instances (sizes 15×5, 20×5 and 10×10) that can not
be optimally solved by A∗-PD. In all these experiments, we
have to be aware of the differences in the target machines
and then in the time taken. The versions of A∗ have been
run on Ubuntu V8,04 on Intel Core 2 Duo at 2,13GHz with
7,6Gb of RAM, LSRW has been run on Windows XP on
Intel Core 2 Duo at 2,13GHz with 3Gb of RAM and GA +
TS−NS

F has been run on Windows XP on Intel Core 2 Duo
at 2.66GHz with 2Gb of RAM.

Table 3 shows results from the first experiments. In this
case A∗-PD reach the optimal solutions for all instances.
LSRW and GA + TS − NS

F were run 20 times for each
instance and the best and average values of all 20 solutions
are reported. The GA+ TS −NS

F parameters (GA popula-
tion size × GA number of generations × TS maxGlobalIter)
were (50 × 70 × 150) for both 10 × 5 and 9 × 9 instances,
and (30 × 40 × 120) for 8 × 8 instances. With these val-
ues the algorithm converges properly and the time taken is
not larger than that of the other two algorithms (taking into
account the target machines).

As we can observe, GA + TS − NS
F is able to reach the

optimum solution in most of the trials: it reached the opti-
mal solution in 747 out of the 820 runs for all 41 instances
(91.1%), and has reached at least once the optimal solution
for 40 of the 41 instances. The exception is the instance
ORB08(9 × 9) where A∗-PD takes the largest time among
the 9×9 instances. LSRW fails to reach the optimal solution
in 6 of the 41 instances.

In the second series of experiments we compare A∗-DW,
LSRW and GA + TS − NS

F on the set of instances LA06-
10 (15 × 5), LA11-15 (20 × 5) and LA15-20 (10 × 10).
None of these instances can be optimally solved by A∗-PD
before the memory getting exhausted, so we do not know
their optimal solutions. In these experiments theGA+TS−
NS
F parameters were (50 × 70 × 150) for all 15 instances,

run.

Table 4 shows the results from these experiments. Here,
the time reported for A∗-DW corresponds to the number of
trials that are required to adjust the parameter δ to its best
value and one more to obtain all possible solutions with
this parameter, the time taken until the memory getting ex-
hausted or the whole search space is explored is accumulated
for all trials. For LWRS and GA+TS−NS

F the time is the
average time of 20 trials.

As we can observe, in average GA + TS −NS
F is better

than LSRW in 12 instances and it is worse in 3; and the best
value of GA+ TS −NS

F is better than that of LSRW in 11

and equal in 4. Compared to A∗-DW, GA+ TS −NS
F is in

average better in 7 cases, equal in 5 and worse in 3, and the
best value of GA+ TS −NS

F is better in 8 cases and equal
in the remaining ones.

Conclusions
We have considered the job shop scheduling problem, where
the objective is to minimize the total flow time. We have
proposed a disjunctive graph representation for this problem
and used it to define a specific neighborhood structure for
the total flow time. The neighborhood structure has then
been used in a tabu search algorithm, which is embedded
in a genetic algorithm framework. We have also defined a
method for estimating the total flow time of the neighbors,
and demonstrated that estimating this objective function is
much more difficult than estimating other classic objective
functions such as the makespan.

We have reported results from an experimental study
across some conventional benchmarks and compared the
proposed GA+ TS −NS

F algorithm with some representa-
tive state-of-the-art methods: the A∗ algorithm with a prun-
ing by dominance method (A∗-PD) and the A∗-DW, both
proposed in (Sierra 2009), and the large step random walk
algorithm (LSRW) proposed in (Kreipl 2000). The results
show that the proposed approach is competitive with these
state-of-the-art methods.

As future work we plan to extend our approach to con-
front other variants or extensions of this problem. We would
like to consider the weighted tardiness as objective function,
which is very interesting too in real life applications, and it is
a generalization of total flow time. It would also be interest-
ing to tackle multiobjective problems. Finally, our approach
may also be applied to more general frameworks than JSP,
such as resource-constrained scheduling with setup times.

Acknowledgments
This work is supported by MEC-FEDER Grant TIN2007-
67466-C02-01 and FICYT grant BP07-109.

References
Artigues, C.; Lopez, P.; and Ayache, P. 2005. Sched-
ule generation schemes for the job shop problem with
sequence-dependent setup times: Dominance properties
and computational analysis. Annals of Operations Re-
search 138:21–52.

Balas, E., and Vazacopoulos, A. 1998. Guided local search
with shifting bottleneck fo job shop scheduling. Manage-
ment Science 44(2):262–275.

Bierwirth, C. 1995. A generalized permutation approach to
jobshop scheduling with genetic algorithms. OR Spectrum
17:87–92.

Brucker, P. 2004. Scheduling Algorithms. Springer, 4th
edition.

Carlier, J., and Pinson, E. 1989. An algorithm for solving
the job-shop problem. Management Science 35(2):164–
176.

Carlier, J., and Pinson, E. 1994. Adjustment of heads and
tails for the job-shop problem. European Journal of Oper-
ational Research 78:146–161.

Dell’ Amico, M., and Trubian, M. 1993. Applying tabu
search to the job-shop scheduling problem. Annals of Op-
erational Research 41:231–252.

COPLAS 2010: ICAPS Workshop on Constraint Satisfaction Techniques for Planning and Scheduling Problems

38

Glover, F., and Laguna, M. 1997. Tabu Search. Kluwer
Academic Publishers.

Goldberg, D. 1985. Genetic algorithms in search. Opti-
mization and machine learning. Addison-Wesley.

González, M. A.; Vela, C. R.; and Varela, R. 2008. A
new hybrid genetic algorithm for the job shop scheduling
problem with setup times. In Proceedings of the Eigh-
teenth International Conference on Automated Planning
and Scheduling (ICAPS-2008). Sidney: AAAI Press.

González, M. A.; Vela, C. R.; and Varela, R. 2009. Ge-
netic algorithm combined with tabu search for the job shop
scheduling problem with setup times. In IWINAC 2009:
Methods and Models in Artificial and Natural Computa-
tion, 265–274. LNCS-5601, Springer.

Holland, J. H. 1975. Adaptation in Natural and Artificial
Systems: An Introductory Analysis with Applications to Bi-
ology, Control and Artificial Intelligence. The University
of Michigan Press.

Kreipl, S. 2000. A large step random walk for minimizing
total weighted tardiness in a job shop. Journal of Schedul-
ing 3:125–138.

Matsuo, H.; Suh, C.; and Sullivan, R. 1988. A controlled
search simulated annealing method for the general jobshop
scheduling problem. Working paper 03-44-88, Graduate
School of Business, University of Texas.

Michalewicz, Z. 1996. Genetic Algorithms + Data Struc-
tures = Evolution Programs. Springer, third, revised and
extended edition.

Nowicki, E., and Smutnicki, C. 2005. An advanced tabu
search algorithm for the job shop problem. Journal of
Scheduling 8:145–159.

Roy, B., and Sussmann, B. 1964. Les problèmes
d’ordonnancement avec constraintes disjonctives. Note d.s.
no. 9 bis, d6c, SEMA, Matrouge, Paris.

Sierra, M., and Varela, R. 2007. Pruning by dominance
in best-first search. In Proceedings of CAEPIA’2007, vol-
ume 2, 289–298.

Sierra, M., and Varela, R. 2008a. A new admissible heuris-
tic for the job shop scheduling problem with total flow
time. ICAPS-2008. Workshop on Constraint Satisfaction
Techniques for Planning and Scheduling. Sidney.

Sierra, M., and Varela, R. 2008b. Pruning by dominance in
best-first search for the job shop scheduling problem with
total flow time. Journal of Intelligent Manufacturing, DOI
10.1007/s10845-008-0167-4 1:1–2.

Sierra, M. R., and Varela, R. 2010. Best-first search and
pruning by dominance for the job shop scheduling problem
with total flow time. Journal of Intelligent Manufacturing
21(1):111–119.

Sierra, M. R.; Mencı́a, C.; and Varela, R. 2009. Weight-
ing disjunctive heuristics for scheduling problems with
summation cost functions. In Proceedings of Work-
shop on Planning, Scheduling and Constraint Satisfaction,
CAEPIA’2009.

Sierra, M. R. 2009. Métodos de Poda por Dominan-
cia en Búsqueda Heurı́stica. Aplicaciones a Problemas de

Scheduling. Ph.D. Dissertation, Universidad de Oviedo,
Spain.

Singer, M., and Pinedo, M. 1999. A shifting bottleneck
heuristic for minimizing the total weighted tardiness in a
job shop. Naval Research Logistics 46(1):1–17.

Suh, C. 1988. Controlled search simulated annealing
for job shop scheduling. Ph.D. Dissertation, University of
Texas.

Taillard, E. 1993. Benchmarks for basic scheduling prob-
lems. European Journal of Operational Research 64:278–
285.

Van Laarhoven, P.; Aarts, E.; and Lenstra, K. 1992. Job
shop scheduling by simulated annealing. Operations Re-
search 40:113–125.

Varela, R.; Serrano, D.; and Sierra, M. 2005. New cod-
ification schemas for scheduling with genetic algorithms.
Proceedings of IWINAC 2005. Lecture Notes in Computer
Science 3562:11–20.

Vela, C. R.; Varela, R.; and González, M. A. 2009. Local
search and genetic algorithm for the job shop scheduling
problem with sequence dependent setup times. Journal of
Heuristics DOI 10.1007/s10732-008-9094-y.

Zhang, C. Y.; Li, P.; Rao, Y.; and Guan, Z. 2008. A very
fast TS/SA algorithm for the job shop scheduling problem.
Computers and Operations Research 35:282–294.

COPLAS 2010: ICAPS Workshop on Constraint Satisfaction Techniques for Planning and Scheduling Problems

39

Table 3: Results from A∗-PD, LSRW and GA+ TS −NS
F .

Instance Size
A∗-PD LSRW GA+ TS −NS

F
Optimum Time(s) Best Avg. Time(s) Best Avg. Time(s)

LA01 10 × 5 4832 35 4832(1) 4832.9 93 4832(20) 4832 90
LA02 10 × 5 4459 80 4479(4) 4483.2 93 4459(20) 4459 96
LA03 10 × 5 4151 10 4151(20) 4151 93 4151(20) 4151 101
LA04 10 × 5 4259 19 4259(2) 4268.8 93 4259(20) 4259 96
LA05 10 × 5 4072 68 4072(2) 4095.0 93 4072(20) 4072 108

LA16 8 × 8 4600 4 4600(3) 4606.5 17 4600(20) 4600 16
LA17 8 × 8 4366 6 4379(20) 4379 17 4366(20) 4366 15
LA18 8 × 8 4690 3 4690(13) 4704.7 17 4690(17) 4696.3 16
LA19 8 × 8 4612 3 4612(20) 4612 17 4612(19) 4613.8 14
LA20 8 × 8 4616 5 4616(20) 4616 17 4616(20) 4616 16
ORB01 8 × 8 4743 4 4743(20) 4743 17 4743(20) 4743 16
ORB02 8 × 8 4678 5 4678(20) 4678 17 4678(20) 4678 17
ORB03 8 × 8 4925 10 4925(20) 4925 17 4925(20) 4925 16
ORB04 8 × 8 5081 4 5081(20) 5081 17 5081(20) 5081 18
ORB05 8 × 8 4191 3 4191(5) 4192.5 17 4191(20) 4191 17
ORB06 8 × 8 4673 11 4673(20) 4673 17 4673(20) 4673 16
ORB07 8 × 8 2124 9 2124(20) 2124 17 2124(19) 2124.1 18
ORB08 8 × 8 4749 40 4749(6) 4759.9 17 4749(13) 4753.6 17
ORB09 8 × 8 4590 20 4590(20) 4590 17 4590(20) 4590 20
ORB10 8 × 8 4959 1 4959(20) 4959 17 4959(20) 4959 14
ABZ5 8 × 8 6818 3 6839(4) 6891 17 6818(20) 6818 16
ABZ6 8 × 8 4900 4 4900(2) 4922.5 17 4900(20) 4900 16
FT10 8 × 8 4559 4 4559(20) 4559 17 4559(20) 4559 16

LA16 9 × 9 5724 38 5724(6) 5739.6 294 5724(20) 5724 76
LA17 9 × 9 5390 116 5396(5) 5403.5 294 5390(20) 5390 82
LA18 9 × 9 5770 34 5770(20) 5770 294 5770(20) 5770 90
LA19 9 × 9 5891 28 5891(20) 5891 294 5891(20) 5891 68
LA20 9 × 9 5915 110 5934(12) 5935.2 294 5915(20) 5915 73
ORB01 9 × 9 6367 166 6367(5) 6378.5 294 6367(8) 6371.6 75
ORB02 9 × 9 5867 92 5867(3) 5867.9 294 5867(8) 5867.6 78
ORB03 9 × 9 6310 110 6310(20) 6310 294 6310(20) 6310 81
ORB04 9 × 9 6661 273 6661(20) 6661 294 6661(3) 6676.3 85
ORB05 9 × 9 5605 16 5605(20) 5605 294 5605(20) 5605 88
ORB06 9 × 9 6106 208 6106(20) 6106 294 6106(20) 6106 78
ORB07 9 × 9 2668 155 2668(20) 2668 294 2668(20) 2668 86
ORB08 9 × 9 5656 772 5668(2) 5693.3 294 5668(19) 5670.5 84
ORB09 9 × 9 6013 38 6013(18) 6013.8 294 6013(20) 6013 99
ORB10 9 × 9 6328 106 6328(1) 6332.75 294 6328(20) 6328 89
ABZ5 9 × 9 8586 39 8586(20) 8586 294 8586(20) 8586 79
ABZ6 9 × 9 6524 29 6524(14) 6524.6 294 6524(20) 6524 91
FT10 9 × 9 5982 72 5982(20) 5982 294 5982(20) 5982 78

COPLAS 2010: ICAPS Workshop on Constraint Satisfaction Techniques for Planning and Scheduling Problems

40

Table 4: Results from A∗-DW, LSRW and GA+ TS −NS
F .

Instance Size
A∗-DW LSRW GA+ TS −NS

F
Best Time(s) Best Avg. Time(s) Best Avg. Time(s)

LA06 15 × 5 8631 859 8644(1) 8670.9 840 8625(1) 8628 307
LA07 15 × 5 8069 1005 8116(1) 8165.9 840 8069(19) 8070.7 295
LA08 15 × 5 8190 732 7949(8) 7960.7 840 7946(10) 7962.4 328
LA09 15 × 5 9153 583 9113(1) 9186.6 840 9034(3) 9072.6 345
LA10 15 × 5 8798 763 8821(1) 8881.7 840 8798(12) 8799.6 315
LA11 20 × 5 14014 657 14148(2) 14196.4 840 13880(1) 13985.5 715
LA12 20 × 5 12594 501 11733(1) 11819 840 11710(3) 11753.1 895
LA13 20 × 5 13495 538 13477(1) 13558.1 840 13281(1) 13367.6 774
LA14 20 × 5 14556 595 14671(1) 14738.7 840 14514(1) 14573.4 743
LA15 20 × 5 14279 519 14285(1) 14380.0 840 14111(1) 14187.4 819
LA16 10 × 10 7376 2143 7376(19) 7376.5 840 7376(20) 7376 111
LA17 10 × 10 6537 2439 6537(1) 6566.8 840 6537(20) 6537 106
LA18 10 × 10 6970 3829 6970(1) 7005.0 840 6970(20) 6970 108
LA19 10 × 10 7217 1503 7217(15) 7217.7 840 7217(15) 7223.3 98
LA20 10 × 10 7345 1351 7394(15) 7397.4 840 7345(7) 7402.4 98

COPLAS 2010: ICAPS Workshop on Constraint Satisfaction Techniques for Planning and Scheduling Problems

41

